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We present the constraints on the axial-vector and pseudo-scalar mediated WIMP-nucleus interactions 
from the PandaX-4T experiment, using the data set corresponding to a total exposure of 0.63 tonne·year. 
No significant signal excess is observed, and the most stringent constraints to date on the mediator mass 
are set for the axial-vector and pseudo-scalar simplified models. The maximum excluded mass of an 
axial-vector mediator is 825 GeV/c2 and that of a pseudo-scalar mediator is 106 GeV/c2. In addition, the 
upper limits on the spin-dependent WIMP-nucleon scattering cross-section for conventional neutron-only 
and proton-only interactions are derived.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
There is plenty of evidence indicating that a large amount of 
dark matter exists in our universe. However, its nature is still elu-
sive [1]. Weakly interacting massive particle (WIMP) is a plausible 
dark matter candidate which arises naturally from many theories 
beyond the Standard Model of particle physics like the super-
symmetry. Various methods are utilized to hunt for WIMPs, in-
cluding direct search, indirect search, and collider search. Based on 
the dual-phase xenon time projection chamber (TPC), the sensi-
tivity of WIMP-nucleus interaction has improved significantly over 
the past decades [2–7].

The PandaX-4T experiment, located at the China Jinping Under-
ground Laboratory (CJPL) [8,9], is one of the largest xenon TPC 
experiments with 3.7-tonne of liquid xenon in the sensitive vol-
ume. The cylindrical TPC is covered by 24 polytetrafluoroethylene 
(PTFE) panels on the side and 368 Hamamatsu R11410-23 3-inch 
photomultiplier tubes (PMTs) on the top and bottom, with four 
electrodes placed inside to construct the drift and extraction elec-
tric field. Once an incoming energetic particle scatters off xenon 
nuclei or electrons, prompt scintillation light (S1) and ionized elec-
trons are generated, the latter then drift upward to the liquid 
xenon surface and produce the electroluminescence light (S2) in 
the gaseous xenon region under the electric fields. Both S1 and 
S2 are detected by the PMTs, from which the scattering position 
and deposited energy can be reconstructed. The ratio of S2 to S1
provides powerful signal-background discrimination. A more de-
tailed description of the PandaX-4T experiment can be found in 
Refs. [5,10,11].

The PandaX-4T experiment has set stringent constraints on the 
spin-independent (SI) WIMP-nucleon cross-section upper limits, 
excluding 3.8 × 10−47 cm2 for a WIMP mass of 40 GeV/c2 at 90% 
confidence level (C.L.) [5], which is based on an effective field the-
ory (EFT) describing the Dirac fermion WIMP particle interaction 
with the nucleon. The physics behind the EFT can be revealed 
from a simplified model, where the interaction is introduced by a 
mediator with couplings to WIMPs and quarks. A vector or scalar 
mediator produces the SI WIMP-nucleon interaction. For an axial-
vector and pseudo-scalar mediator, the tree-level process yields 
the spin-dependent (SD) WIMP-nucleus interaction instead [12,13]. 
Xenon-based experiments are also sensitive to the SD interac-
tions thanks to the significant abundance of odd-A xenon isotopes 
with non-zero spin (26.4% spin-1/2 129Xe and 21.2% spin-3/2 131Xe
in natural xenon) [14,15]. The XENON1T experiment has pushed 
down the SD neutron-only cross-section limits to 6.3 × 10−42 cm2

for WIMP mass of 30 GeV/c2. As for pseudo-scalar mediator, the 
tree-level SD process has a strong momentum suppression [16,17], 
there are no effective searches for this pseudo-scalar mediated SD 
process in direct detection experiments. However, under the sim-
plified model, the next-to-leading-order (NLO) loop-level process 
does not have this suppression and yields a SI process, which al-
2

lows the direct detection to be able to probe the pseudo-scalar 
mediator too. In this letter, we present the search results of SD 
WIMP-nucleus interactions and constraints on the axial-vector and 
pseudo-scalar mediators, based on the PandaX-4T commissioning 
run data.

