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We investigate space-time supersymmetry in the WZW-like open superstring field theory, whose
complete action was recently constructed. Starting from a natural space-time supersymmetry
transformation at the linearized level, we construct a nonlinear transformation so as to keep the
complete action invariant. Then we show that the transformation satisfies the supersymmetry
algebra up to an extra transformation, unphysical on the asymptotic string fields. This guarantees
that the constructed transformation in fact acts as space-time supersymmetry on the physical
S-matrix.
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1. Introduction

Construction of a complete action including both the Neveu–Schwarz (NS) sector representing
space-time bosons and the Ramond sector representing space-time fermions are a long-standing
problem in superstring field theory. While the action for the NS sector was constructed based on
two different formulations, the WZW-like formulation (Ref. [1]) and the homotopy-algebra-based
formulation (Ref. [2]), it had been difficult to incorporate the Ramond sector in a Lorentz-covariant
way. Only recently, however, a complete action has been constructed for the WZW-like formulation
(Ref. [3]), and soon afterwards for the homotopy-algebra-based formulation (Ref. [4]). Interestingly
enough, in these complete actions, the string field in each sector appears quite asymmetrically. In
the WZW-like formulation, e.g., the string field Φ in the NS sector is in the large Hilbert space,
characterizing the WZW-like formulation, but the string field Ψ in the Ramond sector is in the
restricted small Hilbert space defined using the picture-changing operators. Then the question is how
space-time supersymmetry is realized between these two apparently asymmetric sectors. The purpose
of this paper is to answer this question by explicitly constructing the space-time supersymmetry
transformation in the WZW-like formulation.1

In the first quantized formulation, space-time supersymmetry is generated by the supercharge
obtained by using the covariant fermion emission vertex (Ref. [6]), which interchanges each physi-
cal state in the NS sector with that in the Ramond sector. Therefore, it is natural to expect first that the

1 Space-time supersymmetry in the homotopy-algebra-based formulation has recently been studied by Erler
(Ref. [5]).
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space-time supersymmetry transformation in superstring field theory is realized as a linear transfor-
mation using this first-quantized supercharge (Ref. [7]). We will see, however, that this expectation
is true only for the free theory, while the action including the interaction terms is not invariant under
this linear transformation. We modify it so as to be a symmetry of the complete action, and then
verify whether the constructed nonlinear transformation satisfies the supersymmetry algebra. We
find that the supersymmetry algebra holds, up to the equations of motion and gauge transformation,
only except for a nonlinear transformation. It is shown, however, that this extra transformation can
also be absorbed into the gauge transformation up to the equations of motion at the linearized level.
Under the assumption that the asymptotic condition holds also for the string field theory, this implies,
at least perturbatively, that the constructed transformation acts as space-time supersymmetry on the
physical states defined by the asymptotic string fields. This guarantees that supersymmetry is realized
on the physical S-matrix.2

The rest of the paper is organized as follows. In Sect. 2, we summarize the known results on the
complete action for the WZW-like open superstring field theory. In addition, restricting the back-
ground to the flat space-time, we introduce the GSO projection operator, which is essential to make
the physical spectrum supersymmetric. For later use, some basic ingredients, such as the Maurer–
Cartan equations and the covariant derivatives, are extended to those based on general derivations
of the string product, which can be noncommutative. After this preparation, the space-time super-
symmetry transformation is constructed in Sect. 3. Using the first-quantized supercharge, a linear
transformation is first defined so as to be consistent with the restriction in the Ramond sector. Since
this transformation is only a symmetry of the free theory, we first construct the nonlinear transforma-
tion perturbatively by requiring it to keep the complete action invariant. Based on some lower-order
results, we suppose the full nonlinear transformation δS in a closed form, and prove that it is actually
a symmetry of the action. In Sect. 4, the commutator of two transformations is calculated explicitly.
We show that it provides the space-time translation δp, up to the equations of motion and gauge
transformation, except for a nonlinear transformation δp̃ that can be absorbed into the gauge trans-
formation only at the linearized level. Thus the supersymmetry algebra holds only on the physical
states, and hence the physical S-matrix, defined by the asymptotic string fields under appropriate
assumptions on asymptotic properties of the string fields.Although this extra symmetry is unphysical
in this sense, it is nontrivial in the total Hilbert space including unphysical degrees of freedom. It pro-
duces further unphysical symmetries by taking commutators with supersymmetries, or themselves,
successively. We have a sequence of unphysical symmetries corresponding to the first-quantized
charges obtained by taking successive commutators of the supercharge and the unconventional trans-
lation charge with picture number p = −1. Section 5 is devoted to summary and discussion, and
two appendices are added. In Appendix A, we summarize the conventions for the SO(1,9) spinor
and the Ramond ground states, which are needed to identify the physical spectrum although they
do not appear in this paper explicitly. The triviality of the extra transformation in the Ramond
sector, which remains to be shown, is given in Appendix B. Further nonlinear transformations
obtained by taking the commutator of two unphysical transformations [δp̃1 , δp̃2] are also discussed.
All the extra symmetries obtained by taking commutators with δS or δp̃ repeatedly are shown to
be unphysical.

2 We further assume asymptotic completeness in this paper.
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2. Complete gauge-invariant action

On the basis of the Ramond–Neveu–Schwarz (RNS) formulation of superstring theory, consisting
of the matter sector, the reparametrization ghost sector, and the superconformal ghost sector. We
assume in this paper that the background space-time is 10-dimensional Minkowski space, for which
the matter sector is described by string coordinates X μ(z) and their partnersψμ(z) (μ = 0, 1, . . . , 9).
The reparametrization ghost sector and superconformal ghost sector are described by a fermion pair
(b(z), c(z)) and a boson pair (β(z), γ (z)), respectively. The superconformal ghost sector has another
description by a fermion pair (ξ(z), η(z)) and a chiral boson φ(z) (Ref. [6]). The two descriptions
are related through the bosonization relation:

β(z) = ∂ξ(z)e−φ(z), γ (z) = eφ(z)η(z). (2.1)

The Hilbert space for the βγ system is called the small Hilbert space and that for the ξηφ system is
called the large Hilbert space.

The theory has two sectors depending on the boundary condition on the world-sheet fermions ψμ,
β, and γ . The sector in which the world-sheet fermion obeys an antiperiodic boundary condition is
known as the Neveu–Schwarz (NS) sector, and describes the space-time bosons. The other sector in
which the world-sheet fermion obeys a periodic boundary condition is known as the Ramond (R)
sector, and describes the space-time fermions. We can obtain the space-time supersymmetric theory
by suitably combining two sectors (Ref. [9]).

