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We study a possibility of a strong first-order phase transition taking place below the electroweak scale in
the context of a Uð1ÞD gauge extension of the standard model. As pointed out recently by the NANOGrav
Collaboration, gravitational waves from such a phase transition with appropriate strength and nucleation
temperature can explain their 12.5 yr data. We first find the parameter space of this minimal model
consistent with NANOGrav findings by considering only a complex singlet scalar andUð1ÞD vector boson.
The existence of a singlet fermion charged under Uð1ÞD can give rise to dark matter in this model,
preferably of nonthermal type, while incorporating additional fields can also generate light neutrino masses
through typical low-scale seesaw mechanisms like a radiative or inverse seesaw.
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I. INTRODUCTION

The NANOGrav Collaboration has recently released
their results for gravitational-wave (GW) background
produced from a first-order phase transition (FOPT) in
45 pulsars from their 12.5 year data [1]. According to
their analysis, the 12.5 yr data can be explained in terms of
a FOPT occurring at a temperature below the electroweak
(EW) scale, although there exists degeneracy with similar
signals generated by supermassive black hole binary
(SMBHB) mergers. Last year, the same collaboration
also reported evidence for a stochastic GW background
with a power-law spectrum having frequencies around
the nHz regime [2] which led to several interesting new
physics explanations; for example, Refs. [3–5] studied
cosmic string origins and Refs. [5–9] studied FOPT
origins. Pulsar-timing arrays (PTAs) like NANOGrav that
are sensitive to GWs of extremely low frequencies offer a
complementary probe of the GW background to future
space-based interferometers like eLISA [10,11].
Inspired by the results from NANOGrav explained in

terms of a FOPT characterized by the preferred ranges
for the strength ðα�Þ and temperature ðT�Þ of the phase

transition as shown in Ref. [1], we propose a simple model
to achieve such a low-scale strong FOPT. For our purpose,
we introduce a dark Uð1ÞD gauge symmetry under which
only a complex singlet scalar Φ and a vector-like singlet
fermion Ψ are charged, while all of the standard model
(SM) particles are neutral. Since the SM particles are
neutral under this gauge symmetry, one can evade strong
bounds from experiments on the corresponding gauge
coupling gD and gauge boson mass MZD

. We further
impose a classical conformal invariance so that Uð1ÞD
symmetry breaking occurs only via radiative effects on the
scalar potential, naturally leading to a vacuum below the
EW scale. Then, a strong FOPT can take place at a bubble
nucleation temperature much below the electroweak scale.
For earlier works on FOPT within such Abelian gauge
extended scenarios, please refer to Refs. [12–18] and
references therein.
While such a strongly first-order dark phase transition

and resulting gravitational waves have been discussed
earlier as well, we study this possibility for the first
time after the NANOGrav Collaboration analyzed their
12.5 year data in the context of gravitational waves from
the FOPT at a low temperature below the EW scale [1].
In addition, we note that the dark Uð1ÞD symmetry can
also be motivated from tiny neutrino masses and dark
matter (DM), which the SM fails to address. In this work,
we examine how tiny neutrino masses can be generated
through a low-scale seesaw mechanism like a radiative
or inverse seesaw, and a singlet fermion charged under
Uð1ÞD can be a good dark matter candidate while
keeping the model parameters consistent with the results
from NANOGrav.
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II. THE MODEL

As mentioned above, we consider a Uð1ÞD extension of
the SM. The newly introduced fields are a complex scalarΦ
and a vector-like fermion Ψ with Uð1ÞD charges 2n1 and
n1, respectively. All of the SM fields are neutral under this
new gauge symmetry. The zero-temperature scalar potential
at tree level is given by

V tree ¼ λHjHj4 þ λjΦj4 − λ0jΦj2jHj2; ð1Þ

where H is the SM Higgs doublet. Note the absence of
bare mass squared terms due to the conformal invariance
imposed. The vacuum expectation value (VEV) of the
singlet scalar, hΦi ¼ M=

ffiffiffi

2
p

, acquired via the running
of the quartic coupling λ breaks the gauge symmetry,
leading to a massive gauge boson MZD

