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The flavor-changing gravitational process, d → s + graviton, is evaluated at the one-loop
level in the standard electroweak theory with on-shell renormalization. The results that we
present in the ’t Hooft–Feynman gauge are valid for on- and off-shell quarks and for all
external and internal quark masses. We show that there exist non-decoupling effects of the
internal heavy top quark in interactions with gravity. A naive argument taking account of
the quark Yukawa coupling suggests that the amplitude of the process d → s + graviton
in the large top quark mass limit would possibly acquire an enhancement factor m2

t /M2
W ,

where mt and MW are the top quark and the W-boson masses, respectively. In practice this
leading enhancement is absent in the renormalized amplitude due to cancellation. Thus the
non-decoupling of the internal top quark takes place at the O(1) level. The flavor-changing
two- and three-point functions are shown to satisfy the Ward–Takahashi identity, which is
used as a consistency check for the aforementioned cancellation of the O(m2

t /M2
W ) terms.

Among the O(1) non-decoupling terms, we sort out those that can be regarded as due to
the effective Lagrangian in which quark bilinear forms are coupled to the scalar curvature.
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1. Introduction
The discoveries of gravitational waves at frequencies f > 10 Hz by the LIGO and Virgo Collab-
orations via a binary black hole merger and a binary neutron star inspiral have been hailed as a
major milestone of gravitational wave astronomy [1–4]. The gravitational wave is now expected
to be an exquisite tool not only to study astronomical objects such as black holes and neutron
stars, but also to probe viable extensions of general relativity as well as what lies beyond the
Standard Model (BSM) of elementary particles. It would be extremely interesting if we could
look into the early universe before the time of last scattering by searching for gravitational
waves.

The recent analyses of the 12.5-yr pulsar timing array data at frequencies f ∼ 1/yr by
the NANOGrav Collaboration [5] in search of a stochastic gravitational wave background
[6–8] are also of particular importance and are encouraging enough for us to speculate on
BSM: cosmic strings or supermassive black holes as possible sources of gravitational waves,
first-order phase transitions in the dark sector, new scenarios of leptogenesis induced by
gravitational backgrounds, and so on. In search for new avenues of BSM with the help
of stochastic gravitational waves, it sometimes occurs that one has to deal with gravita-
tional interactions of heavy unknown particles, in particular on the quantum level. In such
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a case we are necessarily forced to pay attention to heavy particle mass effects on physical
observables.

Bearing these new directions in our mind, we would like to present in this paper an example
in which heavy particles running along internal loops in the gravitational backgrounds induce
potentially large and important new types of interactions. Recall that an important issue in
particle physics incorporating possible heavy particles has been whether heavy particles have
power-suppressed and therefore negligibly small effects in low-energy processes (decoupling),
or that their effects may be observable in the form of new induced interactions in the limit
of very large mass (non-decoupling). To keep our investigation within a reasonable size, we
specifically study the loop-induced flavor-changing process

d → s + graviton (1)

in the standard electroweak interactions, instead of launching into BSM studies. In our case
the top quark is supposed to be the heavy particle as opposed to all the other light quarks.
The reason for computing Eq. (1) is that the process (1) is analogous to the d → s + γ and
d → s + gluon (Penguin) processes and that the latter two processes are known to exhibit top
quark non-decoupling effects in low-energy decay phenomena. It is quite natural to expect
that similar non-decoupling phenomena would take place in Eq. (1) and we will argue in the
present paper that this expectation is in fact the case. So far as we know, this is the first exam-
ple of the non-decoupling of the internal heavy top quark in gravitational interactions of light
quarks.

One of the sources of the non-decoupling may be searched for in the unphysical scalar field
coupling to quarks with a strength proportional to the quark masses. This can be seen most
apparently in the Feynman rules in the ’t Hooft–Feynman gauge, which we will use through-
out. We are particularly interested in whether or not the process (1) would be enhanced by
the large factor m2

t /M2
W , where mt and MW are the top quark and W-boson masses, respec-

tively. A quick glance over the Feynman rules, in fact, tells us that apparently this large factor
comes into the Feynman amplitude as the coupling of an exchanged unphysical scalar field
to an internal top quark. However, we will show in the present paper by explicit calculation
that this enhancement factor disappears due to cancellation among the terms of O(m2

t /M2
W ) in

the renormalized transition amplitude1. The breaking of the top quark decoupling thus takes
place mildly on the O(1) level. We will confirm that the cancellation of the O(m2

t /M2
W ) terms is

consistent with the Ward–Takahashi identity associated with the invariance under the general
coordinate transformation.

Appelquist and Carazzone [9] pointed out in the mid-1970s that virtual effects of heavy un-
known particles can be safely neglected in low-energy phenomena, provided that coupling con-
stants are all independent of heavy particle masses. This fact is often referred to as the decou-
pling theorem, which provides us with an effective strategy to handle low-energy experimental
data without worrying much about unknown new physics. In the course of the development of
particle physics towards the end of the last century, however, the tables have been turned: we
now believe that non-decoupling phenomena are much more interesting than decoupled cases

1When we say “terms of O(m2
t /M2

W )”, it is implicitly assumed that logarithmically corrected terms such
as (m2

t /M2
W ) log(m2

t /M2
W ) are also included. Likewise, O(1) terms are assumed to include log(m2

t /M2
W )

terms as well.
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and that we might be able to have a glimpse of the high-energy contents of the future theory
of elementary particles by investigating non-decoupling phenomena.

In the standard electroweak theory, the Higgs boson and unphysical scalar fields are cou-
pled to quarks with a strength proportional to the quark masses. For large quark masses, as
for the case of the top quark, the breaking of the decoupling theorem is naturally expected
and in fact non-decoupling phenomena are ubiquitous in the Standard Model. They include
Higgs boson production in the pp-collision via gluon fusion process through a top quark loop
[10–12], the various decay processes of the Higgs boson involving heavy quarks [13–18], heavy
quark effects on the K0–K0 and B0–B0 mixings [19–24], etc. It is very interesting to see whether
a similar explanation for non-decoupling of heavy top quark effects would also work in gravi-
tational interactions of light quarks. This is actually a strong motivating force for us to examine
Eq. (1).

After submitting the present paper for publication, we learned that the process (1) had once
been computed in the ’t Hooft–Feynman gauge and in the unitary gauge by Degrassi et al. [25]
and was investigated by Corianò et al. [26,27] for a different purpose from ours. Their elaborate
calculations, however, are not quite suitable for our use since they put external quarks on the
mass shell, while we would like to make the non-decoupling phenomena manifest by studying
off-shell effective interactions in the large top quark mass limit. Our one-loop calculation is
made to this end.

The present paper is organized as follows. First of all we explain in Sect. 2 the method of
putting “weight” on the fermion fields in the curved background to render the Feynman rules
to be discussed in Sect. 3 a little simpler. The self-energy type d → s transition in Minkowski
space is evaluated in Sect. 4, the result of which is closely connected with the counter terms
eliminating the divergencies associated with Eq. (1) as argued in Sect. 5. In Sect. 6 we com-
pute all the one-loop Feynman diagrams associated with Eq. (1). The renormalization con-
stants prepared in Sect. 5 are shown in Sect. 7 to be instrumental to eliminate all the ultraviolet
divergences in Eq. (1). It is argued in Sect. 8 that unrenormalized and renormalized quanti-
ties associated with Eq. (1) satisfy the same Ward–Takahashi identity. The terms in the renor-
malized transition amplitude behaving asymptotically as O(m2

t /M2
W ) in the large top quark

mass limit are investigated in Sect. 9 and are shown to vanish via mutual cancellation. The
O(1) terms for the large top quark mass are also discussed in Sect. 10, highlighting those that
can be expressed by an operator of quark bilinear form coupled to the scalar curvature. Sec-
tion 11 is devoted to summarizing the present paper. Various definitions of Feynman param-
eter integrations are collected in Appendix A and some combinations thereof are defined in
Appendix B.

2. Dirac fermions in a gravitational field
Techniques of loop calculations involving Dirac fermions in the curved spacetime, our central
concern in studying Eq. (1), were discussed a long time ago by Delbourgo and Salam [(R.
Delbourgo and A. Salam, unpublished data, 1972), 28] in connection with anomalies [29,30].
They took due account of the “weight factors” of fermions [31], which we now recapitulate
while setting up our notations. Hereafter in this section we will use Greek indices μ, ν, etc. for
labeling general coordinates and indices a, b, etc. for labeling the coordinates in a locally inertial
coordinate system. The latter indices are raised and lowered by the Minkowski metric ηab and
ηab, respectively.

