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Abstract

We derive two new classes of integrable theories interpolating between exact CFT WZW or gauged WZW
models and non-Abelian T-duals of principal chiral models or geometric coset models. They are naturally
constructed by gauging symmetries of integrable models. Our analysis implies that non-Abelian T-duality
preserves integrability and suggests a novel way to understand the global properties of the corresponding
backgrounds.
© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction and motivation

Based on work in [1] it has been proposed that a way to construct integrable models is to
encode the conditions ensuring classical integrability into the Hamiltonian equations of motion
following from general current algebras with a underlying structure based on a group [2]. In
principle this results into a generalization of the conformal currents algebras for the Wess–
Zumino–Witten (WZW) model as well as for the current algebras for the Principal Chiral Models
(PCM) and Pseudochiral Models. The authors of [2] obtained general condition that the σ -model
fields have to satisfy in order for it to be integrable. Moreover with a brute force computation
they solved these conditions for the case that the group is SU(2) and they explicitly constructed
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a family of integrable models interpolating between the exact CFT WZW model with affine cur-
rent algebra SU(2)k and the non-Abelian T-dual of the PCM for SU(2) with respect to SU(2)L.
The latter fact was explicitly pointed out in [3], where in addition an S-matrix for this model was
proposed and further checked.

The above work was essentially not developed any further due to the fact that solving the
general conditions of [2] seemed extremely difficult if not impossible given also the fact that
in the simplest SU(2) case the solution was obtained by a brute force computation. Moreover,
it was not even clear that there can be any other solutions. In addition, any relation to other
known constructions or of a systematic way to obtain solutions was lacking. Hence, this way of
constructing integrable models stood so far as an aesthetically appealing isolated example.

The purpose of the present paper is to fill all of the above gaps and moreover to generalize
the construction. We will obtain integrable models for any group G and explicit expressions
for the σ -model fields which are non-singular. These will interpolate between the exact CFT
WZW model with affine current algebra Gk and the non-Abelian T-dual of the PCM for G with
respect to the left action of the group denoted by GL. More importantly, we will show that
these models arise very naturally by gauging the combined action for the PCM and the WZW
for G. The latter approach is inspired by a suggestion made in [4] and further elaborated in
[5], involving the relation of non-Abelian T-duality to gauged WZW models. The deformation
from the CFT point is driven by relevant operators of current bilinears. In addition, we also
suggest a new class of theories which interpolate between exact coset Gk/Hk CFTs realized
using gauged WZW models and the non-Abelian T-duals of geometric cosets G/H models. In
this case the deformation is driven by the parafermions of the coset CFT. We check this assertion
for the simplest case in which the group is G = SU(2) and the subgroup is H = U(1) making
connection with existing work in [6]. Therefore, we believe that these theories are also integrable.

The original motivation for this work was to understand global issues in non-Abelian T-duality
[7–9] for which there has been a considerable advancement in recent years, concerning in par-
ticular a complete understanding in type-II supergravity backgrounds with non-trivial RR-fields
[10–12] (and references therein). In this direction we will make an important step since, for the
case of only NS-sector fields, we will show that models obtained via a non-Abelian T-duality
transformation can be thought of as the end point of a line of integrable theories.

The organization of this paper is as follows: In Section 2 we first develop the general con-
ditions for integrability in relation to current algebras with structure dictated by group theory.
Details on the derivation of the corresponding Poisson brackets are given in Appendix A. Then
we present the solution to these conditions and the details of the proof in Appendix C. In Sec-
tion 3 we present the origin of our integrable models by showing that they arise by gauging a
subgroup of the sum of a WZW model and a PCM for a non-semisimple group. In Section 4
we present an example based on SU(2). In Section 5 we generalize our construction for models
with less symmetry having also spectator fields inert under the action of the symmetry group. In
Section 6 we construct theories interpolating between the exact coset Gk/Hk CFT models and
the non-Abelian T-duals of the σ -models corresponding to the G/H geometric coset models.
We present evidence that these are also integrable. We end our paper with concluding remarks
in Section 7. Besides Appendices A and C we also have written Appendix B where we collect
some useful expressions needed in our algebraic manipulations and Appendix D where an inde-
pendent proof for the integrability of the non-Abelian T-dual of the PCM model is given. Finally,
in Appendix E we make a comparison of the result of our construction for the simplest case of
SU(2) case with those of [2].
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2. Setting up the models and integrability conditions

We will consider a class of two-dimensional σ -models of the form

S(X) = 1

2

∫
Qμν∂+Xμ∂−Xν, Qμν = Gμν + Bμν, (2.1)

where Gμν and Bμν are the metric and the antisymmetric tensor fields, respectively. The corre-
sponding Lagrangian density can be written as1

L = 1

2
(Gμν + Bμν)∂+Xμ∂−Xν

= 1

8
Gμν

(
∂0X

μ∂0X
ν − ∂1X

μ∂1X
ν
) − 1

4
Bμν∂0X

μ∂1X
ν. (2.3)

The conjugate momentum to Xμ is

Pμ = 1

4

(
Gμν∂0X

ν − Bμν∂1X
ν
)

(2.4)

and the Hamiltonian is given by the integral H = ∫
dσ H, where the density is

H = 1

8
Gμν

(
∂0X

μ∂0X
ν + ∂1X

μ∂1X
ν
) = 1

4
Gμν

(
∂+Xμ∂+Xν + ∂−Xμ∂−Xν

)
. (2.5)

We will assume an underlying group theoretical structure with currents I± = I a±ta valued in some
Lie algebra of a semisimple group G. The generators of the Lie algebra ta , a = 1,2, . . . ,dim(G),
obey the commutation rules and normalization

[
ta, tb

] = if ab
ct

c, Tr
(
tatb

) = δab. (2.6)

We will assume that the currents obey

(1 + ρ)∂+I− + (1 − ρ)∂−I+ = 0, (2.7)

where ρ is a real parameter, and the flat connection identity

∂+I− − ∂−I+ + [I+, I−] = 0. (2.8)

From these equations we obtain that

∂+I− = −1 − ρ

2
[I+, I−], ∂−I+ = 1 + ρ

2
[I+, I−]. (2.9)

These conditions imply classical integrability.