¼ 2gDM. In
order to realize the electroweak vacuum, the coupling λ0
needs to be suppressed, so in our analysis we neglect the
coupling λ0. We also consider the Yukawa coupling (y) of
the scalar singlet with the fermion Ψ to be negligible
compared to the gauge coupling, gD ≫ y, so as to suppress
its role in the renormalization group equation (RGE)
of the singlet quartic coupling. Such assumptions are
taken for simplicity and also to make sure that the
Higgs VEV does not affect the light singlet scalar mass
in any possible way.
The total effective potential can be schematically divided

into the following form:

V tot ¼ V tree þ VCW þ V th; ð2Þ

where V tree; VCW, and V th denote the tree-level scalar
potential, the one-loop Coleman-Weinberg potential, and
the thermal effective potential, respectively. In finite-
temperature field theory, the effective potential, VCW,
and V thermal are calculated using the standard back
ground field method [19,20]. We consider Landau gauge
throughout this work. Issues related to gauge dependence
in such conformal models have been discussed recently by
the authors of Ref. [18]. Denoting the singlet scalar as
Φ ¼ ðϕþM þ iAÞ= ffiffiffi

2
p

, the zero-temperature effective
potential up to one loop can be written as [12]

V0 ¼ V tree þ VCW

¼ 1

4
λðtÞG4ðtÞϕ4; ð3Þ

where t ¼ logðϕ=μÞ with μ being the scale of renormaliza-
tion. GðtÞ is given by

GðtÞ ¼ e−
R

t

0
dt0γðt0Þ; γðtÞ ¼ −

a2
32π2

g2DðtÞ; ð4Þ

where we have ignored ϕ couplings with Ψ as well as the
SMHiggsH for simplicity. In the above equation, a2 ¼ 24.

The gauge coupling gDðtÞ and quartic coupling λðtÞ at the
renormalization scale can be calculated by solving the
corresponding RGEs. In terms of αD ¼ g2D=4π and
αλ ¼ λ=4π, the RGEs are

dαDðtÞ
dt

¼ b
2π

α2DðtÞ; ð5Þ

dαλðtÞ
dt

¼ 1

2π
ða1α2λðtÞ þ 8παλðtÞγðtÞ þ a3α2DðtÞÞ; ð6Þ

where b ¼ 8=3, a1 ¼ 10, and a3 ¼ 48. Taking the renorm-
alization scale μ to be M, the condition dV

dϕ jϕ¼M ¼ 0 leads
us to the relation

a1αλð0Þ2 þ a3αDð0Þ2 þ 8παλð0Þ ¼ 0; ð7Þ

which makes αλð0Þ determined by αDð0Þ. Since the running
of the coupling can be solved analytically, the scalar
potential can be given by [12]

V0ðϕ; tÞ ¼
παλðtÞ

ð1 − b
2π αDð0ÞtÞa2=b

ϕ4; ð8Þ

where

αDðtÞ ¼
αDð0Þ

1 − b
2π αDð0Þt

; ð9Þ

αλðtÞ ¼
a2 þ b
2a1

αDðtÞ

þ A
a1

αDðtÞ tan
�
A
b
ln½αDðtÞ=π� þ C

�

;

A≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1a3 − ða1 þ bÞ2=4
q

; ð10Þ

and the coefficient C is determined by Eq. (7).
Thermal contributions to the effective potential are

given by

V th ¼
X

i

�
nBi

2π2
T4JB

�
mBi

T

�

−
nFi

2π2
JF

�
mFi

T

��

; ð11Þ

where nBi
and nFi

denote the degrees of freedom (d.o.f.) of
the bosonic and fermionic particles, respectively. In this
expression, JB and JF are defined as follows:

JBðxÞ ¼
Z

∞

0

dz z2 log ½1 − e−
ffiffiffiffiffiffiffiffiffi
z2þx2

p
�;