3/31



PTEP 2022, 013B10 T. Inami and T. Kubota

The Lagrangian of fermions in the curved spacetime is as usual given by

LDirac = √−g
{

i
2

(
ψ γ μ ∇μψ − ∇μψ γ μ ψ

) − ψ m ψ

}
, (2)

where our notations are

γ μ = eμ
aγ

a, (3)

∇μψ = ∂μψ − i
4
ωμabσ

ab ψ ,∇μψ = ∂μψ + i
4
ψ ωμabσ

ab, (4)

σ ab = i
2

(γ aγ b − γ bγ a), (5)

and g = det (gμν). The relation between the spacetime metric gμν and the vierbein eμ
a is given

as usual by gμν = eμ
a eν

b ηab. The spin connection ωμab is expressed in terms of the vierbein
as

ωμab = 1
2

eν
a
(
∂μeνb − ∂νeμb

) − 1
2

eν
b
(
∂μeνa − ∂νeμa

) − 1
2

eρ
aeσ

b
(
∂ρeσc − ∂σ eρc

)
eμ

c. (6)

Noting the identity of gamma matrices

γ μσ ab + σ abγ μ = eμ
c
(
γ cσ ab + σ abγ c) = −2eμ

c εabcd γdγ
5, (7)

we are able to cast the Dirac Lagrangian (2) into

LDirac = √−g
{

i
2

(
ψ γ μ∂μψ − ∂μψγ μψ

) − ψmψ

}
− 1

4

√−g
(
ψ eμ

aωμbc εabcdγd γ 5ψ
)
. (8)

In order to facilitate perturbative calculations in Sect. 6 we would like to absorb
√−g on the

right-hand side of Eq. (8) into dynamical fields as much as possible, putting a weight factor
(−e)1/4 on the Dirac fields

� ≡ (−e)1/4 ψ, � ≡ (−e)1/4 ψ, (9)

where

(−e) = det (eμ
a) = √−g. (10)

In terms of the weighted Dirac fields (9), the Dirac Lagrangian (8) turns out to be

LDirac = i
2

ẽμ
a

(
� γ a∂μ� − ∂μ�γ a�

) − √−e �m� − 1
4
� ẽμ

a ω̃μbc εabcdγd γ 5�. (11)

Here we have introduced a weighted vierbein

ẽμ
a = √−e eμ

a (12)

and ω̃μab is defined analogously to Eq. (6) by

ω̃μab = 1
2

ẽν
a

(
∂μẽνb − ∂ν ẽμb

) − 1
2

ẽν
b

(
∂μẽνa − ∂ν ẽμa

) − 1
2

ẽρ
aẽσ

b

(
∂ρ ẽσc − ∂σ ẽρc

)
ẽ c
μ . (13)

To arrive at Eq. (11), use has been made of an identity

eμ
a ωμbc εabcd = 1√−e

ẽμ
a ω̃μbc εabcd . (14)

As we see in Eq. (11), the factor
√−e appears only in the mass term. Also note the relation√−e = {

det
(
ẽμ

a

)}1/(D−2)
, (15)

where D is the number of spacetime dimensions. We will use the dimensional method for reg-
ularization and we do not set D = 4.

Putting the weight on the fields as in Eqs. (9) and (12) changes the choice of dynamical vari-
ables and will lead us to a different set of Feynman rules. It has been known, however, that the
point transformation of dynamical variables does not alter the structure of the S-matrix [32–34]
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and therefore we need not worry much about the choice of variables. In the meantime, although
the weighted field method renders loop calculation a little simpler, it hinders us from comparing
our calculation directly with the preceding ones by Degrassi et al. [25] and by Corianò et al.
[26,27] who did not put weight on the vierbein or fermion fields, either.

3. The electroweak theory in the curved background
We are going to work with the standard SU(2)L × U(1)Y electroweak theory embedded in the
curved background field with the metric gμν . Deviation from the Minkowski spacetime is de-
scribed, in terms of the vierbein, as

ẽμ
a = ημ

a + κ hμ
a, (16)

where κ = √
8πG, G being Newton’s constant. In terms of the metric, fluctuations are expressed

as

g̃μν = ẽμ
aẽν

b ηab = ημν + κ (hμν + hνμ) + κ2hμλhν
λ, (17)

where Greek and Latin indices are no longer distinguished and indices of hμν are raised and
lowered by the Minkowski metric. Also from here we assume that hμν is symmetric, i.e., hμν =
hνμ. Also note that Eq. (15) gives rise to the formula

√−e = 1 + κ

D − 2
ημ

ahμ
a + · · · · · · . (18)

In the Rξ gauge in the curved background, we add the following gauge-fixing terms to the
action:

Lg.f. = −1
ξ

√−g
∣∣∣gλρ∇λWρ−i ξ MW χ

∣∣∣2
− 1

2ξ ′
√−g

(
gμν ∇μZν + ξ ′ MZ χ0

)2

− 1
2α

√−g
(
gμν ∇μAν

)2
, (19)

where ξ , ξ ′, and α are gauge parameters. The masses of W- and Z-bosons are denoted by MW

and MZ, respectively. The electromagnetic field is denoted by Aμ and χ and χ0 are charged and
neutral unphysical scalar fields, respectively. In our actual calculations we will use the ξ = 1 ’t
Hooft–Feynman gauge, in which the W-boson propagator is very much simplified and is most
convenient to deal with. The second and third terms in Eq. (19) are not relevant to our later
calculations but are included here just for completeness. The gravitational field is an external
field and therefore the general covariance is not gauge-fixed.

The electroweak Lagrangian in the curved space is given in the power-series expansion in κ,
namely,

L = LSM + κ hμνTμν + O(κ2), (20)

Tμν = T (W )
μν + T (χ )

μν +
∑

q

T (q)
μν + T (qW)

μν + T (qχ )
μν , (21)

where LSM is the standard electroweak Lagrangian in the flat Minkowski space and the sec-
ond term in the expansion in κ in Eq. (20) corresponds to the one-graviton emission. Since we
will not consider graviton loops, the Einstein–Hilbert gravitational action is not included in
Eq. (20). The summation in the third term of Eq. (21) is taken over all quark flavors (q = u, d,
s, …) and each term in Eq. (21) is respectively given by
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T (W )
μν = V μν

στλρ (∂σW †
τ ) (∂λWρ ) + 2 M2

W ητ
(μη ν)

ρ W †
τ Wρ

+ 2
ξ

ησ
(μ ην)

τ ηλρ
(
W †

τ ∂σ ∂λWρ

) + 2
ξ

ησ
(μ ην)

ρ ηλτ
(
Wρ ∂λ∂σW †

τ

)
, (22)

T (χ )
μν = ∂μχ † ∂νχ + ∂νχ

† ∂μχ − ημν

2
D − 2

ξ M2
W χ †χ, (23)

T (q)
μν = i

2
�q

(
γμ

←→
∂ν + γν

←→
∂μ

)
�q − 1

D − 2
ημν�q mq�q, (24)

T (qW)
μν = − g

2
√

2

(
ULγμVCKMDLW †

ν + ULγνVCKMDLW †
μ

) + (h.c.), (25)

T (qχ )
μν = ημν

1
D − 2

√
2

v
χ † (

UR Mu VCKM DL − UL VCKMMd DR
) + (h.c.). (26)

The quantity Vμν
στλρ in Eq. (22) is defined by

V μν
στλρ = −2 ησ

(μ ην)
λ ητρ − 2 ητ

(μ ην)
ρ ησλ + 2 ητ

(μ ην)
λ ησρ + 2 ησ

(μ ην)
ρ ητλ

+ 2
D − 2

ημν

(
ησλ ητρ − ητλ ησρ + 1

ξ
ηστ ηλρ

)
, (27)

and the symmetrization with respect to indices in the pair of parentheses in Eq. (27) is done in
the following manner:

A(σ Bτ ) ≡ 1
2

(Aσ Bτ + Aτ Bσ ) . (28)

The symbol of the left–right derivative in Eq. (24) is defined by

←→
∂μ = 1

2

(−→
∂μ − ←−

∂μ

)
. (29)

The Cabibbo–Kobayashi–Maskawa (CKM) matrix is denoted by VCKM in Eqs. (25) and (26)
and the diagonal mass matrices of up- and down-type quarks are given, respectively, by

Mu =

⎛⎜⎝mu 0 0
0 mc 0
0 0 mt

⎞⎟⎠ , Md =

⎛⎜⎝md 0 0
0 ms 0
0 0 mb

⎞⎟⎠ . (30)

The left (L)- and right (R)-handed quarks are projected as usual by

L = 1 − γ 5

2
, R = 1 + γ 5

2
, (31)

and the projected up- and down-type quarks are expressed as

UL = L

⎛⎜⎝�u

�c

�t

⎞⎟⎠ , DL = L

⎛⎜⎝�d

�s

�b

⎞⎟⎠ , (32)

UR = R

⎛⎜⎝�u

�c

�t

⎞⎟⎠ , DR = R

⎛⎜⎝�d

�s

�b

⎞⎟⎠ , (33)

in Eqs. (25) and (26). The SU(2)L gauge coupling is denoted by g in Eq. (25) and v in Eq. (26)
is the vacuum expectation value.

Before closing this section, let us add a comment on the relation between the energy–
momentum tensor and our Tμν . The conventional energy–momentum tensor is defined as the
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functional derivative of the action under the variation δeμa, while Tμν of Eq. (21) is the func-
tional derivative of the action under δẽμa. The connection between the two types of functional
derivatives is given by

δ

δe μa
= √−e

δ

δẽ μa
− 1

2

√−ee μa e λb δ

δẽ λb
, (34)

and therefore the conserved energy–momentum tensor in the flat-space limit is a linear combi-
nation of Tμν given by

Tμν − 1
2

ημν ηλρ Tλρ. (35)

The Ward–Takahashi identity, which will be discussed later in Sect. 8, is associated with
Eq. (35).

4. Self-energy type d → s transition
In the present section, we would like to evaluate the self-energy type diagram depicted in Fig. 1
and to consider the corresponding counter terms in Fig. 2 in order to eliminate the ultraviolet
divergences. The eventual goal of the present work is to uncover the non-decoupling nature
of the internal heavy top quark in the low-energy process (1), which is induced at the loop
levels. There are eight one-loop diagrams of two different types, which will be shown later in
Sect. 6 (i.e., Figs. 3 and 4). There the gravitons (hμν) are expressed by double wavy lines and
are attached to vertices in Fig. 3 and to internal propagators in Fig. 4. The internal quark
propagator consists of j = top (t), charm (c), and up (u) quarks and we are interested in the
large top quark mass behavior of the amplitudes of Figs. 3 and 4.

These one-loop contributions to Eq. (1) will be computed in Sect. 6 and they turn out to be
ultraviolet divergent. The divergences should be subtracted by using the corresponding counter
term Lagrangian L̂c.t. in the curved spacetime, which should be diffeomorphism invariant and
will be given in Sect. 5. Diagrammatically the counter term in L̂c.t. with one external graviton is
denoted by a cross in Fig. 2(b). As it turns out, the flat spacetime limit Lc.t. of L̂c.t. should serve
as the counter term Lagrangian that is supposed to eliminate the divergences associated with
the self-energy type d → s transition �(p) in the Minkowski space (without graviton emission).
The vertex associated with Lc.t. is denoted by a cross in Fig. 2(a).

