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Abstract We study gravitational lensing in strong-field
limit by a static spherically symmetric black hole in quartic
scalar field Horndeski gravity having additional hair parame-
ter q, evading the no-hair theorem. We find an increase in the
deflection angle αD , photon sphere radius xps , and angular
position θ∞ that increases more quickly while angular sepa-
ration s more slowly, but the ratio of the flux of the first image
to all other images rmag decreases rapidly with increasing
magnitude of the hair q. We also discuss the astrophysical
consequences in the supermassive black holes at the centre
of several galaxies and note that the black holes in Horn-
deski gravity can be quantitatively distinguished from the
Schwarzschild black hole. Notably, we find that the devi-
ation �θ∞ of black holes in Horndeski gravity from their
general relativity (GR) counterpart, for supermassive black
holes Sgr A* and M87*, for q = −0.2, respectively, can
reach as much as 2.4227 μas and 1.82026 μas while �s is
about 0.04650 μas for Sgr A* and 0.03493 μas for M87*.
The ratio of the flux of the first image to all other images sug-
gest that the Schwarzschild images are brighter than those
of the black holes in Horndeski gravity, wherein the devia-
tion |�rmag| is as much as 0.70673. The results suggest that
observational tests of hairy black holes in Horndeski grav-
ity are indeed feasible. Taking the supermassive black holes
Sgr A* and M87* as the lens, we also compare our hairy
Horndeski black holes observable signatures with those of
the neutral Horndeski black holes, Galileon black holes and
charged Horndeski black holes. It turns out that although
it is possible to detect some effects of the strong deflec-
tion lensing by the hairy Horndeski black holes and other
black holes with the Event Horizon Telescope (EHT) obser-
vations, but it is unconvincing to discern these black holes as
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deviations are O(μas). We also find that the shadow size is
consistent with EHT observation if the deviation parameter
q ∈ (−0.281979, 0)

1 Introduction

Gravitational lensing by black holes is one of the most power-
ful astrophysical tools for investigating the strong-field fea-
tures of gravity and provide us with information about the
distant stars that are too dim to be observed. It can help us
detect exotic objects and hence verify alternative theories of
gravity. The gravitational lensing theories were developed,
among others, by Liebes [1], Refsdal [2], and Bourassa and
Kantowski [3]. They have successfully explained the astro-
nomical observations but in the weak field approximation.
However, when a lens is a compact object with a photon
sphere (such as a black hole), a strong field treatment of
gravitational lensing is needed instead because photons pass-
ing close to the photon sphere have large deflection angles.
Virbhadra and Ellis [4] obtained the lens equation using an
asymptotically flat background metric, in the strong-field
limit for a Schwarzchild black hole numerically. Apart from
the primary and secondary images, they reported two infi-
nite sets of faint relativistic images. An exact lens equa-
tion without reference to a background metric was found
by Fritelli et al. [5]. Later, Bozza [6] used the strong field
limit approximation to obtain analytical expressions for the
positions and magnification of the relativistic images and
extended his method of lensing for a general class of static
and spherically symmetric spacetimes to show that the log-
arithmic divergence of the deflection angle at photon sphere
is a generic feature for such spacetimes. Bozza’s [6] meth-
ods was extended to several static, spherically symmetric
metrics which includes Reissner–Nordström black holes [7],
braneworld black holes [8–11], charged black hole of het-
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erotic string theory [12]. The strong gravitational field con-
tinues to receive significant attention, more recent works
include lensing from other black holes [13–16] and from
various modifications of Schwarzschild geometry [17–23],
and more recently in 4D Einstein-Gauss-Bonnet gravity [24–
26]. The gravitational lensing by a primary photon sphere
with unstable circular light orbits and by a secondary pho-
ton sphere on a wormhole throat in a black-bounce regular
spacetime shows the existence of an antiphoton sphere and
the formation of infinite images near it [27]. The gravita-
tional lensing received a boost when Event Horizon Tele-
scope (EHT) [28,29] unravelled the first-ever image of the
supermassive black hole M87*. These results offer testing
grounds for gravity theories on offering a compelling probe
of the strong gravitational fields. With this motivation, this
paper investigates the strong-field gravitational lensing of
light by the hairy black holes in Horndeski gravity [30].

As a modification to GR, the simplest extensions are the
scalar–tensor theories like Horndeski gravity [31], probably
the most general four-dimensional scalar–tensor theory with
equations of motion containing up to second-order deriva-
tives of the dynamical fields. Horndeski theory of gravita-
tion is described by the action principle formulated from the
metric and a scalar field that leads to field equations with
no derivatives beyond second order for the metric and the
scalar field, and the theory has the same symmetries as GR,
namely, diffeomorphism and local Lorentz invariance. (see
e.g. [32,33]). All the terms present in the action of Horndeski
gravity have been shown to be originating from Galileons,
i.e. scalar–tensor models having Galilean symmetry in flat
spacetime [34]. There are compelling arguments that sug-
gest that certain modifications are required in GR at both very
high and very low energy scales. Gravitational collapses are
destined to unavoidable singularities, while on cosmological
scales, to describe the observed accelerated expansion of the
Universe, GR relies on the yet unexplained presence of dark
energy [35]. Horndeski theories [36] which have been stud-
ied in both the strong gravity on compact objects, such as
neutron stars, black holes [37] and in cosmological regimes
to describe the accelerated expansion [38]. The space of solu-
tions for Horndeski’s theory of gravity is endowed with hairy
black holes [39–44], Among the static and spherically sym-
metric hairy black holes in scalar–tensor theories the simplest
case in which solutions admits a hairy profile with a radi-
ally dependent scalar field was studied in [41,45–48]. The
time-dependent hairy black hole solutions within the Horn-
deski class of theories have also been obtained [49]. In [50],
authors provide a no-hair theorem for static and spherically
symmetric black hole solutions with vanishing Galileon hair
at infinity which has further examined by Babichev et al. [41]
considering Horndeski theories and beyond it. They demon-

strated that shift-symmetric Horndeski theories including the
extended ones allow for static and asymptotically flat black
holes with a static scalar field [41] such that the Noether cur-
rent associated with shift symmetry vanishes, while the scalar
field cannot be trivial; In turn, it leads to hairy black holes for
the quartic Horndeski gravity [41]. Lately, the investigation
of black holes in Horndeski and beyond Horndeski theories
has received significant attention [30,51–57].

The strong field gravitational lensing effects caused by the
charged Galileon black hole [58] was performed by Zhao and
Xie [59] and compared with the Schwarzschild black hole,
the Reissner–Nordström black hole and the tidal Reissner–
Nordström black hole. They found that in specific parameter
space, the observables generated by the charged Galileon
black hole are close to those given by the tidal black hole.
Badía and Eiroa [51] analysed the behaviour as gravitational
lenses for the spherically symmetric and asymptotically flat
black holes obtained in Horndeski gravity [41]. They found
that the lensing effects by a Horndeski black hole are more
substantial than in the Schwarzschild case for a specific case.
Later, Wang et al. [60] regarded gravitational lensing by the
charged Horndeski black hole [43] and also compared with
those of the Reissner–Nordström, tidal Reissner–Nordström
and charged Galileon black holes, opening a road for distin-
guishing these black holes.