JFðxÞ ¼
Z

∞

0

dzz2 log ½1þ e−
ffiffiffiffiffiffiffiffiffi
z2þx2

p
�: ð12Þ

On calculating V th, we include a contribution from the
daisy diagram to improve the perturbative expansion during
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the phase transition [21–23]. The daisy-improved effective
potential can be calculated by inserting thermal masses into
the zero-temperature field-dependent masses. The author of
Ref. [22] proposed the thermal resummation prescription in
which the thermal-corrected field-dependent masses are
used for the calculation in VCW and V th (Parwani method).
In comparison to this prescription, authors of Ref. [23]
proposed an alternative prescription for the thermal resum-
mation (Arnold-Espinosa method). They included the
effect of the daisy diagram only for Matsubara zero modes
inside the JB function defined above. In our work, we use
the Arnold-Espinosa method. As mentioned before, we
ignore the singlet scalar coupling to fermions and the SM
Higgs and hence calculate the field-dependent and thermal
masses as well as the daisy diagram contribution for the
vector boson only.
As the evolution has two scales, ϕ and T, where T is the

temperature of the Universe, we consider the renormaliza-
tion scale parameter u instead of t as

u≡ logðΛ=MÞ where Λ≡maxðϕ; TÞ: ð13Þ

Note that Λ represents the typical scale of the theory. Now,
the one-loop-level effective potential is given as

V totðϕ; TÞ ¼ V0ðϕ; uÞ þ VTðϕ; TÞ; ð14Þ

where

VTðϕ; TÞ ¼
3

2
VB
TðmVðϕÞ=T; TÞ þ Vdaisyðϕ; TÞ; ð15Þ

VB
Tðx; TÞ≡ T4

π2

Z
∞

0

dz z2 ln½1 − e−
ffiffiffiffiffiffiffiffiffi
z2þx2

p
�;

Vdaisyðϕ; TÞ ¼ −
T
12π

½m3
Vðϕ; TÞ −m3

VðϕÞ�; ð16Þ

where VB
T is the thermal correction and Vdaisy is the daisy

subtraction [21–23].

III. FIRST-ORDER PHASE TRANSITION

The first-order phase transitions proceed via tunneling,
and the corresponding spherically symmetric field con-
figurations called bubbles are nucleated, followed by
expansion and coalescence.1 The tunneling rate per unit
time per unit volume is given as

ΓðTÞ ¼ AðTÞe−S3ðTÞ=T; ð17Þ

where AðTÞ ∼ T4 and S3ðTÞ are determined by the dimen-
sional analysis and given by the classical configurations,
called bounce, respectively. At finite temperature, the

Oð3Þ-symmetric bounce solution [26] is obtained by
solving the following equation:

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ ∂V tot

∂ϕ : ð18Þ

The boundary conditions for the above differential
equation are

ϕðr → ∞Þ ¼ ϕfalse;
dϕ
dr

�
�
�
�
r¼0

¼ 0; ð19Þ

where ϕfalse denotes the position of the false vacuum. Using
ϕ governed by the above equation and boundary condi-
tions, the bounce action can be written as

S3 ¼
Z

∞

0

dr4πr2
�
1

2

�
dϕ
dr

�
2

þ V totðϕ; TÞ
�

: ð20Þ

The temperature at which the bubbles are nucleated is
called the nucleation temperature T�. This can be calculated
by comparing the tunneling rate to the Hubble expansion
rate as

ΓðT�Þ ¼ H4ðT�Þ: ð21Þ

Here, assuming the usual radiation-dominated Universe,
the Hubble parameter is given byHðTÞ ≃ 1.66

ffiffiffiffiffi
g�

p
T2=MPl,

with g� being the d.o.f. of the radiation component. Thus,
the rate comparison equation above leads to

S3ðT�Þ
T�

≃ 140; ð22Þ

for g� ∼ 100 and T� ∼ 100 GeV, while for lower tem-
peratures near MeV it comes down to g� ∼ 10. If
ϕðT�Þ=T� > 1 is satisfied, where ϕðT�Þ is the singlet
scalar VEV at the nucleation temperature, T ¼ T�, the
corresponding phase transition is conventionally called
strong first order.
By choosing the benchmark values α� ¼ 0.68,

