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Abstract In Bakhmatov et al. (Phys. Rev. D 105(8):
L081904, 2022) we presented a modification of 11-dimensio
nal supergravity field equations which upon dimensional
reduction yields generalized supergravity equations in 10-
dimensions. In this paper we provide full technical details
of that result which is based on SL(5) exceptional field the-
ory. The equations are obtained by making a non-unimodular
tri-vector Yang-Baxter deformation which breaks the initial
local diffeomorphism symmetry in 11 dimensions down to
separate coordinate transformations in external 7 and inter-
nal 4 directions. We also give some non-trivial solutions to
these equations.

1 Introduction

M-theory, whose low energy limit is the 11-dimensional
(11D) supergravity, is a framework that connects all 5 super-
string theories under compactifications and dualities, and
membranes and 5-branes are its solitonic objects [2–4]. For a
supersymmetric membrane of M-theory, as for a supersym-
metric string of string theory, one has classically equivalent
options for writing an action:

1. spinning membrane/string – with manifest world-volume
supersymmetry [5–11],

2. supermembrane/superstring – with manifest target space-
time supersymmetry [12–15],
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3. double supersymmetric membrane/string – with manifest
spacetime and world-volume supersymmetry [16,17].

The first two approaches are the most common ones in
string theory and are known as Ramond–Neveu–Schwarz
(RNS) and Green–Schwarz (GS) formalism respectively. The
RNS spinning string is formulated in terms of a Polyakov
type action [7–11], where one introduces an auxiliary two-
dimensional world-volume metric. At the classical level it
can be fixed by the Weyl and diffeomorphism symmetries
of the action, which also must be preserved at the quantum
level. Vanishing of Weyl anomaly then imposes two sets of
conditions. The first one requires the target space of the the-
ory to be 10-dimensional (10D) whereas the latter sets the
beta functions of the background fields to zero. At one loop
level, which dominates the high string tension limit, this is
equivalent to the 10D supergravity equations [18–22].

Alternatively, the GS superstring is described by a super-
space generalization of the Nambu-Goto action [14,15]. In
this formalism the string propogates in a supersymmetric tar-
get space with 10 bosonic and 32 anticommuting coordinates
with supervielbein and super Kalb–Ramond fields set as a
background. The restriction on the dimension of the target
space again comes from the requirement of Weyl anomaly
cancellation. On-shell the GS superstring has 8 bosonic and
16 fermionic degrees of freedom, 8 of which have to be elim-
inated to ensure supersymmetry, which is done by imposing
κ-symmetry, whose job is to gauge away half of the prop-
agating fermions. The requirement of κ-invariance together
with Bianchi identities for the supertorsion and the superten-
sion condition for the super Kalb-Ramond field impose con-
straints that can be formulated in terms of a set of equations
for background fields. In [23] it has been shown that these
equations are a generalization of the usual 10D supergravity
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which are currently referred as the generalized 10D super-
gravity:

Rmn − 1

4
Hmpq Hn

pq + 2∇(m Zn) = Tmn,

− 1

2
∇k Hkmn + ZkHkmn + 2∇[m In] = Kmn,

R − 1

2
|H3|2 + 4(∇m Zm − Im Im − Zm Zm) = 0,

d ∗ Fp − H3 ∧ ∗Fp+2 − ιI B2 ∧ ∗Fp − ιI ∗ Fp−2 = 0,

(1)

where

Tmn = 1

4
e2Φ

∑

p

[
1

p! Fm
k1...kp Fnk1...kp − 1

2
gmn|Fp+1|2

]
,

Kmn = 1

4
e2Φ

∑

p

1

p! Fk1...kp Fmn
k1...kp .

(2)

We denote |ωp|2 = 1
p!ωi1...i pω

i1...i p for a p-form ωp and
Zm = ∂mΦ + I n Bnm . . The generalization is encoded in
the appearance of an additional vector Im in the field equa-
tions, which is a Killing vector for the background fields,
including the dilaton Φ. When Im = 0 we get the usual 10D
supergravity equations. From the point of view of the RNS
spinning string the requirement for the background fields to
satisfy equations of generalized supergravity rather than the
ordinary ones leads to breaking of Weyl symmetry to scale
symmetry [24]. Recently there has been attempts to restore
Weyl symmetry by generalizing the corresponding Fradkin–
Tseytlin counterterm, which however might suffer from non-
locality (for more details see [25,26]).

The narrative above is quite different from the his-
torical development of this subject which begins with
the works on integrable σ -models and their deformations
that preserve integrability such as: deformations of the
SU (2) principal chiral model [27], Yang–Baxter (YB) σ -
models on group manifolds [28,29], q-deformations of inte-
grable σ -models [30]. Particularly interesting results in
this respect are the integrability of the Metsaev–Tseytlin
superstring on the AdS5 × S

5 background [31] and its
integrable η-deformation [24,32]. The corresponding η-
deformed
AdS5 ×S

5 background has been found to violate 10D super-
gravity equations, but to preserve κ-invariance. Moreover, it
is formally T-dual to a solution of Type IIB supergravity equa-
tions, the so-called HT background [24,33,34]. All fields of
the HT background respect isometry generated by the Killing
vector Im except the dilaton. Finally, in [24] the 10D gener-
alized supergravity equations satisfied for such backgrounds

were proposed and then derived in [23] from the κ-invariance
constraints.

In comparison to the spinning string, the situation for the
spinning membrane of M-theory is significantly different
as there is no Weyl symmetry to fix the auxiliary world-
volume metric [5,6]. Hence, the most appropriate option for
its description is the GS supermembrane formalism [12,35].
As in the string case, for the consistency of this approach the
action is required to be κ-symmetric that imposes restrictions
on the background fields in which the membrane evolves. It
has been long known, that the equations of 11-dimensional
supergravity for the background fields are sufficient for the
membrane to be κ-symmetric [12,13,36].

However, it is natural to ask whether a more general solu-
tion of membrane κ-symmetry constraints is possible, in
analogy to the case of the GS superstring. The common lore
says that while the generalization of the equations on the
string theory side is related to breaking of Weyl symmetry
down to scale symmetry, the membrane does not have Weyl
symmetry from the very beginning, and hence there seems
to be nothing to break. More technically, both for the super-
string and the supermembrane the κ-symmetry implies that
the dimension 1

2 torsion component is expressed in terms of a
spinor superfield χα . In 10D after imposing the κ-symmetry,
one has the option to require this to be a spinor derivative
of the dilaton or not according to which one gets either the
ordinary or generalized supergravity [23]. However, in 11D
there is no dilaton and hence there is no such choice.