1 We will use the coordinate conventions

x± = x0 ± x1, x0 = 1

2

(
x+ + x−)

, x1 = 1

2

(
x+ − x−)

,

∂± = 1

2
(∂0 ± ∂1), ∂0 = ∂+ + ∂−, ∂1 = ∂+ − ∂−. (2.2)

We will also frequently denote x0 and x1 by τ and σ , respectively.
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2.1. Algebraic and canonical structure

Our objective is to relate (2.9) to the equations of motion arising from the σ -model (2.1).
Following [2] we first introduce the equal time Poisson brackets for the Ia±’s{

I a±, I b±
} = e2f abc

(
I c∓ − (1 + 2x)I c±

)
δ
(
σ − σ ′) ± 2e2δabδ′(σ − σ ′),{

I a+, I b−
} = −e2f abc

(
I c− + I c+

)
δ
(
σ − σ ′), (2.10)

where e2 and x are real parameters. This algebra obeys the Jacobi identities. In addition, we
assume that the σ -model Lagrangian corresponds to the Hamiltonian

H = 1

4e2

∫
dσ

(
Ia+I a+ + I a−I a−

)
(2.11)

and that the corresponding evolution

∂τ I
a± = {

I a±,H
}
, (2.12)

gives rise to the equations for I a± in (2.9) with ρ = 0. Details on the derivation of this algebra,
in fact for the more general case with ρ = 0, are given in Appendix A. Note that for x = 1 the
algebra (2.10) is that corresponding to the PCMs. Furthermore, for large x after an appropriate
rescaling of the generators, the same algebra degenerates into two commuting chiral and antichi-
ral current algebras. The integrable models we will derive will interpolate between the σ -models
corresponding to these two cases.

There is no warranty that the usual equal time basic Poisson brackets (for notational conve-
nience we drop the time dependence){

Xμ(σ),Pν

(
σ ′)} = δ

(
σ − σ ′)δμ

ν,{
Xμ(σ),Xν

(
σ ′)} = {

Pμ(σ),Pν

(
σ ′)} = 0, (2.13)

will give rise to (2.10). In fact, demanding that this is the case, would put severe restrictions on
the admissible backgrounds. To further investigate we need to identify the currents I a± in terms
of the σ -model data.

We introduce a frame ea
μ and define chiral and antichiral worldsheet forms as

ea± = ea
μ∂±Xμ. (2.14)

Using this frame we construct a spin connection ωab obeying

dea + ωab ∧ eb = 0. (2.15)

We will also use the notation ωab|c defined by writing

ωab = ωab|cec, (2.16)

as well as the definitions

ω
ab|c
± = ωab|c ± 1

2
Habc,

Ωabc = ωab|c + ωca|b + ωbc|a, Ωabc± = Ωabc ± 1

2
Habc, (2.17)

where Habc are the frame components of the antisymmetric field strength three-form

H = dB = 1

6
Habce

a ∧ eb ∧ ec. (2.18)

Note also that all the Ω’s are antisymmetric in the three indices.
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To compute the equal time Poisson brackets for ea± we express them as

ea± = eaμ

(
2Pμ ± 1

2
Q±

μν∂σ Xν

)
, Q+

μν = Qμν, Q−
μν = Qνμ. (2.19)

Then from the Poisson brackets (2.13) we obtain after some lengthly computation that
{
ea±(σ ), eb±

(
σ ′)} = 2

(
Ωabc∓ ec± − ω

ab|c
∓ ec∓

)
δ
(
σ − σ ′) ± 2δabδ′(σ − σ ′),{

ea+(σ ), eb−
(
σ ′)} = 2

(
ω

ca|b
− ec+ − ω

cb|a
+ ec−

)
δ
(
σ − σ ′), (2.20)

an algebra which has appeared before in [13]. The next step is to relate ea± to the currents I a±.
Simply identifying them turns out to be inconsistent. To make progress we introduce another
frame ẽa and the analog of (2.14), i.e. ẽa± = ẽa

μ∂±Xμ. Then we associate Ia+ with the chiral and
I a− with the antichiral worldsheet forms as

I a+ = 2c2ẽ
a+, I a− = −2c2e

a−, (2.21)

where the overall constants and sign, as we shall see later, are chosen so that (2.20) gives rise to
(2.10).

The two frames should be related by a Lorentz transformation Λ as

ẽa = Λabeb, ΛΛT = ΛT Λ = 1, (2.22)

so that they give rise to the same metric. It turns out that the condition

dea − 1

2

(
c11 + c2Λ

T
)ab

fbcdec ∧ ed = 0, (2.23)

should be satisfied by the frame ea . In addition, the equivalent relation

dẽa + 1

2
(c11 + c2Λ)abfbcd ẽc ∧ ẽd = 0, (2.24)

should be satisfied by the frame ẽa .
In addition, the antisymmetric field strength three-form in (2.18) should assume either one of

the two equivalent forms

H = −c1

6
fabce

a ∧ eb ∧ ec − c2

2
fabcẽ

a ∧ eb ∧ ec

= −c1

6
fabcẽ

a ∧ ẽb ∧ ẽc − c2

2
fabce

a ∧ ẽb ∧ ẽc. (2.25)

Then, the components H in the ea and ẽa bases are given by

Habc = −c1fabc − c2(Λdafdbc + Λdbfdca + Λdcfdab),

H̃ abc = −c1fabc − c2(Λadfdbc + Λbdfdca + Λcdfdab). (2.26)

Note that, consistency of the above requires the validity of the remarkable identity

Habc = H̃edf ΛeaΛdbΛf c. (2.27)

This is a generalization of the identity (2.33) below which is valid for group manifolds. The
conditions (2.23)–(2.25) were essentially found in [2].

From (2.23) and (2.24) we read off the spin connections and then from (2.16) and (2.17) we
may compute all the entries entering in the Poisson algebra (2.20). We have collected all of them



230 K. Sfetsos / Nuclear Physics B 880 (2014) 225–246
in Appendix B. Using these results we can show that the postulated Poisson brackets (2.10) arise
from the σ -model Poisson brackets (2.20) after using the identification (2.21). In this way we
also relate the constants c1 and c2 to the parameters x and e. We find that

c1 =
(

x + 1

2

)
e, c2 = e

2
. (2.28)

Finding solutions to the above conditions is equivalent to specifying the two frames ea and ẽa

from which the Lorentz matrix Λ follows. So far the only solution known is that for the SU(2)

case, obtained in [2] and further studied in [3]. This solution was obtained essentially after a
brute force computation which clearly cannot be generalized for larger groups.