T� ¼ 2.25 MeV, gD ¼ 0.32, MZD
¼ 12.6 MeV, we can

portray the curves of the potential in terms of ϕ=M at
the critical and nucleation temperatures, as shown in
Fig. 1. Clearly, we see that ϕ ¼ 0 becomes a false vacuum
below the critical temperature Tc and the existence of the
barrier at Tc indicates a strong first-order phase transition
driven by the singlet scalar sector, which triggers bubble
production and subsequent production of GWs.
The phase transition completes via the percolation of

the growing bubbles. To see when the phase transition
finishes, we need to estimate the percolation temperature
Tp at which a significant volume of the Universe has been
converted from the symmetric to the broken phase. Follow-
ing Refs. [27,28], Tp is obtained from the probability of
finding a point still in the false vacuum given by

1For recent reviews of cosmological phase transitions, see
Refs. [24,25].
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PðTÞ ¼ e−IðTÞ; where

IðTÞ ¼ 4π

3

Z
Tc

T

dT 0

T 04
ΓðT 0Þ
HðT 0Þ

�Z
T 0

T

dT̃

HðT̃Þ
�

3

: ð23Þ

The percolation temperature is then calculated by using
IðTpÞ ¼ 0.34 [27] (implying that at least 34% of the
comoving volume is occupied by the true vacuum). It is
also necessarily required that the physical volume of the
false vacuum should be decreased around percolation for
successful completion of the phase transition. This require-
ment reads

1

Vfalse

dVfalse

dx
¼ HðTÞ

�

3þ T
dIðTÞ
dT

�

< 0; ð24Þ

where x is denoted as time.
Confirming that this condition is satisfied at the perco-

lation temperature Tp, one can ensure that the phase
transition successfully completes. For the same benchmark
values as those taken in Fig. 1, we calculate the percolation
temperature Tp and check that the condition Eq. (24) is
satisfied. The results and values of some parameters are
presented in Table I.

IV. GRAVITATIONAL WAVES

As mentioned before, a strong FOPT can lead to the
generation of stochastic gravitational-wave signals. In
particular, GW signals during such a strong FOPT are
generated by bubble collisions [29–33], the sound wave
of the plasma [34–37], and the turbulence of the plasma
[38–43].
The amplitudes of GWs depend upon the ratio of the

amount of vacuum energy released by the phase transi-
tion to the radiation energy density of the Universe,
ρrad ¼ g�π2T4=30, given by

α� ¼
ϵ�
ρrad

; ð25Þ

with

ϵ� ¼
�

ΔV tot −
T
4

∂ΔV tot

∂T
��
�
�
�
T¼T�

; ð26Þ

where ΔV tot ≡ V totðϕfalse; TÞ − V totðϕtrue; TÞ is the free
energy difference between the false and true vacuum. ϵ�
is related to the change in the trace of the energy-
momentum tensor across the bubble wall [11,44]. The
amplitude of GWs is also dictated by the duration of the
FOPT, denoted by the parameter β, defined as [10]

β

HðTÞ ≃ T
d
dT

�
S3
T

�

: ð27Þ

Here, α� and β=HðTÞ are evaluated at T ¼ T�. While S3
can be evaluated using Eq. (20), the effective potential at
sufficiently low temperatures, i.e., T ≪ M can be safely
approximated as

V tot ≃
g2Dðt0Þ
2

T2ϕ2 þ λeffðt0Þ
4

ϕ4;

λeffðt0Þ ¼ 4παλðt0Þ=
�

1 −
b
2π

αDð0Þt0
�

a2=b
;

t0 ¼ lnðT=MÞ: ð28Þ

In such a scenario the action can be approximated to be [45]

S ¼ S3
T

− 4 lnðT=MÞ;
S3
T

≃ −9.45 ×
gDðt0Þ
λeffðt0Þ

: ð29Þ

In our estimation for the gravitational-wave amplitude we
have used the above expressions (28) and (29) in calculat-
ing α, β, and the percolation temperature Tp.
We note that the NANOGrav Collaboration has esti-

mated the required FOPT parameters using the thin-shell
approximation for bubble walls (envelope approximation)
[46], the semianalytic approximation [47], and full lattice

TABLE I. Numerical values of parameters leading to Fig. 3.