All these difficulties might make one doubtful about the
existence of a generalization of 11D supergravity equations.
On the other hand, absence of a 11D parent of 10D general-
ized supergravity would be rather puzzling since one would
expect it to be part of the M-theory landscape. To resolve
this conundrum, in [1] we proposed a new approach that is
based on the bi-vector (Yang–Baxter) and tri-vector defor-
mations of supergravity solutions in terms of double (DFT)
and exceptional field theory (ExFT) [37–40]. They provide a
T/U-duality covariant approach to supergravity and are for-
mulated on an extended space endowed with a section con-
straint. We always assume this to be solved by keeping only
the ordinary geometric coordinates. For more detailed review
of DFT see [41–43] and of ExFT see [44–46]. These theo-
ries contain enough degrees of freedom for description of
such deformations as they are given by a local O(10, 10)

transformation for the bi-vector case and a local transforma-
tion in the corresponding exceptional group for the tri-vector
case. In the former case the deformation is defined by a bi-
vector βmn = r i j kimk j n , where kim are Killing vectors of
the initial background and r i j = r [i j] is a constant matrix.
The deformation generates a solution of the 10D general-
ized supergravity equations (1) if the r -matrix satisfies the
classical YB equation [37,47–54]
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r i1[ j1r j2|i2| fi1i2 j3] = 0, (3)

where fi2i2
i3 are the structure constants of the isometry alge-

bra [ki1, ki2 ] = fi1i2
j k j and Im is [38]

Im = r i1i2 fi1i2
j k j

m . (4)

Deformations with nonvanishing r i1i2 fi1i2
j are called non-

unimodular since such an r-matrix defines a non-unimodular
subalgebra of the full isometry algebra [48,49] and gener-
alized supergravity solutions correspond to non-unimodular
YB deformations.

This approach extends naturally to backgrounds of 11D
supergravity by generalizing Yang–Baxter deformations [40,
55,56]. In this case generalized Yang-Baxter deformation is
a local Ed(d) rotation with a tri-vector parameter Ωmnk =
1
3!ρ

i1i2i3ki1
mki2

nki3
k , where ρi1i2i3 = ρ[i1i2i3] is a set of con-

stants and kim are the Killing vectors of the initial back-
ground. For the deformation to generate solutions of super-
gravity a generalization of the classical Yang–Baxter equa-
tion must be satisfied [56]

6ρ[i2|i7 j1ρ|i3i4| j2 f j1 j2 |i5] + ρ j1 j2[i2ρi3i4i5] f j1 j2 i7 = 0, (5)

together with a generalization of the unimodularity condition

ρi1i2i3 fi2i3
i4 = 0. (6)

As it was shown in [40] these conditions are sufficient for the
generalized fluxes of ExFT to be invariant under the general-
ized YB deformation and hence for a deformed background
to be a solution of the ordinary 11D supergravity.

Now, the key idea of the approach we briefly reported in
[1] and to be described in detail in the current paper is to
allow non-unimodular tri-vector deformations. Under these,
fluxes of ExFT transform non-trivially acquiring additional
terms containing the tensor

Jmn = 1

4
ρi1i2i3 fi2i3

i4ki1
mki4

n, (7)

which is the 11D analogue of Im (4). Note that this tensor van-
ishes for a unimodular deformation (6). Rewriting equations
of ExFT in terms of such shifted fluxes and decomposing all
expressions in terms of 11D fields (in the split form) we arrive
at a generalization of 11D supergravity equations. This proce-
dure guarantees that non-unimodular tri-vector deformations
(with some restrictions) solve the newly obtained equations
similar to non-unimodular YB deformed 10D backgrounds
solving equations of generalized supergravity.

Our most important findings can be summarized as fol-
lows: (i) the proper generalization of the Killing vector Im is

the tensor Jmn (7); (ii) the local 11D diffeomorphism symme-
try is broken to diffeomorphisms in 7 external and 4 internal
directions, i.e. the local GL(11) is broken to the local GL(11-
d)× GL(d), which might be the desired symmetry breaking;
(iii) the derived equations reproduce those of the generalized
10D supergravity (in the split form) once an isometric direc-
tion is singled out. For simplicity we work in a certain trun-
cation of 11D supergravity, which restricts the background
to be of the form M7 ×M4, where M7 is a constant curvature
space-time, and the only fields are the metric gμν on M7, the
metric hmn on M4 and the 3-form field Cmnk on M4. The
resulting equations are

0 = Rmn[h(4)] − 7 ∇̃(m Zn) + Tmn

+ 8(1 + V 2)
(
J(mn) J

k
k − 2Jmk J

k
n

)

+ 4VmVn
(
J kl Jkl − 2J kl Jlk

)

+ 4VkVl
(

4Jm
k Jn

l − J km J ln − 2J kl J(mn)

)

+ 8VkV(m

(
2J ln) J

k
l − J Jn)

k − J J kn) + J kl Jn)l

)
,

0 = 1

7
e2φ R[ḡ(7)] + 1

6
(∇V )2 + ∇̃m Zm − 6Zm Z

m

− 2Jmn Jmn + 4

3
Jmn J

nm,

0 = ∇̃mFmnkl

− 6
(
ZmFmnkl + 2J pmCm[nk Jl]p − J pm Jp[nCkl]m

)
,

(8)

where Fmnkl = 4∂[mCnkl], Vm = 1
3!ε

mnklCnkl , Tmn =
− 1

3hmn(∇V ) and

Zm = ∂mφ − 2

3
εmnkl J

nkV l ,

∇̃m = ∇m − ∂mφ.

(9)

Setting Jmn to zero above one gets equations of a truncated
version of 11D supergravity found in [55]. Finally, the tensor
Jmn must satisfy the following set of conditions

0 = Jm[n J kl],
0 = ∂m Jkl + J kn∂nem

aea
l + Jnl∂nem

aea
k + Jnlδm

k∂nφ,

0 = ∇m
(
e−φ J [mn]),

0 = Jmn∂nφ,

0 = ∇[m Zn] − 1

3
J kl Fmnkl ,

0 = ∇k

(
e−φ J k[l V p]),

0 = ∇k(J
(pl)V k) − ∇k(V

(p J l)k). (10)
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Interestingly enough these conditions imply that Smn =
J (mn) is a Killing tensor [1]. Although looking very restric-
tive, these actually allow for new solutions that are beyond the
standard 11D supergravity as we will illustrate in Sect. 3.5.
Hence, the theory is not trivial. It is important to mention,
that the membrane κ-invariance has not been checked for the
proposed equations and remains an open question for further
investigation. Therefore, throughout the article, we prudently
refer to the proposed equations as a generalization of 11D
supergravity.

The paper is organized as follows. In Sect. 2 we first illus-
trate our method by deriving generalized 10D supergravity
equations of motion (EoM) from non-unimodular general-
ized YB deformation. For this we briefly remind all neces-
sary DFT ingredients and its flux formulation. Next we obtain
constraints on flux transformations from DFT Bianchi iden-
tities and show that they require Im to be a Killing vector of
the deformed background. We complete this part by a com-
parison of our method of obtaining generalized 10D super-
gravity equations with others in the literature. In Sect. 3 we
repeat all these for the SL(5) ExFT that describes 11D super-
gravity in the 11=7+4 split. We will explain some details
of SL(5) ExFT and give its flux formulation for a particular
truncation that we use to keep calculations relatively sim-
ple. Using ExFT Bianchi identities we find constraints (10)
on Jmn . Finally, we derive Eq. (8) for the generalization of
11D supergravity using flux shift procedure. Some explicit
solutions of these equations, which illustrate richness of the
theory are presented in 3.5. Conclusions and further discus-
sion are in Sect. 4. Some technical steps are explained in two
appendices.

Large portion of our calculations were done using the com-
puter algebra system Cadabra [57] and the corresponding
worksheets can be found at [58].

2 Generalized supergravity in 10 dimensions from DFT

In this section we will show how equations of the 10D gener-
alized supergravity can be derived from non-unimodular bi-
vector Yang–Baxter deformations in DFT flux formulation.
The advantage of this method is that it can easily be gener-
alized to exceptional field theories and polyvector deforma-
tions.