2.2. Solving the integrability conditions

Next we present a general solution to the integrability conditions. The verification of the
solution will be given in full detail in Appendix C.

Consider a Lie algebra for a semisimple group G with generators ta satisfying (2.6) and a
group element g ∈ G parametrized by dim(G) coordinates. Then, the left and right invariant
Maurer–Cartan forms La and Ra are defined as

La = −i Tr
(
g−1 dg ta

) = La
μ dXμ, Ra = −i Tr

(
dg g−1ta

) = Ra
μ dXμ. (2.29)

They obey

dLa = 1

2
f a

bcL
b ∧ Lc, dRa = −1

2
f a

bcR
b ∧ Rc (2.30)

and are related as

Ra = DabLb, (2.31)

where we have defined the matrix D with elements

Dab = Tr
(
tagtbg

−1). (2.32)

This is an orthogonal matrix, i.e. DDT = DT D = 1 and obeys the useful identities

fabc = fdef DdaDebDf c = DadDbeDcf fdef (2.33)

and

dDab = DacfcbeL
e. (2.34)

We will consider next a σ -model of the form (2.1). We claim that the solution to the integrability
condition has a metric which can be constructed by using either of the frames2

ea = (D − λ1)−1
ab Rb, ẽa = (

DT − λ1
)−1
ab

Lb. (2.36)

2 Note further that, under inversion of the group element

g → g−1: La ↔ −Ra, D → DT , ea ↔ −ẽa . (2.35)

Then combining with the worldsheet parity transformation σ → −σ the identification (2.21) is consistent with the sym-
metry (A.2).
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The matrix relating the two frames as in (2.22) is

Λ = D − λ1

DT − λ1
DT = D − λ1

1 − λD
(2.37)

and is clearly orthogonal. In addition, for the antisymmetric tensor we claim that the expression
solving the integrability conditions is

B = 1

1 − λ2

(
B0 + λRa ∧ ea

)

= 1

1 − λ2

(
B0 − λLa ∧ ẽa

)
, (2.38)

where B0 is an antisymmetric tensor such that

H0 = −1

6
fabcL

a ∧ Lb ∧ Lc = −1

6
fabcR

a ∧ Rb ∧ Rc. (2.39)

We have to show that ea , ẽa , Λab and B as given above satisfy the integrability conditions
presented above. This is done in full detail in Appendix C.

Finally the constants c1 and c2 are determined in terms of the parameter λ as

c1 = 1 + λ + λ2

1 + λ
, c2 = λ

1 + λ
. (2.40)

Then from (2.28) the parameters in the algebra become

e = 2λ

1 + λ
, x = 1 + λ2

2λ
. (2.41)

We will finish this section with a comment concerning the orthogonal matrix Λ in (2.37). We
might be tempted to identify this with an expression such as (2.32) for some group element g0
parametrized by coordinates X

μ
0 . However, this is not possible for all groups since it implies

several mutually inconsistent, in general, relations between the Xμ’s parametrizing the group
element g ∈ G and the X

μ
0 ’s. Nevertheless, this is possible in the SU(2) case and implicitly this

was the key factor that the brute force computation of [2] succeeded. As a related comment
note that in the SU(2) case in the identity (2.27) the terms with coefficients c1 and c2 in the
components Habc and H̃abc in (2.26) transform to each other separately, whereas for general
groups they mix.

3. Origin of integrability

We would next derive the integrable σ -models we have presented, that is (2.36) and (2.38).
This is indeed necessary since these expressions are quite complicated and definitely they were
not guessed.

Our guide will be the exact CFT coset models G/H [14] which have a Lagrangian formulation
in terms of gauged WZW models [15]. In these constructions one starts with a WZW model
action having a GL × GR current algebra symmetry and gauges a diagonal subgroup H . This
requires the introduction of non-dynamical gauge fields in the corresponding Lie algebra. After
integrating these gauge fields out we obtain a σ -model corresponding to the G/H CFT. This
has a reduced group of isometries as compared to the original WZW action. In fact if H is the
maximal subgroup of G then the resulting space has no isometries at all. Nevertheless, these
symmetries can be realized at a string theoretical level.
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Inspired by the above we recall the PCM action [16]

SPCM(g̃) = −κ2

π

∫
Tr

(
g̃−1∂+g̃g̃−1∂−g̃

)
, g̃ ∈ G, (3.1)

where κ2 is an overall coupling constant. This model has a global GL × GR symmetry and is
integrable. Recall also the WZW action

SWZW(g) = − k

2π

∫
Tr

(
g−1∂+gg−1∂−g

) + ik

6π

∫
B

Tr
(
g−1 dg

)3
, g ∈ G, (3.2)

which has a GL,cur × GR,cur current algebra symmetry with the overall positive integer k being
the central extension of the current algebra. By being an exact CFT this model is obviously
integrable.

We conclude that the sum of the two actions (3.1) and (3.2) corresponds to an integrable model
with a 2 dim(G) target space.

3.1. Gauging the symmetry

We will gauge the GL × Gdiag,cur subgroup of the above symmetry where Gdiag,cur is the
diagonal subgroup of GL,cur × GR,cur. The resulting model will still have a global symmetry
group corresponding to GR. To proceed with the gauging we first replace in the SPCM action
derivatives by covariant derivatives as

∂±g̃ → D±g̃ = ∂±g̃ − A±g̃ (3.3)

and denote the corresponding action by SgPCM(g;A). For the WZW action this minimal substi-
tution does not work. Nevertheless, the answer is provided by the gauged WZW action for g ∈ G

at level k

SgWZW(g;A) = kSWZW(g) + k

π

∫
Tr

(
iA−J+ − iA+J− + A−gA+g−1 − A−A+

)

= kSWZW(g) + k

π

∫
iAa−J a+ − iA+J a− + Aa+

(
DT − 1

)
ab

Ab−, (3.4)

where

J a+ = −i Tr
(
ta∂+gg−1) = Ra

μ∂+Xμ, J a− = −i Tr
(
tag−1∂−g

) = La
μ∂−Xμ. (3.5)