2.1. String fields and constraints

In the WZW-like open superstring field theory, we use the string field Φ in the large Hilbert space
for the NS sector. It is Grassmann even, and has ghost number 0 and picture number 0. Here we
further impose the BRST-invariant GSO projection3

Φ = 1

2
(1 + (−1)GNS)Φ, (2.2)

where GNS is defined by

GNS =
∑
r>0

(ψ
μ
−rψrμ − γ−rβr + β−rγr)− 1

≡
∑
r>0

ψ
μ
−rψrμ + pφ (mod 2), (2.3)

with pφ = − ∮ dz
2π i∂φ(z). This is necessary to remove the tachyon and makes the spectrum

supersymmetric (Ref. [9]).
For the Ramond sector, we use the string field Ψ constrained on the restricted small Hilbert space

satisfying the conditions (Ref. [3])

ηΨ = 0, XYΨ = Ψ , (2.4)

3 This BRST-invariant GSO projection and that for the Ramond sector to be introduced shortly were first
given in Ref. [8]. The operators GNS and GR are none other than world-sheet fermion number operators in the
total Hilbert space including the ghost sectors.
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where X and Y are the picture-changing operator and its inverse acting on the states in the small
Hilbert space with picture numbers −3/2 and −1/2, respectively. They are defined by

X = −δ(β0)G0 + δ′(β0)b0, Y = −c0δ
′(γ0), (2.5)

and satisfy

XYX = X , YXY = Y , [Q, X ] = 0. (2.6)

The string fieldΨ is Grassmann odd, and has ghost number 1 and picture number −1/2. The picture-
changing operator X is BRST exact in the large Hilbert space, and can be written using the Heaviside
step function as X = {Q,Θ(β0)}. Here, instead of Θ(β0), we introduce

Ξ = ξ0 + (Θ(β0)ηξ0 − ξ0)P−3/2 + (ξ0ηΘ(β0)− ξ0)P−1/2, (2.7)

and anew define

X = {Q,Ξ}. (2.8)

This is identical to the one defined in Eq. (2.5) when it acts on the states in the small Hilbert space
with picture number −3/2, but can act on the states in the large Hilbert space without the restriction
on the picture number (Ref. [4]). The operator Ξ is nilpotent (Ξ2 = 0) and satisfies {η,Ξ} = 1
(Ref. [4]), from which, with {Q, η} = 0, we can conclude

[η, X ] = [η, {Q,Ξ}]
= −[Q, {Ξ , η}] − [Ξ , {η, Q}] = 0. (2.9)

We impose the BRST-invariant GSO projection as

Ψ = 1
2(1 + Γ̂11(−1)GR )Ψ , (2.10)

where GR is given by

GR =
∑
n>0

(ψ
μ
−nψnμ − γ−nβn + β−nγn)− γ0β0

≡
∑
n>0

ψ
μ
−nψnμ + pφ + 1

2
(mod 2). (2.11)

The gamma matrix Γ̂11 is defined by using the zero-modes of the world-sheet fermion ψμ(z) as

Γ̂11 = 25ψ0
0ψ

1
0 · · ·ψ9

0 . (2.12)

We summarize the convention on how the zero modes ψμ0 act on the Ramond ground states in
Appendix A.4

4 In the context of string field theory, the GSO projections are also needed to make the Grassmann properties
of string fields Φ and Ψ consistent with those of the coefficient space-time fields.
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2.2. Complete gauge-invariant action

By use of the string fields introduced in the previous subsection, the complete action for theWZW-like
open superstring field theory is given by (Ref. [3])

S = −1

2
〈〈Ψ , YQΨ 〉〉 −

∫ 1

0
dt〈At(t), QAη(t)+ (F(t)Ψ )2〉, (2.13)

and is invariant under the gauge transformations

Aδg = DηΩ + QΛ+ {FΨ , FΞ{FΨ ,Λ}} − {FΨ , FΞλ}, (2.14a)

δgΨ = −X ηFΞ [FΨ , DηΛ] + Qλ+ X ηFλ, (2.14b)

where we have introduced the one parameter extensionΦ(t) ofΦ (t ∈ [0, 1]) satisfying the boundary
condition Φ(1) = Φ and Φ(0) = 0, and defined

AO(t) = (OeΦ(t))e−Φ(t), (2.15)

with O = ∂t , η, or δ, which are analogs of (components) of the right-invariant one form, satisfying
the Maurer–Cartan-like equation

O1AO2(t)− (−1)O1O2O2AO1(t)− [[AO1(t), AO2(t)]] = 0, (2.16)

where [[A1, A2]] is the graded commutator of the two string field A1 and A2: [[A1, A2]] = A1A2 −
(−1)A1A2A2A1. Using Aη(t), the covariant derivative Dη(t) is defined by the operator acting on the
string field A as

Dη(t)A = ηA − [[Aη, A]], (2.17)

which is nilpotent: (Dη(t))2 = 0. Then the linear map F(t) on a general string fieldΨ in the Ramond
sector is defined by

F(t)Ψ = 1

1 +Ξ(Dη(t)− η)
Ψ

= Ψ +Ξ [[Aη(t),Ψ ]] +Ξ [[Aη(t),Ξ [[Aη(t),Ψ ]]]] + · · · . (2.18)

The map F(t) has a property that changes Dη(t) into η:

Dη(t)F(t) = F(t)η. (2.19)

Using F(t), we can define a homotopy operator for Dη(t) as F(t)Ξ satisfying (Ref. [3])

{Dη(t), F(t)Ξ} = 1, (2.20)

which trivializes the Dη-cohomology as well as the η-cohomology in the large Hilbert space. From
the definition (2.18), we can show that the homotopy operator FΞ is BPZ even

〈FΞΨ1,Ψ2〉 = (−1)Ψ1〈Ψ1, FΞΨ2〉, (2.21)

and satisfies

{Q, FΞ}A = FXFΞDηA + FX ηFΞA − FΞ [QAη, FΞA], (2.22)
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for a string field A. It is useful to note that we can define the projection operators

PR = DηFΞ , P⊥
R = FΞDη, (2.23)

onto the Ramond string field annihilated by Dη and its orthogonal complement, respectively.
The BPZ inner product in the small Hilbert space 〈〈·, ·〉〉 is related to that in the large Hilbert space

〈·, ·〉 as

〈〈A, B〉〉 = 〈ΞA, B〉 = (−1)A〈A,ΞB〉
= 〈ξ0A, B〉 = (−1)A〈A, ξ0B〉, (2.24)

where A and B are in the small Hilbert space, and also in the Ramond sector for the equations in the
first line.