As for axial-vector couplings to quarks and WIMPs, the WIMP-
nucleus SD cross-section can be evaluated from chiral effective 
field theory (EFT) [18–20], which is related to the total spin ex-
pectation values of the protons and neutrons in the nucleus in the 
limit of zero momentum transfer. Therefore, a common practice is 
to consider two special cases where the WIMPs couple only to pro-
tons or to neutrons. The corresponding scattering cross-section is 
expressed as below,

σA = 4π

3(2 J + 1)

(
μA

μN

)2

SN(q2)σN , (1)

where N denotes the proton (p) or neutron (n), μN is the reduced 
mass for WIMP scattering off the nucleon, μA is the reduced mass 
of WIMP and the target nucleus, SN (q2) is the structure factor for 
“proton-only” or “neutron-only” cases [18]. Due to the cancellation 
between spins of nucleon pairs, the SD cross-section with a nu-
cleus is dominated by the unpaired nucleon, which is neutron for 
129Xe and 131Xe. It should be noticed that the cross-section of the 
“proton-only” case is significantly enhanced due to chiral two-body 
currents involving the exchange of a pion.

The differential event rate for the WIMP SD interaction can be 
then written as [21,22]

dR

dE
= ρχσA

2mχμ2
A

η(E), (2)

where mχ and ρχ are the WIMP mass and local density respec-
tively, σA is the WIMP-nucleus cross-section, η is the mean in-
verse speed of WIMP velocity distribution. It is recommended that 
ρχ = 0.3 GeV/(c2·cm3) and the WIMP motion obeys the standard 
halo model [23]. Explicitly, the most probable velocity of WIMP 
in Maxwellian distribution v0 = 238 km/s, the galactic escape ve-
locity vesc = 544 km/s and the Earth velocity vE = 254 km/s are 
adopted in this analysis. The typical event rate as a function of the 
nuclear recoil energy is shown in Fig. 1. Both the SD “proton-only” 
and “neutron-only” recoil energy spectra are plotted in addition to 
the SI case for the WIMP mass of 40 GeV/c2 and 400 GeV/c2, with 
the detection efficiency [5] overlaid.

We use the same data set and selections as the WIMP SI anal-
ysis [5]. In brief, the S1 signal region of interest requires the S1 in 
the range of 2 to 135 photoelectron(PE) in the fiducial volume, and 
the S2 signal collected in the bottom PMT array (S2b) is adopted 
to avoid bias from PMT saturation. The data is divided into five 
subsets, according to the detector status. The background models 
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Fig. 1. Nuclear recoil energy spectra for the scattering of WIMP on PandaX-4T detec-
tor. The SI, SD proton-only, and SD neutron-only are illustrated in blue, green and 
red curves with σ = 10−41cm2 respectively. The dashed and solid curves represent 
the 40 GeV/c2 and 400 GeV/c2 WIMPs respectively. The detection efficiency of the 
PandaX-4T experiment is plotted in a dotted curve with the corresponding axis on 
the right.

also inherit from Ref. [5] and the detailed values can be found in 
the Table II of Ref. [5]. The total live time is 86.0 days and the 
resulting exposure is 0.63 tonne·year.

The 90% confidence level (C.L.) upper limit of SD WIMP-nucleon 
cross-section as a function of WIMP mass is calculated, utilizing 
the same statistical inference (profile likelihood ratio) in Ref. [5,23]. 
The results are shown in Fig. 2, for “neutron-only” and “proton-
only” interaction respectively. Selected previous experiment results 
are also plotted for comparison. In the WIMP mass above 6 GeV/c2

region, our most stringent upper limit for “neutron-only” inter-
action is 5.8 × 10−42 cm2 for a WIMP mass of 40 GeV/c2. For 
the “proton-only” interaction, the minimal excluded cross-section 
is 1.7 × 10−40 cm2 for 40 GeV/c2 WIMP mass. Recently, the LZ 
experiment released its first result on the SD WIMP-nucleon in-
teraction [24], which extends the excluded SD parameter space 
further.