The total action

Stot(g̃, g;A) = SgPCM(g̃;A) + SgWZW(g;A), (3.6)

is invariant under the transformation

g̃ → Λ−1g̃, g → Λ−1gΛ, A± → Λ−1A±Λ − Λ−1∂±Λ, (3.7)

for a group element Λ(σ+, σ−) ∈ G.
Due to the gauge symmetry we should fix dim(G) parameters among those in the group

elements g̃, g ∈ G. Since the group G acts freely on g̃, we choose the gauge

g̃ = 1. (3.8)
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Since the group G acts with no fixed points we expect that the resulting background will have no
singularity. The total action becomes

Sg.f.(g;A) = SWZW(g) + 1

π

∫
Tr(−ikA+J− + ikJ+A− − A+MA−) (3.9)

where we have defined the matrix

M = κ21 − k
(
DT − 1

) = (
k + κ2)(1 − λDT

)
, (3.10)

with the parameter

λ = k

k + κ2
, 0 < λ < 1. (3.11)

This will be identified with the parameter appearing in the solutions (2.36) and (2.38) for the
integrability conditions. It is not hard to show that the gauge fixed action (3.9) has a global
symmetry given by

g → Λ−1
0 gΛ0, A± → Λ−1

0 A±Λ0, Λ0 ∈ G. (3.12)

Integrating out the gauge fields gives

Aa+ = ikM−1
ba J b+, Aa− = −ikM−1

ab J b−. (3.13)

Substituting back into the action we get the Lagrangian

S(g) = SWZW(g) + 1

π

k2

κ2 + k

∫
J a+

(
1 − λDT

)−1
ab

J b−. (3.14)

This action is invariant under the global symmetry for g in (3.12). In addition, clearly the corre-
sponding background is non-singular.3

3.1.1. Extracting the σ -model fields
From the above action (3.14) we extract the metric as

ds2 = k

2π
LT L + k2

2π
LT

(
DT M−1 + M−T D

)
L

= k

2π
LT

[
1 + λ(D − λ1)−1 + λ

(
DT − λ1

)−1]
L

= k

2π

(
1 − λ2)eaea = k

2π

(
1 − λ2)ẽa ẽa, (3.15)

where ea and ẽa are the frames given in (2.36). We have also used the notation M−T for (M−1)T

and have disregarded the overall scale k
π
(1 − λ2). Hence we should respect this in extracting the

antisymmetric tensor as well.
To compute the 3-form field strength we write the antisymmetric tensor as

B = 1

1 − λ2

(
B0 + λ

2
LT

[
(D − λ1)−1 − (

DT − λ1
)−1] ∧ L

)
, (3.16)

where B0 is the antisymmetric tensor corresponding to the WZW model. After some manipula-
tions this expression takes the form given in (2.38).

3 For λ 	= 1 the inverse of the matrix D − λ1 exists for all the Xμ’s parametrizing g ∈ G. The reason is that D is an
orthogonal real matrix and therefore all of its eigenvalues lie in the unit circle.
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In conclusion, our models originate by gauging the combined actions for the PCM and WZW
models for a semisimple group G. This explains in a natural way their integrability properties.

3.2. The non-Abelian T-dual and CFT limits

It has been noted in [4] and further elaborated in [5] that in the limit in which the group
element approaches the identity and at the same time the level k becomes extremely large in a
correlated way, the action (3.14) becomes that for non-Abelian T-duality. In our case this should
be the non-Abelian T-dual of the PCM action (3.1) with respect to the GL group. Indeed, let

g = 1 + i
v

k
+O

(
1

k2

)
, v = vat

a. (3.17)

In that limit we have that

J a± = ∂±v

k
+ · · · , Dab = δab + fab

k
+ · · · , (3.18)

where the dots stand for subleading terms in the 1
k

expansion and

fab = fab
cvc. (3.19)

Then the action (3.4) becomes

SgWZW = − i

π

∫
Tr(vF+−) +O

(
1

k

)
, F+− = ∂+A− − ∂−A+ − [A+,A−]. (3.20)

Note that the contribution of the WZW action SWZW in this limit is subleading. Hence in the
k → ∞ limit, the action (3.6) becomes the starting point for the usual non-Abelian T-duality
action. In accordance, the action (3.14) becomes that resulting from the non-Abelian T-dual
transformation applied to the PCM (3.1), i.e.

Snon-Abel(v) = 1

π

∫
∂+va(1 + f )−1

ab ∂−vb +O
(

1

k

)
. (3.21)

In the opposite limit when k � κ2 we have that

S = SWZW + k2

πκ2

∫
J a+J a− +O

(
k3) (3.22)

revealing the behavior of a perturbed WZW model by a current bilinear.4 For the SU(2) case this
was noted in [3].

We emphasize that the proof that our models are integrable includes the non-Abelian T-dual
limit action (3.21) as well. In view of its particular importance, we present in Appendix D an
independent proof solely for the case of the non-Abelian T-duality.

4. The SU(2) example

Consider the case in which the group G = SU(2) and the corresponding σ -model is the
round S3. From our general construction we know that there will be an SU(2) isometry in the
resulting background. It will be convenient to parametrize the group element g ∈ SU(2) in such a
way that this symmetry is manifest in the background. The appropriate parametrization is given
by

4 This perturbation is not exactly marginal. since it violates the criteria of [17,18].
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g = eiαiσi =
(

cosα + i sinα cosβ sinα sinβ e−iγ

− sinα sinβ eiγ cosα − i sinα cosβ

)
, (4.1)

where we have defined

α1 = −α sinβ sinγ, α2 = α sinβ cosγ, α3 = α cosβ. (4.2)

Then

SWZW = k

π

∫
∂+α∂−α + sin2 α

(
∂+β∂−β + sin2 β∂+γ ∂−γ

)
− (α − sinα cosα) sinβ(∂+β∂−γ − ∂+γ ∂−β). (4.3)

Working out the details of (3.14) we obtain a σ -model with metric and antisymmetric tensor
given by

ds2 = k(κ2 + 2k)

κ2

(
dα2 + κ4 sin2 α

Δ
ds2(S2)), Δ = κ4 + 4k

(
κ2 + k

)
sin2 α,

B = −k

(
α − κ4 sinα cosα

Δ

)
Vol

(
S2) (4.4)

where S2 is the unit two-sphere with metric ds2(S2) = dβ2 + sin2 β dγ 2. This background is
non-singular in accordance with the general comment we made below (3.8) and footnote 3.