2.1 Flux formulation of DFT

String theory possesses O(d, d;Z) symmetry called T-du-
ality on backgrounds of the form T

d × M10−d where
M10−d is an appropriate (10 − d)-dimensional spacetime
[59–63]. This symmetry is transmitted to the supergravity
level as Cremmer–Julia O(d, d;R) symmetry of supergrav-
ity equations (and the action for d odd). Hence, Kaluza–Klein

reduced supergravity on T
d can be formulated in an explic-

itly T-duality covariant way and its solutions of the form
T
d × M10−d fully preserve this symmetry.
Let us now focus at the massless NS–NS closed string

sector (gmn, bmn, φ) and discuss equations governing its low
energy dynamics. The formalism that elevates the global
O(d, d;R) T-duality symmetry to the level of a local sym-
metry related to geometry of the underlying (extended) space
is called double field theory. Initially this has been formu-
lated as a field theoretical framework in [62,63] based on the
earlier observation of doubling of coordinates of the closed
string [61,64,65]. Its present name “Double field theory”, its
formulation in terms of generalized metric and further devel-
opments towards its geometric understanding, deriving large
coordinate transformations and adding fermionic sector and
supersymmetry has been done later in [66–73]. For a com-
prehensive review of this approach see [41–43], while here
we will focus only at formulation of DFT dynamics in terms
of generalized fluxes.

The bosonic sector of DFT consists of a generalized met-
ric HMN ∈ O(10, 10)/(O(10) × O(10)) and the invariant
dilaton d, living in the doubled space XM = (xm, x̃m). Gen-
eralized Lie derivative acts on a generalized vector V M and
d as

LΛV
M = ΛN ∂NV

M − V N ∂NΛM + ηMNηK L∂NΛK V L ,

LΛd = ΛM∂Md − 1

2
∂MΛM . (11)

Closure of these derivatives into an algebra of local trans-
formations that is necessary for consistency of the theory
requires the so-called section constraints

ηMN ∂M f ∂N g = 0, ηMN ∂M ∂N f = 0, (12)

that are differential constraints for any fields f and g of the
theory (first introduced in [62] and analyzed further in [74])
where

ηMN =
(

0 δmn

δm
n 0

)
, (13)

which can be used to raise and lower indices. More mathemat-
ically one may look at these constraints as conditions reduc-
ing the set of all functions ofXM to a certain subset. Basically
they project dependence of any fields to only 10 out of 20XM

coordinates. In what follows we assume that nothing depends
on x̃m , while keeping all expressions formally containing ∂̃m

for covariance. In this case the formalism simply reproduces
the standard supergravity, however, in more convenient vari-
ables. Keeping more general dependence on dual coordinates
x̃m allows to describe non-geometric backgrounds and exotic
branes (see [45,46] and references therein).
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Equations of the theory can be derived from the following
action

SDFT =
∫

d10
X e−2d

[
HABFAFB − FAF A

+ FABCFDEF

×
(

1

4
HADηBEηCF − 1

12
HADHBEHCF

)

− 1

6
FABCF ABC

]
,

(14)

where the so-called generalized fluxes of DFT are given by

FABC = 3EN [C∂AE
N
B], FA = 2∂Ad − ∂MEM

A. (15)

Here EN
A is a generalized vielbein which transforms as a

generalized vector (11) andHAB is the flat O(10, 10) metric,
HMN = EM

AEN
BHAB . The flat derivative is defined as

∂A = EM
A∂M where ηMN = EM

AEN
BηAB :

ηAB =
(

0 δab
δa

b 0

)
, HAB =

(
hab 0
0 hab

)
. (16)

To reproduce the NS–NS part of the 10D supergravity
action with fields ema , bmn and φ we use the so-called B-
frame parametrization for the generalized vielbein and invari-
ant dilaton

d = φ − 1

2
log e, e = det ek

a,

EM
A =

⎡

⎣
ema 0

−ekabkm ema

⎤

⎦ , EM
A =

⎡

⎣
ema −ekabkm

0 ema

⎤

⎦ ,

(17)

and substitute into (14). Here we are interested in field equa-
tions rather than the action, for which we introduce variations

uB
A = EM

BδEM
A =

⎡

⎣
embδema 0

epaembδbmp −emaδemb

⎤

⎦ ,

δd = δφ + 1

2
em

aδema,

(18)

which explicitly keep the generalized vielbein in the B-frame.
For more covariant approach to field variations of DFT based
on projectors see [69]. Then, variation of generalized fluxes
becomes1

δFA = FBu
B
A − EM

B∂MuB
A + 2EM

A∂Mδd, (19)

1 See the files F1_variation, F2_variation and
udecomposition of [58].

δFABC = 3uD [AFBC]D + 3EM [AηC|D∂MuD |B]. (20)

As a result, the full variation of the DFT action (14) and
hence equations of the theory are written in terms of fluxes2:

e2dδLDFT = δd (2FAFBHAB − 4 ∂BFA HAB

+ 1

6
FABCFD EFHADHBEHCF − 1

2
FABCF AB

DHCD

− 2FAF A + 4 ∂AF A + 1

3
FABCF ABC )

+ uA
B

(
2 ∂MFC HBC EA

M + 1

2
FA

CDFCDGHBG

+ FACDF BC
GHD G + 1

2
F B

ACFDHCD

− 1

2
∂MF B

AC HCDED
M + 1

2
FACDFCHBD

+ 1

2
∂DFAE

DHBE + 1

2
F BC

DFDHCA

+ 1

2
∂CF BCD HDA − 1

2
FACDFEFGHBEHCFHD G

+ 1

2
FCD

EFFHBCHD FHAE

− 1

2
∂GFCE

D HBCHEGHD A − 2 ∂AF B

− FACDF BCD − F B
ACFC − ∂CF BC

A

)
. (21)

The first two lines above give the equation for the dilaton,
which is precisely the same as in [71]. The terms with the uA

B

prefactor contain the Einstein and the B-field equations. To
see this let us decompose generalized fluxes in the B-frame,
that give the following non-vanishing components

Fabc = −Habc, Fa = 2ea
m∇mφ + fa,

Fab
c = fab

c,

fab
c = −2emae

n
b∂[men]c, fa = fab

b.

(22)

The terms with the prefactors δd, δeam and δbmn give the
standard supergravity equations

δd : R − 1

12
H2 + 4 ∇m∇mφ − 4 (∇φ)2 = 0 , (23)

δema : Rmn − 1

4
Hmkl Hn

kl + 2∇m∇nφ = 0 , (24)

δbmn : 1

2
∇k H

kmn − Hkmn∇kφ = 0 , (25)

where Hmnk = 3∇[mbnk] and ∇m is a covariant derivative
with respect to metric gmn = emaenbgab.

Let us emphasize that, in general terms contracting δema

are not necessarily symmetric when the flat index is turned
into a curved one. This is the case in the above calculation,
where one ends up with the usual Einstein equation. How-
ever, this will no longer be true when we shift fluxes with a

2 See the file EoM_gen10 of [58].
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YB deformation in the upcoming sections. In this case the
antisymmetric part of the equation becomes proportional to
a Lie derivative of the vielbein ema along the Killing vector
Im and hence vanishes.