Now, by reversing this, we may proceed in the following way: after computing �(p) in this
section, we first work out in Sect. 5.1 the renormalization constants contained in Lc.t., and then
we deduce in Sect. 5.2 an explicit form of L̂c.t. by employing the diffeomorphism invariance
argument. We will confirm in Sect. 7 that our L̂c.t. thus obtained is necessary and sufficient
to eliminate all the divergences that appear in the one-loop induced d–s–graviton vertex to
be computed in Sect. 6. Keeping these procedures in mind, we would like to start with the
calculation of �(p) in the flat Minkowski space. The d → s transition takes place at the one-
loop level via W- and charged unphysical scalar boson (χ ) exchanges as depicted in Fig. 1. The
Feynman rules in the ’t Hooft–Feynman gauge (ξ = 1) lead us to

�(p) =
∑

j=t,c,u

(VCKM)∗js(VCKM) jd

{
S (a)(p) + S (b)(p)

}
, (36)

where we have defined the integrations of the following forms:

S (a)(p) ≡ −i
(−ig√

2

)2

μ4−D
∫

dDq
(2π )D

γαL
i

γ · (p − q) − mj
γβL

−i ηαβ

q2 − M2
W

, (37)
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Fig. 1. The self-energy type d → s transition via (a) W- and (b) charged unphysical scalar (χ )-boson
exchanges. The intermediate quark is denoted by j (j = t, c, u).

Fig. 2. The counter term diagram of the (a) d → s transition and (b) d–s–graviton vertex. The insertion
of counter terms is indicated by a cross and the double wavy line in (b) denotes an emitted graviton (hμν).

Fig. 3. Diagrams with a graviton attached to vertices.

S (b)(p) ≡ −i
(−ig√

2

)2
μ4−D

M2
W

∫
dDq

(2π )D

(
mjR − msL

) i
γ · (p − q) − mj

(
mjL − md R

)
× i

q2 − M2
W

, (38)

corresponding to Figs. 1(a) and (b), respectively. Here μ is the mass scale of the D-dimensional
regularization method.

The integrations in Eqs. (37) and (38) are rather standard and we find

S (a)(p) = −g2

(4π )2

[
1

D − 4
+ 1

2
+ f1(p2)

]
γ · p L, (39)
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Fig. 4. Diagrams with a graviton attached to internal propagators.

S (b)(p) = −g2

(4π )2

[
1

D − 4

{
1

2M2
W

γ · p (m2
j L + msmd R) − m2

j

M2
W

(msL + md R)

}

+ 1
2M2

W

{
f1(p2) γ · p (m2

j L + msmd R) − f2(p2) m2
j (msL + md R)

}]
, (40)

where f1(p2) and f2(p2) are defined respectively by Eqs. (A1) and (A2) in Appendix A. Note that
terms independent of mj that are present in S (a) and S (b) will disappear after the j-summation
in Eq. (36) because of the unitarity of the CKM matrix, VCKM, i.e.,

∑
j=t,c,u

(VCKM)∗js(VCKM) jd = 0. (41)

Also remember that both f1(p2) and f2(p2) contain m2
j in their definitions (A1), (A2). Therefore

putting Eqs. (39) and (40) together, we end up with the formula of the self-energy type d → s
transition:

�(p) = −g2

(4π )2

∑
j=t,c,u

(VCKM)∗js(VCKM) jd

×
[

f1(p2) γ · p L + 1
D − 4

{
m2

j

2M2
W

γ · p L − m2
j

M2
W

(msL + md R)

}

+ 1
2M2

W

{
f1(p2) γ · p

(
m2

j L + msmd R
)

− f2
(
p2) m2

j (msL + md R)
}]

. (42)
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5. Infinity subtraction procedure
5.1 Counter terms in the flat spacetime
Let us now move to the subtraction of infinities from �(p), taking into account the counter
terms, which are of the following form:

Lc.t. = ZL ψsL iγ · ←→
∂ ψd L + ZR ψsR iγ · ←→

∂ ψd R

+ ZY 1 ψsRmsψd L + ZY 2 ψsL mdψd R

+ (h.c.). (43)

Here the wave-function renormalization constants, ZL, ZR, ZY1, and ZY2 take care of the mix-
ing between d- and s-quarks under renormalization.

The contribution of Eq. (43) to the d → s transition is depicted in Fig. 2(a) and is written
as

�c.t.(p) = ZLγ · p L + ZRγ · p R + ZY 1msL + ZY 2md R . (44)

The renormalization constants are arranged so that the renormalized d → s transition ampli-
tude

�ren(p) = �(p) + �c.t.(p) (45)

is finite. In other words the renormalization constants are given in the following form:

ZL = g2

(4π )2

∑
j=t,c,u

(VCKM)∗js(VCKM) jd

{
m2

j

2M2
W

· 1
D − 4

− c1(mj )

}
, (46)

ZR = g2

(4π )2

∑
j=t,c,u

(VCKM)∗js(VCKM) jd
{−c2(mj )

}
, (47)

ZY 1 = g2

(4π )2

∑
j=t,c,u

(VCKM)∗js(VCKM) jd

{
− m2

j

M2
W

· 1
D − 4

− c3(mj )

}
, (48)

ZY 2 = g2

(4π )2

∑
j=t,c,u

(VCKM)∗js(VCKM) jd

{
− m2

j

M2
W

· 1
D − 4

− c4(mj )

}
, (49)

in order to subtract the D = 4 pole terms in �(p). Here c1(mj), c2(mj), c3(mj),
and c4(mj) are all finite and should be determined by specifying the subtraction
conditions.

Now we adopt the on-shell subtraction conditions [22] in such a way that the renormalized
self-energy �ren(p) should satisfy the following conditions:

�ren �d = 0, for p2 = m2
d ,

�s �ren = 0, for p2 = m2
s . (50)

Each of the conditions in Eq. (50) gives rise to two constraints on �ren: one for the left-
handed part and the other for the right-handed part. We have therefore four constraints
in total in Eq. (50), which in turn determine the four constants c1(mj), c2(mj), c3(mj), and
c4(mj).
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In order to determine these constants on the basis of Eq. (50), let us note that Eq. (45) is
written explicitly as

�ren(p) = −g2

(4π )2

∑
j=t,c,u

(VCKM)∗js(VCKM) jd

×
[ {

c1(mj ) + f1(p2)

(
1 + m2

j

2M2
W

)}
γ · p L +

{
c2(mj ) + ms md

2M2
W

f1(p2)
}

γ · p R

+
{

c3(mj ) − m2
j

2M2
W

f2(p2)

}
msL +

{
c4(mj ) − m2

j

2M2
W

f2(p2)

}
md R

]
. (51)

The subtraction conditions (50) then turn out to be{
c1(mj ) + f1

(
m2

d

) (
1 + m2

j

2M2
W

)}
md +

{
c4(mj ) − m2

j

2M2
W

f2
(
m2

d

)}
md = 0, (52){

c2(mj ) + msmd

2M2
W

f1
(
m2

d

)}
md +

{
c3(mj ) − m2

j

2M2
W

f2
(
m2

d

)}
ms = 0, (53){

c1(mj ) + f1
(
m2

s

) (
1 + m2

j

2M2
W

)}
ms +

{
c3(mj ) − m2

j

2M2
W

f2
(
m2

s

)}
ms = 0, (54){

c2(mj ) + msmd

2M2
W

f1
(
m2

s

)}
ms +

{
c4(mj ) − m2

j

2M2
W

f2
(
m2

s

)}
md = 0, (55)

and we have worked out the following solutions to Eqs. (52)–(55):

c1(mj ) = 1
m2

d − m2
s

[
− {

m2
d f1

(
m2

d

) − m2
s f1

(
m2

s

)} (
1 + m2

j

2M2
W

)

− m2
d m2

s

2M2
W

{
f1

(
m2

d

) − f1
(
m2

s

)} + (m2
d + m2

s )m2
j

2M2
W

{
f2

(
m2

d

) − f2
(
m2

s

)}]
, (56)

c2(mj ) = md ms

m2
d − m2

s

[
− {

f1
(
m2

d

) − f1
(
m2

s

)} (
1 + m2

j

2M2
W

)

− 1
2M2

W

{
m2

d f1
(
m2

d

) − m2
s f1

(
m2

s

)} + m2
j

M2
W

{
f2

(
m2

d

) − f2
(
m2

s

)}]
, (57)

c3(mj ) = m2
d

m2
d − m2

s

[ {
f1

(
m2

d

) − f1
(
m2

s

)} (
1 + m2

j

2M2
W

+ m2
s

2M2
W

)

+ m2
j

2M2
W

{
−m2

d + m2
s

m2
d

f2
(
m2

d

) + 2 f2
(
m2

s

)}]
, (58)

c4(mj ) = m2
s

m2
d − m2

s

[ {
f1

(
m2

d

) − f1
(
m2

s

)} (
1 + m2

j

2M2
W

+ m2
d

2M2
W

)

+ m2
j

2M2
W

{
m2

d + m2
s

m2
s

f2
(
m2

s

) − 2 f2
(
m2

d

)}]
. (59)
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5.2 Counter terms in the curved spacetime
So much for the counter terms in the flat Minkowski space; let us now think about the general-
ization to the curved background case. The counter terms in the curved background come out
naturally by extending Eq. (43) to a diffeomorphism invariant form, i.e.,

L̂c.t. = ZL �sL iγ a←→∇ μ �d L ẽμ
a + ZR �sR iγ a←→∇ μ �d R ẽμ

a

+ ZY 1
√−e �sR ms�d L + ZY 2

√−e �sL md �d R

+ (h.c.), (60)

where the quark fields �d and �s are weighted by (−e)1/4. The vierbein ẽμ
a in Eq. (60) is ex-

panded in κ and thereby we get

L̂c.t. = L̂(0)
c.t. + κL̂(1)

c.t. + · · · , (61)

where L̂(0)
c.t. coincides with the flat-space counter term (43). The next term L̂(1)

c.t., on the other
hand, is expressed as

L̂(1)
c.t. = hμν

[
ZL �sL iγ (μ

←→∇ ν) �d L + ZR �sR iγ (μ
←→∇ ν) �d R

+ 1
D − 2

ZY 1 ημν �sR ms�d L + 1
D − 2

ZY 2 ημν �sL md �d R

+ (h.c.)