According to our general discussion, for k � κ2 the fields in the background (4.4) become in-
deed those for the SU(2) WZW model in (4.3). The limit resulting into the non-Abelian T-duality
background is just

α = r

2k
, then k → ∞, (4.5)

since then the group element (4.1) can be expanded around the identity. This limiting procedure
gives

ds2 = 1

2

(
dr2 + r2

r2 + 1
ds2(S2)), B = −1

2

r3

r2 + 1
Vol

(
S2). (4.6)

This is the non-Abelian T-dual of the SU(2) PCM which in fact has been embedded in supergrav-
ity. It was shown in [10] that when supported by appropriate flux fields it is a solution of massive
IIA-supergravity and that it represent the non-Abelian T-dual of the background corresponding
to the near horizon of the D1–D5 brane system.

For completeness in Appendix E we establish a precise relation between the background (4.4)
and that in [2].

5. General models

The above construction can be generalized to σ -models with global symmetry GL. These
have the general form

S(g,X) = 1

π

∫
Qαβ∂+Yα∂−Yβ + Qαa∂+YαLa− + QaαLa+∂−Yα + EabL

a+Lb−, (5.1)

where the fields Yα , α = 1,2, . . . , d , do not transform under the global symmetry. The coupling
matrices Qαβ , Qαa , Qaα and Eab may depend on the Yα’s.

As before we add to this the WZW action (3.2) and then we gauge the GL ×Gdiag,cur subgroup
on the total action. For (5.1) we just replace the derivatives by covariant derivatives as in (3.3).
To this we add the gauged WZW action (3.4). Then, the total action is invariant under (3.7) and
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the spectator fields Yα are left invariant. After choosing the gauge fixing condition (3.8) the total
action becomes

Sg.f. = SWZW(g) + 1

π

∫
Qαβ∂+Yα∂−Yβ − Aa+MabA

b−

+ iAa+
(
Qaα∂−Yα − kJ a−

) + i
(
Qαa∂+Yα + kJ a+

)
AA−, (5.2)

where we have defined the matrix

M = E − k
(
DT − 1

)
, (5.3)

which, in this general case, replaces the definition (3.10).
Integrating out the gauge fields gives

Aa+ = iM−1
ba

(
kJ b+ + Qαb∂+Yα

)
, Aa− = −iM−1

ab

(
kJ b− − Qbα∂−Yα

)
. (5.4)

Substituting back into the action we get the dual Lagrangian

S = SWZW(g) + 1

π

∫
Qαβ∂+Yα∂−Yβ

+ (
kJ a+ + ∂+YαQαa

)
M−1

ab

(
kJ b− − Qbβ∂−Yβ

)
. (5.5)

Whether or not this σ -model action is integrable depends on the details of the various couplings.
In particular, in the absence of spectator fields the form of the matrix Eab is crucial for that.

Note that in the limit (3.17) we obtain from (5.5) the action

S = 1

π

∫
Qαβ∂+Yα∂−Yβ + (

k∂+va + ∂+YαQαa

)
(E + f )−1

ab

(
∂−vb − Qbβ∂−Xβ

)
. (5.6)

This is nothing but the action arising from the non-Abelian T-dual of (5.1) with respect of the GL
symmetry. In the opposite limit in which k � κ2 we have that

S = SWZW(g) + 1

π

∫
Qαβ∂+Yα∂−Yβ

+ 1

π

∫ (
kJ a+ + ∂+YαQαa

)
E−1

ab

(
kJ b− − Qbβ∂−Yβ

) +O
(
k3). (5.7)

In the absence of spectator fields (5.5) becomes

S = SWZW(g) + k2

π

∫
J a+M−1

ab J b−. (5.8)

After setting E = κ21 this action reduces to (3.14). We also note that the form of the action (5.8)
has appeared before in [19] in studies of gauged-WZW-like actions.

Finally, we mention that a class of integrable models corresponding to specific choices for
the matrix Eab depending on the group G, were constructed in [20]. It will be interesting to
investigate if the model (5.8) is integrable when these matrices are used.

6. New integrable interpolations with coset models

We would like to extend the discussion to cases in which in the action (5.1) the group index a

runs over a coset space G/H . Since the group action is no longer free that means that one cannot
fix all the parameters in the group element g̃ to specified values, i.e. the gauge fixing (3.8) is not
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possible and one has to also fix some of the parameters in the group element g parametrizing the
WZW action. Here we follow a limiting procedure developed in [21] and further explored in the
context of non-Abelian T-duality transformation for geometries containing coset spaces in [11].
To keep the presentation simple consider the case with no spectator fields. Let’s choose

E = diag
(
E0, s

21dim H

)
, (6.1)

with E0 a matrix in the coset which is G-invariant and s is a parameter. As long as the parameter
s is non-vanishing, the resulting action (5.8) is valid since the action of the group G is free. In
the limit s → 0 all quantities with an index in the subgroup H drop out in the original action
(5.1) with no spectator fields. The effect of this limit is that the action (5.8) develops a gauge
invariance under H which allows to reduce the configuration space from dim(G) to dim(G/H).

For small k the σ -model action corresponds to the exact CFT gauged WZW model for a
group G and a subgroup H . In the limit of large k the result is the non-Abelian T-dual of the
σ -model for the coset G/H with respect to G. Based also on the example below, we expect that
the perturbation driving these models away from the conformal point, will be based on bilinears,
analogous to (3.22), of the classical parafermions [22,23], which are classical counterparts of the
quantum parafermions constructed earlier in [24] (for the SU(2)k/U(1)k coset case).