Using a general variation of the map F(t) on a string field A,

(δF(t))A = −F(t)(δF−1(t))F(t)A = FΞ [[δAη(t), F(t)A]], (2.25)

a general variation of the action (2.13) can be calculated as (Ref. [3])

δS = −〈Aδ , QAη + (FΨ )2〉 − 〈〈δΨ , Y (QΨ + X ηFΨ )〉〉, (2.26)

from which we find the equations of motion

QAη + (FΨ )2 = 0, QΨ + X ηFΨ = 0. (2.27)

Before closing this section, we generalize several ingredients for later use. We can define AO(t) not
only for O = ∂t , η, or δ, but also for any other derivations of the string product.Although such general
O’s are not in general commutative, we assume that they satisfy a closed algebra with respect to the
graded commutator of derivations, {O1, O2] = O1O2 − (−1)O1O2O2O1. The generalized AO(t)’s
satisfy the equation

O1AO2(t)−(−1)O1O2O2AO1(t)− [[AO1(t), AO2(t)]] = A{O1,O2](t), (2.28)

which reduces to the Maurer–Cartan-like equation (2.16) when {O1, O2] = 0. Using AO(t), we can
define the covariant derivative DO(t) on a string field A by

DO(t)A = OA − [[AO(t), A]]. (2.29)

From Eq. (2.28), we can show that

[[DO1(t), DO2(t)]] = D{O1,O2](t). (2.30)

As an analog of the linear map F(t) in the Ramond sector, we can also define the linear map f (t)
on a general string field Φ in the NS sector by

f (t)Φ = 1

1 + ξ0(Dη(t)− η)
Φ

= Φ + ξ0[[Aη(t),Φ]] + ξ0[[Aη(t), ξ0[[Aη(t),Φ]]]] + · · · . (2.31)

A homotopy operator for Dη(t) in the NS sector is given by the BPZ even operator f (t)ξ0:

{Dη(t), f (t)ξ0} = 1, 〈f ξ0Φ1,Φ2〉 = (−1)Φ1〈Φ1, f ξ0Φ2〉. (2.32)
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We can define the projection operators

PNS = Dηf ξ0, P⊥
NS = f ξ0Dη (2.33)

onto the NS string field annihilated by Dη and its orthogonal complement, respectively.

3. Space-time supersymmetry

Now let us discuss how space-time supersymmetry is realized in the WZW-like formulation. Starting
from a natural linearized transformation exchanging the NS string field Φ and the Ramond string
field Ψ , we construct a nonlinear transformation that is a symmetry of the complete action (2.13).
We show that the transformation satisfies the supersymmetry algebra, up to the equations of motion
and gauge transformation, except for an unphysical symmetry.

3.1. Space-time supersymmetry transformation

At the linearized level, a natural space-time supersymmetry transformation of string fields in the
small Hilbert space, ηΦ and Ψ , is given by

δ
(0)
S(ε)ηΦ = S(ε)Ψ , δ

(0)
S(ε)Ψ = X S(ε)ηΦ, (3.1)

where

S(ε) = εαqα = εα

∮
dz

2π i
Sα(z)e−φ(z)/2 (3.2)

is the first-quantized space-time supersymmetry charge with the parameter εα . The spin operator
Sα(z) in the matter sector can be constructed fromψμ(z) using the bosonization technique (Ref. [6]).
This S(ε) is a (Grassmann-even) derivation of the string product, and is commutative with Q, η and
ξ0: [Q, S(ε)] = [η, S(ε)] = [ξ0, S(ε)] = 0. It satisfies the algebra

[S(ε1), S(ε2)] = p̃(v12), (3.3)

with vμ12 = (ε1Cγ̄ με2)/
√

2, where p̃(v) is the operator with picture number p = −1 defined by

p̃(v) = vμp̃μ = −vμ

∮
dz

2π i
ψμ(z)e−φ(z). (3.4)

This is equivalent to the space-time translation operator p(v) = vμ
∮ dz

2π i i∂X μ(z) (center of mass
momentum of the string) in the sense that (Ref. [7]), e.g.,

(p(v)− X0p̃(v)) = {Q, M (v)}, (3.5)

with

M (v) = vμ
∮

dz

2π i
(ξ(z)− ξ0)ψμ(z)e

−φ(z). (3.6)

Note that M (v) does not include ξ0, and so is in the small Hilbert space: {η, M (v)} = 0. The algebra
(3.3) and the Jacobi identity imply that [Q, p̃(v)] = [η, p̃(v)] = [ξ0, p̃(v)] = 0.

We frequently omit specifying the parameters explicitly and denote, e.g., S(ε1) by S1. Since ηΦ
andΨ are in the small Hilbert space containing the physical spectrum, Eq. (3.1) is the transformation
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law given in Ref. [7] except that the local picture-changing operator at the midpoint is replaced by
the X in Eq. (2.5) so that the transformation is closed in the restricted space. As a transformation of
Φ in the large Hilbert space, we adopt here that

δ
(0)
S(ε)Φ = S(ε)ΞΨ . (3.7)

This is consistent with Eq. (3.1) but is not unique. A different choice, however, can be obtained by
combining Eq. (3.7) and an Ω-gauge transformation, e.g.,

δ̃
(0)
S(ε)Φ = ξ0S(ε)Ψ

= δ
(0)
S(ε)Φ − η(ξ0S(ε)ΞΨ ). (3.8)

Using the fact that S is BPZ odd,

〈SA, B〉 = −〈A, SB〉, (3.9)

it is easy to see that the quadratic terms of the action (2.13),

S(0) = −1
2〈Φ, QηΦ〉 − 1

2〈〈Ψ , YQΨ 〉〉, (3.10)

are invariant under the transformation

δ
(0)
S Φ = SΞΨ , δ

(0)
S Ψ = X SηΦ. (3.11)

However, the action at the next order,

S(1) = −1
6〈Φ, Q[Φ, ηΦ]〉 − 〈Φ,Ψ 2〉, (3.12)

is not invariant under δ(0)S but is transformed as

δ
(0)
S S(1) = 〈(1

2 [Φ, SΞΨ ] − SΞ [Φ,Ψ ] + {Ψ ,ΞSΦ}) , QηΦ〉
+ 〈〈(−1

2X η[Φ, SΦ] + X η[Φ,ΞSηΦ]) , YQΨ 〉〉. (3.13)

We have thus to modify the transformation by adding

δ
(1)
S Φ = 1

2 [Φ, SΞΨ ] − SΞ [Φ,Ψ ] + {Ψ ,ΞSΦ}, (3.14)

δ
(1)
S Ψ = −1

2X η[Φ, SΦ] + X η[Φ,ΞSηΦ], (3.15)

under which the kinetic terms (3.10) are transformed so as to cancel the contribution (3.13): δ(1)S S(0)+
δ
(0)
S S(1) = 0. Then at the next order we have two contributions, δ(1)S S(1) and δ(0)S S(2), which are again

nonzero and require to add

δ
(2)
S Φ = 1

12 [Φ, [Φ, SΞΨ ]] + 1
2{[Φ,Ψ ],ΞSΦ} + 1

2 [Ξ [Φ,Ψ ], SΦ]
+ 1

2{Ψ ,Ξ{ηΦ,ΞSΦ}} + 1
2{Ψ ,Ξ [Φ,ΞSηΦ]} − [Ξ [Φ,Ψ ],ΞSηΦ]

− 1
2SΞ [Φ,Ξ{ηΦ,Ψ }] − 1

2SΞ [ηΦ,Ξ [Φ,Ψ ]], (3.16)

δ
(2)
S Ψ = 1

6X η[Φ, [Φ, SΦ]] + 1
2X η[Φ,Ξ [SΦ, ηΦ]] + 1

2X η{ηΦ,Ξ [Φ,ΞSηΦ]}
+ 1

2X η[Φ,Ξ [ηΦ,ΞSηΦ]], (3.17)
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to cancel them by δ(2)S S(0): δ(2)S S(0)+ δ(1)S S(1)+ δ(0)S S(2) = 0. The procedure is not terminated, so we
suppose a full transformation consistent with these results, and then show that it is in fact a symmetry
of the complete action.