]
, (62)

and gives rise to the contribution depicted in Fig. 2(b). As we will confirm later in Sect. 7
explicitly, Eq. (62) eliminates the divergences in the one-graviton emission vertex-type diagrams
(Figs. 3 and 4). It is to be noted that the renormalization constants, ZL, ZR, ZY1, and ZY2,
are playing two roles: one is to render the self-energy type diagrams (Fig. 1) finite, and the
other is to make the one-graviton emission vertex finite. This is due to the fact that the two
counter term Lagrangians (43), (62) should combine into a diffeomorphism invariant form
(60).

It should be added herewith that Degrassi et al. [25] and Corianò et al. [26] also previously
discussed renormalization of the vertex of Eq. (1). They took a sum of the vertex-type and
self-energy type diagrams to find mutual cancellation of divergences. This cancellation is con-
sistent with our procedure of eliminating divergences simultaneously in both self-energy type
and vertex-type diagrams via ZL, ZR, ZY1, and ZY2.

Incidentally the coefficient 1/(D − 2) in front of ZY1 and ZY2 in Eq. (62), which

comes from the formula (18), gives rise to a finite deviation from
1
2

ZY 1 and
1
2

ZY 2,

namely,

1
D − 2

ZY 1 =
{

1
2

− D − 4
2(D − 2)

}
ZY 1

= 1
2

ZY 1+ g2

(4π )2

∑
j=t,c,u

(VCKM)∗js(VCKM) jd
m2

j

M2
W

× 1
4
, (63)
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as we take the D → 4 limit. The same formula also applies to
1

D − 2
ZY 2, i.e.,

1
D − 2

ZY 2 = 1
2

ZY 2+ g2

(4π )2

∑
j=t,c,u

(VCKM)∗js(VCKM) jd
m2

j

M2
W

× 1
4
. (64)

6. Gravitational flavor-changing vertices
Now that we have the counter term Lagrangian (62) at our hand, we are well prepared
to handle the divergences that appear in evaluating Eq. (1). The relevant Feynman dia-
grams for Eq. (1) may be classified into two types: those with two internal propagators
(Fig. 3) and those with three internal propagators (Fig. 4). The latter diagrams are ex-
pressed necessarily by double integrals with respect to the Feynman parameters, the former
by single ones. We will keep the external quarks off-shell, refraining from using the Dirac
equation throughout. We will never use any approximation of the magnitude of the quark
masses until Sect. 9, where the large top quark mass limit of the d–s–graviton vertex is
investigated.

6.1 A graviton attached to the charged current vertex
Let us begin with the calculation of Fig. 3 in which graviton lines are attached to the charged
current vertices. Applications of the Feynman rules give us the following sum:

�(Fig. 3)
μν (p, p′) =

∑
j=t,c,u

(VCKM)∗js(VCKM) jd

{
G (a)

μν + G (b)
μν + G (c)

μν + G (d )
μν

}
, (65)

where for each diagram in Fig. 3 we define respectively the integrations

G (a)
μν ≡ iκg2

4
μ4−D

∫
dDq

(2π )D

(
γμηνα + γνημα

)
L

i
γ · (p − q) − mj

γβL
−i ηαβ

q2 − M2
W

, (66)

G (b)
μν ≡ iκg2

2(D − 2)
· 1

M2
W

μ4−D ημν

∫
dDq

(2π )D

i

q2 − M2
W

× (mjR − msL)
i

γ · (p − q) − mj
(mjL − md R), (67)

G (c)
μν ≡ iκg2

4
μ4−D

∫
dDq

(2π )D
γβL

i
γ · (p ′ − q) − mj

(
γμηνα + γνημα

)
L

−i ηαβ

q2 − M2
W

, (68)

G (d )
μν ≡ iκg2

2(D − 2)
· 1

M2
W

μ4−D ημν

∫
dDq

(2π )D

i

q2 − M2
W

× (mjR − msL)
i

γ · (p′ − q) − mj
(mjL − md R). (69)

Note that the factor 1/(D − 2) in front of Eqs. (67) and (69) is due to the second term of
Eq. (18). On comparing Eqs. (67) and (69) with Eq. (38), one can immediately see a simple
relation

G (b)
μν = κ

D − 2
ημν S (b)(p), G (d )

μν = κ

D − 2
ημν S (b)(p′). (70)

The evaluation of the above Feynman integrations is rather standard and we simply list the
results below:

G (a)
μν = κg2

(4π )2
G1(p2)

{
γ(μpν) − 1

2
ημνγ · p

}
L, (71)
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G (c)
μν = κg2

(4π )2
G1(p′ 2)

{
γ(μp′

ν) − 1
2
ημνγ · p′

}
L, (72)

G (b)
μν = κg2

(4π )2
· 1

4M2
W

[ {
−G1(p2) + 1

2

}
ημνγ · p

(
m2

jL + msmd R
)

+ {
G2(p2)−1

}
m2

jημν (msL + md R)

]
, (73)

G (d )
μν = κg2

(4π )2
· 1

4M2
W

[ {
−G1(p′ 2) + 1

2

}
ημνγ · p′

(
m2

jL + msmd R
)

+ {
G2(p′ 2)−1

}
m2

jημν (msL + md R)

]
. (74)

The functions G1(p2) and G2(p2) are defined respectively by Eqs. (B1) and (B2) in Appendix B.
One can confirm that the formulae of G (b)

μν and G (d )
μν are nothing but those obtained from Eq. (40)

by the relation (70).

6.2 A graviton attached to the internal propagators
Another set of Feynman diagrams depicted in Fig. 4 are those in which the graviton is attached
to internal lines. Let us define

�(Fig. 4)
μν (p, p′) =

∑
j=t,c,u

(VCKM)∗js(VCKM) jd

{
G (e)

μν + G ( f )
μν + G (g)

μν + G (h)
μν

}
, (75)

where each term in the brackets on the right-hand side corresponds to each diagram in Fig. 4
and is given by

G (e)
μν ≡ −κg2

2
μ4−D

∫
dDq

(2π )D
γ τ L

i
γ · q − mj

γ ρL · −i

(p − q)2 − M2
W

−i

(p ′ − q)2 − M2
W

×
[

Vμνστλρ

∣∣∣∣
ξ=1

(p′ − q)σ (p − q)λ + 2M2
W ητ (μ ην)ρ

− 2 ησ (μην)τ ηλρ (p − q)σ (p − q)λ − 2 ηστηλ(μην)ρ (p ′ − q)λ(p ′ − q)σ
]
, (76)

G ( f )
μν ≡ −κg2

2
1

M2
W

μ4−D
∫

dDq
(2π )D

(mjR − msL)
i

γ · q − mj
(mjL − md R)

× i

(p ′ − q)2 − M2
W

i

(p − q)2 − M2
W

×
{

(p ′ − q)μ(p − q)ν + (p ′ − q)ν (p − q)μ − 2
D − 2

ημνM2
W

}
, (77)
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G (g)
μν ≡ −κg2

2
μ4−D

∫
dDq

(2π )D

−iηαβ

q2 − M2
W

× γ αL
i

γ · (p ′ − q) − mj

×
{

1
4
γμ(p + p ′ − 2q)ν + 1

4
γν (p + p ′ − 2q)μ − 1

D − 2
ημνmj

}
× i

γ · (p − q) − mj
γ βL, (78)

G (h)
μν ≡ −κg2

2
1

M2
W

μ4−D
∫

dDq
(2π )D

i

q2 − M2
W

× (mjR − msL)
i

γ · (p ′ − q) − mj

×
{

1
4
γμ(p + p ′ − 2q)ν + 1

4
γν (p + p ′ − 2q)μ − 1

D − 2
ημνmj

}
× i

γ · (p − q) − mj
(mjL − md R). (79)

Now the calculations of the above integrals are again straightforward but tedious since there
are many types of gamma-matrix combinations and tensor structures. We just list our final
formulae:

G (e)
μν = κg2

(4π )2

[
G3(p, p′)ημνγ · p + G3(p′, p)ημνγ · p′ + G4(p, p′)γ(μpν) + G4(p′, p)γ(μp′

ν)

+
{
−2 f7(p, p′)pμ pν + 2 f8(p, p′)p′

μp′
ν + 2 f9(p, p′)p(μp′

ν)

}
γ · p

+
{
−2 f7(p′, p)p′

μp′
ν + 2 f8(p′, p)pμ pν + 2 f9(p′, p)p(μp′

ν)

}
γ · p′

+ f10(p, p′)γ · p′γ(μpν)γ · p + f10(p′, p)γ · p′γ(μp′
ν)γ · p

]
L, (80)

G ( f )
μν = κg2

(4π )2

1
M2

W

[
G5(p, p′)ημνγ · p + G5(p′, p)ημνγ · p′

+ G6(p, p′)γ(μpν) + G6(p′, p)γ(μp′
ν)

+
{
− f11(p′, p)p′

μp′
ν − f7(p, p′)pμpν + f12(p′, p)p(μp′

ν)

}
γ · p

+
{
− f11(p, p′)pμ pν − f7(p′, p)p′

μ p′
ν + f12(p, p′)p(μp′

ν)

}
γ · p′

]
(m2

jL + msmd R)

+ κg2

(4π )2

1
M2

W

[
G7(p, p′)ημν

+
{

f13(p, p′)p′
μp′

ν + f13(p′, p)pμpν − f14(p, p′)p(μp′
ν)

}]
m2

j (msL + md R), (81)
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G (g)
μν = κg2

(4π )2

[
G8(p, p′)ημνγ · p + G8(p′, p)ημνγ · p′ + G9(p, p′)γ(μpν) + G9(p′, p)γ(μp′

ν)

+
{

2 f17(p, p′)pμpν − 2 f19(p′, p)p′
μ p′

ν − 2 f21(p, p′)p(μp′
ν)