2.2 Non-unimodular Yang–Baxter deformation

The flux formulation of equations of motion of the 10D super-
gravity that we reviewed above is very convenient for deriv-
ing their deformation. Indeed, on the one hand we know
that solutions to equations of 10D generalized supergrav-
ity are generated from ordinary supergravity backgrounds
by non-unimodular YB deformations. On the other hand, as
we remind below, generalized fluxes of DFT do not trans-
form under unimodular YB deformation but transform by a
simple shift under their non-unimodular generalization. The
narrative below is based mainly on [37–39]. In terms of the
generalized vielbein of double field theory a bi-vector defor-
mation is simply an O(10, 10;R) rotation

E ′
M

A = OM
N EN

A, (26)

that leaves the dilaton d invariant. The rotation OM
N is

defined as an exponent of the negative level generators of
O(10, 10;R) w.r.t. the GL(10) decomposition:

OK
M = exp

(
βmnTmn

) =
⎡

⎣
δmk 0

βmk δm
k

⎤

⎦ . (27)

The generators of O(10, 10;R) satisfy

[TMN , TK L ] = 2ηK [MTN ]L − 2ηL[MTN ]K , (28)

where TMN are 20 × 20 matrices. The bi-vector parameter
βmn is taken in the bi-Killing ansatz βmn = r i j kimk j n , where
{kim} is a set of Killing vectors of the initial background and
r i j is a constant antisymmetric (Yang–Baxter) matrix. For
the rotation (26) to act as a solution generating mechanism
the r -matrix must satisfy

{
f j1 j2

[i1r i2| j1|r i3] j2 = 0, (classical YB equation),

fi1i2
j r i1i2 = 0, (unimodularity),

(29)

which is also the condition for generalized fluxes to stay
the same. Relaxing the second condition one obtains a non-
unimodular YB deformation that amounts to the following

transformation of fluxes3

δIFABC = 0, δIFA = 2EA
M

[
0
Im

]
, (30)

where Im = ∇kβ
km = fi1i2

j r i1i2k jm �= 0.
Here two important comments must be made. First, evi-

dently after a YB deformation the generalized vielbein fails
to remain in the B-frame and an additional O(1, 9)×O(9, 1)

transformation is required. However, we do not have to find
its specific form here as (i) to recover the deformed back-
ground one simply uses generalized metric; (ii) the trick to
be described below explicitly uses generalized vielbein in the
correct frame. The latter is related to our second comment,
that is the deformation of fluxes (30) has the undeformed
vielbein on the RHS. The crucial observation is that this can
be replaced by the deformed vielbein in all expressions. For
exceptional field theory this will be true up to a slight con-
straint on the tri-vector deformation parameter.

2.3 Constraints on Im from Bianchi identities

To generate equations satisfied by the deformed fluxes (30)
let us consider a general shift of generalized fluxes

F ′
ABC = FABC ,

F ′
A − X ′

A = FA,
(31)

where fluxes on the RHS are constructed from a generalized
vielbein EA

M , the vector XA = EA
M XM = E ′

A
M XM =

X ′
A for some vielbein E ′

A
M and we define XM = (Im, 0).

At this point we do not require anything from Im and hence
the expressions F ′

ABC and F ′
A can not be interpreted as gen-

eralized fluxes in general. For that they must satisfy Bianchi
identities, pretty much like the Bianchi identity for a Yang–
Mills 2-form dF = 0 allowing to write F = d A as a field
strength of a 1-form potential (at least locally). Hence, we
require the LHS of (31) to satisfy Bianchi identities of DFT
given that the RHS satisfies them [71]:

0 = ∂[AFBCD] − 3

4
F[AB EFCD]E ,

0 = 2∂[AFB] + ∂CFCAB − FCFCAB,

0 = ∂ AFA − 1

2
F AFA + 1

12
F ABCFABC .

(32)

Now, we would like to obtain field equations, that are
identically satisfied when E ′

A
M = OM

N EA
N and OM

N is a
non-unimodular Yang–Baxter deformation as defined above.
Naturally, these must be equations of the generalized 10D

3 See the files 10D_F1_deformation and
10D_F3_deformation at [58].
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supergravity. Given that, we can now show that acting on
GL(10) scalars we have ∂ ′

A = ∂A:

∂ ′
A = E ′

A
m∂m = EA

N Om
N ∂m

= EA
m∂m + EAnβ

mn∂m = EA
M∂M = ∂A,

(33)

where in the last line we used βmn∂n = 0 due to the Killing
vector conditions. Bianchi identities then give constraints on
XM . The first equation of (32) does not change, while the
second becomes

0 = 2∂[AFB] + ∂CFCAB − FCFCAB

= 2∂ ′[AFB] + ∂ ′CFCAB − FCFCAB

= 2∂ ′[A(F ′
B] − XB]) + ∂ ′CF ′

CAB − (F ′C − XC )F ′
CAB

= 2∂ ′[AF ′
B] − 2∂ ′[AXB] + ∂ ′CF ′

CAB − F ′CF ′
CAB

+ XCF ′
CAB = −2∂ ′[AXB] + XCF ′

CAB,

(34)

where in the last line we required of the deformed fluxes to
satisfy Bianchi identities. Interestingly, the last line can be
written as a generalized Killing vector condition for the new
background E ′

M
A:

0 = 2∂ ′[AXB] − XCF ′
CAB

= 2E ′[AM∂ ′
M

(
E ′
B]N XN

) − XME ′
M
C(

2∂ ′[AE ′
B]N E ′

CN

+ ∂ ′
C E

′
A
N E ′

BN

)

= 2E ′[AM E ′
B]N ∂M XN + 2E ′[AM∂ME ′

B]N XN

− 2XN E
′[AM∂ME ′

B]N − XM∂ME ′
A
N E ′

BN

= E ′
A
M E ′

B
N ∂M XN − E ′

B
N E ′

A
M∂N XM

− XM∂ME ′
A
N E ′

BN

= −E ′
BN

(
XM∂ME ′

A
N − E ′

A
M∂M XN + E ′

A
M∂N XM

)

= −E ′
BMLX E

′
A
M .

(35)

Hence, the second Bianchi identity implies, that XM =
E ′
A
M X A must be a generalized Killing vector of thedeformed

generalized vielbein, i.e. of the metric and the B-field solv-
ing generalized supergravity equations. Note that we haven’t
used the relation between βmn and Im .

Similarly the third Bianchi identity gives vanishing of the
generalized Lie derivative of the invariant dilaton d along
XM :

0 = ∂ ′AFA − 1

2
F AFA + 1

12
F ABCFABC

= ∂ ′A(F ′
A − XA) − 1

2
(F ′A − X A)(F ′

A − XA)

+ 1

12
F ′ABCF ′

ABC

= −∂ ′AXA + F ′
AX

A − 1

2
XAX

A

= −E ′
A
M∂M (E ′

N
AXN ) + (2∂Md ′ − ∂N E

′
A
N E ′

M
A)XM

− XM XM = 2XM∂Md ′ − ∂M XM − XM XM

= 2LXd
′ − XM XM . (36)

Hence, we conclude that in order for the shifted general-
ized fluxes to again give generalized fluxes of a new vielbein
and new invariant dilaton, these fields must have general-
ized isometry w.r.t. to the shift XM = (Im, 0). As we show
below this is an exclusive property of double field theory:
for exceptional field theory the vector XM is replaced by
tensor XMNK

L , that apparently does not have a similar nice
geometric interpretation in terms of generalized isometries.