3.2. Complete space-time supersymmetry transformation

Here we suppose that the complete transformation is given by

AδS = eΦ(SΞ(e−ΦFΨ eΦ))e−Φ + {FΨ , FΞAS}, (3.18a)

δSΨ = X ηFΞDηAS = X ηFΞSAη, (3.18b)

and show that the complete action (2.13) is invariant under this transformation. From the formula of
the general variation of the action (2.26), we have

δSS = −〈eΦ(SΞ(e−ΦFΨ eΦ))e−Φ , QAη + (FΨ )2〉 − 〈{FΨ , FΞAS}, QAη + (FΨ )2〉
− 〈〈X ηFΞDηAS , Y (QΨ + X ηFΨ )〉〉. (3.19)

We calculate each of these three terms, which we denote (I), (II), and (III), separately. First, using
Eq. (2.21) and the cyclicity of the inner product, the second term is calculated as

(II) = 〈AS , FΞ [QAη + (FΨ )2, FΨ ]〉. (3.20)

For the third term, we find

(III) = −〈〈ηFΞDηAS , QΨ + X ηFΨ 〉〉
= −〈AS , DηFΞ(QΨ + X ηFΨ )〉
= −〈AS , F(QΨ + X ηFΨ )〉, (3.21)

where we have used Eq. (2.21), Eq. (2.19), and the fact that X is BPZ even with respect to the inner
product in the small Hilbert space, 〈〈XA, B〉〉 = 〈〈A, XB〉〉, and QΨ + X ηFΨ is in the restricted small
Hilbert space. In order to calculate the first term (I), some consideration is necessary. In addition to
the cyclicity, we need the following relation for two graded commutative derivations of the string
product, O1 and O2 satisfying {O1, O2] = 0:

e−Φ(O1AO2)e
Φ = O1ÃO2 + ÃO1ÃO2 − (−1)O1O2ÃO2ÃO1

= (−1)O1O2O2ÃO1 , (3.22)

where ÃO is an analog of the left-invariant current: ÃO = e−Φ(OeΦ). If we use this relation for
(O1, O2) = (Q, η), we find

(I) = −〈SΞ(e−ΦFΨ eΦ), e−Φ(QAη + (FΨ )2)eΦ〉
= 〈SΞ(e−ΦFΨ eΦ), ηÃQ〉 − 〈SΞ(e−ΦFΨ eΦ), (e−ΦFΨ eΦ)2〉. (3.23)
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Here the second term vanishes owing to Eqs. (3.9) and (2.24):

−〈SΞ(e−ΦFΨ eΦ), (e−ΦFΨ eΦ)2〉 = 〈〈(e−ΦFΨ eΦ), {(e−ΦFΨ eΦ), S(e−ΦFΨ eΦ)}〉〉
= 2

3

(
〈〈S(e−ΦFΨ eΦ), (e−ΦFΨ eΦ)2〉〉

+ 〈〈(e−ΦFΨ eΦ), {(e−ΦFΨ eΦ), S(e−ΦFΨ eΦ)}〉〉
)

= 0. (3.24)

The first term in Eq. (3.23) can further be calculated as

(I) = −〈S(e−ΦFΨ eΦ), ÃQ〉 = 〈FΨ , eΦ(SÃQ)e
−Φ〉

= 〈FΨ , QAS〉 = 〈AS , QFΨ 〉, (3.25)

where we have used the relation (3.22) with (O1, O2) = (Q, S), and the identity

η(e−ΦFΨ eΦ) = e−Φ(DηFΨ )eΦ = 0. (3.26)

Summing Eqs. (3.20), (3.21), and (3.25), the variation of the action under the space-time
supersymmetry transformation finally becomes

δSS = 〈AS ,
(
QFΨ − F(QΨ + X ηFΨ )+ FΞ [QAη + (FΨ )2, FΨ ])〉, (3.27)

which vanishes due to the identity (4.89) in Ref. [3]: δSS = 0. Hence the complete action (2.13) is
invariant under the transformation (3.18).

4. Algebra of transformation

Starting from a natural linear transformation (3.11), we have constructed the nonlinear transformation
(3.18) as a symmetry of the complete action (2.13). If this is in fact space-time supersymmetry, the
commutator of two transformations should satisfy the supersymmetry algebra

[δS1 , δS2] =? δp(v12), (4.1)

up to the equations of motion (2.27) and gauge transformation (2.14) generated by some field-
dependent parameters, where δp(v12) is the space-time translation defined by

δp(v)Aη = −p(v)Aη, δp(v)Ψ = −p(v)Ψ , (4.2)

with the parameter v12 in Eq. (3.3). In this section, we show that the algebra (4.1) is slightly modified,
but still the transformation (3.18) can be identified with space-time supersymmetry.

4.1. Preparation

As preparation, note that the relations

δAη = DηAδ , (4.3a)

Aδ = f ξ0δAη + DηΩδ , (4.3b)

hold with Ωδ = f ξ0Aδ , for general variation of the NS string field Aδ . The former, Eq. (4.3a), is
the case of (O1, O2) = (δ, η) in Eq. (2.16), and the latter, Eq. (4.3b), is obtained by decomposing
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Aδ by the projection operators (2.33) and using Eq. (4.3a). These relations (4.3) show that two
variations Aδ and δAη are in one-to-one correspondence up to the Ω-gauge transformation. Since
any transformation of the string field is a special case of the general variation, Eq. (4.3) holds for
any symmetry transformation δI ,

δI Aη = DηAδI , (4.4a)

AδI = f ξ0δI Aη + DηΩI . (4.4b)

This is the case even for the commutator of the two transformations [δI , δJ ],
[δI , δJ ]Aη = DηA[δI ,δJ ], (4.5a)

A[δI ,δJ ] = f ξ0[δI , δJ ]Aη + DηΩIJ , (4.5b)

with

ΩIJ = −f ξ0[f ξ0δI Aη, f ξ0δJ Aη]
+ δIΩJ − [f ξ0δI Aη,ΩJ ] − δJΩI + [f ξ0δJ Aη,ΩI ] − [ΩI , DηΩJ ], (4.6)

which can be shown by explicit calculation using Eqs. (2.28) and (2.31) if we assume Eq. (4.4) with
some field-dependent ΩI . Therefore if the algebra of the transformation is closed on Aη,

[δI , δJ ]Aη =
∑

K 
=Ω
δK Aη, (4.7)

we have

A[δI ,δJ ] =
∑

K 
=Ω
AδK + DηΩIJ =

∑
K

AδK , (4.8)

or equivalently, the algebra is also closed on eΦ :

[δI , δJ ]eΦ =
∑

K

δK eΦ , (4.9)

with some field-dependent ΩIJ . Here in Eq. (4.7) we used that Aη is invariant under the Ω-gauge
transformation, AδΩ = DηΩ , as seen from Eq. (4.4a).

