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1 Introduction

Over the past few decades, an enormous amount of progress has been made in understanding
Feynman integrals and their corresponding functional spaces. This progress is necessitated by
the growing need for precise theoretical calculations to effectively confront the experimental
data collected at the present and potential future colliders. With the upgraded Large Hadron
Collider (LHC) operating at higher luminosity and the promise of even higher energy reach for
future colliders, the contributions of massive quark loops to scattering processes have become
increasingly significant. The multi-loop amplitudes governing these scattering processes can
generally be expressed in terms of an independent set of integrals called master integrals
(MIs). In the realm of perturbative Quantum Field Theory (pQFT), obtaining full analytical
results for processes involving heavy particles as mediators has been limited to initial orders
due to the non-availability of the results for involved complicated integrals. In this article,
we address such a scenario by focusing on the analytical computation of a specific class
of two-loop Feynman integrals crucial for higher-order corrections to two very important
processes at the LHC. Specifically, we present the analytic computation of the two-loop
Feynman integrals associated with a multi-scale non-planar topology, which appears in NNLO
QCD corrections to the diphoton and dijet production processes.

Owning to the relevance of diphoton and dijet production processes in searches for physics
beyond the Standard Model (SM) [1–3] and in testing the SM predictions, obtaining analytic
expressions for their production cross-sections is crucial. These expressions are essential for
improving prediction accuracy and enabling more accurate comparisons with the experimental
data. However, the presence of non-trivial massive Feynman integrals with dependence on
multiple kinematic scales poses significant challenges in obtaining the analytic expressions for
their production cross-sections at the two-loop level. The state-of-the-art studies of analytic
computation of two-loop integrals contributing to NNLO QCD corrections to the dijet and
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Figure 1. The non-planar topology where the red and black lines respectively denote massive and
massless propagators.

diphoton production processes are as follows. The analytic results for the two-loop massive
planar integrals have been known for quite some time [4–8]. These results are obtained in
terms of Chen’s iterated integrals and, whenever possible, expressed in terms of Goncharov’s
polylogarithms (GPLs). The integrals belonging to a non-planar subtopology keeping the
full dependence on the internal top-quark mass have been computed in refs. [9] and are
identified to be involving an elliptic curve. Other subtopologies in the context of Higgs boson
have been calculated in refs. [10–13]. The lack of analytic results for one of the non-planar
topologies, as shown in figure 1, prevents us from getting the full two-loop amplitude for dijet
and diphoton production in a closed analytic form. In refs. [14, 15], the integrals belonging to
this topology were shown to be elliptic and are evaluated numerically. Recently, the results
for all non-planar integrals contributing to the two-loop form factors for diphoton production
have been computed using semi-analytical methods [7, 16, 17]. Despite all these efforts, full
analytic results for the non-planar elliptic integral family are still missing from the literature.

In this article, we study all the two-loop elliptic sector integrals belonging to the non-
planar topology shown in figure 1, keeping the full dependence on the top-quark mass (mt)
running in the loop with the aim of obtaining their analytic results. In the first step, we
perform the integration-by-parts (IBP) [18, 19] reduction for the given topology to get the
minimal set of scalar integrals called master integrals (MIs) using KIRA [20] and FIRE [21].
Then, we set up the system of differential equations for these master integrals [22–26]
and aim to bring it into an ϵ-factorized form [27, 28] by suitable basis choice, where the
dimensional regulator ϵ is related to space-time dimension through d = 4 − 2ϵ. Since the
subsector integrals are well-documented in the literature, obtaining an ϵ-factorized system of
differential equations for them is straightforward. Additionally, these sub-sector integrals can
be expressed either in terms of multiple polylogarithms (MPLs) [29–31] or elliptic multiple
polylogarithms [32]. However, for the top-sector integrals, characterized by the presence of
an elliptic curve, the results cannot be expressed in terms of MPLs. The considered topology
is particularly intricate because it not only depends on multiple kinematic scales but also
contains an elliptic subtopology. Despite the current prominence of such integrals in research,
there are no universal algorithms applicable to every case, and each new topology requires
specific attention [32–58]. To cast the system of differential equations into the ϵ-form for
the top-sector involving an elliptic curve, we have generalised the technique discussed in [59]
for the basis transformation. Finally, we discuss how to use our choice of basis to express
the analytic results of the top-sector master integrals at each order in ϵ through Chen’s
iterated integrals [60] over elliptic one-forms.
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The paper is organized as follows: in section 2, we introduce our notation for the
kinematics and integral family, as well as discuss our choice of master integral basis for the
topology under consideration. Section 3 is devoted to a detailed discussion on establishing the
ϵ-form of the differential equation system for the most intricate elliptic top-sector, utilizing
the maximal cut and factorization of Picard-Fuchs operator information. Finally, we discuss
how to express all the integrals belonging to this Feynman integral family through Chen’s
iterated integrals.