We investigate the predictions of spherical hairy black
holes in quartic Horndeski gravity [30] for the strong-field
gravitational lensing effects of supermassive black holes at
the center of the Milky Way and other galaxies. Our most
exciting result is that the difference between the angular posi-
tions of relativistic primary and secondary images in Horn-
deski gravity and GR could be as large as μas. Also, the
calculated values of time delay between these images are dif-
ferent in GR and Horndeski gravity, and the difference could
be as significant as seconds. These suggest that observational
tests of Horndeski gravity are indeed feasible.

The paper is organized as follows: We begin with briefly
reviewing the hairy black holes in Horndeski gravity in the
Sect. 2. Restrictions on parameters from the horizon structure
and deflection of light is the subject of Sect. 3. Moreover, we
also discuss the strong lensing observables by the hairy black
holes, including the image positions θ∞, separation s, mag-
nifications μn in Sect. 3. Time delay between the first and
second image when they are on the same side of source have
been calculated for supermassive black holes SgrA*, M87*
and those at the centers of 21 other galaxies in Sect. 4. A
numerically analysis of the observables by taking the super-
massive black holes NGC 4649, NGC 1332, Sgr A* and
M87*, as the lens is part of Sect. 5. Finally, we summarize
our results to end the paper in Sect. 6.

We will work in units where G = c = 1.
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2 Hairy black holes in Horndeski theory of gravity

Horndeski gravity is described by the action formulated from
the metric and the scalar field [41]. It involves 4 arbitrary
functions Qi (i = 2, . . . 5) of kinetic term χ = −∂μφ∂μφ/2
[41]. Here, we have considered the particular type of the
action of [41] which is quartic, i.e, Q5 term is absent (Q5 =
0). The hairy black hole solution we are interested is derived
from the quartic Horndeski gravity [30] whose action reads

S =
∫

d4x
√−g

{
Q2(χ) + Q3(χ)�φ + Q4(χ)R (1)

+ Q4,χ [(�φ)2 − (∇μ∇νφ)(∇μ∇νφ)]
}
, (2)

where g ≡ det(gμν), gμν is the metric tensor, R and Gμν ,
respectively, denote Ricci scalar and Einstein tensor. The �
is the d’Alembert operator and ∇μ is the covariant derivative.
The 4-current vector associated with the Noether charge is
[30],

jν = 1√−g

δS

δ(φ,μ)
,

which results into

jν = −Q2,χ φ,ν − Q3,χ (φ,ν�φ + χ,ν)

−Q4,χ (φ,νR − 2Rνσ φ,σ )

−Q4,χ ,χ {φ,ν[(�φ)2 − (∇α∇βφ)(∇α∇βφ)]
+2(χ,ν�φ − χ,μ ∇μ∇νφ)}, (3)

where we have used the usual convention for the Riemann
tensor

∇ρ∇β∇αφ − ∇β∇ρ∇αφ = −Rσ
αρβ∇σ φ. (4)

Varying the action (1) with respect to metric tensor gμν we
obtain the field equations [30,41]

Q4Gμν = Tμν, (5)

where

Tμν = 1

2
(Q2,χ φ,μ φ,ν +Q2gμν) + 1

2
Q3,χ (φ,μ φ,ν �φ

− gμνχ,α φ,α + χ,μ φ,ν +χ,ν φ,μ )

− Q4,χ

{1

2
gμν[(�φ)2

− (∇α∇βφ)(∇α∇βφ) − 2Rσγ φ,σ φ,γ ] − ∇μ∇νφ�φ

+ ∇γ ∇μφ∇γ ∇νφ − 1

2
φ,μ φ,ν R + Rσμφ,σ φ,ν

+ Rσνφ
,σ φ,μ +Rσνγμφ,σ φ,γ

}

− Q4,χ ,χ

{
gμν(χ,α φ,α�φ + χ,αχ,α) + 1

2
φ,μ φ,ν

× (∇α∇βφ∇α∇βφ − (�φ)2) − χ,μ χ,ν

− �φ(χ,μ φ,ν +χ,ν φ,μ )

− χ,γ [φ,γ ∇μ∇νφ − (∇γ ∇μφ)φ,ν −(∇γ ∇νφ)φ,μ ]
}
.

(6)

Henceforth, we shall specialise to a scalar field φ ≡ φ(r)
[30,41]. It will be the source of a static and spherically sym-
metric spacetime. The integration of field equations leads to
the black hole solution [30]

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θdϕ2), (7)

where

A(r) = 1

B(r)
= 1 − 2m

r
+ qo

r
ln

( r

2m

)
, (8)

where m is the integration constant related to the black hole
mass and qo is a constant that results from Horndeski grav-
ity. The metric (7) represents a hairy black hole in the quartic
Horndeski gravity and encompasses the Schwarzschild met-
ric in the limit qo → 0. The solution (7) is asymptotically flat
since lim

r→∞ A(r) = 1/B(r) = 1. The Kretschmann and Ricci

scalars diverge [30] along r = 0, establishing the metric (7)
is scalar polynomial singular.

Indeed, the first exact black hole solution to Horndeski
theory, for the vanishing cosmological term, was obtained
by Rinaldi [39], wherein the scalar field becomes imaginary
in external communication, and the weak energy condition is
violated outside the horizon. It was addressed by the inclusion
of a cosmological term in action makes it possible to find a
black hole with a real scalar field outside [42]. Cisterna and
Erices [43] continued in this line and generalize the results
[42] by adding a Maxwell term to find flat charged black
holes in the Horndeski scenario. Several charged Galileon
black holes were obtained by Babichev et al. [58].
The gravitational lensing by the spherically symmetric and
asymptotically flat black holes [41] in Horndeski gravity con-
sidered to distinguish it from the Reissner–Nordström geom-
etry [51]; the black hole metric reads [41,51]

ds2 = −
(

1 − 2m

r
− γ̃

r2

)
dt2 + dr2(

1 − 2M
r − γ̃

r2

) + r2d�2,

(9)

where γ̃ = τ 2/(2σξ) with σ = M2
pl/16π and τ , ξ are

dimensionless parameters [41,51]. Further, the gravitational
lensing by a charged Galileon black hole [58] leads to esti-
mate the observables which can be close to those of a
tidal Reissner–Nordström black hole or those of a Reissner–
Nordström black hole [59]. The metric of charged Galileon
black hole reads [58,59]
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Fig. 1 The horizons of the hairy black hole in Horndeski gravity. When −∞ < q < 0 the black hole admits both event horizon x+ and Cauchy
horizon x−, otherwise has only event horizon for q > 0

ds2 = −
(

1 − 2m

r
+ �̃

r2

)
dt2 + dr2(

1 − 2M
r + �̃

r2

)
g(r)