2.4 10D generalized supergravity EoM

We now turn to the derivation of equations of the 10D gen-
eralized supergravity from double field theory equations in
flux formulation. The main idea is to start with equations
written in terms of fluxes (FABC ,FA) and derivatives ∂A
and use (31) to turn to new fluxes (F ′

ABC , F ′
A). Since the

initial fluxes correspond to a solution to DFT equations, we
still get an identity now written in terms of E ′

M
A and d ′,

however with derivatives ∂A = EA
M∂M . Finally, we recall,

that one gets backgrounds of generalized supergravity from
those of the ordinary supergravity by a non-unimodular YB
deformation, that allows us to replace ∂A by ∂ ′

A. Hence, we
arrive at a set of equations, that are by construction satis-
fied by backgrounds obtained as non-unimodular YB defor-
mation of supergravity solutions, which must be precisely
the desired generalized supergravity equations. Apparently,
this procedure does not mean that all solutions to the new
equations are related to ordinary supergravity backgrounds
by such deformations. Indeed, after deriving the equations,
one is free to search for solutions without referring to Yang-
Baxter deformation techniques.

Schematically the procedure is illustrated by Fig. 1, details
of the pretty straightforward calculation can be found in the
file EoM_gen10 at [58].

A comment must be made concerning the form of the
generalized vielbein. As it has been mentioned above, the
Yang-Baxter deformation spoil the upper-triangular form of
the generalized vielbein by introducing a block proportional
to βmn . This however does not break the described pro-
cedure as we first determine how fluxes shift under non-
unimodular deformation, then introduce a general shift XM

of the flux. Only after imposing constraints on XM following
from Bianchi identities we are able to define the generalized
vielbein E ′

M
A. Note, that this is written already in the upper
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Fig. 1 The algorithm to obtain generalized supergravity equations
from DFT equations in the flux formulation by shifting generalized
fluxes

triangular form and is related to the initial vielbein by a YB
deformation plus an O(1, 9) × O(9, 1) rotation, whose par-
ticular form is not needed. The resulting equations are given
in terms of the metric, B-field and the dilaton and the issue
simply disappears.

2.5 Comparison with other approaches

Let us briefly comment on other approaches for deriving gen-
eralized 10D supergravity from extended field theories that
are present in the literature. Here we do not follow the chrono-
logical order in favor of emphasizing possible relations with
our approach.

Modified DFT approach of [75] is probably the closest
one to ours. Here the main idea is to construct a modification
of DFT where all derivatives of the generalized dilaton d are
shifted as

∇Md −→ ∇Md + XM . (37)

This step looks very close to our shift of fluxes, if not the
same, and was one of the inspirations in developing our
approach. The above modification seems very natural since
generalized supergravity backgrounds are formally T-dual
along a coordinate y to usual supergravity backgrounds with
the dilaton linearly depending on y. All other fields are iso-
metric w.r.t. y and from the DFT point of view the formal
T-duality introduces a linear dependence on the dual coordi-
nate ỹ in the dilaton [24,76]. The additional terms coming
from the above shift precisely corresponds to this depen-
dence. However, in this form it is not clear how to general-
ize the shift to exceptional field theories and hence to 11D
supergravity. We comment more on this possibility in the
conclusion Sect. 4.

The exceptional field theory approach of [77] takes
a similar perspective but focuses at dependence of back-

grounds on dual coordinates. Equations of generalized super-
gravity are reproduced from equations of exceptional field
theory by introducing a special Scherk-Shwarz ansatz with
a twist matrix depending on a dual coordinate. The relation-
ship of this method to ours is not very clear yet, however one
would expect that the twist matrix produces precisely the
required shift if the theory is written in terms of fluxes. This
is an interesting direction for a more detailed investigation.

The massive IIA from ExFT derivation of [78] does not
reproduce generalized supergravity, however is ideologically
very similar to what we describe here. The idea is to shift
generalized Lie derivative as

LΛ −→ LΛ + ΛM XM , (38)

where XM is en algebra valued and acts on tensors as a matrix
(XM )K

L . Closure of the deformed Lie derivative imposes
constraints on XM , that in the original work is kept constant,
and actually contains the Romans mass parameter. Although
such a shift looks equivalent to our approach, given XM

becomes a function, we were not able to make this relation
precise. If possible, this would provide a better understanding
of the flux shift procedure.

3 Generalization of eleven-dimensional supergravity

We now would like to apply the above procedure to 11D
supergravity equations formulated in terms of generalized
fluxes of exceptional field theory. For simplicity we consider
here the SL(5) ExFT, that corresponds to the 7+4 split of
the 11D spacetime. Moreover, we will restrict ourselves to
a truncated theory, where ExFT contains only scalar fields
left after dimensional reduction to D = 7. The whole pro-
cedure in principle can be repeated and extended to the full
theory with any U-duality group, with possible subtleties in
the E8 case related to the extra gauge fields. For more detailed
description of exceptional field theories the reader may refer
to the original papers [79–87] as well as to the reviews [44–
46]. Here we are working with the SL(5) exceptional field
theory whose scalar sector has been constructed in [79] and
the full action has been presented in [87].

3.1 Basics of the SL(5) exceptional field theory

Let us start with a brief reminder of the structure of the full
exceptional field theory with the SL(5) group and its trun-
cated version. Focusing only on the bosonic sector of 11D
supergravity one finds that under the 11 = 7 + 4 split the
metric and the 3-form give rise to fields transforming as 7-
dimensional tensors and collected into the following irreps
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of the SL(5) duality group:

{gμν, Aμ
MN , MMN , BμνM }. (39)

Here capital Latin indices M, N , · · · = 1, . . . , 5 label the
5 of (5), vector fields Aμ

MN = −Aμ
NM belong to the 10,

μ, ν, · · · = 0, . . . , 6, the generalized metric MMN labels the
coset SL(5)/USp(4). The theory is formally defined on a
(7+10)-dimensional spacetime parametrized by coordinates
(xμ,X[MN ]) with additional constraint

εMNK LP∂MN • ⊗ ∂K L• = 0, (40)

usually referred to as the section condition [74]. Here bullets
stand for any combination of fields and of their derivatives. In
what follows we will always assume that the section condi-
tion is solved by keeping only dependence on 4 coordinates
xm = X

5m . This choice restores the standard supergravity
(for further discussion in the framework of exceptional gen-
eralized geometry see [88]). The section condition is nec-
essary for local diffeomorphisms acting on tensors on the
extended space to form a closed algebra. On a generalized
vector of weight λ these act as

δΛV
M = LΛV

M = 1

2
ΛK L∂K LV

M − V L∂LKΛMK

+
(

1

4
+ λ

)
V M∂K LΛK L .

(41)

The Lagrangian of the full SL(5) theory is invariant under
local symmetries including the above generalized Lie deriva-
tive as well as diffeomorphisms in the external 7-dimensional
space, and reads

e−1L = R̂[g(7)] ∓ 1

8
mMNmKLFμν

MKFμνNL

+ 1

48
gμνDμmMNDνm

MN + e−1Lsc

+ 1

3 · (16)2 m
MNFμνρMFμνρ

N + eLtop.