α� ðβ=H�Þ T� vw Tp
1

Vfalse

dVfalse
dx

0.68 82.4 2.25 MeV 0.91 1.9 MeV −24.17 GeV

FIG. 1. Shape of the potential at the critical and nucleation
temperatures for the chosen benchmark α� ¼ 0.68, T� ¼
2.25 MeV, gD ¼ 0.32, MZD

¼ 12.6 MeV.
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results. Here we present the predictions of our model
against the backdrop of their estimates in Fig. 2.
During a FOPT, there are three sources producing GWs:

bubble collisions, the sound wave of the plasma, and the
turbulence of the plasma [10,36,37,42,46,48]. These three
contributions together give the resultant gravitational-wave
power spectrum, given as [1]

ΩGWðfÞ ¼ ΩϕðfÞ þΩswðfÞ þ ΩturbðfÞ: ð30Þ

In general, each contribution has its own peak frequency
and each GW spectrum can be parametrized in the
following way [1]:

h2ΩðfÞ ¼ RΔðvwÞ
�

κα�
1þ α�

�
p
�
H�
β

��
Sðf=f0�Þ; ð31Þ

where the prefactorR ≃ 7.69 × 10−5g−1=3� takes into account
the redshift of the GWenergy density, Sðf=f0�Þ parametrizes
the shape of the spectrum, and ΔðvwÞ is the normalization
factor which depends on the bubble wall velocity vw. The
Hubble parameter at T ¼ T� is denoted by H�. Finally, the
peak frequency today, f0�, is related to the value of the peak
frequency at the time of emission, f�, as follows:

f0�≃ 1.13× 10−10 Hz

�
f�
β

��
β

H�

��
T�

MeV

��
g�
10

�
1=6

; ð32Þ

FIG. 2. Predictions for FOPT parameters in the α�-T� plane for our model. The gauge coupling gD is varied in a range corresponding to
αD ∈ 0.002–0.01. The contours correspond to the confidence levels obtained in Ref. [1] using the envelope approximation (left panel),
semianalytic approximation (right panel), and numerical results (bottom panel).
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where g� denotes the number of relativistic degrees of
freedom at the time of the phase transition. The values of
the peak frequency at the time of emission, the normalization
factor, the spectral shape, and the exponentsp andq aregiven
in Table I of Ref. [1]. As for the efficiency factors, κϕ was
discussed in Refs. [12,28] and κsw is taken from
Refs. [44,49]. On the other hand, the remaining efficiency
factor κturb is taken to be approximately 0.1 × κsw [1]. The
bubble wall velocities were given in Refs. [50–54].
Based on the formulas presented above and by choosing

a benchmark choice of model as well as FOPT parameters
shown in Table I consistent with NANOGrav data at
95% C.L., we calculate the individual contributions to
the GW energy density spectrum Ωh2ðfÞ from bubble
collisions, the sound wave of the plasma, and the turbu-
lence of the plasma, as well as the total contribution to
Ωh2ðfÞ. In Fig. 3, the red, orange, cyan, and black cur-
ves correspond to the individual contributions from the
turbulence of the plasma, sound wave of the plasma,
bubble collisions, and the total contribution to Ωh2ðfÞ,

respectively. Due to the small value of the FOPT strength
parameter α�, as anticipated from earlier studies [55,56], the
contribution from bubble collision is suppressed, as can be
seen in Fig. 3.