2 The setup

We consider a generic four-point scattering process involving massless external particles
with momenta p1, · · · , p4, all of them we regard as incoming. The external momenta obey
the following kinematics:

∑4
i=1 pi = 0, p2

i = 0 for i = 1, 2, 3, 4. We define the following
abbreviations to represent the independent set of Mandelstam variables

s = (p1 + p2)2, t = (p1 + p3)2. (2.1)

Let us define a set of two-loop non-planar Feynman integrals in d = 4 − 2ϵ space-time
dimensions through

Ia1,··· ,a9 =
(
eϵγE

iπ
d
2

)2 ∫ 2∏
i=1

ddki
Da8

8 Da9
9

Da1
1 Da2

2 Da3
3 Da4

4 Da5
5 Da6

6 Da7
7
, aj ∈ Z . (2.2)

We represent the loop momenta through ki, Euler-Mascheroni constant by γE and the inverse
propagators by Dj = q2

j −m2
j + i0+ with the parameters qj and mj respectively denoting

the momentum and mass. In this article, we focus on a set of Feynman integrals associated
with the topology shown in figure 1. The corresponding integral family is constructed out
of the following set of inverse propagators{

k2
1, (k1 − p1)2, (k1 − p1 − p2)2, k2

2 −m2
t , (k2 − p1 − p2 − p3)2 −m2

t ,

(k1 − k2)2 −m2
t , (k1 − k2 + p3)2 −m2

t , (k1 − p1 − p2 − p3)2, (k2 + p1)2 −m2
t

}
, (2.3)

where mt denotes the mass of top quark appearing in the loop.

2.1 Choice of master integrals

By using the integration-by-parts [18, 19, 61] identities for the given topology with the help
of KIRA [20] and FIRE [21], we obtain a basis of 36 master integrals denoted by I⃗. We
then set up a system of differential equations for these master integrals with respect to the
Mandelstam variables defined in equation (2.1). Utilizing IBP relations, the differential
equations take the form:

dI⃗ = AI⃗, (2.4)

where d is the total differential with respect to the Mandelstam variables and A is a 36 ×
36 matrix-valued one-form depending on the Mandelstam variables and the space-time
dimensions.
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Since the basis choice for the master integrals is not unique, we can perform a basis
transformation

J⃗ = UI⃗, (2.5)

which leads to a transformed system of differential equations

dJ⃗ = ÃJ⃗ , (2.6)

where
Ã = UAU−1 − UdU−1. (2.7)

If we can find a transformation matrix U such that the transformed differential equation
attains the form

dJ⃗ = ϵÃJ⃗ , (2.8)

such that the matrix-valued one-form Ã does not have any ϵ-dependence, then the analytic
result of J⃗ can be systematically expressed in terms of Chen’s iterated integrals order by
order in ϵ. Additionally, each entry at a given ϵ order will have a uniform length. Here length
is defined as the number of integrations that needs to be performed iteratively. We may
slightly relax this condition of complete ϵ-factorization and have the form of Ã as

Ã = Ã(0) + ϵÃ(1), (2.9)

where Ã(0) is strictly lower triangular and both Ã(0) and Ã(1) are independent of ϵ [35]. This
form of the transformed matrix Ã maintains the property that we can still express the results
for J⃗ in terms of iterated integrals at every order in ϵ, although there might be a mixing of
functions with different length at a particular order in ϵ. With the modern technology of using
differential equations for computing Feynman integrals, often the bottleneck is the construction
of a transformation matrix that brings our initial “not so good set of differential equations”
to a better form, such as the canonical form in equation (2.8) or the special linear form in
equation (2.9). In this work, we highlight how to obtain both these forms for the top-sector.

Instead of working with basis I⃗ in equation (2.4), guided by the works in [4–6, 9], we
choose the following definitions of the master integrals to set up our differential equations,
where we have used m2

t = 1 for convenience:

J1 = ϵ2D−I000010100,

J2 = ϵ2D−I101000100,

J3 = ϵ2
√

4 − s
√
s

[
I002201000 + 1

2I001202000

]
,

J4 = ϵ2
√
s+ t

√
4 + s+ t

[
I020021000 + 1

2I010022000

]
,

J5 = ϵ2
√

4 − t
√
t

[
I020200100 + 1

2I010200200

]
,

J6 = 1
2ϵ

2s
[
I001202000 + 2(I002201000 + D−I001101100)

]
,
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J7 = ϵ3sI002101100,

J8 = ϵ2(s+ t)
[1

2I010022000 + I020021000 + D−I010011100

]
,

J9 = ϵ3(s+ t)I020011100,

J10 = 1
2ϵ

2t
[
I010200200 + 2(I020200100 + D−I010101100)