+r2d�2, (10)

where g(r) =
(

1 + �̃
r2

)
and �̃ = (U 2 + V 2)/[2(3ην2 − 2)],

withU and V being the magnetic and electric charge respec-
tively. ν is the linear coefficient of time whereas η indicated
the non-minimal kinetic coupling between the scalar field
and gravity [58,59]. Also, gravitational lensing by charged
black holes from a class of the Horndeski theory when the
scalar field coupled only through the Einstein tensor [43] was
considered by Wang et al. [43,60]

ds2 = −
(

1 − 2m

r
+ Q

r2 − Q2

12r4

)
dt2

+ h(r)dr2(
1 − 2M

r + Q
r2 − Q2

12r4

) + r2d�2, (11)

where h(r) =
(

1 − Q
2r2

)2
and Q is the electric charge. It

is more complicated than the charged Galileon black hole
considered. The charged Horndeski black hole is different
from a Reissner–Nordström black hole [43,60].
We shall compare the strong deflection lensing observables
by hairy Horndeski black holes and their deviations from
the above three black holes viz. by neutral Horndeski black
holes, charged Galileon black holes and Charged Horndeski
black holes with M87* and Sgr A* as the lens.

3 Strong gravitational lensing by hairy black hole in
Horndeski gravity

In this section we shall study gravitational lensing by hairy
black hole (7) to investigate how the parameter qo affects the

lensing observables in strong field limit. It should give us
useful insights about the possible effects of the parameter qo
on strong gravitational lensing. It is convenient to measure
quantities r, qo, t in terms of the Schwarzschild radius 2m
[6] and use x instead of r , to rewrite the metric (7) as

ds2 = −A(x)dt2 + B(x)dx2

+C(x)
(
dθ2 + sin2 θdφ2

)
, (12)

where

A(x) = 1

B(x)
= 1 − 1

x
+ q

x
ln(x), C(x) = x2, (13)

and q = qo/2m. For our study of lensing we shall restrict
the value of q in the range −1 ≤ q ≤ 0. In addition to
curvature scalar polynomial singularity at x = 0 the metric
(12) is also singular at points where A(x) = 0, which are
coordinate singularities and the corresponding surfaces are
called horizons. In the domain −1 ≤ q < 0, a simple root
analysis of A(x) = 0 implies existence of two positive roots
(x±), corresponding to the Cauchy (x−) and event horizon
(x+), given by

x− = q ProductLog

[
exp (1/q)

q

]
, x+ = 1, (14)

where ProductLog (z), for arbitrary z, is defined as the prin-
cipal solution of the equation w exp (w) = z.

The metric (12) always has a horizon at x = 1, irrespec-
tive of the value of the parameter q. For 0 ≤ q < ∞, the
metric (12) has only one horizon namely event horizon fixed
at radius x = 1 (cf. Fig. 1). For −1 ≤ q < 0, unlike the
Schwarzschild spacetime, it displays two horizons (Cauchy
and event) (cf. Fig. 1). The event horizon (x+) is fixed at
the radius x = 1, while Cauchy horizon (x−) increases with
decreasing q and merges with the event horizon (x+) in the
limit q → −1 (cf. Fig. 2). Since the metric (12) has curvature
singularity at x = 0, the existence of horizon for any value of
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Fig. 2 The event horizon x+ (solid line) and Cauchy horizon x−
(dashed line) for black holes in Horndeski gravity

q means the cosmic censorship hypothesis [61] is respected
for hairy black hole in Horndeski gravity.

The strong field gravitational lensing is governed by
deflection angle and lens equation. For this, we first observe
that a light-like geodesic of the metric (12) admits two con-
stants of motion, namely the energyE = −pμξ

μ

(t) and angular

momentumL = pμξ
μ

(φ), where ξ
μ

(t) and ξ
μ

(φ) are, respectively,
the Killing vectors due to time-translational and rotational
invariance. The null geodesic equation satisfies ds2 = 0,
which gives
(
dx

dτ

)2

≡ ẋ2 = E2 − L2A(x)

C(x)
. (15)

The static and spherically symmetric compact objects with
a strong gravitational field in general relativity have circular
photon orbits called photon spheres. The photon sphere being
one of the crucial character for strong gravitational lensing [4,
6] does not evolve with time, or in other words, null geodesic
initially tangent to the photon sphere hypersurface remains
tangent to it. The radius of photon sphere, xps is the greatest
positive solution of the equation [6,16]

C ′(x)
C(x)

= A′(x)
A(x)


⇒ xps

= 3q

2
ProductLog

[
2exp ( 1

3 + 1
q )

3q

]
. (16)

From Fig. 4, we observe that when q → 0, we recover the
photon sphere radius, xps = 1.5 for the Schwarzschild black
hole spacetime [6]. The radial effective potential from Eq.
(15), takes the form

Veff(x)

E2 = u2

x2

[
1 − 1

x
+ q

x
ln(x)

]
− 1, (17)

which describes different kinds of possible trajectories. By
solving Veff(x0) = 0 and recognising the ratio L/E as the
impact parameter, we get the expression for impact parameter

u in terms of the closest approach distance x0 as follows [6]

u ≡ L
E =

√
C(x0)

A(x0)
. (18)

Photons, coming from the far distance source, approach the
black hole with some impact parameter and get deflected
symmetrically to infinity, meanwhile reaching a minimum
distance (x0) near the black hole.

It turns out that light ray exist in the region whereVeff(x) �
0 (cf. Fig. 3). Further, one can define an unstable (or a sta-
ble circular orbit) satisfying Veff(x) = V ′

eff(x) = 0 and
V ′′

eff(xps) < 0 (or V ′′
eff(xps) > 0). Next, the first and sec-

ond derivative of Veff(x) are

V ′
eff(x)

E2 = u2

x4 [3 + q − 2x − 3q ln(x)] , (19)

V ′′
eff(x)

E2 = −u2

x5
[12 + 7q − 6x − 12q ln(x)] . (20)

For the hairy black hole in Horndeski gravity we find that
V ′′

eff(xps) < 0, which corresponds to the unstable photon
circular orbits (cf. Fig. 3). These photon circular orbits are
unstable [62] against small radial perturbations, which would
finally drive photons into the black hole or toward spatial
infinity.

The deflection angle becomes unboundedly large at x0 =
xps and is finite only for x0 > xps . The critical impact param-
eter u ps is defined as

u ps =
√
C(xps)

A(xps)
, (21)

and depicted in Fig. 4. The photons with impact parameter
u < u ps fall into the black hole, while photons with impact
parameter u > u ps , reaching the minimum distance x0 near
the black hole, are scattered to infinity. The photons only with
impact parameter exactly equal to the critical impact param-
eter u ps revolve around the black hole in unstable circular
orbits and generate a photon sphere of radius xps .