(42)

Covariant derivative Dμ is defined in the standard Yang–
Mills manner as follows

Dμ = ∂μ − LAμ. (43)

Its commutator [Dμ,Dν] defines the field strength Fμν
MN

and further tensor hierarchy, including the 2-form field BμνM

and its field strength FμνρM . The scalar part, that gives the
scalar potential of maximal gauged supergravity upon gener-
alized Scherk–Schwarz reduction (see e.g. [89] for the SL(5)

theory), is given by

±e−1Lsc = 1

8
∂MNmPQ ∂K Lm

PQ mMKmNL

+ 1

2
∂MNmPQ ∂K Lm

MP mNKmLQ

+ 1

2
∂MNm

LN ∂K Lm
MK

+ 1

2
mMK ∂MNm

NL(g−1∂K Lg)

+ 1

8
mMKmNL(g−1∂MN g)(g

−1∂K Lg)

+ 1

8
mMKmNL∂MN g

μν∂K Lgμν.

(44)

The topological term Ltop in (42) is of no relevance here
as will be set to zero by further truncation. The upper and
lower signs corresponds to Minkowski and Euclidean signa-
ture of the metric on the external 7-dimensional space respec-
tively. The generalized metric mMN is a generalized tensor
of weight zero, the external metric gμν is a generalized scalar
of weight 2/5.

Explicit parametrization of the generalized metric in terms
of GL(4) fields reads

mMN = h
1

10

⎡

⎢⎣
h− 1

2 hmn −Vm

−Vn ±h
1
2 (1 ± VkV k)

⎤

⎥⎦ ,

mMN = h− 1
10

⎡

⎢⎣
h

1
2 (hmn ± VmV n) ±Vm

±Vn ±h− 1
2

⎤

⎥⎦

(45)

with Vm = 1/3! εmnklCnkl and h = det hmn . The fields gμν

and hmn encoding metrics of the external and internal spaces
of exceptional field theory respectively are related to the full
11D metric by the usual Kaluza-Klein ansatz

Eμ̂
â =

⎡

⎣
h− 1

5 eμ
α Aμ

mhma

0 hma

⎤

⎦ , (46)

where h = det hma denotes determinant of the vielbein hma .
Restricting dependence of all the fields to the coordinates

(xμ, xm = X
5m) the above Lagrangian becomes precisely

that of the 11D supergravity and the global GL(11) symme-
try gets restored. Hence, an important observation here is
that the action either has the GL(11) symmetry or symmetry
with respect to SL(5) duality transformations. As we will see
below, the latter is necessary to obtain a generalization of
supergravity equations of motion due to non-unimodular tri-
vector generalized Yang-Baxter deformations. To determine
the additional terms in the standard 11D supergravity equa-
tions we follow the framework of polyvector deformations
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developed in [40,55], for which we turn to a truncated theory.
It is worth mentioning here that, this step is not strictly nec-
essary and is done only to simplify the computations. Exten-
sion to the full exceptional field theory is straightforward but
rather tedious process.

For the truncation we consider, background metric is in a
block-diagonal form, i.e. M11 = M4×M7, where the internal
metric hmn does not depend on the external coordinates xμ.
In addition, equations of motion of the full SL(5) ExFT allow
to assume consistently vanishing of the 1-form and 2-form
fields, leaving us with the ansatz

gμν = gμν(x
μ, xm), mMN = mMN (xm),

Aμ
MN = 0, Bμν M = 0.

(47)

By consistency we mean that the second line above does not
impose further constraints on the remaining fields. Moreover,
given the structure of the theory, the second line above can
be applied already at the Lagrangian level. This simplifies
the exceptional field theory setup, leaving us with only the
d = 7 Einstein–Hilbert term and the scalar potential for the
generalized metric in the action. To obtain a theory defined
completely in terms of a (rescaled) generalized metric we
restrict dependence of the external metric on the coordinates

xm as gμν(xμ, xm) = eφ(xm )h
1
5 ḡμν(xμ). Finally, we rescale

the external metric and the generalized metric as

hμν = e−2φh
1
5 h̄μν,

mMN = e−φh
1

10 MMN .
(48)

that allows to rewrite the Lagrangian in the form similar to
that of [79,90]

L = ē M−1
(
R[h̄(7)] − 1

8
MKLMMN ∂KMMPQ ∂LN M

PQ

− 1

2
∂NK MMN ∂MLM

KL

+ 1

2
MKLMMN ∂MK MPQ ∂PLMNQ

+ MKLMMN ∂K PMMN ∂LQM
PQ

− 15

24
MKLMMNMPQMRS∂MPMKL ∂NQMRS

)
,

(49)

where M = det MMN = e5φh−1/2, ē = (det h̄μν)
1/2 and

R[h(7)] is the Ricci curvature scalar of the metric hμν . Given
the truncation ansatz (47) and (48) the rescaled external met-

ric h̄μν satisfies4

Rμν[h̄(7)] − 1

7
h̄μνR[h̄(7)] = 0. (50)

HereR[h̄(7)] =constant which is true for the cases of interest,
namely AdS4 and S

4.
For the rescaling (48) the full d = 11 vielbein can be

written in the following nice form

Eμ̂
â =

(
e−φ ēμ

a Aμ
mhmα

0 hmα

)
, (51)

while the generalized metric becomes

MMN = eφ

⎡

⎢⎣
|h|− 1

2 hmn −Vn

−Vm ±|h| 1
2 (1 ± VkV k)

⎤

⎥⎦ ,

MMN = e−φ

⎡

⎢⎣
|h| 1

2 (hmn ± VmV n) ±Vn

±Vm ±|h|− 1
2

⎤

⎥⎦ ,

(52)

with Vm = 1
3! εmnklCnkl and h = det hmn . Substituting this

into (49) and dropping dependence on all coordinates but xm

one gets for the Lagrangian:

ē−1h− 1
2 L = e−5φR[h̄(7)]

+ e−7φ

(
R[h(4)] + 42hmn∂mφ∂nφ ∓ 1

2
∇mV

m∇nV
n
)

.

(53)

Note that when R[h̄(7)] = 0, the covariant Lagrangian (49)
reproduces the SL(5)×R

+ Lagrangian of [90] up to total
derivative terms.

3.2 Flux Lagrangian and equations

In our approach, to derive a generalization of 11-dimensional
supergravity equations we need generalized fluxes and their
transformations under non-unimodular generalized Yang-
Baxter deformation. Hence, we now aim at equations of
the truncated SL(5) theory in flux formulation, where proper
non-unimodular shift of fluxes will give the desired gener-
alization. The most transparent and straightforward way of
doing this is to first rewrite the Lagrangian in terms of fluxes
and then vary it taking into account that variation of fluxes
can again be expressed in terms of fluxes.

Let us start with the Lagrangian and remind that gener-
alized fluxes are defined as a generalization of anholonomy
coefficients:

4 For details see the file External_SL5 of [58].
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LEAB EC
M = FABC

DED
M ,

FABC
D = 3

2
EN

D∂[AB EN
C] − EM

C∂MN E
N [BδD A]

− 1

2
EM [B|∂MN E

N |A]δDC .

(54)

Here EM
A is the inverse of the generalized vielbein defined as

usual as MMN = EM
AEN

BMAB with MAB = diag[1, 1, 1,

1 ± 1] being the diagonal matrix with the sign depending on
the signature of the internal space as before. Explicitly for
the generalized vielbein EM

A and its inverse EA
M one has

EM
A = e

φ
2

⎡

⎣
e−1/2ema e1/2V a

0 e1/2

⎤

⎦ ,

EM
A = e− φ

2

⎡

⎣
e1/2ema 0

−e1/2Vm e−1/2

⎤

⎦ .