]
,

J11 = ϵ3tI020101100,

J12 = ϵ4sI001111100,

J13 = ϵ4sI101011100,

J14 = ϵ3sI101012000,

J15 = ϵ2
√
s
√

4 + s

[
sI201012000 − ϵ

D−I000010100
2 + 4ϵ

]
,

J16 = ϵ4(s+ t)I011101100,

J17 = ϵ3
√
s
√
t
√
−4s+ st− 4tI011201100,

J18 = ϵ4tI011111000,

J19 = ϵ3
√
s
√
s+ t

√
s2 − 4t+ stI011112000,

J20 = ϵ4sI010111100,

J21 = −ϵ3
√
t
√
s+ t

√
t2 − 4s+ stI020111100,

J22 = ϵ3s(I010121100 + I010211100),

J23 = ϵ4s(s+ t)I111011100,

J24 = ϵ4stI111101100,

J25 = ϵ3s
√

4 − t
√
tI111100200,

J26 = ϵ3s((−1 + 2ϵ)I111100100 − (−4 + t)I111100200),

J27 = ϵ4
√
s
√
t
√
s+ tI011111100,

J28 = 1
4ϵ

3 [s(s+ t)(I011112000 + 4I011112100) + stI011201100 − t(s+ t)I020111100] ,

J29 = ϵ3s
√
s+ t

√
4 + s+ tI111012000,

J30 = ϵ3s [(−1 + 2ϵ)I111011000 + (4 + s+ t)I111012000] ,

J31 = − πs2ϵ4

2 K
(
−16

s

)I101111100,

J32 = ϵ3s

π

[
(1 + 2ϵ)

(
sE
(
−16
s

)
− (16 + s) K

(
−16
s

))
I1,0,1,1,1,1,1,0,0

−8(16 + s) K
(
−16
s

)
I1,0,1,2,1,1,1,0,0

]
,
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J33 = ϵ4I111111100,

J34 = ϵ4I11111110−2,

J35 = ϵ4I11111110−1,

J36 = ϵ4I1111111−1−1 . (2.10)

Here D− denotes the dimension shift operator which shifts the space-time dimension d

by two [62] as

D−Ia1,··· ,a9(d) = Ia1,··· ,a9(d− 2), (2.11)

whereas K(·) and E(·) are respectively the complete elliptic integral of the first and sec-
ond kind,

K(k2) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

, E(k2) =
∫ 1

0

√
1 − k2t2

1 − t2
dt. (2.12)

With this basis choice, the differential equations readily assume a canonical form, as in
equation (2.8) for the first 31 integrals, and for J32 it takes on a special linear form, as in
equation (2.9), that can be effortlessly transformed into the canonical one through a simple
transformation involving the primitive, as outlined in [43]. Moreover, the integrals J33–J36 in
the top sector, featuring all seven propagators, along with J31–J32, constitute elliptic sectors.
In the following sections, we explain the main ingredients of our work, tackling the analytic
complexity of the top sector due to the elliptic nature of the Feynman integral.

3 The elliptic top-sector

As previously mentioned, all sub-sector integrals associated with the non-planar family 1 have
been known analytically for quite some time. Nevertheless, writing the analytic results for
the full non-planar topology is challenging due to the presence of elliptic curves, which extend
beyond the well-understood class of polylogarithmic functions. The presence of multiple
kinematic scales adds further to the analytic complexity. This makes the analytic computation
of the entire integral family considerably more challenging compared to many other multi-scale
two-loop Feynman integrals. Therefore, in the following sections, we focus primarily on
the top sector, i.e. integrals J33–J36 and provide a highly detailed explanation of the steps
involved in transforming the corresponding differential equations in a way that facilitates
the straightforward articulation of analytic results. The ideas presented here can be easily
generalized to other multi-variate elliptic Feynman integrals involving multiple elliptic sectors.

3.1 The study of maximal cuts

Maximal cuts are one of the primary tools that can be utilized to analyse the algebraic
complexity of multi-loop, multi-scale Feynman integrals before solving them explicitly [63–65].
In this context, ‘cutting’ a propagator means forcing the propagating particle to be on-shell.
This can be achieved for the propagators raised to power one by simply replacing each of them
with a Dirac δ-function. A maximal cut of a diagram corresponds to the simultaneous cutting
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Figure 2. The non-planar sub-topology and the top-topology where the red and black lines respectively
denote massive and massless propagators.

of all its propagators. Mathematically, a maximal cut corresponds to taking the n-fold residue
of the corresponding integrand in the complex plane, where n is the number of propagators.
Furthermore, it is known that the maximal cuts of any given set of master integrals are
the solutions for the corresponding homogeneous system of differential equations [35, 66].
Therefore, the maximal cut information of a given Feynman integral is useful to obtain the
integral representation for the homogeneous solution of the differential equation satisfied by
that integral. The computation of the maximal cut can be easily carried out in the so-called
Baikov representation [63] using the loop-by-loop approach [65].