The deflection angle for the spacetime (12) is given by
[6,16]

αD(x0) = I (x0) − π = 2
∫ ∞

x0

√
B(x)dx

√
C(x)

√
C(x)A(x0)
C(x0)A(x) − 1

− π,

(22)

where x0 is the closest approach distance of the winding
photon. Following Bozza [6,16], we define a variable z = 1−
x0/x and exploring the relation between the impact parameter
u and closest approach distance x0 in Eq. (18), we find the
deflection angle in strong field limit yields
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Fig. 3 Variation of the effective potential Veff as a function of radial coordinate x , for different values of q and u. The photons with critical impact
parameter (u ps ) (black solid curve) make unstable circular orbits

αD(u) = −ā log

(
u

u ps
− 1

)

+b̄ + O(u − u ps) log(u − u ps), (23)

where u ≈ θDOL . The coefficients ā and b̄ for the case of
hairy black hole in Horndeski gravity are given by

ā = 1√
1 + 3

2
q
xps

,

b̄ = −π + bR + ā log

[
2p2(xps)

A(xps)

]
, (24)

bR =
∫ 1

0
[R(z, xps) f (z, xps)

−R(0, xps) f0(z, xps)]dz, (25)

R(z, x0) = 2x2√ABC0

x0C
= 2,

f (z, x0) = 1√
A0 − AC0

C

, (26)

f0(z, x0) = 1√
p1(x0)z + p2(x0)z2

, (27)

p1(x0) = 3q log (x0) + 2x0 − q − 3

x0
, (28)

p2(x0) = −6q log (x0) − 2x0 + 5q + 6

2x0
. (29)

The deflection angle for the hairy black hole (12) is
depicted in Fig. 6, which is monotonically decreasing and
αD → ∞ as u → u ps . When compared with the
Schwarzschild black hole (cf. Fig. 6), the deflection angle
for the hairy black hole increases with the increasing mag-
nitude of q. A light ray whose u is close enough to u ps can
pass close to the photon sphere and go around the lens once,
twice, thrice, or many times before reaching the observer.
Thus strong gravitational field, in addition to the primary

and secondary images, can give a large number (theoreti-
cally an infinite sequence) of images on both sides of the
optic axis, which is the line joining the observer and the
lens. The two infinite sets of relativistic images correspond
to clockwise winding around the black hole and the other
produced by counterclockwise winding. When x0 ≈ xps ,
the coefficient p1(x0) vanishes and the leading term of the
divergence in f0(z, x0) is z−1 [6], thus the integral diverges
logarithmically. The coefficient bR is evaluated numerically.
The coefficient ā decreases while b̄ increases at first and then,
reaching its maximum at q ≈ −0.45 (cf. Fig. 5), decreases.
The coefficients ā = 1 and b̄ = −0.4002 [6] correspond to
the case of the Schwarzschild black hole (cf. Table 1).

The strong deflection limit is adopted for the (approxi-
mate) analytic calculations, in which the deflection angle is
given by Eq. (23), with the coefficients ā and b̄ depending
on the specific form of the metric (Fig. 6). The lens equa-
tion geometrically governs the connection between the lens
observer and the light source. We assume that the source
and observer are far from the black hole (lens) and they are
perfectly aligned; the equation for small lensing angle reads
[63]

β = θ − DLS

DOS
�αn, (30)

where �αn = α − 2nπ is the offset of deflection angle
looping over 2nπ and n is an integer. Here, β and θ are
the angular separations between the source and the black
hole, and the image and the black hole respectively. DOL

and DOS are, respectively, the distance between the observer
and the lens and the distance between the observer and the
source. Using the Eqs. (23) and (30), the position of the n-th
relativistic image can be approximated as [6]

θn = θ0
n + u psen(β − θ0

n )DOS

āDLSDOL
, (31)
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Fig. 4 The behavior of the photon sphere radius xps (left) and the critical impact parameter u ps (right) as a function of the hair parameter q. As
q → 0, the values xps → 1.5 and u ps → 2.598 correspond to the Schwarzschild black hole

Fig. 5 The behavior of strong lensing coefficients ā and b̄ as a function of the hair parameter q. ā = 1 and b̄ = −0.4002 at q = 0 correspond to
the values Schwarzschild black hole

where

en = exp

(
b̄ − 2nπ

ā

)
, (32)

θ0
n are the image positions corresponding to α = 2nπ . As

gravitational lensing conserves surface brightness, the mag-
nification is the quotient of the solid angles subtended by the
nth image, and the source [4,6,64]. The magnification of nth
relativistic image is thus given by [6]

μn =
(

β

θ

dβ

dθ

)−1 ∣∣∣∣
θ0
n

= u2
psen(1 + en)DOS

āβDLSD2
OL

. (33)

The first relativistic image is the brightest one, and the magni-
fications decrease exponentially with n. The magnifications
are proportional to 1/D2

OL , which is a very small factor and
thus the relativistic images are very faint, unless β has values
close to zero, i.e. nearly perfect alignment.

If θ∞ represents the asymptotic position of a set of images
in the limit n → ∞, we consider that only the outermost
image θ1 is resolved as a single image and all the remain-

Table 1 Estimates for the strong lensing coefficients ā, b̄ and the critical
impact parameter u ps/Rs for the hairy black hole in Horndeski gravity.
The values at q = 0 corresponds to the Schwarzschild black hole. ā, ā
are dimensionless whereas um is in the units of Schwarzschild radius
Rs = 2GM/c2

q Lensing coefficients

ā b̄ u ps/Rs

0 1.0000 −0.40023 2.59808

−0.2 1.11557 −0.289002 2.83714

−0.4 1.27196 −0.217103 3.15179

−0.6 1.48241 −0.259327 3.58493

−0.8 1.71709 −0.484924 4.20506

−1.0 1.82457 −0.647521 5.0838

ing ones are packed together at θ∞. Having obtained the
deflection angle (23) and lens equation (30) we calculate
three observables of relativistic images (cf. Table 2), angular
position of the asymptotic relativistic images (θ∞), angular
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Fig. 6 a (Left) The Variation of deflection angle as a function of impact
parameter u for different values of the parameter q. Points on the hor-
izontal axis represent the values of the impact parameter u = u ps at

which the deflection angle diverges. b (Right) Deflection angles evalu-
ated at u = u ps + 0.001 as function of the parameter q

Fig. 7 The behavior of lensing observables θ∞ (left), s (right) as a function of hair parameter q in strong field limit by considering the supermassive
black holes at the centres of nearby galaxies as hairy black holes in Horndeski gravity

Table 2 Estimates for the lensing observables of primary images for
black holes in Horndeski gravity and compared with Schwarzschild
black (q = 0) in GR considering the supermassive black holes Sgr A*,

M87*, NGC 4649, and NGC 1332 as lens. The observable rmag does not
depend upon the mass or distance of the black hole from the observer

q Sgr A* M87* NGC 4649 NGC 1332 rmag

θ∞(μas) s(μas) θ∞(μas) s(μas) θ∞(μas) s(μas) θ∞(μas) s(μas)