To explore the physics behind the WIMP-nucleon interaction, 
we consider the simplified model with a mediator. The axial-vector 
mediator couples to all quark flavors equally with one unique cou-
pling constant gq , and thus it yields isoscalar couplings to neutrons 
and protons. In this model, there are four free parameters: WIMP 
mass mχ , mediator mass mV , the coupling of the mediator to 
WIMP gχ and the coupling of the mediator to quark gq . Follow-
ing the Ref. [25], both the tree-level amplitudes and the loop-level 
amplitudes are calculated, and the latter is negligible. The cross-
section is given in Ref. [26,25] with the form

σ SD
χ N = 0.31g2

q g2
χμ2

N

πm4
V

, (3)

where couplings gq = 0.25 and gχ = 1 are adopted as a bench-
mark scenario. Based on this model, the signal energy spectra are 
generated and the same analysis method is applied. The 95% C.L. 
exclusion limit on mediator mass as a function of WIMP mass is 
obtained, as shown in Fig. 3, with a comparison with other di-
rect detection experiments [27,15]. In addition, the renormalization 
group evolution (RGE) effect is considered to account for the cor-
rections from the mediator mass scale to the nuclear scale in direct 
detection [28]. The limit on the mediator mass with RGE effect is 
also shown in Fig. 3. The maximum excluded mass of an axial-
vector mediator is 825 GeV/c2. Constraints on the mediators are 
also provided by collider experiments such as the ATLAS and CMS 
at the Large Hadron Collider (LHC) [29,30], with the benchmark 
3

Fig. 2. PandaX-4T 90% C.L. upper limit for the SD WIMP-nucleon (top: neutron-only; 
bottom: proton-only) cross-section, overlaid with that from XENON1T 2019 [15] and 
PandaX-II 2018 [14]. The green band and dashed red curve represent the ± 1σ
sensitivity band and the median, respectively.

Fig. 3. PandaX-4T 95% C.L. exclusion limit on the mediator mass for a simplified 
isoscalar model with an axial-vector mediator and a Dirac WIMP, where the cou-
pling constants gq and gχ are 0.25 and 1, respectively. RGE effect is considered 
in the signal rate calculation, shown as a solid red line. The limit without RGE 
effect is shown as a dashed red line. The results from other direct detection ex-
periments, XENON1T [15] and PICO-60 [27], and collider experiments, ATLAS [29]
and CMS [30], are overlaid for comparison.

models summarized in Refs. [31,26,32]. This result is complemen-
tary to that obtained from the collider experiment in the WIMP 
mass region above several hundred GeV/c2.

As for the pseudo-scalar mediator scenario, one gauge-invariant 
and ultra-violet-complete extension of the simplified model is the 
Two-Higgs-Doublet-Model-Plus-Pseudo-Scalar (2HDM+a) model, 
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Fig. 4. The upper panel is the triangle diagram of scattering between WIMPs and 
quarks in 2HDM+a model [33], where ai, j represents the mediator a/A. The lower 
panel is the corresponding box diagrams in 2HDM+a model [33].

as recommended by the LHC DM Forum [31]. It contains five Higgs 
bosons: a light CP-even boson, h, a heavier CP-even boson, H , a 
CP-odd boson, A, and two charged bosons, H± , where the lighter 
CP-even boson h can be identified with the Standard Model Higgs 
boson. A CP-odd pseudo-scalar mediator, a, is postulated with 
Yukawa-couplings to both the SM fermions and the Dirac fermion 
WIMPs, and mixes with the pseudo-scalar A with a mixing an-
gle θ . However, with a pseudo-scalar mediator, the amplitudes 
of tree-level SD contribution are momentum-suppressed [16,17]. 
Therefore, the dominant processes are from the loop-level dia-
grams which give the SI interactions instead. The loop-level dia-
grams of interactions between WIMPs and quarks are shown as 
Fig. 4, and the amplitudes can be calculated from the effective La-
grangian following Ref. [17,12,33].