4.2. [δS1 , δS2]
Now let us explicitly calculate the supersymmetry algebra on Aη and Ψ , which is easier to calculate
than the algebra on the fundamental string fields Φ (or eΦ) and Ψ due to their Ω-gauge invariance
and enough to know that on the fundamental string fields as was shown in the previous subsection.
From Eq. (3.18) we find

AδS = f ξ0δSAη + DηΩS , (4.10a)

δSΨ = X ηFΞSAη, (4.10b)

with

δSAη =SFΨ + [FΨ , FΞSAη] = DSFΨ − [FΨ , DηFΞAS], (4.11a)

ΩS = f ξ0
(
eΦ(SΞ(e−ΦFΨ eΦ))e−Φ + {FΨ , FΞAS}) . (4.11b)
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Here we used the relations

Dη(e
ΦAe−Φ) = eΦ(ηA)e−Φ , η(e−ΦAeΦ) = e−Φ(DηA)eΦ , (4.12)

which hold for a general string field A. The commutator of two transformations on Ψ ,

[δS1 , δS2]Ψ = δS1(X ηFΞS2Aη)− (1 ↔ 2), (4.13)

which is easier and straightforward, can be calculated as follows. Using Eqs. (2.25), (2.20) and (2.16)
with (O1, O2) = (S, η) and (δ, η), we can find

δS1(X ηFΞS2Aη) = X ηFΞ [δS1Aη, FΞS2Aη] + X ηFΞS2(δS1Aη)

= X ηFΞDS2(δS1Aη)+ X ηFΞ [DηFΞAS2 , δS1Aη]. (4.14)

Then, using [Dη, DS] = 0,

[δS1 , δS2]Ψ =
(

X ηFΞDS2DS1FΨ − X ηFΞ [FΨ , DS2DηFΞAS1]

− X ηFΞ [DηFΞAS2 , [FΨ , DηFΞAS1]]
)

− (1 ↔ 2)

= −X ηFΞDp̃12FΨ

+ X ηFΞ [FΨ , Dη
(
DS1FΞAS2 − DS2FΞAS1 + [FΞAS1 , DηFΞAS2]

)], (4.15)

where we have used Eqs. (2.30) and (3.3), and denoted p̃(v12) = p̃12. Comparing with Eq. (2.14b),
we find that the second line has the form of the gauge transformation with the parameter

DηΛS1S2 = −Dη
(

DS1FΞAS2 − DS2FΞAS1 + [FΞAS1 , DηFΞAS2]
)

= −Ap̃12 + (S1FΞS2 − S1FΞS1)Aη − [FΞS1Aη, FΞS2Aη]. (4.16)

The second form can be obtained using Eq. (2.28), and will be used below.
In order to calculate the algebra on Aη, we first calculate the transformation of FΨ using Eq. (2.25):

δSFΨ = FΞ{δSAη, FΨ } + FδSΨ

= FX ηFΞSAη + FΞS(FΨ )2 + FΞ [(FΨ )2, FΞSAη]
= QFΞSAη + FΞS (QAη + (FΨ )2

)+ FΞ [QAη + (FΨ )2, FΞSAη]
∼= QFΞSAη, (4.17)

where the third equality follows from Eq. (2.22), and the symbol ∼= denotes an equation that holds
up to the equations of motion. Then the commutator of two transformations on Aη,

[δS1 , δS2]Aη = δS1

(S2FΨ + [FΨ , FΞS2Aη]
)− (1 ↔ 2), (4.18)
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can be calculated similarly to that on Ψ . Since the first term can be calculated as

δS1

(S2FΨ + [FΨ , FΞS2Aη]
) = S2(δS1FΨ )+ [(δS1FΨ ), FΞS2Aη]

+ [FΨ , FΞDS2(δS1Aη)] + [FΨ , FΞ [DηFΞAS2 , (δS1Aη)]]
∼= S2QFΞS1Aη + [QFΞS1Aη, FΞS2Aη]

+ [FΨ , FΞDS2DS1FΨ ] − [FΨ , FΞDS2[FΨ , DηFΞAS1]]
+ [FΨ , FΞ [DηFΞAS2 , DS1FΨ ]]
− [FΨ , FΞ [DηFΞAS2 , [FΨ , DηFΞAS1]]], (4.19)

we find

[δS1 , δS2]Aη ∼= −Q
(
(S1FΞS2 − S2FΞS1)Aη − [FΞS1Aη, FΞS2Aη]

)
− [FΨ , FΞ [DS1 , DS2]FΨ ] − [FΨ , FΞ [FΨ , DηΛS1S2]]

= −QAp̃12 − [FΨ , FΞDp̃12FΨ ]
− QDηΛS1S2 − [FΨ , FΞ [FΨ , DηΛS1S2]], (4.20)

using two expressions in Eq. (4.16). From Eqs. (4.15), (4.20) and (4.8) we can conclude that the the
commutator of two space-time supersymmetry transformations satisfies the algebra

[δS1 , δS2] ∼= δp(v12) + δg(ΛS1S2 ,ΩS1S2 )
+ δp̃(v12), (4.21)

with the gauge parameters given in Eqs. (4.16) and (4.6). The last term absent in Eq. (4.1) is a new
symmetry defined by

Aδp̃(v) = Ap(v) − f ξ0
(
QAp̃(v) + [FΨ , FΞDp̃(v)FΨ ]), (4.22a)

δp̃(v)Ψ = p(v)Ψ − X ηFΞDp̃(v)FΨ , (4.22b)

where the former is determined so as to induce

δp̃(v)Aη = Dη
(

Ap(v) − f ξ0
(
QAp̃(v) + [FΨ , FΞDp̃(v)FΨ ]))

∼= p(v)Aη − QAp̃(v) − [FΨ , FΞDp̃(v)FΨ ]. (4.23)

This extra contribution can be absorbed into the gauge transformation, up to the equations of motion,
at the linearized level as we will see shortly.