}
γ · p

+
{

2 f17(p′, p)p′
μp′

ν − 2 f19(p, p′)pμ pν − 2 f21(p′, p)p(μp′
ν)

}
γ · p′

+ f22(p, p′)γ · p′γ(μpν)γ · p + f22(p′, p)γ · p′γ(μp′
ν)γ · p

]
L, (82)

G (h)
μν = κg2

(4π )2

1
M2

W

[
G10(p, p′)ημνγ · p + G10(p′, p)ημνγ · p′

+ G11(p, p′)γ(μpν) + G11(p′, p)γ(μp′
ν)

+
{
−1

2
f17(p, p′)pμ pν + 1

2
f28(p′, p)p′

μp′
ν − 1

2
f29(p, p′)p(μp′

ν)

}
γ · p

+
{
−1

2
f17(p′, p)p′

μp′
ν + 1

2
f28(p, p′)pμpν − 1

2
f29(p′, p)p(μp′

ν)

}
γ · p′

+ 1
4

f22(p, p′)γ · p′γ(μpν)γ · p + 1
4

f22(p′, p)γ · p′γ(μp′
ν)γ · p

]
(m2

jL + msmd R)

+ κg2

(4π )2

1
M2

W

[
G12(p, p′)ημν

+
{

1
2

f24(p, p′)pμpν + 1
2

f24(p′, p)p′
μp′

ν + 1
2

f23(p, p′)p(μp′
ν)

}
+

{
−1

4
f20(p, p′)γ(μ pν) − 1

4
f20(p′, p)γ(μp′

ν)

}
γ · p

+ γ · p′
{
−1

4
f20(p, p′)γ(μpν) − 1

4
f20(p′, p)γ(μp′

ν)

}

+ 1
4

f25(p, p′)ημνγ · p′γ · p

]
m2

j (msL + md R). (83)

Here we have introduced various kinds of Feynman parameter integrations fi(p, p′), all of which
are collected in Appendix A. Some combinations Gi(p, p′) (i = 3, …, 12) of fi(p, p′) are defined
in Appendix B.

7. Cancellation of ultraviolet divergences
We are now ready to sum up the ultraviolet divergences that appear in the graviton emission
vertex

�μν (p, p′) ≡ �(Fig. 3)
μν (p, p′) + �(Fig. 4)

μν (p, p′). (84)

As we see in the formulae of Appendix B, the quantities G1(p2), G2(p2), and Gi(p, p
′
)(i = 3, …,

11) all have a pole term 1/(D − 4). In Eq. (71), for instance, we notice that G1(p2) is not accom-
panied by m2

j or any j-dependent factors and therefore the pole term in G1(p2) in Eq. (71) does
not survive the j-(=t, c and u) summation because of the unitarity relation (41). The same com-
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ment applies to many of the other pole terms. Namely, the pole terms survive the j-summation
only when multiplied by j-dependent factors such as mj. It is noteworthy that not only the diver-
gences in Figs. 3(a) and (c) but also those of Figs. 4(e) and (g) disappear after summation over
j. Putting the remaining ultraviolet divergent terms all together, we end up with the following
expression for the divergences:

�μν (p, p′)

= κg2

(4π )2

∑
j

(VCKM)∗js(VCKM) jd

×
[ (

−1
4

· 1
D − 4

)
γ(μ(p + p′)ν)

m2
j

M2
W

L + ημν

(
1
2

· 1
D − 4

) m2
j

M2
W

(msL + md R)

+ (finite terms)

]
. (85)

Note that divergences proportional to ημν γ · (p + p′) disappear in Eq. (85) via mutual cancel-
lation.

The divergences in Eq. (85) should be compared with the counter term contributions
�c.t.

μν (p, p′) due to Eq. (62) (Fig. 2(b)), namely,

�c.t.
μν (p, p′)

= κ

2
ZLγ (μ(p + p′) ν) L + κ

2
ZRγ (μ(p + p′) ν) R

+ κ

D − 2
ZY 1ημνmsL + κ

D − 2
ZY 2ημνmd R (86)

= κg2

(4π )2

∑
j

(VCKM)∗js(VCKM) jd

×
[

1
4

· 1
D − 4

· m2
j

M2
W

γ (μ(p + p′)ν)L − 1
2

· 1
D − 4

· m2
j

M2
W

ημν (msL + md R)

]
+ (finite terms).

Apparently, the D = 4 pole terms in Eq. (85) are canceled out by the corresponding counter
term contributions in Eq. (86). This type of cancellation is the same as that known for a long
time in the d–s–γ vertex analyses [20,24].

We have thus confirmed the finiteness of the sum

�ren
μν (p, p′) = �μν (p, p′) + �c.t.

μν (p, p′), (87)

which we now call the renormalized d–s–graviton vertex. The S-matrix element for the process
(1) is now given a finite value through Eq. (87). When we deal with S-matrix elements in general,
renormalization of external lines usually has to be taken into account. In our case, however,
the renormalized two-point function �ren(p) vanishes due to the subtraction conditions (50)
once we put external d- and s-quarks on the mass shell, and therefore it does not seem to af-
fect the S-matrix element of Eq. (1). This, however, does not necessarily mean that external
line renormalization does not play a role in the computation of the S-matrix. Recall that the
renormalization constants ZL, ZR, ZY1, and ZY2 contain finite terms c1(mj), c2(mj), c3(mj), and
c4(mj), respectively, as we see in Eqs. (46)–(49). These finite terms are taken over in �ren

μν (p, p′)
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after the pole term cancellation in Eq. (87). Also remember that these terms are all shared by
the two-point function �ren(p) as we see in Eq. (51). The finite terms ci(mj) (i = 1, …, 4) in
�ren

μν (p, p′) and those in �ren(p) are two sides of the same coin and are closely linked. In this
sense the two-point function �ren(p) is an integral part in computing S-matrix elements.

8. Ward–Takahashi identity
In the present paper the gravitational field is always treated as an external field and the in-
variance properties associated with the general coordinate transformation are reflected in the
Feynman integrals. Such invariance properties ought to be expressed in the form of Ward–
Takahashi identities among the Green’s functions, whose field theoretical derivation, however,
would be rather involved due to the existence of unphysical modes. Here we would like to use
a much more naive “bottom-up” method. Namely, we deal with the linear combinations

G (X )
μν − 1

2
ημνη

λρG (X )
λρ , (X = a, b, . . . , h) (88)

corresponding to Eq. (35), multiply the Feynman integrals (88) by (p − p′)μ, shuffle the in-
tegrands in an algebraic way without performing the integrations, and eventually associate
Eq. (88) with the integrals of d → s self-energy type diagrams, S (a) of Eq. (37) and S (b) of
Eq. (38). The identity that we thus find is

(p − p′)μ
{
�μν (p, p′) − 1

2
ημνη

λρ�λρ (p, p′)
}

= κ

{
p′

ν �(p) − pν �(p′) + 1
4
�(p′)γ · (p − p′)γν + 1

4
γνγ · (p − p′)�(p)

}
. (89)

Very curiously, the counter terms (44) and (86) also satisfy the identity of the same form,
namely,

(p − p′)μ
{
�c.t.

μν (p, p′) − 1
2
ημνη

λρ�c.t.
λρ (p, p′)

}
= κ

{
p′

ν �c.t.(p) − pν �c.t.(p′) + 1
4
�c.t.(p′)γ · (p − p′)γν + 1

4
γνγ · (p − p′)�c.t.(p)

}
. (90)

Combining Eqs. (89) and (90) we find that the renormalized quantities (45) and (87) also satisfy
the same identity:

(p − p′)μ
{
�ren

μν (p, p′) − 1
2
ημνη

λρ�ren
λρ (p, p′)

}
= κ

{
p′

ν �ren(p) − pν �ren(p′) + 1
4
�ren(p′)γ · (p − p′)γν + 1

4
γνγ · (p − p′)�ren(p)

}
. (91)

We have checked the consistency of our Feynman integrations by referring to these identities.
Note that, if external quarks are on the mass shell, the identity (91) reduces to the transversality
condition

(p − p′)μ
{
�ren

μν (p, p′) − 1
2
ημνη

λρ�ren
λρ (p, p′)

}
= 0, (on shell), (92)

due to the subtraction conditions (50).
In the present paper all of the Feynman integrations are performed in the ’t Hooft–Feynman

gauge. For the above-mentioned analyses of the Ward–Takahashi identity, however, we have
confirmed explicitly that Eqs. (89)–(92) are all valid in the general Rξ gauge. Incidentally the
Ward–Takahashi identity associated with Eq. (1) was also worked out by Corianò et al. [26].
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Our identity (91) is essentially the same as theirs except for the difference due to the weight
factor (−e)1/4 on the quark fields.