This model contains 14 independent parameters: the masses of 
Higgs bosons mh , mH , mA , and mH± ; the mass of the mediator 
ma; the WIMP mass mχ ; the Yukawa coupling strength between 
the mediator and the WIMP, gχ ; the electroweak vacuum expec-
tation value (VEV), v; the ratio of the VEVs of the two Higgs 
doublets, tan β; the mixing angles of the CP-even and CP-odd weak 
eigenstates, α and θ , respectively; and the three quartic couplings 
between the scalar doublets and the mediator (λP 1, λP 2, λ3). In 
this letter, the following values of these parameters are adopted as 
suggested in Ref. [31]:

mH = mH± = mA = 600 GeV/c2,

cos(β − α) = 0, tanβ = 1, sin θ = 0.35,

gχ = 1, λ3 = λP 1 = λP 2 = 3.

(4)

With these parameters and signal rate calculation following 
Ref. [33], the 95% C.L. exclusion limit on the pseudo-scalar me-
diator mass ma as a function of the WIMP mass is shown in Fig. 5, 
where the maximal excluded mediator mass is 106 GeV/c2. Since 
the major contribution to the WIMP-nucleon scattering is from 
NLO processes in this scenario, the limits are much weaker than 
the axial-vector case, leaving a large parameter space viable for 
WIMPs.

PandaX-4T direct detection and collider search complement 
each other for this 2HDM+a model, as illustrated in Fig. 6, where 
the pseudo-scalar mass ma is fixed at 250 GeV/c2 as the col-
lider search adopts. The exclusion limit is expressed in terms of 
the ratio of the excluded cross-section (σ ) to the nominal cross-
section of the model (σtheory) calculated with the benchmark pa-
rameters. For ma = 250 GeV/c2, the predicted thermal relic density 
as a function of WIMP mass in the 2HDM+a model [34] is also 
4

Fig. 5. PandaX-4T 95% C.L. exclusion limit (red solid) on the mass of pseudo-scalar 
mediator a. The green band represents the ±1σ sensitivity band.

Fig. 6. PandaX-4T 95% C.L. normalized exclusion limit (red solid) for pseudo-scalar 
mediator model as a function of WIMP mass. The green band shows the ± 1σ sen-
sitivity band. The normalized limit is expressed in terms of the ratio of the excluded 
cross-section to the nominal cross-section of the model. The 95% C.L. from ATLAS 
[34] (orange solid) is also shown for comparison. The relic density (blue dashed) for 
each WIMP mass [34] is overlaid and described by the right blue axis, based on the 
parameters shown in (4).

shown in Fig. 6, which indicates that only the WIMP mass range 
around 125 GeV/c2 or above 180 GeV/c2 is allowed. Compared 
with the results from ATLAS experiment [34], PandaX-4T experi-
ment has much a stronger sensitivity to WIMPs with mass above 
180 GeV/c2.

In conclusion, this letter presents new constraints on the axial-
vector and pseudo-scalar mediated WIMP-nucleus interactions 
from the PandaX-4T commissioning data of 0.63 tonne·year. The 
most stringent constraints to date on the mediator mass are set 
at 90% confidence level are set for the axial-vector and pseudo-
scalar simplified models, taking into account both the tree-level 
and loop-level processes. The maximum excluded mass of an 
axial-vector mediator is 825 GeV/c2 and that of a pseudo-scalar 
mediator is 106 GeV/c2. Direct detection and collider search are 
complementary to each other and the combination of these two 
directions covers a much larger parameter space of WIMPs and 
mediators. In addition, the upper limits on the conventional spin-
dependent WIMP-nucleon scattering cross-section are derived, 
with the minimum value of 5.8 × 10−42 cm2 and 1.7 × 10−40 cm2

for neutron-only and proton-only interactions respectively. The 
PandaX-4T experiment continues taking physics data and will scan 
unexplored parameter space further.
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