Let us consider the transformation (4.22) at the linearized level:

δ
(0)
p̃ Φ = p(v)Φ − ξ0Qp̃(v)Φ = (

p(v)− X0p̃(v)
)
Φ + Q(ξ0p̃(v)Φ), (4.24a)

δ
(0)
p̃ Ψ = (

p(v)− X p̃(v)
)
Ψ . (4.24b)

Thanks to Eq. (3.5), the transformation of Φ in Eq. (4.24a) becomes the form of the gauge
transformation up to the equation of motion at the linearized level:

δ
(0)
p̃ Φ = Q

(
(M (v)+ ξ0p̃(v))Φ

)+ η
(
ξ0M (v)QΦ

)+ ξ0M (v)QηΦ. (4.25)

We can similarly show that the transformation of Ψ in Eq. (4.24b) can also be written as a gauge
transformation up to the equation of motion at the linearized level, as shown in Appendix B. Here

13/21



PTEP 2017, 043B04 H. Kunitomo

we assume that the asymptotic condition (Ref. [10]) holds for string field theory as well as the con-
ventional (particle) field theory. Then, at least perturbatively, we can identify that the transformation
(4.24), or (4.25) and (B.5) can be interpreted, with appropriate (finite) renormalization, as that of
asymptotic string fields. If we further assume asymptotic completeness, this implies that the extra
transformation (4.24) acts trivially on the on-shell physical states defined by these asymptotic string
fields, and thus the physical S-matrix. Thus the supersymmetry algebra is realized on the physical
S-matrix, and we can identify the transformation (3.18) with space-time supersymmetry.

4.3. Extra unphysical symmetries

We have shown that the supersymmetry algebra is realized on the physical S-matrix but this is not the
end of the story. The extra transformation δp̃ produces another extra transformation if we consider
the nested commutator [δS1 , [δS2 , δS3]]. The extra contribution comes from the commutator [δS , δp̃],
which is nontrivial because the first-quantized charges S and p̃ are not commutative: [S, p̃] 
= 0. In
fact, we can show that the algebra

[δS , δp̃] ∼= δg + δ[S,p̃] (4.26)

holds with the gauge parameters

ΛSp̃ = f ξ0
(
Dp̃f ξ0DS − DSFΞDp̃

)
FΨ − [FΨ , FΞDp̃FΞAS]

− [FΞAS , FΞDp̃FΨ ] − Dp̃f ξ0{FΨ , FΞAS}, (4.27a)

λSp̃ = X ηFΞDηDp̃FΞAS , (4.27b)

and ΩSp̃ in Eq. (4.6). The new transformation δ[S,p̃] is defined by

Aδ[S ,p̃] = f ξ0

(
Qf ξ0D[S,p̃]FΨ [FΨ , FΞ

(
QA[S,p̃] + [FΨ , f ξ0D[S,p̃]FΨ ])]), (4.28a)

δ[S,p̃]Ψ = X ηFΞ
(
QA[S,p̃] + [FΨ , f ξ0D[S,p̃]FΨ ]), (4.28b)

where [S, p̃] denotes the first-quantized charge defined by the commutator [qα , p̃μ] with the parameter
ζμα ,

[S, p̃] = ζμα[qα , p̃μ], (4.29)

and in particular, ζμα = εαvμ on the right-hand side of Eq. (4.26). This new symmetry is also
unphysical in a similar sense to δp̃. At the linearized level, the transformation (4.28) becomes5

δ[S,p̃]Φ = ξ0Qξ0[S, p̃]Ψ = ξ0X0[S, p̃]Ψ , (4.30a)

δ[S,p̃]Ψ = X ηΞQ[S, p̃]Φ ∼= XQ[S, p̃]Φ, (4.30b)

where we have used the fact that S, p̃, and thus [S, p̃] are commutative with Q and η. If we note that
[S, p] = 0 and

[S, X0] = [S, {Q, ξ0}] = {Q, [S, ξ0]} + {ξ0, [S, Q]} = 0, (4.31)

5 In this subsection, the symbol ∼= denotes an equation that holds up to the linearized equations of motion,
QηΦ = QΨ = 0.
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the transformation of Φ, Eq. (4.28a), can further be rewritten in the form of a linearized gauge
transformation:

δ[S,p̃]Φ = −ξ0[S, (p − X0p̃)]Ψ = −ξ0[S, {Q, M }]Ψ
∼= −ξ0Q[S, M ]Ψ
= Q(ξ0[S, M ]Ψ )− η(ξ0X0[S, M ]Ψ ). (4.32)

Similarly, the transformation of Ψ , Eq. (4.28b), can also be written as

δ[S,p̃]Ψ ∼= X ηξ0Q[S, p̃]Φ
= Q(X ηξ0[S, p̃]Φ)+ X ηX0[S, p̃]Φ
∼= Q(X ηξ0[S, p̃]Φ + X η[S, M ]Φ). (4.33)

It should be noted that the gauge parameter in this form, λSp̃ = X ηξ0[S, p̃]Φ + X η[S, M ]Φ, is in
the restricted small Hilbert space: ηλSp̃ = 0 and XYλSp̃ = λSp̃.

In addition, a further extra transformation is produced by considering the commutator between
δp̃1 and δp̃2 , and this sequence of extra transformations does not terminate as long as the nested
commutators, [O, [O, O]], [O, [O, [O, O]]], . . . , with O = S or p̃, do not vanish. This complicates
the structure of the algebra, but we can similarly show that all of these extra transformations act
trivially on the physical S-matrix, as shown in Appendix B.

5. Summary and discussion

In this paper, we have explicitly constructed a space-time supersymmetry transformation of theWZW-
like open superstring field theory in flat 10-dimensional space-time. Under the GSO projections, we
have extended a linear transformation expected from space-time supersymmetry in the first-quantized
theory to a nonlinear transformation so as to be a symmetry of the complete action (2.13).We have also
shown that the transformation satisfies the supersymmetry algebra up to gauge transformation, the
equations of motion, and a transformation δp̃ acting trivially on the asymptotic physical states defined
by the asymptotic string fields. This unphysical transformation produces a series of transformations
δ[S,p̃], δ[p̃p̃], . . . by taking commutators with δS or δp̃ repeatedly. All of these symmetries also act
trivially on the asymptotic physical states, and thus are unphysical, but it is interesting to clarify
their complete structure, which is nontrivial in the total Hilbert space including unphysical degrees
of freedom.