0.0 26.3299 0.0329517 19.782 0.0247571 14.6615 0.0183488 7.76719 0.00972061 6.82188

−0.2 28.7526 0.0794533 21.6023 0.0596944 16.0106 0.0442427 8.4819 0.0234384 6.11514

−0.4 31.9414 0.192717 23.998 0.144791 17.7862 0.107312 9.42256 0.0568506 5.36327

−0.6 36.331 0.440102 27.296 0.330656 20.2305 0.245066 10.7175 0.129828 4.60187

−0.8 42.6156 0.827456 32.0177 0.62168 23.7301 0.46076 12.5714 0.244096 3.97294

−1.0 51.5211 1.15426 38.7086 0.867213 28.689 0.642738 15.1985 0.340502 3.73889
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separation between the outermost and asymptotic relativis-
tic images (s) and relative magnification of the outermost
relativistic image with other relativistic images (rmag) [6,65]

θ∞ = u ps

DOL
, (34)

s = θ1 − θ∞ = θ∞ exp

(
b̄

ā
− 2π

ā

)
, (35)

rmag = 5π

ā log(10)
. (36)

The strong deflection limit coefficients ā, b̄ and the critical
impact parameter u ps can be obtained after measuring s, rmag

and θ∞. Then, comparing their values with those predicted
by the theoretical models, we can identify the nature of the
hairy black holes (lens).

4 Time delay in strong field limit

The time difference is caused by the photon taking differ-
ent paths while winding the black hole, so there is a time
delay between different images, which generally depends
upon which side of the lens, the images are formed. If we
can distinguish the time signals of the first image and other
packed images, we can calculate the time delay of two sig-
nals [66]. The time spent by the photon winding the black is
given by [66]

T̃ (u) = ã log

(
u

u ps
− 1

)
+ b̃ + O(u − u ps). (37)

The images are highly demagnified, and the separation
between the images is of the order of μas, so we must at
least distinguish the outermost relativistic image from the
rest, and we assume the source to be variable, which gener-
ally are abundant in all galaxies, otherwise, there is no time
delay to measure. The time delay when two images are on
the same side is [66]

�T s
n,m = 2π(n − m)

ã

ā
+ 2

√
B(xps)u ps
A(xps)c

×
[

exp

(
b̄ − 2mπ ± β

2ā

)
− exp

(
b̄ − 2nπ ± β

2ā

)]
.

(38)

The upper sign before β signifies that both the images are on
the same side of the source and the lower sign if the images are
on the other side. When the images are on the opposite sides
of lens, the time dilation between mth and nth relativistic
image is give

�T o
n,m = [2π(n − m) − 2β] ã

ā
+ 2

√
B(xps)u ps

A(xps)c

×
[

exp

(
b̄ − 2mπ + β

2ā

)
− exp

(
b̄ − 2nπ + β

2ā

)]
. (39)

The contribution of second term in Eqs. (38) and (39) is very
small. For spherically symmetric black holes, the time delay
between the first and second relativistic image is given by

�T s
2,1 = 2πu ps = 2πDOLθ∞. (40)

Using Eq. (40), if we can measure the time delay with an
accuracy of 5% and critical impact parameter with negligi-
ble error, we can get the distance of the black hole with an
accuracy of 5%. In Table 3, we compare the values of time
delay between the first and second relativistic image consid-
ering the black hole at the center of several nearby galaxies
to be Schwarzschild black hole and hairy black hole in Horn-
deski gravity at q = −0.5.

5 Gravitational lensing parameters for supermassive
black holes

The EHT collaboration has revealed the first direct image of
the black hole M87*, which is as per the shadow of a Kerr
black hole of general relativity, i.e., it may not be as per a
nonrotating black hole [28]. The inferred size of the shadow
of M87* and the inferred circularity deviation �C ≤ 10%
for the M87* black hole agree with the prediction based on a
Kerr black hole. However, this deviation from the circularity
of the shadow happens when the black hole is rapidly rotating
spin a ≈ 1, i.e., the shadow cast by rotating black holes is
more or less circular when a takes a smaller value [67–69].
As shown in Ref. [70], the constraints on the a in the modified
theories of gravity shadow are only slightly changing when
the nonrotating hairy metrics are used. One can also use the
EHT observation results to test these nonrotating hairy black
holes. Hence, we model the supermassive black holes in the
nearby galaxies especially Sgr A*, M87*, NGC4649 and
NGC1332 as the hairy black hole to estimate and compare
the observables with those of Schwarzschild black hole of
GR.

Using Eq. (30), we compute the angular positions for first
and second order relativistic primary and secondary images;
the images on the same and opposite sides of the source
respectively, taking d = DLS/DOS = 0.5, for Sgr A* and
M87* black holes. First (Second) order relativistic images
are produced after the light winds, once (twice) around the
black hole before reaching the observer. From the results in
Tables 4 and 5 it shows that in the Horndeski gravity the
angular positions of images are larger than their correspond-
ing values in GR and are very insensitive to the position of
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Table 3 Estimation of time
delay for supermassive black
holes at the center of nearby
galaxies in the case
Schwarzschild and hairy black
holes in Horndeski gravity
(q = −0.5). Mass (M) and
distance (DOL ) are given in the
units of solar mass and Mpc,
respectively. Time Delays are
expressed in minutes

Galaxy M(M) DOL (Mpc) M/DOL �T s
2,1(Schw.) �T s

2,1(Hairy)

Milky Way 4.3 × 106 0.0083 2.471 × 10−11 11.4968 14.8236

M87 6.15 × 109 16.68 1.758 × 10−11 16443.1 21201.2

NGC 4472 2.54 × 109 16.72 7.246 × 10−12 6791.11 8756.28

NGC 1332 1.47 × 109 22.66 3.094 × 10−12 3930.29 5067.61

NGC 4374 9.25 × 108 18.51 2.383 × 10−12 2473.14 3188.8

NGC 1399 8.81 × 108 20.85 2.015 × 10−12 2355.5 3037.12

NGC 3379 4.16 × 108 10.70 1.854 × 10−12 1112.25 1434.1

NGC 4486B 6 × 108 16.26 1.760 × 10−12 1604.2 2068.41

NGC 1374 5.90 × 108 19.57 1.438 × 10−12 1577.46 2033.94

NGC 4649 4.72 × 109 16.46 1.367 × 10−12 12619.7 16271.5

NGC 3608 4.65 × 108 22.75 9.750 × 10−13 1243.26 1603.02

NGC 3377 1.78 × 108 10.99 7.726 × 10−13 475.913 613.629

NGC 4697 2.02 × 108 12.54 7.684 × 10−13 540.081 696.365

NGC 5128 5.69 × 107 3.62 7.498 × 10−13 152.132 196.154

NGC 1316 1.69 × 108 20.95 3.848 × 10−13 451.85 582.603

NGC 3607 1.37 × 108 22.65 2.885 × 10−13 366.292 472.287

NGC 4473 0.90 × 108 15.25 2.815 × 10−13 240.63 310.262

NGC 4459 6.96 × 107 16.01 2.073 × 10−13 186.087 239.936

M32 2.45 × 106 0.8057 1.450 × 10−13 6.55048 8.44601

NGC 4486A 1.44 × 107 18.36 3.741 × 10−14 38.5008 49.6419

NGC 4382 1.30 × 107 17.88 3.468 × 10−14 34.7577 44.8156

CYGNUS A 2.66 × 109 242.7 1.4174 × 10−15 7111.95 9169.96

Table 4 Image positions of first
and second order primary and
secondary images due to lensing
by Sgr A* with
d = DLS/DOS = 0.5: GR and
Horndeski Gravity (q = −0.5)

predictions for angular positions
θ of primary (p) and secondary
images (s) are given for
different values of angular
source position β. (a) All values
of θ are in μas. (b) We have
used MSgr A* = 4.3 × 106 M,
DOL = 8.3 × 106 pc