9. The large top quark mass limit
Looking at the results of the graph calculations in Sect. 6, we notice immediately that the
squared masses of the intermediate quarks, i.e., m2

j ( j = u, c, t) appear explicitly in Eqs. (73),
(74), (81), and (83) besides those in the Feynman integrations. The origin of this mj-dependence
is traced back to the coupling of the unphysical scalar field to the quarks. Furthermore we
notice that the renormalization constants (46), (48), and (49), have the factor m2

j/M2
W as a co-

efficient of the D = 4 pole terms. The finite terms ci(mj) (i = 1, …, 4) in the renormalization
constants also contain m2

j/M2
W explicitly, as we see in Eqs. (56), (57), (58), and (59). We are very

much interested in whether or not such an explicit linear dependence on m2
j/M2

W could survive
the summation of all the diagrams, as the large factor m2

t /M2
W (≈ 4.62) of the top quarks would

have an enhancement effect on the process (1).
Up to Sect. 8, we did not use any approximation with respect to the magnitude of the quark

masses. In the present section, however, since we are going to pay attention to the large top
quark mass behavior of our loop calculations, we suppose that we can neglect all the other
quark masses together with external momenta squared, p2, p

′2, and (p −p′)2. We now have to
perform the Feynman parameter integrations explicitly under this approximation, which can
be done in a straightforward way. After such calculations, however, our formulae would be
extremely cluttered and it is easy for us to lose sight of the essential points. Therefore, in order
to have a clear insight into our calculation, we suppose an additional relation m2

t � M2
W . This

relation is used only to inspect the structure of power series expansion with respect to m2
t /M2

W .
As mentioned above, the most dominant terms in the large top quark mass limit come from

the unphysical scalar exchange diagrams, i.e., Figs. 3(b), (d) and 4(f), (h). Therefore we col-
lect all those terms that contain m2

t at the front, take the m2
t /M2

W → ∞ limit in the parameter
integration, and then arrive at the following formula:

�μν (p, p′) = κg2

(4π )2

m2
t

M2
W

(VCKM)∗ts(VCKM)td

×
[ {

−1
4

· 1
D − 4

− 1
8

log
(

m2
t

4πμ2e−γE

)
+ 3

16

}
γ(μ(p + p′)ν)L

+
{

1
2

· 1
D − 4

+ 1
4

log
(

m2
t

4πμ2e−γE

)
− 1

2

}
ημν (msL + md R)

+ O
(

1
m2

t

)]
. (93)

Note that terms proportional to ημνγ · (p +p′) have disappeared in Eq. (93) after mutual can-
cellation.

The pole terms at D = 4 in Eq. (93) are to be canceled by the corresponding ones in the
counter terms that also contain m2

t /M2
W at the beginning. The renormalization constants may

be expressed in the following way:

ZL ≈ g2

(4π )2
(VCKM)∗ts(VCKM)td

m2
t

M2
W

(
1
2

· 1
D − 4

− c̃1

)
, (94)

19/31



PTEP 2022, 013B10 T. Inami and T. Kubota

ZR ≈ g2

(4π )2
(VCKM)∗ts(VCKM)td

m2
t

M2
W

× (−c̃2), (95)

ZY 1 ≈ g2

(4π )2
(VCKM)∗ts(VCKM)td

m2
t

M2
W

(
− 1

D − 4
− c̃3

)
, (96)

ZY 2 ≈ g2

(4π )2
(VCKM)∗ts(VCKM)td

m2
t

M2
W

(
− 1

D − 4
− c̃4

)
. (97)

Here four quantities c̃i (i = 1, . . . , 4) are extracted respectively from ci(mt) (i = 1, …, 4) as co-
efficients of those proportional to m2

t /M2
W , namely,

c̃1 = 1
m2

d − m2
s

[
− 1

2

{
m2

d f1
(
m2

d

) − m2
s f1

(
m2

s

)} + (m2
d + m2

s )

2

{
f2

(
m2

d

) − f2
(
m2

s

)}]
, (98)

c̃2 = md ms

m2
d − m2

s

[
− 1

2

{
f1

(
m2

d

) − f1
(
m2

s

)} + {
f2

(
m2

d

) − f2
(
m2

s

)}]
, (99)

c̃3 = m2
d

m2
d − m2

s

[
1
2

{
f1

(
m2

d

) − f1
(
m2

s

)} + 1
2

{
−m2

d + m2
s

m2
d

f2
(
m2

d

) + 2 f2
(
m2

s

)}]
, (100)

c̃4 = m2
s

m2
d − m2

s

[
1
2

{
f1

(
m2

d

) − f1
(
m2

s

)} + 1
2

{
m2

d + m2
s

m2
s

f2
(
m2

s

) − 2 f2
(
m2

d

)}]
. (101)

Recall that the original definitions of f1(p2) and f2(p2) contain mj as we see in Eqs. (A1), and
(A2). Here, however, we understand that all mj in f1 and f2 in Eqs. (98), (99), (100) and (101)
have been replaced by the top quark mass mt, namely,

f1(p2) =
∫ 1

0
dx (1 − x) log

{−x(1 − x)p2 + xm2
t + (1 − x)M2

W

4πμ2e−γE

}
, (102)

f2(p2) =
∫ 1

0
dx log

{−x(1 − x)p2 + xm2
t + (1 − x)M2

W

4πμ2e−γE

}
. (103)

The approximate equality “≈” in Eqs. (94), (95), (96), and (97) means that we have simply
collected terms containing m2

t /M2
W as an overall factor without going into the details of the

mt-dependence of c̃i (i = 1, . . . , 4) through f1 and f2.
We now look at the four quantities c̃i (i = 1, . . . , 4) more closely, namely, their mt-dependence

entering through f1 and f2. Taking the limit mt → ∞ while neglecting M2
W and p2 in Eqs. (102)

and (103), we immediately find the following asymptotic behavior:

f1(p2) = −3
4

+ 1
2

log
(

m2
t

4πμ2e−γE

)
+ O

(
M2

W

m2
t

,
p2

m2
t

)
, (104)

f2(p2) = −1 + log
(

m2
t

4πμ2e−γE

)
+ O

(
M2

W

m2
t

,
p2

m2
t

)
. (105)

Inserting Eqs. (104) and (105) into Eqs. (98), (99), (100), and (101), we obtain the large-mt

behavior of the four quantities c̃i (i = 1, . . . , 4) as follows:

c̃1 = 3
8

− 1
4

log
(

m2
t

4πμ2e−γE

)
+ O

(
1

m2
t

)
, (106)

c̃2 = O
(

1
m2

t

)
, (107)

c̃3 = −1
2

+ 1
2

log
(

m2
t

4πμ2e−γE

)
+ O

(
1

m2
t

)
, (108)
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c̃4 = −1
2

+ 1
2

log
(

m2
t

4πμ2e−γE

)
+ O

(
1

m2
t

)
. (109)

By putting these formulae into Eqs. (94), (95), (96), and (97), the four renormalization constants
turn out in the leading order in m2

t /M2
W to be

ZL = g2

(4π )2
(VCKM)∗ts(VCKM)td

m2
t

M2
W

×
{

1
2

· 1
D − 4

− 3
8

+ 1
4

log
(

m2
t

4πμ2e−γE

)
+ O

(
1

m2
t

)}
, (110)

ZR = g2

(4π )2
(VCKM)∗ts(VCKM)td

m2
t

M2
W

× O
(

1
m2

t

)
, (111)

ZY 1 = g2

(4π )2
(VCKM)∗ts(VCKM)td

m2
t

M2
W

×
{
− 1

D − 4
+ 1

2
− 1

2
log

(
m2

t

4πμ2e−γE

)
+ O

(
1

m2
t

)}
, (112)

ZY 2 = g2

(4π )2
(VCKM)∗ts(VCKM)td

m2
t

M2
W

×
{
− 1

D − 4
+ 1

2
− 1

2
log

(
m2

t

4πμ2e−γE

)
+ O

(
1

m2
t

)}
. (113)

We thus find that the counter term contribution to the vertex (86) is given in the mt → ∞ limit
by

�c.t.
μν (p, p′) = κ

2
ZLγ (μ(p + p′) ν) L + κ

2
ZRγ (μ(p + p′) ν) R

+ κ

D − 2
ZY 1ημνmsL + κ

D − 2
ZY 2ημνmd R

= κg2

(4π )2

m2
t

M2
W

(VCKM)∗ts(VCKM)td

×
[ {

1
4

· 1
D − 4

− 3
16

+ 1
8

log
(

m2
t

4πμ2e−γE

)}
γ(μ(p + p′)νL

+
{
−1

2
· 1

D − 4
+ 1

4
− 1

4
log

(
m2

t

4πμ2e−γE

)
+ 1

4

}
ημν (msL + md R)

+ O
(

1
m2

t

)]
. (114)

The fourth term “+1
4

” in the curly brackets in the third line of Eq. (114) comes from the top

quark contribution in the second term in Eqs. (63) and (64). It is quite remarkable that there
occurs a cancellation among the leading terms in Eq. (93) and those in Eq. (114) and the renor-
malized vertex is not of the order of m2

t /M2
W but of O(1), i.e.,

�ren
μν (p, p′) = �μν (p, p′) + �c.t.

μν (p, p′) = O (1) . (115)

There is thus no enhancement by the factor m2
t /M2

W in the d–s–graviton vertex in the large top
quark mass limit.
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The cancellation between the leading terms in �μν and �c.t.
μν , however, is not totally unex-

pected. In fact we have seen in Eqs. (93) and (114) that the tensor-index- and gamma-matrix-
structures of �μν and �c.t.

μν consist of two types, i.e., γ (μ(p + p
′
)ν)L and ημν(msL + mdR). With

these two types only, it is impossible for �ren
μν to satisfy the gravitational transverse condition (92)

on the mass shell of external quarks. The sum of the leading terms in �μν and �c.t.
μν has necessar-

ily to vanish. Note that in subleading orders, there appear several other types of tensor-index-
and gamma-matrix-structures and the transverse condition would become non-trivial.

The absence of the O(m2
t /M2

W ) terms in �ren
μν may be seen in terms of �ren on the basis of the

Ward–Takahashi identity. Let us now take the large top quark mass limit in Eq. (42), i.e.,

�(p) = g2

(4π )2
(VCKM)∗ts(VCKM)td

m2
t

M2
W

×
[ {

−1
2

· 1
D − 4

− 1
4

log
(

m2
t

4πμ2e−γE

)
+ 3

8

}
γ · p L

+
{

1
D − 4

+ 1
2

log
(

m2
t

4πμ2e−γE

)
− 1

2

}
(msL + md R) + O

(
1

m2
t

)]
. (116)

Then we combine Eq. (116) with �c.t.(p) in Eq. (44) with the four renormalization constants
approximated by Eqs. (110), (111), (112), and (113):

�c.t.(p) = ZLγ · p L + ZRγ · p R + ZY 1msL + ZY 2md R

= g2

(4π )2
(VCKM)∗ts(VCKM)td

m2
t

M2
W

×
[ {

1
2

· 1
D − 4

− 3
8

+ 1
4

log
(

m2
t

4πμ2e−γE

)}
γ · p L

+
{
− 1

D − 4
+ 1

2
− 1

2
log

(
m2

t

4πμ2e−γE

)}
(msL + md R) + O

(
1

m2
t

)]
. (117)

Here we find the leading terms of O(m2
t /M2

W ) in Eqs. (116) and (117) canceling each other, and
we end up with

�ren(p) = �(p) + �c.t.(p) = O (1) . (118)

The absence of the O(m2
t /M2

W ) terms in �ren(p) is consistent with the Ward–Takahashi identity
(91), whose left- and right-hand sides are both of O(1).