The maximal cut for the top-sector integral I111111100, as shown in figure 1, is given by

16
π4

∫
C

dP

s(s+ t+ P )
√
P
√
s+ P

√
−4m2

t s+ sP + P 2
+O(ϵ) (3.1)

in d-dimensions, where the leading term in ϵ corresponds to the 4-dimensional part. The
integration is over the contour C in the remaining Baikov variable P , after incorporating
all the delta distributions that arise from putting all the propagators on-shell. The contour
can be chosen to lie between any pair of roots of the polynomial in the denominator. On
the other hand, the maximal cut of the elliptic sub-sector integral I101111100, as shown in
figure 2, is given by

8
π3

∫
C

dP

s
√
P
√
s+ P

√
−4m2

t s+ sP + P 2
+O(ϵ). (3.2)

Looking at the equations (3.1) and (3.2), it becomes evident that both of them contain the
same quartic square root, while the t-dependence factors out in equation (3.1). A square
root

√
Q(x), where Q(x) is a quartic polynomial with distinct zeroes, defines an elliptic

curve. The occurrence of the same quartic square roots strongly suggests the appearance of
a single elliptic curve in sectors J31–J36, instead of two different elliptic curves, a fact that
has been overlooked in earlier studies [7, 14]. This information is useful for the construction
of an ϵ-factorised differential equation for the top-sector. Particularly, we find that the t
dependence completely decouples after using the factorization properties of the corresponding
Picard-Fuchs operator [43, 67] from the sector that is still coupled at the order ϵ0. We
discuss it in detail in the next sections.
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3.2 Transformation matrix to obtain an ϵ-form for the top-sector on the
maximal cut

In this section, we first discuss the steps to obtain the special linear form (2.9) for the
differential equations on the maximal cut corresponding to the elliptic top sector integrals
(J33, . . . , J36) defined in equation (2.10). Later on, we comment on obtaining the ϵ-factorized
canonical form (2.8) from the special linear form (2.9) for these integrals. Following [43],
we first act on the differential equation for this 4 × 4 block with a transformation matrix
that decouples the differential equations of the first two master integrals from the other two
master integrals at the order of ϵ0. As a side product, this procedure already transforms
the first 2×2 block for the partial differential equation with respect to t in a ϵ-factorized
form. In particular, we use the transformation matrix

U0 =



0 − 2s
(16+s)(s+2t)

16t+2s(4+s+t)
(16+s)(s+2t)

2s
(16+s)(s+2t)

0 8s(12+s)
(16+s)2(s+2t)

−4s(112+s(33+2s))−8(112+s(21+s))t
(16+s)2(s+2t) − 8s(12+s)

(16+s)2(s+2t)

s
√
t
√
s+ t

√
s(−4 + t) + t2 0 0 0

0 0 0 s


(3.3)

to get

Ã
(0)
s,U0

=



2
s

1
s 0 0

−4(49+5s)
s(16+s)

−80−7s
s(16+s) 0 0

√
t(−112s−8s2+27st+2s2t+26t2+2st2)√

s+t
√
−4s+st+t2

√
t(−64s−4s2+16st+s2t+16t2+st2)

2
√

s+t
√
−4s+st+t2 0 0

− s
2 0 0 0


, (3.4)

Ã
(0)
t,U0

=


0 0 0 0
0 0 0 0

− s(2s2t−9s2+2st2+24st−112s+24t2)√
t
√

s+t
√

st−4s+t2 − s(s+16)
√

st−4s+t2

2
√

t
√

s+t
0 0

0 0 0 0

 , (3.5)

where Ã(0)
s,U0

and Ã
(0)
t,U0

are the transformed differential equation matrices with respect to s
and t, respectively, obtained after transforming with U0. The elliptic nature of the Feynman
integrals becomes evident when we look at the upper left 2 × 2 block in Ã

(0)
s,U0

, which is still
coupled at ϵ0. Indeed, if we compute the Picard-Fuchs operator at the order ϵ0 denoted by
L0 for the first element from the transformed basis, i.e. the combination of master integrals
that we obtain after acting with the transformation matrix U0, which for our case is

I1 = 2ϵ4

(16 + s)(s+ 2t)
(
sI1,1,1,1,1,1,1,−1,−1 − sI1,1,1,1,1,1,1,0,−2

+ (4s+ s2 + 8t+ st)I1,1,1,1,1,1,1,0,−1
)
, (3.6)

we obtain

L0 = ∂2
s −

(
−4
s
− 2

16 + s

)
∂s + 6(6 + s)

s2(16 + s) . (3.7)
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This second order differential operator is associated to an elliptic curve and its two solutions
can be chosen as

ψ0(s) =
32E

(
− s

16
)

πs3/2(s+ 16)
, (3.8)

ψ1(s) =
32
(
E
(

s
16 + 1

)
−K

(
s

16 + 1
))

s3/2(s+ 16)
, (3.9)

where ψ0(s) is a holomorphic function multiplied by 1
s3/2 and ψ1(s) is the single-logarithmic

solution. To factorize ϵ from this 2 × 2 block, we extend the method of [59] with minor
modifications to multiple scales, incorporating derivatives in both the variables within the
ansatz. In particular, we look for new master integrals defined in the following way

M1 = 1
h(s, t)I1,

M2 = g1(s, t)
ϵ

d

ds
M1 + g2(s, t)

ϵ

d

dt
M1 − f1(s, t)M1. (3.10)