V. NEUTRINO MASS

A dark Abelian gauge extension of SM can also be
related to the origin of neutrino mass. Neutrino oscillation
data suggest tiny but nonvanishing light neutrino masses
with two large mixing [57]. Since nonzero neutrino mass
and mixing cannot be explained in the SM, there have been
several beyond-the-standard-model proposals. It turns out
that the simplest Uð1ÞD extension like the one discussed
above augmented with additional discrete symmetries of
fields can explain the origin of a light neutrino mass. Here
we briefly mention two such possibilities for the origin
neutrino mass.
First, we discuss a radiative origin of light neutrino

masses, a natural origin of a low-scale seesaw. In addition
to the singlet scalar Φ and the dark fermion Ψ in the
minimal model discussed above, we need an additional
scalar doublet χ and a scalar singlet η to realize a radiative
seesaw. The required field content and their charges under
Uð1ÞD are shown in Table II. The relevant terms of the
leptonic Lagrangian are given by

−L⊃ YνL̄ χ̃2ΨRþYLΦ†ðΨLÞcΨLþYRΦ†ðΨRÞcΨRþH:c:

ð33Þ

The relevant part of the scalar potential is

V ⊃ ðλ1χ†2Hχ†1Φþ λ2χ1χ1Φ†ηþ H:c:Þ: ð34Þ

The singlet scalar η, neutral under Uð1ÞD, is introduced
in order to avoid terms in the Lagrangian breaking
conformal invariance [58]. The Uð1ÞD symmetry is broken
by a nonzero VEV of Φ to a remnant Z2 symmetry, under
which ΨL;R; χ1; χ2 are odd while all other fields are even.
While light neutrino masses can be realized at the one-loop
level with these Z2-odd particles going inside the loop, the
lightest Z2-odd particle can be a stable DM candidate. A
possible one-loop diagram for light neutrino mass is shown
in Fig. 4. Since Z2-odd particles take part in the loop, the
origin of light neutrino masses is similar to the scotogenic
mechanism [59]. The contribution from the diagram shown
in Fig. 4 can be estimated as

ðmνÞij ≃
λ21hHi2λ2hΦi3hηi

64
ffiffiffi

2
p

π2
ðYνÞikðMΨÞkðYT

ν Þkj
M6

χ2

Iνðrχ1 ; rkÞ;

ð35Þ

where ðMΨÞk is the mass of pseudo-Dirac fermion states
going inside the loop and Iν is the corresponding loop

FIG. 3. GW spectrum Ωh2ðfÞ in terms of f for a FOPT with
benchmark parameters α� ¼ 0.68, T� ¼ 2.25 MeV, gD ¼ 0.32,
MZD

¼ 12.6 MeV. The red, orange, cyan, and black curves
correspond to the individual contributions from the turbulence
of the plasma, sound wave of the plasma, bubble collisions, and
the total contribution, respectively.

TABLE II. New particles for a radiative seesaw for neutrino
mass with Uð1ÞD symmetry.

χ1 Φ ΨL;R χ2 η

SUð2ÞL 1 1 1 2 1
Uð1ÞD 1 2 1 1 0
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function written in terms of rχ1 ¼ M2
χ1=M

2
χ2 and rk ¼

M2
Ψk
=M2

χ2 , with M2
χ1 ¼ ðm2

χr1 þm2
χi1Þ=2 and M2

χ2 ¼
ðm2

χr2 þm2
χi2Þ=2. The use of r, i in the subscripts denotes

real and imaginary neutral parts of the corresponding
complex scalar fields.
We now consider the realization of another low-scale

seesaw, namely, an inverse seesaw with Uð1ÞD symmetry.
It turns out that a minimal Uð1ÞD gauge symmetry is not
sufficient to ensure the required structure of the inverse
seesaw mass matrix. To have a minimal possibility we
consider an additional Z4 discrete symmetry. The new
fields and their transformations under the imposed sym-
metries are shown in Table III. The relevant part of the
Yukawa Lagrangian is

−L ⊃ YνL̄ H̃2 NR þ YNSNRSRχ† þ YSSRSRΦþ H:c:

ð36Þ

Clearly, the lepton-number-violating term involves Φ
which also breaks the Uð1ÞD symmetry. Therefore, a
low-scale Uð1ÞD naturally leads to a tiny lepton-number-
violating term in the inverse seesaw mass matrix. After
symmetry breaking, the light neutrino mass is given by

mν ≃
�
YT
ν hH2i

ffiffiffi

2
p

�
1

MNS

�
YShΦi

ffiffiffi

2
p

�
1

MNS

�
YνhH2i

ffiffiffi

2
p

�

; ð37Þ

where MNS ¼ YNShχiffiffi
2

p .