10. The O(1) effective interactions
In the previous section we discussed the seemingly most dominant terms behaving as
O(m2

t /M2
W ) when the limit mt → ∞ is taken, and have shown that these leading terms can-

cel among themselves. Equations (115) and (118) were our net results in Sect. 9. In the present
section we turn our attention to the O(1) terms that are supposed to come next in the said limit.
There are a variety of contributions to this order and it is not straightforward to classify all of
them. For now we simply highlight a few characteristic terms that are described effectively by
the operator

√−g ψ s (msL + md R) ψd R = √−e �s (msL + md R) �d R. (119)
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Here the scalar curvature R should not be confused with the chiral projection R. The strange
and down quark fields on the right-hand side of Eq. (119) are given the weight (−e)1/4 (�s =
(−e)1/4ψ s, �d = (−e)1/4ψd).

In the weak field approximation as given in Eq. (16) we have
√−g R = −2κ

(
∂μ∂ν − ημν∂2) (

hμν − 1
2
ημνhλ

λ

)
+ O(κ2)

= −2κ

(
∂μ∂ν + 1

2
∂2ημν

)
hμν + O(κ2), (120)

and in the momentum space Eq. (120) becomes

2κ

(
kμkν + 1

2
k2ημν

)
hμν + O(κ2). (121)

Here kμ is the graviton momentum, i.e., kμ = pμ − p
′ μ. Thus if we find in �μν(p, p

′
) terms of

the following combination of tensor-index and gamma-matrix structures:{(
p − p′)

μ

(
p − p′)

ν
+ 1

2

(
p − p′)2

ημν

}
(msL + md R) , (122)

then we are allowed to say that these terms are described effectively by the operator (119).
Looking at the explicit results of G (X )

μν (X = a, b, . . . , h) in Sect. 6 closely, we notice that only
G ( f )

μν and G (h)
μν contain terms that could possibly be given the structure of Eq. (122):

G ( f )
μν = κg2

(4π )2

1
M2

W

[
G7(p, p′)ημν

+
{

f13(p, p′)p′
μ p′

ν + f13(p′, p)pμpν − f14(p, p′)p(μp′
ν)

}]
m2

j (msL + md R)

+ · · · · · · , (123)

G (h)
μν = κg2

(4π )2

1
M2

W

[
G12(p, p′)ημν

+
{

1
2

f24(p, p′)pμ pν + 1
2

f24(p′, p)p′
μp′

ν + 1
2

f23(p, p′)p(μp′
ν)

}]
m2

j (msL + md R)

+ · · · · · · . (124)

In order to confirm that terms in Eqs. (123) and (124) are actually combined together to be
given the structure of Eq. (122), we restrict our analyses to the following low-energy case:

p2, p′2, (p − p′)2 � M2
W , m2

j . (125)

Note that we do not assume any particular relation between MW and mj (j = t, c, u).
Applying the approximation (125) to the quantities f13(p, p

′
) and f14(p, p

′
) in Eq. (123), and

to f23(p, p
′
) and f24(p, p

′
) in Eq. (124), we just set p2 = p

′ 2 = (p − p
′
)2 = 0 in the integral repre-

sentations (A14), (A15), (A25), and (A26) in Appendix A. After performing double integration
we get the following formulae for the two combinations of these functions:

f13(0, 0) + 1
2

f24(0, 0) = 1
m2

j

F1

(
m2

j

M2
W

)
, (126)

f14(0, 0) − 1
2

f23(0, 0) = 2
m2

j

F1

(
m2

j

M2
W

)
, (127)
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where we have introduced a function

F1(x) = x(3 − x)
8(1 − x)2

− x(2x2 − 4x − 1)
12(1 − x)3

log x. (128)

Note that the function F1(x) is finite at x = 1, i.e., limx → 1F1(x) = 1/12. Also note the asymp-

totic behavior, F1(x) ∼ −1
8

+ 1
6

log x for large x. It is remarkable that a common quantity

F1(m2
j/M2

W ) has appeared on the right-hand side of Eqs. (126) and (127). Thanks to this com-
mon quantity, the sum of all the terms with pμpν , p′

μ p′
ν , and p(μp′

ν) in Eqs. (123) and (124) turns
out to be a very concise one, i.e.,{

f13(0, 0) + 1
2

f24(0, 0)
}

(pμ pν + p′
μp′

ν ) −
{

f14(0, 0) − 1
2

f23(0, 0)
}

p(μp′
ν)

= 1
m2

j

F1

(
m2

j

M2
W

)
(p − p′)μ(p − p′)ν. (129)

Let us now move to the remaining terms, G7(p, p
′
)ημν in Eq. (123) and G12(p, p

′
)ημν in

Eq. (124). Recall that G7(p, p
′
) contains f4(p, p

′
), f6(p, p

′
), and f15(p, p

′
) as defined in Eq. (B7)

and that G12(p, p
′
) contains f20(p, p

′
), f24(p, p

′
), f26(p, p

′
), and f27(p, p

′
) as defined in Eq. (B12).

We expand these functions in a Taylor series with respect to p2, p
′2, and (p − p

′
)2 through the

second order to meet with Eq. (129). After straightforward calculations we have found a for-
mula:

G7(p, p′) + G12(p, p′) = G7(0, 0) + G12(0, 0) + (p2 + p′ 2)
m2

j

F2

(
m2

j

M2
W

)

+ (p − p′)2

m2
j

· 1
2

F1

(
m2

j

M2
W

)
+ · · · · · · , (130)

where the ellipses denote higher-order terms in the Taylor expansion and are neglected. Here
we have defined another function:

F2(x) = x + x2

8(1 − x)2
+ x2

4(1 − x)3
log x. (131)

This function is also free from singularity at x = 1, i.e., limx → 1F2(x) = 1/24. The third term
in Eq. (130) that contains this function F2(m2

j/M2
W ) would be described by an operator of a

different type from Eq. (119), and we will not delve into it hereafter. It is noteworthy that the
quantity F1(m2

j/M2
W ) has again appeared as the coefficient of (p − p

′
)2 in Eq. (130).

Those related to the graviton momentum (p − p
′
)μ are thus summed up with the common

coefficient F1(m2
j/M2

W ) as

G ( f )
μν + G (h)

μν = κg2

(4π )2

1
M2

W

F1

(
m2

j

M2
W

) {
(p − p′)μ(p − p′)ν + 1

2
(p − p′)2ημν

}
× (msL + md R)

+ · · · · · · . (132)

In terms of �μν(p, p
′
), we have

�μν (p, p′) = κg2

(4π )2

F1

M2
W

{
(p − p′)μ(p − p′)ν + 1

2
(p − p′)2ημν

}
(msL + md R)

+ · · · · · · , (133)
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where the coefficient in front of the brackets

F1 =
∑

j=t,c,u

(VCKM)∗js(VCKM) jd F1

(
m2

j

M2
W

)
(134)

depends on the top, charm, and up quark masses as well as the CKM matrix elements. Equa-
tion (133) is given the same tensor-index and gamma-matrix structure as Eq. (122). This is
exactly what we expect to arise from the operator (119), and the effective Lagrangian becomes

LR
e f f = g2

(4π )2

F1

2M2
W

√−e �s (msL + md R) �d R. (135)

As we remarked before, the function F1 has the asymptotic behavior

F1

(
m2

j

M2
W

)
∼ −1

8
+ 1

6
log

(
m2

j

M2
W

)
as

m2
j

M2
W

→ ∞, (136)

and this formula shows clearly the O(1) non-decoupling effects of the heavy quark. Numer-
ically, the top quark contribution to the coefficient F1 is dominant over the other two, as we
find:

F1

(
m2

t

M2
W

)
= 0.216 86 , (137)

F1

(
m2

c

M2
W

)
= −7.92 × 10−5, (138)

F1

(
m2

u

M2
W

)
= −9.96 × 10−10, (139)

for MW = 80.379 GeV, mt = 172.76 GeV, mc = 1.27 GeV, and mu = 2.16 MeV [35]. This non-
negligible effect of the heavy top quark is a manifestation of the O(1) non-decoupling effects.

Although our effective Lagrangian (135) is one of the most important results of the present
paper, we do not attempt here to apply Eq. (135) to actual physical problems. Let us, however,
bear in mind that Eq. (135) could be relevant to flavor-changing and CP-violating gravitational
phenomena. In fact, the most dominant top quark contribution in Eq. (134) is accompanied
by (VCKM)∗ts(VCKM)td , which is given by

(VCKM)∗ts(VCKM)td = (−c12s23 − s12c23s13eiδ)∗ (
s12s23 − c12c23s13eiδ) , (140)

according to the standard parametrization [35], and contains the CP-violating phase δ.
Finally we would like to add a comment on the comparison with the loop-induced d → s +

γ transition, on which it has been pointed out [20,22] that the transition amplitude contains a
term described effectively by the operator

ψ sσ
μν (msL + md R) ψd Fμν. (141)

Here Fμν is the electromagnetic field strength and σμν is defined in Eq. (5). This operator re-
minds us of the Pauli term in quantum electrodynamics. It is also known [36–38] that in the
loop-induced d → s + gluon transition, there also exist contributions described by the similar
operator

ψ s T a σμν (msL + md R) ψd F a
μν, (142)

where F a
μν is the field strength of the gluon field and Ta is the generator of the color gauge

group.
A question naturally arises here: one may ask whether there exists a similar sort of contribu-

tion in the gravitational process (1). It is very tempting to postulate that the operator analogous
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to Eq. (142) would be
√−g ψ s

{
σ ab, σμν

}
(msL + md R) ψd Rμνab. (143)

Here the non-Abelian field strength F a
μν in Eq. (142) is replaced by the Riemann tensor defined

in terms of the spin connection as

Rμνab = ∂μωνab − ∂νωμab + ωμa
cωνcb − ωνa

cωμcb
(= eλ

aeρ
bRμνλρ

)
. (144)

The gauge group generator Ta in Eq. (142) has been replaced by the local Lorentz group gen-
erator σ ab.