β(as) Horndeski gravity General relativity

θ1p,HG θ2p,HG θ1s,HG θ2s,HG θ1p,GR θ2p,GR θ1s,GR θ2s,GR

0 34.2444 33.952 −34.2444 −33.952 26.3628 26.3299 −26.3628 −26.3299

100 34.2444 33.952 −34.2444 −33.952 26.3628 26.3299 −26.3628 −26.3299

101 34.2445 33.952 −34.2444 −33.952 26.3628 26.3299 −26.3628 −26.3299

102 34.2446 33.952 −34.2442 −33.952 26.3628 26.3299 −26.3628 −26.3299

103 34.2465 33.952 −34.2423 −33.952 26.3631 26.3299 −26.3625 −26.3299

104 34.2653 33.9522 −34.2235 −33.9518 26.366 26.3299 −26.3596 −26.3299

Table 5 Image positions of first
and second order primary and
secondary images due to lensing
by M87* with
d = DLS/DOS = 0.5: GR and
Horndeski Gravity (q = −0.5)

predictions for angular positions
θ of primary (p) and secondary
images (s) are given for different
values of angular source
position β. (a) All values of θ

are in μas. (b) We have used
MM87* = 6.5×109 M, DOL =
16.8 × 106 pc

β(as) Horndeski gravity General relativity

θ1p,HG θ2p,HG θ1s,HG θ2s,HG θ1p,GR θ2p,GR θ1s,GR θ2s,GR

0 25.7284 25.5087 −25.7284 −25.5087 19.8068 19.7821 −19.8068 −19.7821

100 25.7284 25.5087 −25.7284 −25.5087 19.8068 19.7821 −19.8068 −19.7821

101 25.7284 25.5087 −25.7283 −25.5087 19.8068 19.7821 −19.8068 −19.7821

102 25.7285 25.5087 −25.7282 −25.5087 19.8068 19.7821 −19.8068 −19.7821

103 25.7299 25.5087 −25.7268 −25.5086 19.807 19.7821 −19.8065 −19.7821

104 25.7441 25.5088 −25.7127 −25.5085 19.8092 19.7821 −19.8044 −19.7821
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Table 6 Magnifications of first order and second order relativistic
images due to lensing by Sgr A* with d = DLS/DOS = 0.5: GR
and Horndeski Gravity (q = −0.5) predictions for magnifications
μn is given for different values of angular source position β. (a)
1p and 1s refer to first order relativistic images on the same side

as primary and secondary images, respectively. (b) We have used
MSgr A* = 4.3 × 106 m, DOL = 8.3 × 106 pc (c) Angular positions of
first order relativistic images in GR and Horndeski Gravity are, respec-
tively, θ1p,GR ≈ −θ1s,GR ≈ 26.3628μas and θ1p,HG ≈ −θ1s,HG ≈
34.244μas and are highly insensitive to the angular source position β

β Horndeski gravity General relativity

μ1p,HG μ2p,HG μ1s,HG μ2s,HG μ1p,GR μ2p,GR μ1s,GR μ2s,GR

100 7.2458 × 10−11 7.32635 × 10−13 −7.2458 × 10−11 −7.32635 × 10−13 8.52495 × 10−12 1.59 × 10−14 −8.52495 × 10−12 −1.59 × 10−14

101 7.2458 × 10−12 7.32635 × 10−14 −7.2458 × 10−12 −7.32635 × 10−14 8.52495 × 10−13 1.59 × 10−15 −8.52495 × 10−13 −1.59 × 10−15

102 7.2458 × 10−13 7.32635 × 10−15 −7.2458 × 10−13 −7.32635 × 10−15 8.52495 × 10−14 1.59 × 10−16 −8.52495 × 10−14 −1.59 × 10−16

103 7.2458 × 10−14 7.32635 × 10−16 −7.2458 × 10−14 −7.32635 × 10−16 8.52495 × 10−15 1.59 × 10−17 −8.52495 × 10−15 −1.59 × 10−17

104 7.2458 × 10−15 7.32635 × 10−17 −7.2458 × 10−15 −7.32635 × 10−17 8.52495 × 10−16 1.59 × 10−18 −8.52495 × 10−16 −1.59 × 10−18

Table 7 Magnifications of first and second order relativistic images
due to lensing by M87* with d = DLS/DOS = 0.5: GR and Horn-
deski Gravity (q = −0.5) predictions for magnifications μn is given
for different values of angular source position β. (a) 1p and 1s refer
to first order relativistic images on the same side as primary and sec-

ondary images, respectively. (b) We have used MM87* = 6.5 × 109 m,
DOL = 16.8 × 106 pc. (c) Angular positions of first order relativis-
tic images in GR and Horndeski Gravity are, respectively, θ1p,GR ≈
−θ1s,GR ≈ 19.8068μas and θ1p,HG ≈ −θ1s,HG ≈ 25.7284μas and
are highly insensitive to the angular source position β

β Horndeski gravity General relativity

μ1p,HG μ2p,HG μ1s,HG μ2s,HG μ1p,GR μ2p,GR μ1s,GR μ2s,GR

100 4.04123 × 10−11 4.08616 × 10−13 −4.04123 × 10−11 −4.08616 × 10−13 4.75466 × 10−12 8.86797 × 10−15 −4.75466 × 10−12 −8.86797 × 10−15

101 4.04123 × 10−12 4.08616 × 10−14 −4.04123 × 10−12 −4.08616 × 10−14 4.75466 × 10−13 8.86797 × 10−16 −4.75466 × 10−13 −8.86797 × 10−16

102 4.04123 × 10−13 4.08616 × 10−15 −4.04123 × 10−13 −4.08616 × 10−15 4.75466 × 10−14 8.86797 × 10−17 −4.75466 × 10−14 −8.86797 × 10−17

103 4.04123 × 10−14 4.08616 × 10−16 −4.04123 × 10−14 −4.08616 × 10−16 4.75466 × 10−15 8.86797 × 10−18 −4.75466 × 10−15 −8.86797 × 10−18

104 4.04123 × 10−15 4.08616 × 10−17 −4.04123 × 10−15 −4.08616 × 10−17 4.75466 × 10−16 8.86797 × 10−19 −4.75466 × 10−16 −8.86797 × 10−19

the source β. The angular positions θ1p > |θ1s | for higher
values of β, however, for small values of β the values are
extremely close. The same is true for any pair of second or
higher order relativistic images. In Horndeski gravity the first
and second order primary images are about 7.8 and 7.6 μas
larger than their corresponding values in GR at q = −0.5, an
effect too tiny to be observed with today’s telescopes, espe-
cially since these relativistic images are highly demagnified.
However the deviation becomes significant at higher magni-
tude of q and the next generation telescope (ngEHT) which
renders these observables, the deviations could be used to
test Horndeski gravity.