(55)

The vielbein EAB
MN = 4E M[A E N

B] is in the 10 irrep of SL(5)

and we define ∂AB = EAB
MN ∂MN . Explicit check as in [89]

shows that FABC
D contains only components in the 10, 15

and 4̄0, which are called θAB,YAB and Z ABC respectively5

FABC
D = 3

2
ZABC

D + 5θ[ABδC]D + δ[ADYB]C . (56)

The irreducible components can be written in terms of the
generalized vielbein as follows

θAB = 1

10
EM [A∂MN E

N
B] − 1

10
E−1EMN

AB∂MN E,

YAB = −EM
(A∂MN E

N
B),

ZABC
D = EM[AEN

B|E
D
K ∂MN E

K|C] + 1

3

(
2EM[A|∂MN E

N
|B|

+ EM[AEN
B|E

−1∂MN E
)
δD|C].

(57)

It is important to comment here on the difference between
generalized Scherk–Schwarz reduction of the SL(5) theory
performed in [89], that relates it to D = 7 maximal gauged
supergravity, and flux formulation. In the former the gener-
alized fluxes FABC

D are required to be constants and have
the meaning of gaugings. In the latter these are not con-
stants and represent degrees of freedom that transform conve-
niently under tri-vector deformations. As it has been observed
already in [91] for DFT, to rewrite (49) in terms of θAB,YAB

and Z ABC one has to add terms that vanish upon the section
constraint:

5 See the file SL5_fluxes of [58].

mΔL = 3 δM1
N1

M2
N2

M3
N3

M4
N4∂N1N2EA

M1

× ∂N3N4EB
M2 EC

M3ED
M4mACmBD .

(58)

Up to total derivative terms this is equivalent to6

mL = −700

3
θABθCD mACmBD + YABYCD mACmBD

− 1

2
YABYCD mABmCD

+ 9

4
ZABC

D ZD EF
AmBEmCF

+ 3

4
ZAA1B

C ZD EF
GmCGm

AD mA1EmBF .

(59)

To express variation with respect to EM
A in terms of fluxes

we define uB
A as follows

δEM
AE

B
M ≡ uB

A ≡ −δEB
M EM

A. (60)

Components of uA
B encode variation of the internal vielbein

ema , the XMN -dependent part of the external vielbein φ and
of the 3-form Cmnk :

u5
5 = 1

2
dea

mea m − 1

2
δφ,

ua 5 = −δVmea m + Vmea me
b
nδeb

n,

ua b = δeb
mea m − 1

2
δec

mec mδa b − 1

2
δφ δa b.

(61)

Note that uA
B is upper-triangular by construction, that is

to ensure the variation keeps the theory in the supergravity
frame.

Then variation of the fluxes can be written as follows

δθAB = − 1

10
∂C[AuC B] + 1

10
∂ABu

C
C − 2uC [AθB]C ,

dYAB = ∂C(Au
C

B) + 2uC (AYB)C ,

δZ EFD = − 1

16
∂ABu

D
C εEFABC − 2Z EF,[AuD]

A

− 2u[F
AZ

E]A,D + 1

48
∂ABu

C
C εDEFAB

+ 1

24
∂ABu

A
C εDEFBC .

(62)

6 See the file SL5_flux_form of [58].
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Equations of motion in the flux formulation are7

14

3
∂ACθ BC − 4 Y BDθAD + 4 YACY

BC + 2 YC
CθA

B

− 2 ∂ACY
BC − 64 ZCDB ZCDA + ∂ACY

D
D mBC

+ 8 θCDZEFAεBCDEF + 4 ∂CDZEFA εBCDEF

+ 64 Z BC
C ZAD

D − 128 Z BCDZACD − 2 YA
BYC

C

+ 8 θCDZ EG
Gm

BH εACDFH − 64 ZAC
B ZCD

D

+ 4mBH∂CDZ FG
G εACDFA − 64 Z BC

AZCD
D

+ δA
B
(14

3
θCDθCD + 2 YCDY

CD − YC
CY

D
D

+ 128 ZCDE ZCDE + 128 ZDC
C Z

DG
G

+ 14

3
∂CDθCD

)
= 0,

(63)

where for compactness of notations we raise and lower the
indices by the constant matrix mAB and its inverse. Before
moving forward let us make a few comments on the equations
we obtained. First, note that although uB

A is fixed to be in
upper triangular form one can still consider equations of the
theory above without a projection or a contraction with uB

A

involved. The reason is that the (Eqns)5
a components of the

equations above are identically zero. This will not be true
in the generalized case, where these impose conditions on
the tensor Jmn . Second, it is useful to look at the equations
above for the undeformed case in the supergravity frame,
where they become

12 ∇m∇mφ − 42 ∇mφ ∇mφ − 1

2
∇mVm ∇nV

n

+ (2 eam∂m fa − f a fa

− 1

4
f ab c fab

c − 1

2
f a b

c fac
b) = 0,

ebme
cn∂n f a c

b + eb me
cn∂n fbc

a − ebm f acb fc − 2 ∂m f a

− eb m f ac d fcb
d − 1

2
ebm f cda fcd

b + eb m f c b
a fc

− eb m f a b
c fc + eb

nec m∂n f a c
b + eb m f a c

d fbd
c

+ 14 ean∇mφ ∇nφ − 14 ean∇m∇nφ

+ ea m

(
∇mVm ∇nV

n + Vn∇n∇kV
k − 2∇nφ ∇nφ

+ 14 ∇n∇nφ − 7 Vn∇nφ ∇kV
k
)

= 0

(64)

7 ∇mφ ∇nV
n − ∇m∇nV

n = 0, (65)

where the standard anholonomy coefficients are defined as
usual as (see Appendix A for details)

fab
c = −2ema e

n
b∂[mecn], fa = fab

b (66)

7 See the file EoM_varE for ordinary supergravity equations and
EoM_varE_ALL for the described generalization.

and flat indices are raised and lowered by the flat metric hab
(here we choose Euclidean signature). Taking into account
∇mVm = 1

4!ε
mnkl Fmnkl the above can be massaged into

δφ : 5

7
e2φ R[ḡ(7)] + R[h(4)] + 12 ∇m∇nφ hmn

− 42 ∇mφ ∇nφ hmn + 1

2
(∇V )2 = 0,

δVm : ∂m(∇V ) − 7 (∇V )∂mφ = 0,

δhmn : Rmn[h(4)] − 7 ∂mφ ∂nφ + 7 ∇m∇nφ

+ hmn

(
− 1

2
e2φR[ḡ(7)] − 1

2
R[h(4)]

+ 28 ∂kφ ∂lφ hkl − 7 ∇k∇lφ hkl + 1

4
(∇V )2

)
= 0,

(67)

which is the set of equations of the usual 11D supergravity
in the split form for our truncation [55].