6.1. Integrable models based on the SU(2)/U(1) exact CFT

Consider again the case with G = SU(2) and take the matrix

E = diag
(
1,1, s2), (6.2)

where the spit of the indices is such that the third entry corresponds to the U(1) subgroup of
SU(2), having in mind to take at the end of the computation the limit s → 0. In this case it is
more convenient to parametrize the group element as

g = ei(φ1−φ2)σ3/2eiωσ2ei(φ1+φ2)σ3/2, (6.3)

instead of (4.1). Then the corresponding WZW action is given by

SWZW(g) = k

π

∫
∂+ω∂−ω + cos2 ω∂+φ1∂−φ1 + sin2 ω∂+φ2∂−φ2

− 1

2
cos 2ω(∂+φ1∂−φ2 − ∂+φ2∂−φ1). (6.4)

After taking the limit s → 0 the coordinate φ2 drops out. The result is the σ -model action

S = k

π(2k + 1)

∫ [
∂+ω∂−ω + cot2 ω∂+φ1∂−φ1

+ 4k(k + 1)(cosφ1∂+ω + sinφ1 cotω∂+φ1)(cosφ1∂−ω + sinφ1 cotω∂−φ1)
]
. (6.5)

6.1.1. Relation to integrable perturbations and non-Abelian T-duality
The action (6.5) has an exact CFT interpretation. For small k the dominant term is the first

line which is nothing but the σ -model action

SCFT = k
∫

∂+ω∂−ω + cot2 ω∂+φ1∂−φ1, (6.6)

π
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for the exact SU(2)/U(1) coset CFT [22]. The term in the second line is a bilinear which in fact
can be written with the help of the classical parafermions given by

ψ = (∂+ω + i cotω∂+φ1)e
−i(φ1+φ̃1), ψ† = (∂+ω − i cotω ∂+φ1)e

i(φ1+φ̃1) (6.7)

and

ψ̄ = (∂−ω + i cotω∂−φ1)e
−i(φ1−φ̃1), ψ̄† = (∂−ω − i cotω∂−φ1)e

i(φ1−φ̃1). (6.8)

In general, the parafermions originate from the currents with coset indices of the Gk theory. In
the gauged theory they are dressed with gauge fields that render them gauge-invariant. In our case
this dressing is done by the phase φ̃1 which is a non-local function of the variables ω and φ1.
Its explicit expression is not needed here (see, for instance, [25]), but it is necessary for ensuring
on-shell chiral and anti-chiral conservation of the parafermions

∂−ψ = ∂−ψ† = 0, ∂+ψ̄ = ∂+ψ̄† = 0. (6.9)

Then the action (6.5) can be written and then expanded as

S = 1

2k + 1

[[
1 + 2k(k + 1)

]
SCFT + k2(k + 1)

π

∫ (
ψψ̄ + ψ†ψ̄†)]

= SCFT + k2

π

∫ (
ψψ̄ + ψ†ψ̄†) +O

(
k3). (6.10)

This is indeed the exact CFT action (6.6) perturbed by parafermion bilinears which is a relevant
perturbation since the parafermions have conformal dimension 1 − 1/k. Furthermore this per-
turbation was studied in [6] where it was shown to be integrable, massive and argued that in the
k → ∞ limit the model flows under the renormalization group to the O(3) σ -model. Testing this
with our action (6.4), consider the rescaling followed by the k → ∞ limit

φ1 = x1

2k
, ω = x2

2k
, and then k → ∞. (6.11)

We obtain that

ds2 = dx2
1

x2
2

+
(

dx2 + x1

x2
dx1

)2

, (6.12)

which is the non-Abelian T-dual of S2 (see, for instance, [11]). This is consistent with the work
of [6] since the PCM and its non-Abelian T-dual are supposed to be equivalent. In particular, the
σ -model corresponding to (6.12) has the same S-matrix as the O(3) model.

Note that if we had dressed the parafermion bilinears so that the perturbation was exactly
marginal, we would have flown to different CFTs as in [26] and in [25,27].

7. Concluding remarks

We have constructed a large class of new integrable theories. They have an underlying group
theoretical structure and are obtained by gauging a subgroup of the combined actions for the
WZW model and the PCMs. Our theories interpolate between exact CFT WZW models and the
non-Abelian T-duals of PCM. We generalized this construction by replacing the PCM part of the
σ -model action by a more general one having less symmetry and in addition spectator fields.
Using this action we constructed models interpolating between exact coset CFTs realized by
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gauged WZW models and non-Abelian T-duals of geometric cosets. We presented evidence that
these models are integrable as well.

It is interesting to investigate the behavior of our models under the renormalization group
flow. The work of [2,3] for the simple SU(2) case suggests that they should flow from the CFT
point to the non-Abelian T-duality point as we go from the UV to the IR. This is in accordance
with the fact that the perturbation from the CFT side is driven by relevant operators. It will be
interesting to demonstrate this explicitly and in general.

It is important to construct models with non-vanishing parameter ρ. These are allowed by
the algebra (A.1), with the parameters given by (A.8), but no example is known. As a related
comment, note that the anisotropic extension of the PCM for SU(2), i.e. (5.1) with no spectators,
G = SU(2), and Eab diagonal, is also integrable [28]. Our construction suggests that the (5.8)
is a promising candidate for an integrable model that would interpolate between the anisotropic
PCM model and the WZW model for SU(2). In addition, we also mention that some general
conditions for a σ -model to be integrable were discussed in [29]. It would be interesting to see if
models of the type discussed in Section 6 could provide solutions to these conditions.

An original motivation for this work relates to our quest for a better understanding of global
issues in backgrounds obtained by non-Abelian T-duality transformations. A major unresolved
such issue concerns the range of the variables in the T-dual σ -model backgrounds. According to
the proposal of [4] such models can be thought of as effectively describing high spin sectors of
some parent theories [5]. In this paper we enriched this idea by showing that non-Abelian T-duals
can be at the end point of a whole line of integrable deformations of exact CFTs. In a generic
point in this deformation all variables are compact. As the deformation parameter becomes in-
finitely large one can effectively rescale the compact variables and zoom into the manifold. From
this point of view the non-compactness of the variables in the σ -model corresponding to the
non-Abelian T-dual theory is explained.