The above is the most general ansatz with four rational functions: h(s, t), g1(s, t), g2(s, t),
andf1(s, t), that one can write thinking about the Hodge filtration of a Hodge structure [68].
This ansatz can also be straightforwardly generalised to integrals with an elliptic geometry
depending on any number of parameters. With this ansatz, the differential equation matrix
Ã for the first 2 × 2 block transforms again as in equation (2.7). We find the unknown
functions in (3.10) by requiring that the transformed matrix Ã has terms proportional to
ϵ and as simple as possible ϵ0 terms.1 This is done by choosing

h(s, t) = 1
s2 + 16s, (3.11)

g1(s, t) = 0, (3.12)

g2(s, t) = 16s(s+ 2t)2

16t+ s(8 + t) , (3.13)

f1(s, t) = 16s3(s+ 2t)
t(s+ t)(16t+ s(8 + t)) . (3.14)

So the next transformation matrix attains the form

U1 =
(

s(16 + s) 0
−64s2(12 + s) −16s2(16 + s)

)
. (3.15)

Acting with another 2×2 rotation, where the entries of the matrix are constrained to eliminate
the ϵ0 terms, we ϵ-factorize the 2 × 2 block. This transformation is given by

U2 =

√sK (
s

16 + 1
) 1

8
√

s

(
E
(

s
16 + 1

)
−K

(
s

16 + 1
))

2
√

s
π K

(
− s

16
)

− 1
4π

√
s
E
(
− s

16
)

 . (3.16)

1We search for rational functions multiplying ϵ0 with both numerator and denominator expressed in terms
of low degree polynomials in s and t.
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Here the appearance of elliptic functions is not surprising given that the associated geometry
is elliptic in nature. These entries can indeed be rewritten in terms of the two periods ψ0
and ψ1 defined in equations (3.8) and (3.9) and their derivatives in the following way

U2 = s3(s+ 16)2

16

(
sψ′

1 − 2ψ1 −ψ1
−2(sψ′

0 − 2ψ0) 2ψ0

)
. (3.17)

After fixing the 2 × 2 sub-block, we proceed to ϵ-factorize the remaining 4 × 4 differential
matrix. It is important to note that at this stage, we already obtain the special linear form for
our differential equations, which enables us to conveniently write the analytic results for the
elliptic top-sector (on the cut) in terms of iterated integrals. However, as mentioned before,
the results at a particular ϵ-order do not have the same length of iterated integrals. Let us
now look at how to obtain an ϵ-form for the full 4× 4 matrix. After applying the rotations U1
and U2, Ã transforms accordingly as in equation (2.7). We find it useful to examine the new
differential equation matrix, ÃU2U1 , based on its scale dependence, i.e. we analyze ÃU2U1,s

and ÃU2U1,t individually. We find that ÃU2U1,s has ϵ0 terms only at the positions (3, 1), (3, 2),
(4, 1) and (4, 2) whereas ÃU2U1,t has non-zero components only at positions (3, 1) and (3, 2).
With this information, we construct another transformation matrix as follows:

U3 =


1 0 0 0
0 1 0 0
0 0 1 0

−1
2s

2(s+ 12) −1
8s

2(s+ 16) 0 1

 , (3.18)

where the components are fixed by requiring that the ϵ0 terms at positions (4, 1) and (4, 2)
cancel each other out. The last transformation U4, to fully ϵ-factorize the 4 × 4 block of the
differential equation system for the top-sector, is obtained in a similar way by constructing
another non-trivial transformation for the elements at position (3, 1) and (3, 2) through

U4 =


1 0 0 0
0 1 0 0

f(s, t) g(s, t) 1 0
0 0 0 1

 , (3.19)

where f(s, t) and g(s, t) are fixed by requiring that the differential equation transformed
already with U1, U2, U3 and now with U4 contains only terms proportional to ϵ. The
definitions of f(s, t) and g(s, t) are given in the appendix B. Furthermore, in appendix C, we
highlight the significance of studying the marked point on the torus to simplify these functions.
This is obtained after establishing a correspondence between the elliptic curve and a torus.

In conclusion, we obtain both a completely ϵ-factorized as well as a special linear form (2.9)
for the 4 × 4 differential equation block corresponding to the elliptic top sector. We also
find that the analytic one-forms are simpler if we only transform the starting block for
the top-sector (the one obtained with Ji in equation (2.10)), from U0 till U3, rather than
proceeding to the final transformation matrix U4. Hence this is the choice made in our supplied
transformation files. We also write the corresponding differential equation matrix Ãf(i,j), with
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f ∈ {s, t}, for the elliptic top sector explicitly in appendix A. The corresponding differential
one-forms are expressed in terms of the periods and their derivatives given in equations (3.8)
and (3.9). All the elements are proportional to ϵ, apart from Ãf(3,1) and Ãf(3,2).