Thus, in both of the examples discussed here, the low-
scale Uð1ÞD symmetry can play a nontrivial role in light
neutrino mass generation even though all of the SM fields
are neutral under this symmetry.

VI. DARK MATTER AND COSMOLOGICAL
CONSTRAINTS

Evidences from astrophysics and cosmology suggest
the presence of a nonbaryonic form of matter giving
rise to approximately 26% of the present Universe’s energy
density [57]. The simplest possibility is to consider a
vector-like fermion Ψ having charge nψ under Uð1ÞD.
Depending on the strength of gauge interactions, the relic
abundance of DM can be realized either via thermal or
nonthermal mechanisms. While the Uð1ÞD gauge coupling
was kept large in the analysis for FOPT and GWs above,
DM interactions with the SM can still be suppressed due to
small kinetic mixing between Uð1ÞD and Uð1ÞY . However,
in the discussion on neutrino mass, we have introduced
additional fields charged under both SM and Uð1ÞD
gauge symmetries. This will keep the one-loop kinetic
mixing between Uð1ÞD and Uð1ÞY suppressed but still
large enough to produce ZD in equilibrium. Thus, a light
gauge boson with not too small kinetic mixing with Uð1ÞY
can decay into SM leptons at late epochs [compared to
the neutrino decoupling temperature Tν

dec ∼OðMeVÞ],
increasing the effective relativistic degrees of freedom,
which is tightly constrained by Planck 2018 data as Neff ¼
2.99þ0.34−0.33 [60]. Such constraints can be satisfied if MZD

≳
Oð10 MeVÞ [61,62] which agrees with the benchmark
value chosen in our FOPT and GW analysis. On the other
hand, takingMZD

to a much higher regime will not explain
the NANOGrav data. Therefore, we keep its benchmark at
the minimum allowed value. A similar bound also exists
for thermal DM masses in this regime which can annihilate
into leptons. As shown in Ref. [63], such constraints from
big bang nucleosynthesis as well as cosmic microwave
background (CMB) measurements can be satisfied if
MDM ≳Oð1 MeVÞ. On the other hand, constraints from
CMB measurements disfavor such light sub-GeV thermal
DM production in the early Universe through s-channel
annihilations into SM fermions [60]. Since fermion singlet
DM in our model primarily annihilates via s-channel
annihilations mediated by ZD only, cosmological con-
straints are severe for a thermal DM mass around or
below 10 MeV.
Due to the tight cosmological constraints on thermal DM

with mass below 10MeVas discussed above, we consider a
nonthermal DM scenario, also known as the feebly inter-
acting massive particle (FIMP) paradigm [64]. While we
cannot make gD very small, in order to satisfy the FOPTand
GW criteria we choose the Uð1ÞD charge of DM nψ to be
very small.2 For a DM mass above ZD, it can be produced
in the early Universe via annihilation of SM bath particles
into DM, mediated by ZD. In the left panel of Fig. 5 we

FIG. 4. One loop origin of light neutrino masses.

TABLE III. New particles for an inverse seesaw of neutrino
mass with Uð1ÞD symmetry.