It will be very interesting to investigate a possible embedding of our construction to type-II
supergravity with non-trivial Ramond–Ramond fields. At the limit of non-Abelian T-duality
this is possible [10,11] and there has been related studies and applications in the context of
the gauge/gravity correspondence [30,31,12,32,33]. If such an embedding can be done physi-
cal questions related for instance to the fate of charges of D- or p-branes after the non-Abelian
T-duality transformation can be addressed with confidence. This is due to the resolution of the
global issues of the σ -model variables as described above which will render certain integrals that
appear in this type of computations finite with no need for a regularization. A related comment
concerns the possibility of constructing integrable deformations of superstring actions of direct
interest in the AdS/CFT correspondence based on our models. Such a construction was done
recently for a different integrable deformation of the AdS5 × S5 superstring in [34] for which an
S-matrix has also been proposed before in a more general context in [35] and further checked in
perturbation theory in [36].

Finally, it is important to shed more light into the underlying algebraic structure of the inte-
grable models we have found. The Poisson brackets in (2.10) were fixed by making an ansatz
and then imposing for consistency the Jacobi identities and that they should encode the equa-
tions of motion. It should be possible to derive (2.10) from the Poisson brackets for the WZW
models and the PCMs by imposing appropriate constraints arising from the gauging procedure.
This should be very helpful in understanding and exploring further the integrability structure of
our theories. Recall also that there is a Yangian algebra [37] (for reviews see [38,39]) that the
classically conserved non-local charges of the PCM obey [40]. Quantum effects to their con-
servation properties have also been explored (for various aspects of the algebras of charges in
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PCM see [41,42]). For the case of our models it would be very interesting to show that they
have hidden symmetries encoded in Yangian algebras since a preservation of the Yangian sym-
metries after a deformation is not immediate. In that respect we note that in a somewhat similar,
albeit simpler case, according to the work of [43] the Yangian symmetries are preserved for the
squashed S3 σ -model. The derivation of our integrable models by a gauging procedure should
be instrumental in making further progress in that direction as well.
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Appendix A. Derivation of the Poisson brackets

Consider a σ -model with Hamiltonian given by (2.11) and assume the ansatz for the equal
time Poisson brackets

{
I a±, I b±

} = f abc
(
a±I c− + b±I c+

)
δ
(
σ − σ ′) + c±δabδ′(σ − σ ′),{

I a+, I b−
} = f abc

(
dI c− + f Ic+

)
δ
(
σ − σ ′). (A.1)

In addition, we assume that the σ -model Lagrangian corresponds to the Hamiltonian (2.11).
A possible central extension in the second line Poisson bracket in (2.10) has not been included
since that would have been incompatible with the evolution (2.9).

We will determine the constants a±, b±, c±, d and f by demanding that the Jacobi identities
are obeyed and that the Hamiltonian evolution (2.12) gives rise to the equations for I a± in (2.9).
It is natural to demand that under worldsheet parity we have that

σ → −σ �⇒ Ia± → I a∓, (A.2)

we have that

a±(−ρ) = b∓(ρ), c+(−ρ) = −c−(ρ), d(−ρ) = f (ρ). (A.3)

The algebra (2.10) has to obey the Jacobi identities. Due to the above symmetry the only inde-
pendent ones are {{I a+, I b+}, I c+} + · · · = 0 and {{I a+, I b+}, I c−} + · · · = 0. The first one is trivially
satisfied. The second gives the conditions

a+a− + f b+ − da+ − f 2 = 0, a+b− − f d = 0. (A.4)

Recalling the time evolution (2.12) we compute

∂0I
a+ = · · · = a+ − d

2e2
f abcI b+I c− + c+

2e2
∂σ Ia+. (A.5)

Using that [ta, tb] = f abctc we see that the second of (2.9) is reproduced if the conditions (setting
temporarily e2 = 1)

c+ = 2, a+ − d = 2(1 + ρ), (A.6)
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are obeyed. Using the second of them as well as the one that follows by using (A.3), the last
condition in (A.4) can be written as

(1 + ρ)f + (1 − ρ)d + 2
(
1 − ρ2) = 0. (A.7)

Keeping in mind that f (ρ) = d(−ρ) we easily see that the solution is f = −1 + ρ. Then (A.4)
becomes (1 + ρ)a− − (1 − ρ)b+ + 4ρ = 0. Given that b+(−ρ) = a−(ρ) we have that b+ =
−(1 + 2x) + (1 − 2x)ρ, where x is an arbitrary real parameter. Collecting everything, we have
that the most general solution is given by

f = −(1 − ρ)e2, d = −(1 + ρ)e2,

a+ = (1 + ρ)e2, b+ = −[
(1 + 2x) − (1 − 2x)ρ

]
e2, c+ = 2e2,

a− = −[
(1 + 2x) + (1 − 2x)ρ

]
e2, b− = (1 − ρ)e2, c− = −2e2. (A.8)

Note that these contain, besides ρ, the overall scale factor e2 and the free parameter x. For ρ = 0
we obtain the algebra (2.10).

Appendix B. Quantities related to the spin connections

In this appendix we collect the expressions needed to specify completely the right hand sides
of the Poisson bracket algebras in (2.20).

From (2.23) and (2.24) we read off the spin connections and then from (2.16) that

ωab|c = c1

2
fabc − c2

2
(Λdcfdab − Λdafdbc − Λdbfdca),

ω̃ab|c = −c1

2
fabc + c2

2
(Λcdfdab − Λadfdbc − Λbdfdca), (B.1)

from which, using (2.17)

ω
ab|c
+ = −c2Λdcfdab, ω

ab|c
− = c1fabc + c2(Λdafdbc + Λdbfdca),

ω̃
ab|c
− = c2Λcdfdab, ω̃

ab|c
+ = −c1fabc − c2(Λadfdbc + Λbdfdca). (B.2)

In addition, we find from (2.17) that

Ωabc = 3c1

2
fabc + c2

2
(Λdafdbc + Λdbfdca + Λdcfdab),

Ω̃abc = −3c1

2
fabc − c2

2
(Λadfdbc + Λbdfdca + Λcdfdab) (B.3)

and

Ωabc+ = c1fabc, Ωabc− = 2c1fabc + c2(Λdafdbc + Λdbfdca + Λdcfdab),

Ω̃abc− = −c1fabc, Ω̃abc+ = −2c1fabc − c2(Λadfdbc + Λbdfdca + Λcdfdab). (B.4)

Finally, the Lorentz transformation Λ has to obey

dΛab = −c2fadcΛ
dbec + c2fabce

c + c1Λ
aefebce

c + c2Λ
aefedcΛ

dbec. (B.5)
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Appendix C. Proving the integrability conditions

In this appendix we prove that the expressions for the frames (2.36) and the antisymmetric
tensor (2.38) solve the conditions (2.23), (2.24), (2.25) and (B.5).