Analytic results through Chen’s iterated integrals. The primary focus of this article
revolves around addressing the algebraic complexity arising from two elliptic sectors within
a multi-variate non-planar Feynman integral family. As evident from the previous section,
we made a comprehensive investigation of all the elliptic sectors to manage this complexity.
However, as a secondary outcome, we also provide a choice of basis for the full system of
differential equations as supplementary material with this article. This basis can be utilised
to express all the appearing Feynman integrals analytically through Chen’s iterated integrals,
albeit with non-uniform length, at each order in ϵ. This choice has been obtained as follows.
Typically, following the bottom-top approach, selecting an appropriate basis for the top
sector on the maximal cut, with all the sub-sector integrals already in a canonical form, also
simplifies the off-diagonal differential equation contributions to the top-sector. This is true
especially concerning the ϵ expansion behaviour. However, we observe that this is not the
case here. In particular, we additionally fix the ϵ-behaviour of these off-diagonal elements,
to limit the one-forms to have only finite expansions in ϵ. We provide a choice of basis that
is arranged in a lower block-triangular form which nevertheless enables one to express the
analytic results though iterated integrals, after solving the differential equations order by
order in ϵ. We would also like to mention that after obtaining the system of differential
equations with the provided choice of basis for the full system, further transformations [69]
can be carried out, to fix only the sub-sector contributions to the top-sector, to obtain a
completely ϵ-factorised differential equations for the full 36 × 36 system. However, in this
case, the more transformations carried out, the more intricate the structure of the kernels
within the iterated integrals becomes.

4 Conclusions and outlook

In this paper, we studied the analytic structure of non-planar Feynman integrals crucial
for computing NNLO QCD corrections in diphoton and dijet production. We presented an
extensive discussion on deriving an ϵ-factorized form of the differential equations for the
elliptic top sector, leveraging the geometric properties of the Feynman integral and insights
obtained from the maximal cuts. Contrary to the earlier studies and despite the presence of
an elliptic sub-topology, we identify only one elliptic curve in the entire system instead of two
distinct elliptic curves. With this information, we exploit the properties of the Picard-Fuchs
operator to find an ϵ-factorised differential equation of the top-sector on the maximal cut.
Additionally, we adapted the algorithm outlined in [59] for our multi-variate elliptic system,
enabling the derivation of appropriate ansätze for the top sector. At the end, we also briefly
discussed how to obtain analytic results for the elliptic top sector integrals in terms of Chen’s
iterated integrals using our choice of basis.

Looking ahead, although significant progress has been achieved in understanding the
analytic structure of this family of Feynman integrals, further investigation is clearly warranted.
Specifically, it would be intriguing to obtain a simpler definition of a good function basis
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for these integrals, incorporating information from both the maximal and sub-maximal
cuts from the beginning. This approach would result in requiring fewer transformations
to obtain the ϵ-factorized differential equation for the entire system, thereby yielding less
complicated kernels in the analytic results. Furthermore, the numerical evaluation of these
elliptic kernels needs to be explored.
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A The differential one-forms for the elliptic top sector

The matrix valued differential one-forms for the top-sector mentioned in section 3.2 have
the following form:

Ãf(1,1) = ϵ

512(2ψ0
(
ψ1

′(dsw22 − dtw3)− 2ψ1(dsw21 + dtw1)
)

+ψ0
′ (ψ1

′(dsw24 − dtw2) + 2ψ1(dsw23 − dtw4)
)

+ 512dtw16) ,

Ãf(1,2) = ϵ

1024
(
4dsw25 − dtw5ψ1ψ1

′) ,
Ãf(1,3) = ϵ

8
(
ψ1

′(dsw31 − dtw11) + 2ψ1(dsw26 − dtw6)
)
,

Ãf(1,4) = − ϵ

4
(
ψ1

′(dtw12 − dsw32) + 2ψ1(dsw27 + dtw7)
)
,

Ãf(2,1) = ϵ

256
(
dtw5ψ0ψ0

′ − 4dsw25
)
,

Ãf(2,2) = ϵ

512(2ψ0
(
2ψ1(dsw21 + dtw1) +ψ1

′(dtw4 − dsw23)
)

+ψ0
′ (ψ1

′(dtw2 − dsw24) +ψ1(2dtw3 − 2dsw22)
)

+ 512dtw16) ,

Ãf(2,3) = − ϵ

4
(
ψ0

′(dsw31 − dtw11) + 2ψ0(dsw26 − dtw6)
)
,

Ãf(2,4) = ϵ

2ψ0
′(dtw12 − dsw32) + ϵψ0(dsw27 + dtw7) ,

Ãf(3,1) = 1
64
(
2ψ0(ds(2w29 +w30ϵ)− dt(w10ϵ+w9)) +ψ0

′(2dsw34 + dsw35ϵ− 2dtw14 − dtw15ϵ)
)
,

Ãf(3,2) = 1
128

(
2ψ1(ds(2w29 +w30ϵ)− dt(w10ϵ+w9)) +ψ1

′(2dsw34 + dsw35ϵ− 2dtw14 − dtw15ϵ)
)
,
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Ãf(3,3) = ϵ(4dsw36 − 4dtw17) ,