NR SR χ Φ H2

SUð2ÞL 1 1 1 1 2
Uð1ÞD 1 −1 0 2 1
Z4 1 i i −1 1

2FIMP DM in a similar Abelian gauge model with tiny Uð1Þ
charge of DM was studied in earlier works like, for example,
Ref. [65], where the authors studied Lμ − Lτ gauge symmetry.
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show the evolution of the comoving DM number density
Y for DM mass MDM ¼ 1 GeV and its Uð1ÞD charge
nψ ¼ 3.9 × 10−10. The kinetic mixing of ZD with Uð1ÞY of
the SM is taken to be approximately ϵ ∼ gDg0=ð16π2Þ,
similar to one-loop mixing. Clearly, DM with negligible
initial abundance freezes in and gets saturated at lower
temperatures, giving rise to the required relic density. In
the right panel of Fig. 5 we show the parameter space in
terms of MDM − nψ giving rise to the correct DM relic
density while keeping the Uð1ÞD sector parameters fixed at
gD ¼ 0.32 and MZD

¼ 12.6 MeV. Since the DM mass is
varied all the way up to 1 MeV for the right-panel plot of
Fig. 5, which is below the ZD mass threshold, we consider
both annihilation and decay contributions to the DM relic
density. Clearly, smaller values of nψ require a larger DM
mass to satisfy the relic criteria. This is because smaller
DM coupling leads to smaller nonthermal abundance, and
hence a larger mass is required to generate the observed
relic abundance. While we skip other phenomenological
signatures of such DM, such sub-GeV DM can have very
interesting phenomenology in the context of the latest
experiments like XENON1T [66], as has been discussed in
Refs. [67–70] among others. Such Dirac fermion DM, upon
receiving a tiny Majorana mass contribution from the
singlet scalar (as discussed above in the context of radiative
neutrino mass) can give rise to inelastic DM [71,72] with
interesting DM phenomenology [73].

VII. CONCLUSION

Motivated by the NANOGrav Collaboration’s recent
analysis of their 12.5 yr data implying a possible origin

of a stochastic GW spectrum from a first-order phase
transition below the EW scale, we revisited the simplest
possibility of a dark Abelian gauge extension of the SM.
While the SM fields are neutral under this gauge symmetry,
a complex scalar singlet with nonvanishing gauge charge
can lead to the necessary symmetry breaking. We further
considered a classical conformal invariance such that the
symmetry breaking occurs through radiative corrections to
the scalar potential, keeping the model minimal. While
additional dark fermions can be introduced in order to
explain the origin of dark matter, for the details of the
phase transition we confined ourselves to only the singlet
scalar–vector boson interactions, ignoring other scalar
portal or Yukawa interactions for simplicity. We performed
a numerical scan to show how a light gauge boson ZD at the
sub-GeV scale can explain the FOPT parameters given in
Ref. [1] in order to explain their data. We also commented
on the possibility of connecting suchUð1ÞD models to light
neutrino mass and dark matter in a common setup. Due to
tight cosmological constraints on such a light vector boson
ZD as well as DM whose interactions with the SM sector
are mediated by ZD via kinetic mixing, we considered a
nonthermal DM scenario. By choosing Uð1ÞD sector
parameters in a way that satisfies NANOGrav data, we
performed a numerical scan over DM mass in the sub-GeV
range and its Uð1ÞD charge that can give rise to the correct
nonthermal DM relic.
Due to the complementary nature of the observable

signatures of such minimal models, especially in the
context of GWs from FOPT as well as typical sub-GeV
dark matter signatures, near-future experiments should be
able to scrutinize such predictive scenarios. Additionally,

FIG. 5. Left: comoving DM number density Y vs T for DM mass MDM ¼ 1 GeV and its Uð1ÞD charge nψ ¼ 3.9 × 10−10. Right:
regions of MDM − nψ parameter space giving rise to the correct DM relic density for gD ¼ 0.32, MZD

¼ 12.6 MeV.
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while PTAs like NANOGrav offer a complementary GW
window to proposed space-based interferometers, more
data are needed to confirm whether this is a clear detection
of GWs and whether it is due to FOPT or astrophysical
sources like SMBHB mergers (possible ways of distin-
guishing cosmological backgrounds from astrophysical
foregrounds have been discussed recently in Ref. [74]).
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