A simple computation using (2.36) shows that

dẽa = 1

2

(
DT − λ1

)−1
ab

fbcd

(
DT + λ1

)
ce

(
DT − λ1

)
df

ẽe ∧ ẽf . (C.1)

Using (2.33) we may further write that

dẽa = −1

2
f (2)

a + λ(λ − 1)

2

(
DT − λ1

)−1
ab

f
(2)
b , f (2)

a ≡ fabcẽ
b ∧ ẽc. (C.2)

However, using the identity

(
DT − λ1

)−1 = 1

1 − λ2
(Λ + λ1), (C.3)

we find that dẽa satisfies (2.24) with the constants being specified as in (2.40). Similarly we find
that dea satisfies (2.23).

Next we turn our attention to the antisymmetric tensor. Starting from the second expression
in (2.38) we compute that

dB = − 1

6(1 − λ2)
fabcL

a ∧ Lb ∧ Lc − λ

1 − λ2
dLa ∧ ẽa + λ

1 − λ2
La ∧ dẽa

= − 1

6(1 − λ2)
fdef

(
DT − λ1

)da(
DT − λ1

)eb(
DT − λ1

)f c
ẽa ∧ ẽb ∧ ẽc

− λ

2(1 − λ2)
f aef

(
DT − λ1

)eb(
DT − λ1

)f c
ẽa ∧ ẽb ∧ ẽc

− λ

2(1 − λ2)
fbcd

(
DT − λ1

)ea
(c11 + c2Λ)ed ẽa ∧ ẽb ∧ ẽc. (C.4)

After some manipulations

dB = − 1 + 2λ3

6(1 − λ2)
fabcẽ

a ∧ ẽb ∧ ẽc

+ λ

2(1 − λ2)
fabd

(
λD − (D − λ1)(c11 + c2Λ)

)cd
ẽa ∧ ẽb ∧ ẽc. (C.5)

Using (2.37) we find the identity

λD − (D − λ1)(c11 + c2Λ) = λ21 − (1 − λ)Λ. (C.6)

Then we find for H the second line in (2.25). A similar computation gives the alternative form
given by the first line in (2.25) which is easily seen to be consistent with (2.35) since when
g → g−1, then H → −H .

Appendix D. Integrability and non-Abelian T-duality on PCM

In this appendix we present an alternative proof of the integrability of the σ -model action
(D.8) corresponding to the PCM action (3.1). The relation between integrability and non-Abelian
T-duality has been also examined in [29].
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In a two-dimensional Minkowski spacetime consider the action

S = −
∫

Tr

(
1

2
j ∧ �j + v(dj + j ∧ j)

)
, (D.1)

where the Hodge dual acts as �dx0 = dx1, �dx1 = dx0, �2 = 1.
Varying (D.1) with respect to v enforces the flatness condition

dj + j ∧ j = 0, (D.2)

which is solved as j = g−1 dg and putting it back into the action gives the PCM action

S = −1

2

∫
Tr(j ∧ �j), j = g−1 dg, (D.3)

equivalent to (3.1). Varying this action with respect to g we get the equation of motion

d(�j) = 0. (D.4)

The flatness condition (D.2) and the equation of motion (D.4) follow from the flatness condition
for

J (z) = aj + b � j, a = −1

4

(
z − z−1)2

, b = 1

4

(
z2 − z−2), (D.5)

where z is the spectral parameter. This one-parameter family of currents leads to an infinite
number of concerned charges.

Alternatively we may vary (D.1) over j and get the equation

�j + dv + [j, v] = 0. (D.6)

This can be solved in light cone components as

j± = ∓ 1

1 ± f
∂±v �⇒ j = f

1 − f 2
dv − 1

1 − f 2
� dv, (D.7)

where f is the matrix with elements (3.19). The on-shell action is

S = −1

2

∫
Tr(j ∧ dv) =

∫
d2x ∂+v

1

1 − f
∂−v, (D.8)

where d2x = dx+ ∧ dx−. This is nothing but the action (3.21). Varying this action with respect
to v we obtain after some algebra the equation

∂+j− − ∂−j+ + [j+, j−] = 0 �⇒ dj + j ∧ j = 0, (D.9)

where j± are given in (D.7). Hence the flatness condition (D.2) is obeyed as an equation of
motion. In addition, from the fact that (D.6) can be written as �j + ∇v = 0 with ∇(·) = d(·) +
[j, .] and that j is flat we have that ∇(�j) = −∇2v = 0, which implies that

d(�j) + [j, �j ] = 0 �⇒ d(�j) = 0, (D.10)

since [j, �j ] = j ∧�j +�j ∧ j = 0. Hence the equation of motion (D.4) of the PCM is obeyed as
well. Therefore we may use (D.5) to demonstrate integrability of the action (D.8) corresponding
to the non-Abelian dual of the PCM action (D.3).
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Appendix E. A comparison in the SU(2) case

In this appendix we establish a precise relation between the background (4.4) and that in [2].
In the latter work the integrable model had a metric and antisymmetric tensor given by

ds2 = 1

e2

(
dr2 + β0

x + 1
ds2(S2)),

B = 1

e2

r − α0

x + 1
Vol

(
S2), (E.1)

where

r = π/2 − w√
x2 − 1

, β0 = cos2 w

x + cos 2w
, α0 =

√
x2 − 1

x + 1

sinw cosw

x + cos 2w
, x2 > 1. (E.2)

Letting

w = π

2
+ α,

1

e2(x2 − 1)
= k(2k + κ2)

κ2
,

2

x − 1
= 4

k(k + κ2)

κ4
, (E.3)

from which assuming x > 1 we obtain

x = 1 + κ4

2k(k + κ2)
, e2 = 4

κ2

k(k + κ2)2

(κ2 + 2k)3
. (E.4)

With these redefinitions (E.1) and (4.4) become identical. In addition, using (3.11) the expres-
sions in (2.41) become those in (E.4) (for e2 we should take into account the overall factor
k(1 − λ2)).
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