The characteristic observables which include position of
the innermost image θ∞ and the separation s, are depicted
in Fig. 7 and tabulated in Table 2. Considering the Sgr A*
and M87* as the lens we find that these observables vary
rapidly with parameter q; with θ∞ ranging in between 26.33
and 51.52 μas for Sgr A* and 19.78 and 38.71 μas for M87*
and the latter are consistent with the EHT measured diame-
ters of M87* shadow 42 ± 3 μas. The deviation from their
GR counterpart are quite significant and can reach as much
as 25.1912 μas for Sgr A* and 18.92μas for M87*. Fur-
ther, the separation s due to hairy black holes for Sgr A*
and M87* range between 0.0329 and 1.15426 μas and 0.024
and 0.867 μas, respectively. We also obtain these results for

Fig. 8 The behavior of strong lensing observable rmag as function of
the parameter q. It is independent of the black holes mass or its distance
from the observer

NGC 4649 and NGC 1332 and found that the deviation is
also of the order of O(μ)as. As the deviation of position of
the images are quite significant at higher magnitude of q and
these images could be resolved, it is possible to measure the
brightness difference. The relative magnification of the first
and second order images of Tables 4 and 5 are tabulated in
Tables 6 and 7 using Eq. (33) for black holes in GR and
Horndeski gravity at (q = −0.5). The first order images
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Fig. 9 The behaviour of lensing Observables θ∞, s for quartic Horn-
deski black holes (QH), charged Horndeski black holes (CH), Horn-
deski black holes (NH) and charged Galilleon black holes (CG) with
q by modelling them as Sgr A* black hole (left) and M87* black hole

(right). The parameter q is qe, γ and � for charged Horndeski black
holes, Horndeski black holes and charged Galilleon black holes, respec-
tively

in Horndeski gravity are highly magnified than the second
order images as well the corresponding images in GR. How-
ever, the ratio of the flux of the first image to the all other
images rapidly decreases with decreasing q implying that the
Schwarzschild images are brighter than the hairy black holes
in Horndeski gravity (cf. Fig. 8). We have also depicted the
differences between the quartic Horndeski black holes (12)
from those of charged Horndeski black holes [60], Horn-
deski black holes [51] and charged Galileon black holes [59]
in Fig. 9 for Sgr A* and M87* (see also, Table 8). We have
measured all the distances in terms of Schwarzschild radius
and used, respectively, q2

e = Q/(4M2), γ 2 = γ̃ /(4M2) and
�2 = �̃/(4M2) for charged Horndeski black holes, Horn-
deski black holes, charged Galileon black holes. The charged
Galileon black holes are indistinguishable from the charged
Horndeski black holes, for most of the values of q (cf. Fig. 9).
In general, these three black holes, are potentially different
from those of quartic Horndeski black holes. For a given neg-
ative value of q, the quartic Horndeski black hole possesses

the largest values of θ∞ and s. Contrary to these observ-
ables, the brightness difference rmag is smallest for the quartic
Horndeski black hole (cf. Fig. 10). The observables of quar-
tic Horndeski black holes deviate from the three black holes
(cf. Figs. 9, 10), but the absolute deviation is ofO(μas) when
−0.4 < q < 0 (cf. Table 9). For large q, the deviation of θ∞
could be more than 10μas but this value of q is not allowed
by EHT observation of M87*. Finally, we use fourteen super-
massive black holes, which considerably differ from Sgr A*
and M87*, to calculate the time delays between the first and
second-order relativistic primary images �T s

2,1 in Table 3.
For Sgr A* and M87*, the time delay can reach ∼ 14.82 min
and ∼ 21201.2 min at q = −0.5 and hence deviate from
their corresponding black hole in GR by ∼ 3.32 min and
∼ 4758.1 min. Although these deviations are insignificant
for Sgr A* but for M87* and other black holes, these are
sufficient values to test and compare the Horndeski gravity
from GR.
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Table 8 The lensing Observables θ∞, s, rmag, lensing coefficients ā, b̄ and critical impact parameter um for QH, CH, NH and CG by modelling
them as Sgr A* and M87* black holes. rmag , ā, b̄ are dimensionless whereas um is in the units of Schwarzschild radius Rs = 2GM/c2

QH CH NH CG

q = −0.1 q = −0.2 qe = −0.1 qe = −0.2 γ = −0.1 γ = −0.2 � = −0.1 � = −0.2

Sgr A*

θ∞(μas) 27.4645 28.7526 26.153 25.6056 26.5041 27.0114 26.1529 25.6044

s(μas) 0.0510219 0.0794533 0.0333325 0.0346314 0.0321872 0.0301558 0.033335 0.0346784

M87*

θ∞(μas) 20.6345 21.6023 19.6492 19.2378 19.9129 20.2941 19.6491 19.2369

s(μas) 0.0383335 0.0596944 0.0250432 0.0260191 0.0241827 0.0226565 0.0250451 0.0260544

rmag 6.47466 6.11514 6.80639 6.75556 6.85161 6.93431 6.806289 6.75366

um/Rs 2.71004 2.83714 2.58063 2.52661 2.61526 2.66533 2.580619 2.52649

ā 1.05363 1.11557 1.00228 1.00982 0.995661 0.983787 1.00229 1.0101

b̄ −0.342441 −0.289002 −0.397167 −0.387468 −0.40117 −0.404246 −0.397192 −0.387932

Table 9 The lensing observables θ∞, s and rmag for QH, CH, NH and
CG at q = −0.139322 and Schwarzschild black hole (SC) by mod-
elling them as Sgr A* and M87*. The deviation of these black holes

(BHs) from quartic Horndeski black hole at q = −0.139322 have also
been calculated where δ(〈BH〉) = XQH − X〈BH〉 with 〈BH〉 = SC, CH,
NH, CG

QH SC δ(SC) CH δ(CH) NH δ(NH) CG δ(CG)

Sgr A*

θ∞(μas) 27.95099 26.32986 1.621128 25.9841 1.966896 26.66559 1.285399 25.98384 1.967157

s(μas) 0.060697 0.032951 0.027745 0.033713 0.0269838 0.0315101 0.0291868 0.0337230 0.0269739