Now it is known that the Riemann tensor may be decomposed into three parts:

Rλμνρ = Cλμνρ − 1
2

(
Rλρgμν − Rλνgμρ + Rμνgλρ − Rμρgλν

) − 1
6
R

(
gλνgμρ − gλρgμν

)
,

(145)

where the first term Cλμνρ is the Weyl tensor and is traceless:

gλνCλμνρ = 0, gμρCλμνρ = 0. (146)

Once we take the product of Eq. (145) with {σλμ, σνρ}, we immediately find a relation:{
σλμ, σ νρ

}
Rλμνρ = 4R + {

σλμ, σ νρ
}

Cλμνρ. (147)

The scalar curvature term 4R on the right-hand side of Eq. (147), when plugged into Eq. (143),
gives us the same operator as in Eq. (119), which has already been studied above. It is therefore
crucial whether the contribution due to {σλμ, σ νρ}Cλμνρ exists or not in the amplitudes in order
for the operator (143) to be an effective one. Unfortunately in the weak field expansion (16), a
straightforward calculation shows{

σλμ, σ νρ
}

Rλμνρ − 4R = O(κ2). (148)

This means that the Weyl tensor contribution {σλμ, σ νρ}Cλμνρ is of the order of κ2 and cannot
be seen in our O(κ ) calculation. To seek a gravitational analogue of Eqs. (141) and (142), we
have to examine two graviton emission processes.

11. Summary
In the present paper we have investigated the loop-induced flavor-changing gravitational pro-
cess (1) in the standard electroweak theory in order to see the non-decoupling effects of the
heavy top quark running along an internal line. We have confirmed explicitly that the renor-
malization constants ZL, ZR, ZY1, and ZY2 determined for the self-energy type d → s diagrams
(Fig. 1) in flat space serve adequately to eliminate ultraviolet divergences in the one-graviton
vertex diagrams (Figs. 3 and 4). It is pointed out that the unrenormalized and renormalized
two- and three-point functions satisfy the same form of Ward–Takahashi identities, Eqs. (89)
and (91), as quantum electrodynamics. We collected and examined the leading terms in the mt

→ ∞ limit in the renormalized transition amplitude that are proportional to m2
t /M2

W . We have
found that these O(m2

t /M2
W ) terms disappear by cancellation. The non-decoupling effects of

the internal top quark thus take place at the O(1) level. Among the O(1) terms, we have no-
ticed the contributions that are supposed to have come from the effective Lagrangian (135) that
consists of a quark bilinear form coupled to the spacetime scalar curvature R. The top quark
effect is sizable in Eq. (135) and this is one of manifest forms of non-decoupling effects.

While the effective Lagrangian (135) looks concise, we did not find the Ricci tensor or the
Weyl tensor counterpart within the present Standard Model calculation of Eq. (1) at the one-
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loop and one-graviton emission level. Perhaps in more sophisticated models such as supersym-
metric gauge theories or grand unification models, in which several very heavy particles are
supposed to exist, we could encounter various types of effective interactions as explored ex-
tensively by Ruhdorfer et al. [39]. Alternatively, such various interaction terms would arise in
two-loop or higher level of calculations. Those non-trivial effective interactions with spacetime
could cause intriguing effects if applied to the early universe. When the universe was expand-
ing, the Riemann tensor, Ricci tensor, and scalar curvature in the ensuing effective Lagrangian
have to be those of the Friedmann–Lemaître–Robertson–Walker metric, and the effective in-
teractions among quarks would not respect the time-reversal invariance. The implications of
such effective interactions would be extremely interesting and deserve further pursuit, but for
now we have to leave these investigations for our future work.
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Appendix A. The Feynman parameter integrations
The following parameter integrations appear in evaluating the self-energy type d → s transition
amplitudes:

f1(p2) =
∫ 1

0
dx (1 − x) log

{−x(1 − x)p2 + xm2
j + (1 − x)M2

W

4πμ2e−γE

}
, (A1)

f2(p2) =
∫ 1

0
dx log

{−x(1 − x)p2 + xm2
j + (1 − x)M2

W

4πμ2e−γE

}
, (A2)

where γ E is the Euler number. These functions also appear in the calculation of Fig. 3. Note
that both Eqs. (A1) and (A2) are mj-dependent, although the dependence is not made explicit
on the left-hand side of Eqs. (A1) or (A2). The same comment applies to all the functions to
be introduced hereafter in this appendix.

Combining propagators in Figs. 4(e) and (f) by using Feynman’s parameters, the following
combination commonly appears in the denominator:

�1 ≡ −y(1 − x − y)p2 − x(1 − x − y)p′ 2 − xy(p − p′)2

+ (x + y)M2
W + (1 − x − y)m2

j . (A3)

The parameter integrations involving Eq. (A3) that we used in Sect. 6 are as follows:

f3(p, p′) = M2
W

∫ 1

0
dx

∫ 1−x

0
dy

y
�1

, (A4)

f4(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy y log

{
�1

4πμ2e−γE

}
, (A5)

f5(p, p′) = M2
W

∫ 1

0
dx

∫ 1−x

0
dy

y(x + y)
�1

, (A6)
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f6(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy (1 − 4y) log

{
�1

4πμ2e−γE

}
, (A7)

f7(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

y2(1 − y)
�1

, (A8)

f8(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

x2(1 + y)
�1

, (A9)

f9(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

x(2y2 − 1)
�1

, (A10)

f10(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

(x + y)(1 − 2y)
�1

, (A11)

f11(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

xy(1 − y)
�1

, (A12)

f12(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

x(1 − x − y + 2xy)
�1

, (A13)

f13(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

x(1 − x)
�1

, (A14)

f14(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

(1 − x − y + 2xy)
�1

, (A15)

f15(p, p′) = M2
W

∫ 1

0
dx

∫ 1−x

0
dy

1
�1

. (A16)

Similarly when we combine propagators in Figs. 4(g) and (h) by using Feynman’s parameters,
the denominator turns out to be

�2 ≡ −y(1 − x − y)p2 − x(1 − x − y)p′ 2 − xy(p − p′)2

+ (x + y)m2
j + (1 − x − y)M2

W . (A17)

The parameter integrations containing �2 are listed below:

f16(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy (1 − 2y) log

{
�2

4πμ2e−γE

}
, (A18)

f17(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

y(1 − y)(1 − 2y)
�2

, (A19)

f18(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

x(1 − x)(1 − 2y)
�2

, (A20)

f19(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

(1 − x)(1 − y)(1 − 2y)
�2

, (A21)

f20(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

1 − 2y
�2

, (A22)

f21(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

(1 − y)(1 − x − 3y + 4xy)
�2

, (A23)

f22(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

(1 − 2y)(1 − x − y)
�2

, (A24)
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f23(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

(x + y − 4xy)
�2

, (A25)

f24(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

y(1 − 2y)
�2

, (A26)

f25(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

(1 − x − y)
�2

, (A27)

f26(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

y(1 − y)
�2

, (A28)

f27(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

xy
�2

, (A29)

f28(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

xy(1 − 2y)
�2

, (A30)

f29(p, p′) =
∫ 1

0
dx

∫ 1−x

0
dy

y(1 − 3x − y + 4xy)
�2

. (A31)

Appendix B. Functions Gi (i = 1, …, 12)
Some combinations of Feynman parameter integrations are defined below:

G1(p2) = 1
D − 4

+ f1(p2), (B1)

G2(p2) = 2
D − 4

+ f2(p2), (B2)

G3(p, p′) = 1
3

· 1
D − 4

+ 1
6

− f3(p, p′) + f4(p, p′), (B3)

G4(p, p′) = −4
3

· 1
D − 4

− 5
6

+
(

2 − p2

M2
W

+ 2m2
j

M2
W

)
f3(p, p′) + p′ 2

M2
W

f3(p′, p)

− 4 f4(p, p′) + 2

(
1 − m2

j

M2
W

)
f5(p, p′), (B4)

G5(p, p′) = 1
6

· 1
D − 4

− 1
2

f3(p, p′) + 1
2

f4(p, p′), (B5)

G6(p, p′) = −1
6

· 1
D − 4

− 1
2

f6(p, p′) − f4(p, p′), (B6)

G7(p, p′) = −1
2

· 1
D − 4

− 1
2

f6(p, p′) − 2 f4(p, p′) + 1
2

f15(p, p′), (B7)

G8(p, p′) = 1
6

· 1
D − 4

+ 1
12

+ 1
2

f16(p, p′) + m2
j f20(p, p′), (B8)

G9(p, p′) = −1
6

· 1
D − 4

− 1
6

− 1
2

f16(p, p′) − p2 f17(p, p′) − p′ 2 f18(p, p′)

+ 2 p · p′ f19(p, p′) − m2
j f20(p, p′), (B9)

G10(p, p′) = 1
12

· 1
D − 4

+ 1
4

f16(p, p′) − 1
4

m2
j f20(p, p′), (B10)
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G11(p, p′) = − 1
12

· 1
D − 4

− 1
24

− 1
4

f16(p, p′) + 1
4

p2 f17(p, p′) + 1
4

p′ 2 f18(p, p′)

− 1
2

p · p′ f28(p, p′) + 1
4

m2
j f20(p, p′), (B11)

G12(p, p′) = −1
8

− 1
4

p2 f26(p, p′) − 1
4

p′ 2 f26(p′, p) + 1
2

p · p′ f27(p, p′)

+ m2
j

{
1
4

f20(p, p′) − 1
2

f24(p, p′) + f26(p, p′)
}

. (B12)
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