Ãf(3,4) = ϵ(2dsw37 − 2dtw18) ,

Ãf(4,1) = ϵ

128
(
ψ0

′(dsw33 + 4dtw13) + 2ψ0(dsw28 + 4dtw8)
)
,

Ãf(4,2) = ϵ

256
(
ψ1

′(dsw33 + 4dtw13) + 2ψ1(dsw28 + 4dtw8)
)
,

Ãf(4,3) = ϵ

2(dtw19 − dsw38) ,

Ãf(4,4) = ϵ(dtw20 − dsw39) ,

(A.1)

where

w1 = s3(s+ 8)(s+ 12)(s+ 16)
s+ 2t , w2 = s5(s+ 16)3

s+ 2t , w3 = s4(s+ 8)(s+ 16)2

s+ 2t ,

w4 = s4(s+ 12)(s+ 16)2

s+ 2t , w5 = s3(s+ 16)(2s(s+ 8)(s+ 16) + 2s(s+ 12)(s+ 16))
s+ 2t ,

w6 =
s2(s+ 16)

(
s2 + (s+ 12)t2 + (s+ 12)st

)
√
t
√
s+ t(s+ 2t)2

√
s(t− 4) + t2

, w7 = s3(s+ 8)
(s+ 2t)2 , w8 = s(s+ 8) ,

w9 =
s
(
2s2(t− 5) + 2s

(
t2 + 8t− 48

)
+ 16t2

)
√
t
√
s+ t

√
s(t− 4) + t2

, w10 =
s
(
3s3 + 2s2(6t+ 22) + 12s(t+ 4)2 + 96t2

)
√
t
√
s+ t

√
s(t− 4) + t2

,

w11 = s3(s+ 16)2√t
√
s+ t

(s+ 2t)2
√
s(t− 4) + t2

, w12 = s4(s+ 16)
(s+ 2t)2 , w13 = s2(s+ 16) ,

w14 = s2(s+ 16)
√
st− 4s+ t2√

t
√
s+ t

, w15 =
s2(s+ 16)

(
3s2 + 12st+ 16s+ 12t2

)
√
t
√
s+ t

√
s(t− 4) + t2

,

w16 = s2

t(s+ t)(s+ 2t) , w17 = s3(t− 1) + 4s2t2 + 6st3 + 3t4

t(s+ t)(s+ 2t) (s(t− 4) + t2) ,

w18 = 3s2 + 8st+ 8t2
√
t
√
s+ t(s+ 2t)

√
s(t− 4) + t2

, w19 = s+ 2t
√
t
√
s+ t

√
s(t− 4) + t2

, w20 = s+ 2t
t(s+ t) ,

w21 = s2((384− s(s(s+ 16) + 24))t+ 2s(s+ 10)(5s+ 48))
s+ 2t ,

w22 =
s3(s+ 16)

(
s3(t− 11) + s2(t− 14)(t+ 8) + 4s(t− 40)t− 64t2

)
(s+ t)(s+ 2t) ,

w23 =
s3(s+ 16)

(
−s2(7s+ 64) + (s+ 4)(s+ 8)t2 + (s(s+ 4)− 48)st

)
(s+ t)(s+ 2t) , w24 = s5(s+ 16)2(t− 8)

s+ 2t ,

w25 = s3(s+ 16)(s((s+ 8)t− 9s− 88)− 16t)
s+ 2t ,

w26 =
s
√
t
(
−4(s+ 8)s2 + (s(s+ 18) + 96)t2 + (s(s+ 13) + 48)st

)
√
s+ t(s+ 2t)2

√
s(t− 4) + t2

, w27 = s2(s− (s+ 6)t)
(s+ 2t)2 ,

w28 = (s+ 8)(s− 2t) , w29 =
√
t
(
(s+ 10)t2 + s(s+ 11)t− 4s(s+ 12)

)
√
s+ t

√
s(t− 4) + t2

,

w30 =
√
t
(
2(s+ 12)(3s+ 16)t2 + 3s(s(s+ 4)− 64)t+ 64s(5s+ 48)

)
(s+ 16)

√
s+ t

√
s(t− 4) + t2

,
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w31 = s2(s+ 16)
√
t
√
s+ t(s(t− 4) + 8t)

(s+ 2t)2
√
s(t− 4) + t2

, w32 = s3(s+ 16)t
(s+ 2t)2 , w33 = s(s+ 16)(s− 2t) ,

w34 =
s(s+ 16)

√
t
√
s(t− 4) + t2√

s+ t
, w35 =

s
√
t
(
3s2t+ 2(3s+ 32)t2 + 256s

)
√
s+ t

√
s(t− 4) + t2

,

w36 =
t
(
3s2 + s(t+ 2)t+ t3

)
s(s+ t)(s+ 2t) (s(t− 4) + t2) , w37 =

√
t
(
−s2(t− 16) + 2st(t+ 16) + 64t2

)
s(s+ 16)

√
s+ t(s+ 2t)

√
s(t− 4) + t2

,

w38 = t3/2

s
√
s+ t

√
s(t− 4) + t2

, w39 = s+ 2t
s(s+ t) .

In equation (A.1), we have suppressed the explicit dependence of the periods and their
derivatives on s.