M87*

θ∞(μas) 21.00 19.782 1.217978 19.52224 1.477758 20.03426 0.965739 19.52205 1.477955

s(μas) 0.0456025 0.024757 0.020845 0.0253292 0.0202733 0.0236740 0.0219285 0.025336 0.0202659

Fig. 10 The behavior of strong lensing observable rmag for quartic
Horndeski black holes (QH), charged Horndeski black holes (CH),
Horndeski black holes (NH) and charged Galilleon black holes (CG).
The parameter q is qe, γ and � for charged Horndeski black holes,
Horndeski black holes and charged Galilleon black holes, respectively

5.1 Constraint on the parameter q from EHT observations
of M87*

The EHT observation unveiled event-horizon-scale images of
the supermassive black hole M87* as an asymmetric bright

emission ring with a size of a diameter of 42 ± 3 μas, and it
is consistent with the shadow of a Kerr black hole of general
relativity. The EHT data indicated a mass for the M87* black
hole of (6.5 ± 0.7) × 109M. It offers a new and powerful
gravitational test of the black-hole metric in the strong-field
regime [70].
The spacetimes that deviate from the Kerr metric can lead
to significant deviations in the predicted black-hole shad-
ows inconsistent with even the current EHT measurements.
The shadow-size measurements place significant constraints
on deviation parameters that control each black hole metric
[70–73]. The EHT observation disfavors a nonrotating black
hole M87*, and the inferred size of the shadow of M87* is
indeed consistent with the prediction based on a Kerr black
hole. However, the size of the black-hole shadow both in
the Kerr metric and in other parametric extensions depends
very weakly on the black-hole spin [67,70]. It turns out that
the constraints on the parameters in the modified theories
of gravity deduced EHT observations do have slight change
for the nonrotating metrics [70]. Thereby, the EHT observa-
tion can also be adopted to test these hairy black holes in
the Horedenski theory appropriately. The observables in the
strong deflection gravitational lensing contain the apparent
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radius of the photon sphere (the angular size of the shadow)
θ∞. Taking M87* as the lens with EHT observation, we find
its observable θ∞ for the hairy black holes in the Horndeski
theory and find that the angular radius of the shadows θ∞
range from 19.86271 μas < θ∞ < 25.5064 μas only when
−0.5 < q < 0.0. Indeed, we find that 39 μas < 2θ∞ <

45 μas only when −0.281979 < q < 0.0, i.e., the mea-
sured diameter 42 ± 3 μas of the M87* shadow by EHT
constraint the parameter q, and for q = −0.139322, we find
that 2θ∞ = 42 μas. Thus, requiring that the shadow size is
consistent to within 1σ bound, the 2017 EHT observation for
M87* places a bound on the deviation parameter q.

6 Conclusion

One of the most renowned scalar–tensor theories is Horn-
deski gravity, in which scalar fields constitute additional
degrees of freedom and is the most general four-dimensional
scalar–tensor theory with equations of motion containing
second-order derivatives of the dynamical fields. We have
investigated gravitational lensing effects of spherically sym-
metric hairy black holes in Horndeski gravity having addi-
tional parameter q and also consider the predictions of Horn-
deski gravity for lensing effects by supermassive black holes
Sgr A*, M87* and 21 others in comparison with GR. We
examined the effect of the parameter q on the light deflection
angle αD , strong lensing coefficients ā, b̄ and lensing observ-
ables θ∞, s, rmag, u ps and time delay �T s

2,1 in the strong-field
regime, due to the hairy black hole in Horndeski gravity and
compared them to the Schwarzschild (q = 0) black hole of
GR. We found that ā and u ps increase monotonically with
increasing magnitude of q while b̄ first increases, reaching
its maximum at q ≈ −0.45, and then decreases. The numer-
ical values, in our selected range of q, are positive for ā
while negative for b̄. We found that deflection angle αD , for
fixed impact parameter u, is greater for the hairy black hole
in Horndeski gravity when compared to the Schwarzschild
black hole and increases with the increasing magnitude of q.
Also, the photon sphere radius xps increases with decreas-
ing q, making bigger photon spheres in the hairy black hole
in Horndeski gravity when compared to the Schwarzschild
black holes of GR.

We calculated lensing observables θ∞, s and rmag of the
relativistic images for supermassive black holes, namely,
Sgr A*, M87*, NGC 4649 and NGC 1332 by considering
the spacetime to be described by the hairy black hole in
Horndeski gravity. In its predictions for gravitational lensing
due to supermassive black holes, Horndeski gravity exhibits
potentially observable departures from GR. The presence of
parameter q rapidly increases θ∞ and s when compared to
the Schwarzschild (q = 0) black hole. We observe that θ∞
ranges between 26.33 and 51.52 μas for Sgr A* and its devi-

ation from its GR counterpart can reach as much as 25.1912
μas while as for M87* it ranges between 19.78 and 38.71 μas
and deviation is as high as 18.92μas. On the other hand the
seperation s due to hairy black holes for Sgr A* and M87*
range between 0.0329 and 1.15426 μas and 0.024 and 0.867
μas, respectively. In the limit, q → 0, our results reduce
exactly to the Schwarzschild black hole results. The angular
positions of images though are very insensitive to the posi-
tion of the source β with θ1p > |θ1s | at higher values. θ1p

and θ2p, which are the angular positions of first and sec-
ond order primary images are 7.8 μas and 7.6 μas larger
than their corresponding values in GR at q = −0.5. The
first order images in Horndeski gravity are highly magnified
than the corresponding images in GR. However, rmag rapidly
decreases with q suggesting that the Schwarzschild images
are brighter than the hairy black holes in Horndeski gravity.
Finally, the time delay of the first and second order images for
hairy black holes in Horndeski gravity is significantly larger
(e.g. ∼ 4758.1 min for M87* ) than the GR counterparts
for astronomical measurements, provided we have enough
angular resolution separating two relativistic images, except
for Sgr A* for which the deviation is ∼ 3.32 min; an effect
too tiny to be detected by EHT.

We have also investigated strong deflection gravitational
lensings by the Horndeski black holes and compared observ-
able signatures with those of the neutral Horndeski, Galileon
and charged Horndeski black holes via observation of the
supermassive black holes M87* and SgrA*. It may provide
hints for distinguishing these black holes and that it is possi-
ble to detect some effects of the strong deflection lensing by
the hairy Horndeski black holes and other black holes with
the EHT observations, but it is unconvincing to discern these
black holes as deviations are too small, i.e., O(μas).

Many interesting avenues are amenable for future work
from the hairy black holes in Horndeski gravity; most impor-
tantly is to consider the rotating black holes as there is obser-
vational evidence that black holes rotate. Our results will cer-
tainly be different in this case, and likely substantively for
near-extremal solutions. Also, it will be interesting to ana-
lyze the relationship between the null geodesics and thermo-
dynamic phase transition in AdS background in the context
photon sphere. Further, gravitational lensing in the strong
field may open fascinating perspectives for testing modified
theories of gravity and estimating the parameters associated
with the supermassive black holes.
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