In any case, except for such an unphysical complexity, we have now understood how space-
time supersymmetry is realized in superstring field theory, and therefore are ready to study various
consequences of space-time supersymmetry (Refs. [11]–[14]) on a firm basis. We have to (re)analyze
them precisely using the techniques developed in conventional quantum field theory.6 We hope to
report on them in the near future.
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Appendix A. Spinor conventions and Ramond ground states

In this paper, although it is mostly implicit, we adopt the chiral representation for SO(1,9) gamma
matrices Γ μ, in which Γ μ is given by

Γ μ =
(

0 (γ μ)αβ̇
(γ̄ μ)α̇β 0

)
, (A.1)

where γ μ and γ̄ μ satisfy

(γ μγ̄ ν + γ νγ̄ μ)α
β = 2ημνδαβ , (γ̄ μγ ν + γ̄ νγ μ)α̇β̇ = 2ημνδα̇β̇ . (A.2)

The charge conjugation matrix C satisfies the relations

(Γ μ)T = −CΓ μC−1, CT = −C, (A.3)

and is given in the chiral representation by

C =
(

0 Cα
β̇

−(CT )α̇
β

0

)
. (A.4)

The matrices CΓ μ are symmetric, or equivalently,

(Cγ̄ μ)αβ = (Cγ̄ μ)βα , (CTγ μ)α̇β̇ = (CTγ μ)β̇α̇ . (A.5)

The world-sheet fermion ψμ(z) in the Ramond sector has zero-modes that satisfy the SO(1,9)
Clifford algebra

{ψμ0 ,ψν0 } = 0. (A.6)

The degenerate ground states therefore become the space-time spinor, on whichψμ0 act as space-time
gamma matrices. We summarize here the related convention. We denote the ground state spinor as(

|α〉
|α̇〉

)
, on which ψμ0 acts as

ψ
μ
0 |α〉 = |α̇〉 1√

2
(γ̄ μ)α̇α , ψ

μ
0 |α̇〉 = |α〉 1√

2
(γ μ)αα̇ . (A.7)

Then Γ̂11 defined by Eq. (2.12) acts on the ground states as

Γ̂11|α〉 = |α〉, Γ̂11|α̇〉 = −|α̇〉, (A.8)

by which the definition of the GSO projection (2.10) is supplemented. Similarly, the BPZ conjugate
of the ground state spinor (〈α|, 〈α̇|) satisfies

〈α|ψμ0 = i√
2
(γ̄ μ)α̇α〈α̇|, 〈α̇|ψμ0 = − i√

2
(γ μ)αα̇〈α|, (A.9)
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with the normalization

〈α|α̇〉 = Cα
α̇ , 〈α̇|α〉 = i(CT )α̇

α = −iCα
α̇ . (A.10)

The nontrivial matrix elements of ψμ0 are then given by

〈α|ψμ0 |β〉 = 1√
2
(Cγ̄ μ)αβ , 〈α̇|ψμ0 |β̇〉 = − i√

2
(CTγ μ)α̇β̇ . (A.11)

Appendix B. Triviality of the extra unphysical symmetries at the linearized level

First, in order to show the triviality of Eq. (4.24b), it is useful to introduce the local inverse picture-
changing operator

Y (z0) = −c(z0)δ
′(γ (z0)), (B.1)

which also satisfies

XY (z0)X = X , (B.2)

and in addition is commutative with Q: [Q, Y (z0)] = 0. The point z0 can be chosen to be any point
on the string, e.g., the midpoint z0 = i. Due to Eq. (B.2), we can define another projection operator
XY (z0) that is commutative with Q, and acts identically with XY in the restricted small Hilbert space:

[Q, XY (z0)] = 0, (B.3)

and if XYΨ = Ψ then

XY (z0)Ψ = XY (z0)XYΨ = XYΨ . (B.4)

Using this projection operator, the linearized transformation (4.24b) can be written as the a
linearized gauge transformation,

δ
(0)
p̃ Ψ = XY (z0) (p(v)− X p̃(v)) Ψ = XY (z0){Q, M̃ (v)}Ψ

∼= Q(XY (z0)M̃ (v)Ψ ), (B.5)

up to the linearized equation of motion, QΨ = 0, with

M̃ (v) = vμ
∮

dz

2π i
(ξ(z)−Ξ)ψμ(z)e

−φ(z). (B.6)

We can see that the gauge parameter in Eq. (B.5),

λp̃ = XY (z0)M̃ (v)Ψ , (B.7)
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is in the restricted small Hilbert space,

ηλp̃ = 0, XYλp̃ = λp̃, (B.8)

if we note that {η, M̃ } = 0.
As was mentioned in Sect. 4.3, the commutator [δp̃1 , δp̃2] produces another unphysical transforma-

tion δ[p̃,p̃]:

[δp̃1 , δp̃2] ∼= δg + δ[p̃,p̃]12 , (B.9)

where the field-dependent parameters are given by

Λp̃1p̃2 = f ξ0

(
(Dp̃1 f ξ0Dp̃2 − Dp̃2 f ξ0Dp̃1)AQ + Dp̃1 f ξ0[FΨ , FΞDp̃2FΨ ]

− Dp̃2 f ξ0[FΨ , FΞDp̃1FΨ ] + {FΨ , FΞ(Dp̃1FΞDp̃2 − Dp̃2FΞDp̃1)FΨ }
− [FΞDp̃2FΨ , FΞDp̃2FΨ ]

)
, (B.10)

λp̃1p̃2 = −X ηFΞ(Dp̃1FΞDp̃2 − Dp̃2FΞDp̃1)FΨ , (B.11)

and Ωp̃1p̃2 in Eq. (4.6). The unphysical transformation δ[p̃,p̃] is defined by

Aδ[p̃,p̃] = −f ξ0

(
Qf ξ0

(
QA[p̃,p̃] + [FΨ , FΞD[p̃,p̃]]FΨ ])

+
[
FΨ , FΞ

(
QFΞD[p̃,p̃]FΨ + [FΨ , f ξ0

(
QA[p̃,p̃] + [FΨ , FΞD[p̃,p̃]FΨ ])])]),

(B.12a)

δ[p̃,p̃]Ψ = −X ηFΞ
(

QFΞD[p̃,p̃]FΨ + [FΨ , f ξ0
(
QA[p̃,p̃] + [FΨ , FΞD[p̃,p̃]]FΨ ])]). (B.12b)

The first-quantized charge [p̃, p̃] is defined by

[p̃, p̃] = wμν[p̃μ, p̃ν], (B.13)

with the parameter wμν(= −wνμ), and [p̃, p̃]12 = [p̃, p̃](w12 = (v1v2 − v2v1)/2) in Eq. (B.9). At the
linearized level, the transformation (B.12) becomes

δ[p̃,p̃]Φ = −ξ0Qξ0Q[p̃, p̃]Φ = −ξ0QX0[p̃, p̃]Φ, (B.14)

δ[p̃,p̃]Ψ = −X ηΞQΞ [p̃, p̃]Ψ = −X ηΞX [p̃, p̃]Ψ , (B.15)

and can further be rewritten in the form of a linearized gauge transformation:

δ[p̃,p̃]Φ = ξ0Q[p̃, {Q, M }]Φ = ξ0Q[p̃, M ]QΦ
∼= −Q(ξ0[p̃, M ]QΦ)+ η(ξ0X0[p̃, M ]QΦ), (B.16)

and

δ[p̃,p̃]Ψ = X ηΞ [p̃, {Q, M̃ }]Ψ ∼= X ηΞQ[p̃, M̃ ]Ψ
= Q(X ηΞ [p̃, M̃ ]Ψ ), (B.17)
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up to the linearized equations of motion. The parameter λp̃p̃ = X ηΞ [p̃, M̃ ]Ψ is in the restricted
small Hilbert space: ηλp̃p̃ = 0 and XYλp̃p̃ = λp̃p̃.