B The definitions of the entries in U4

In this section, we first provide the definitions of f(s, t) and g(s, t) mentioned in section 3.2,
that appear in the last transformation matrix U4 needed to transform the differential equations
corresponding to the top-sector to an ϵ-factorised form. They are obtained by solving
differential equations that derive from requiring the coefficient of ϵ0 terms in the transformed
differential equation, obtained after applying U1, U2 and U3, to be equal to zero. Later
we also perform a study of the maximal cut again to suggest a change of variables that
simplifies these functions

f(s, t)= s√
t
√
s+ t

2(s+ 12)(s+ t)
√
s(t− 4) + t2

− 2
√

2
√
s
√
t(5s+ 64)√

(s+
√

s
√

s+16+8)
s+t

F

sin−1


√

1 + (t−8)
√

s

t
√

s+16
√

2


∣∣∣∣∣∣∣∣

2
√
s
√
s+ 16

s+
√
s
√
s+ 16 + 8



−
√

2(s+ 12)
√
s(s+ t)√

s+t

(s+
√

s
√

s+16+8)t

E

sin−1


√

1 + (t−8)
√

s

t
√

s+16
√

2


∣∣∣∣∣∣∣∣

2
√
s
√
s+ 16

s+
√
s
√
s+ 16 + 8


 , (B.1)

g(s, t)=− s(s+ 16)
4
√
t
√
s+ t

− 2(s+ t)
√
s(t− 4) + t2

+ 8
√

2
√
s
√
t√

(s+
√

s
√

s+16+8)
s+t

F

sin−1


√

1 + (t−8)
√

s

t
√

s+16
√

2


∣∣∣∣∣∣∣∣

2
√
s
√
s+ 16

s+
√
s
√
s+ 16 + 8



+
√

2
√
s(s+ t)√
s+t

(s+
√

s
√

s+16+8)t

E

sin−1


√

1 + (t−8)
√

s

t
√

s+16
√

2


∣∣∣∣∣∣∣∣

2
√
s
√
s+ 16

s+
√
s
√
s+ 16 + 8


 , (B.2)

– 14 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
4

where F (·|·) and E(·|·) are respectively the elliptic integral of the first and second kind:

F (ϕ|k2) =
∫ sin ϕ

0

dt√
(1 − t2)(1 − k2t2)

, E(ϕ|k2) =
∫ sin ϕ

0

√
1 − k2t2

1 − t2
dt . (B.3)

C The study of the marked point on the torus

Below we study the correspondence between the elliptic curve and a torus to find a possible
change of variables that enables us to express the functions f(s, t) and g(s, t) in a more
compact notation. This might be useful when aiming to express the results through eMPLs
in future works. From the maximal cut in equation (3.1) we can see that there is a pole
in P at s+ t. A pole in the maximal cut corresponds to a marked point in the torus. The
map between an elliptic curve and the corresponding torus is given by Abel’s map and as
done in [58, 70] we can compute how the pole is marked on the torus

Zxp =
F (sin−1 uxp |k)

2K(k) , (C.1)

where

k2 = r23r14
r13r24

, rij = ri − rj (C.2)

and

uxp =
√

(xp − r1)(r2 − r4)
(xp − r2)(r1 − r4) . (C.3)

In the above equation, ri are the roots of the elliptic curve and xp is the pole on the
maximal cut.

With the roots of our elliptic curve

r1 = 1
2
(
−s−

√
s
√
s+ 16

)
, r2 = −s, r3 = 0, r4 = 1

2
(√

s
√
s+ 16 − s

)
, xp = −s− t,

(C.4)
we get the following k2 and uxp

k2 = 2
√
s
√
s+ 16

s+
√
s
√
s+ 16 + 8

, uxp =

√
1 + (t−8)

√
s

t
√

s+16
√

2
, (C.5)

and the following marked point on the torus

Zxp =

F

sin−1

√1+ (t−8)
√

s

t
√

s+16√
2

∣∣∣∣∣∣ 2
√

s
√

s+16
s+

√
s
√

s+16+8


2K

(
2
√

s
√

s+16
s+

√
s
√

s+16+8

) . (C.6)

– 15 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
4

We notice that this is the same integral that appears in the expression for f(s, t) and g(s, t),
so we rewrite them using these variables and notice that their expression simplifies

f(s, t) = 2s(s+ 12)
√
s+ t

√
s(t− 4) + t2√

t

+
√

2s3/2√
s+

√
s
√
s+ 16 + 8

(
4(5s+ 64)K(k)Zxp + (s+ 12)

(
s+

√
s
√
s+ 16 + 8

)

×E
(
sin−1(uxp)

∣∣∣ k)) , (C.7)

g(s, t) = (s+ 16)s
√
s+ t

√
s(t− 4) + t2

2
√
t

+
√

2s3/2(s+ 16)√
s+

√
s
√
s+ 16 + 8

(
4K(k)Zxp + 1

4
(
s+

√
s
√
s+ 16 + 8

)
E
(
sin−1(uxp)

∣∣∣ k)) .
(C.8)
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