Finally we show that all the extra symmetries obtained from the repeated commutators of δS’s and
δp̃’s act trivially on the physical states defined by the asymptotic string fields. For this purpose, it is
enough to consider the transformations of ηΦ and Ψ at the linearized level for a similar reason to
that discussed in Sect. 4. Using the linearized form of Eq. (4.3) for general variation,

δΦ = ξ0δηΦ + η(ξ0δΦ), (B.18)

we can show that if the transformation of ηΦ has the form of a gauge transformation, δηΦ = −QηΛ,
with some field-dependent parameter Λ, then the transformation of Φ also has the form of a gauge
transformation:

δΦ = −ξ0QηΛ+ ηΩ

= QΛ+ η(Ω − ξ0QΛ), (B.19)

with some field-dependent Ω .
Starting from the linearized transformations

δSηΦ = SΨ , δSΨ = X SηΦ, (B.20)

δp̃ηΦ = (p − X0p̃)ηΦ, δp̃Ψ = (p − X p̃)Ψ , (B.21)

extra symmetries can be read from repeated commutators, [δO1 , [δO2 , . . . , [δOn , δp̃], . . .]], where
Oi = S or p̃. For example, we can read δ[S,p̃] from [δS , δp̃],

[δS , δp̃]ηΦ = (p − X0p̃)SΨ − S(p − X p̃)Ψ

= −X0p̃SΨ + SX p̃Ψ

∼= −X0p̃SΨ + QS{ξ0, η}Ξ p̃Ψ

= [S, X0p̃]Ψ + Qη(Sξ0Ξ p̃Ψ )

= −[S, (p − X0p̃)]Ψ + Qη(Sξ0Ξ p̃Ψ ), (B.22)

and

[δS , δp̃]Ψ = (p − X p̃)X SηΦ − X S(p − X0p̃)ηΦ

= −X p̃X SηΦ + X SX0p̃ηΦ

∼= −QX {ξ0, η}p̃ΞSηΦ + X SX0p̃ηΦ

= X [S, X0p̃]ηΦ − Qη(X ξ0p̃ΞSηΦ)
= −X [S, (p − X0p̃)]ηΦ − Qη(X ξ0p̃ΞSηΦ), (B.23)

as

δ[S,p̃]ηΦ = −[S, (p − X0p̃)]Ψ , (B.24)

δ[S,p̃]Ψ = −X [S, (p − X0p̃)]ηΦ, (B.25)

19/21



PTEP 2017, 043B04 H. Kunitomo

up to the equations of motion and gauge transformation. Similarly, we can find that general extra
symmetries have the form

δ[O1,[O2,...,[O2k+l−1,p̃]]]ηΦ = −(−1)l(X0)
k+l−1[O1, [O2, . . . , [O2k+l−1, (p − X0p̃)]]]Ψ , (B.26a)

δ[O1,[O2,...,[O2k+l−1,p̃]]]Ψ = −(−1)l(X )k+l[O1, [O2, . . . , [O2k+l−1, (p − X0p̃)]]]ηΦ, (B.26b)

or

δ[O1,[O2,...,[O2k+l ,p̃]]]ηΦ = (−1)l(X0)
k+l[O1, [O2, . . . , [O2k+l , (p − X0p̃)]]]ηΦ, (B.27a)

δ[O1,[O2,...,[O2k+l ,p̃]]]Ψ = (−1)l(X )k+l[O1, [O2, . . . , [O2k+l , (p − X0p̃)]]]Ψ , (B.27b)

with k = 1, 2, . . . and l = 0, 1, . . . , up to the equations of motion and gauge transformation. Here
2k − 1 (l) of the O’s are S (p̃) in Eq. (B.26) and 2k (l) of the O’s are S (p̃) in Eq. (B.27). All the
picture-changing operators, except for the last one, can be put together in front of the right-hand
side, aligning X0 or X , which is always possible in a similar way to Eqs. (B.22) or (B.23). If an X is
in front of some Oi0 , we can move it to the top, e.g.,

(X0)
p[O1, [O2, . . . , [X Oi0 , . . . , [On, (p − X0p̃)]]]]ηΦ
∼= Q{ξ0, η}(X0)

p[O1, [O2, . . . , [ΞOi0 , . . . , [On, (p − X0p̃)]]]]ηΦ
= Qξ0(X0)

p[O1, [O2, . . . , [Oi0 , . . . , [On, (p − X0p̃)]]]]ηΦ
+ Qη(ξ0(X0)

p[O1, [O2, . . . , [Oi0 , . . . , [On, (p − X0p̃)]]]]ηΦ)
∼= (X0)

p+1[O1, [O2, . . . , [Oi0 , . . . , [On, (p − X0p̃)]]]]ηΦ
+ Qη(ξ0(X0)

p[O1, [O2, . . . , [Oi0 , . . . , [On, (p − X0p̃)]]]]ηΦ). (B.28)

Using Eq. (3.5), it is easy to show that the transformations (B.26) or (B.27) can further be written in
the form of a gauge transformation as

δ[O1,[O2,...,[O2k+l−1,p̃]]]ηΦ ∼= −(−1)lQη((X0)
k+l−1ξ0[O1, [O2, . . . , [O2k+l−1, M ], . . .]]Ψ ),

(B.29a)

δ[O1,[O2,...,[O2k+l−1,p̃]]]Ψ ∼= −(−1)lQ((X )k+lηξ0[O1, [O2, . . . , [O2k+l−1, M ], . . .]]ηΦ), (B.29b)

or

δ[O1,[O2,...,[O2k+l ,p̃]]]ηΦ ∼= (−1)lQη((X0)
k+lξ0[O1, [O2, . . . , [O2k+l , M ], . . .]]ηΦ), (B.30a)

δ[O1,[O2,...,[O2k+l ,p̃]]]Ψ ∼= (−1)lQ((X )k+lηξ0[O1, [O2, . . . , [O2k+l , M ], . . .]]Ψ ), (B.30b)

respectively. Hence all the extra symmetries obtained as repeated commutators of δS’s and δp̃’s act
trivially on the on-shell physical states, and thus the physical S-matrix, defined by the asymptotic
string fields.
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