3.3 Non-unimodular tri-vector deformations

To generalize the procedure of Sect. 2 to equations of 11-
dimensional supergravity in the form of equations on gener-
alized fluxes of the SL(5) exceptional field theory one has to
determine transformation of FABC

D under non-unimodular
tri-vector deformation. The non-unimodularity parameter
Jmn to be defined below is the 11-dimensional analogue of
the vector Im . As it has been discussed in detail in [40,55]
tri-vector deformations are defined as the following SL(5)
transformation

E ′
A
M = OM

N EA
N , OM

N =
⎡

⎣
δm

n 0

1
3!εmpqrΩ

pqr 1

⎤

⎦ , (68)

where εmnkl is the Levi-Civita symbol and the tri-vector
Ωm1m2m3 = 1

3!ρ
i1i2i3ki1

m1ki2
m2ki3

m3 is defined in terms of
Killing vectors kim and an antisymmetric constant matrix
ρi1i2i3 . The indices ik = 1, . . . , N enumerate Killing vec-
tors. Under tri-vector deformations generalized flux trans-
forms as8

δρFABC
D = Em

AE
n
B E

k
C El

D J lpεmnkp

− 1

2
e−2
(4)E5

E Emnk [ABC]ki7pki2nki3mki4kki5 p

× (
6ρ[i2|i7 j1ρ|i3i4| j2 f j1 j2|i5]

+ ρ j1 j2[i2ρi3i4i5] f j1 j2 i7),
(69)

where the expression in the parentheses in the third line is pre-
cisely the generalized classical Yang–Baxter equation. The

8 This is shown explicitly in deltaF_to_X of [58].
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first line is the non-unimodular part of the transformation
where we define

Jmn = 1

4
ki1

mki4
nρi1i2i3 fi2i3

i4 = S(mn) + I [mn]. (70)

Observe that while in the case of bi-vector deformation the
non-unimodular part had an interpretation of a generalized
Killing vector, now this is not the case already due to the
index count. Indeed, given generalized YB equation holds
the transformation can be written as

δρFABC
D = XABC

D. (71)

To eliminate dependence on the generalized frame fields the
X-tensor is defined as

Xmnk
l = εmnkp J

lp. (72)

Hence XMNK
L does not include the metric and the C-

field and therefore is a complete analogue of XM . More
complicated structure of the non-unimodular part of defor-
mation in the exceptional case compared to DFT causes
certain issues one should be careful about. The first one,
namely the lack of a generalized symmetry interpretation, has
already been mentioned. The second one is that the equality
XABC

D = X ′
ABC

D which we will be using in the procedure
does not hold in general. Instead one finds

X ′
ABC

D = XABC
D − EA

M EB
N EC

K E5
DWl XMNK

l . (73)

The last term apparently vanishes when the deformations
are restricted to bi-vector only and the theory reproduces
generalized Type IIA supergravity in 10D. More generally
one may require

Wlεmnkp J
lp = 0, (74)

which is true for all our examples. In principle, this is a condi-
tion on the deformation tensor and seems to only restrict the
way one generates solutions to our generalized equations by
non-unimodular tri-vector deformations. Indeed, the result-
ing set of equations to be presented below by construction
does not contain the deformation tensor Wm , while Jmn is
understood as a set of additional parameters subject to certain
constraints. Then the condition (74), if satisfied, guarantees
that backgrounds obtained by a non-unimodular tri-vector
deformation of a solution to equations of 11-dimensional
supergravity satisfy the generalized set of equations.

3.4 Conditions and equations

Given the explicit form of a non-unimodular tri-vector trans-
formation of the generalized flux consider now a general shift

FABC
D = F ′

ABC
D − XABC

D, (75)

where XABC
D = E ′

A
M E ′

B
N E ′

C
K E ′

L
DXMNK

L and the only
non-vanishing component of the latter is Xmnk

l = εmnkp J lp.
Now J lp is an arbitrary tensor, EA

M solves equations of
the usual 11D supergravity and E ′

A
M will encode fields, that

enter the set of generalized 11-dimensional equations. From
the calculations below it follows that the equations are satis-
fied if (i) E ′

A
M are related to EA

M by a non-unimodular tri-
vector deformation, (ii) the vector Jmn is defined by (70) and
(iii) the condition (74) holds. In this case non-unimodular tri-
vector deformation is a solution generating transformation.

It is crucial that F ′
ABC

D has precisely the same form
as in (54), which is required for it to satisfy generalized
Bianchi identities. Formally, Bianchi identities in exceptional
field theory follow from the condition that generalized fluxes
defined as non-linear expressions in terms of the vielbein
EM

A and its derivatives, transform linearly under general-
ized Lie derivative, i.e.

δΛFABC
D = 1

2
ΛMN ∂MNFABC

D. (76)

Apparently, variation of the flux under

δΛEC
M = 1

2
ΛAB∂AB EC

M − EC
L∂LKΛMK

+ 1

4
EC

M∂K LΛK L ,

(77)

is precisely of that form, if one simply substitutes the above
into the flux definition (54) which is basically a consistency
check. In order to obtain a condition on fluxes one rewrites
the vielbein variation back in terms of flux as follows

δΛEC
M = FABC

E EE
MΛAB − EA

M∂CBΛAB

+ 1

4
EC

M∂ABΛAB .
(78)

Now the condition (76) gives non-trivial constraints on gen-
eralized fluxes called Bianchi identities

ZDF,ABC
E

= 1

2
∂ABFDFC

E + 1

2
∂BCFDFA

E − 1

2
δEA ∂CGFDFB

G

− 1

4
δEC ∂BGFDFA

G + 1

4
δEC ∂AGFDFB

G + 1

2
δEB ∂CGFDFA

G

− 1

2
∂ACFDFB

E − FBGC
EFDFA

G + FAGC
EFDFB

G

+ FABG
EFDFC

G − FABC
GFDFG

E − 1

2
∂DFFABC

E = 0.

(79)
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For clarification let us comment on the logic here. One can
approach Bianchi identities from two different perspectives.
The first one is to start with the explicit definition of flux
as in (54), in which case Bianchi identities hold identically.
The condition (76) is satisfied and the expression (54) is
proved to be a generalized scalar. The other perspective is to
start with a tensor FAB,C

D that is required to satisfy Bianchi
identities. In this case (54) appears as an explicit solution to
Bianchi identities expressingFABC

D in terms of generalized
vielbein EM

A. This is similar to the situation in Yang-Mills
theory, where one (locally) solves Bianchi identities dF = 0
as F = d A. Bianchi identities of the Yang-Mills theory can
be obtained in a similar manner; for illustration consider the
Abelian theory with Fμν = 2∂[μAν]. Now one requires this
expression to transform as a tensor under coordinate shift
parametrized by ξμ, which is apparently true. To derive a
non-trivial condition we write

δξ Aμ = ξν∂ν Aμ + Aν∂μξν = ξνFνμ + ∂μ(Aνξ
ν). (80)

For the field strength this transformation gives

δξ Fμν = 2∂[μδξ Aν] = Lξ Fμν − 3ξρ∂[μFνρ], (81)

where Lξ denotes the standard Lie derivative and the last
term is precisely the Bianchi identities.

We will stick to the understanding of Bianchi identities
as a requirement for the generalized flux to be expressible in
terms of vielbein. Hence, it is natural to require the shifted
generalized flux F ′

ABC
D to satisfy the same Bianchi iden-

tities, so it can be expressed in terms of some (deformed)
generalized vielbein E ′

M
A. Substituting F = F ′ − X into

Bianchi identities and taking into account that these hold for
FABC

D we obtain (antisymmetrization in [AB] and [CD] is
assumed)

0 = 1

2
∂ ′

CD XABE
F − ∂ ′

CE XABD
F − 1

2
∂ ′

AB XCD E
F

+ 1

2
δE

F∂ ′
CG XABD

G − δC
F∂ ′

EG XABD
G

− 2 XABC
GF ′

D GE
F + F ′

ABE
G XCD G

F

+ XABE
GF ′

CD G
F − F ′

ABG
F XCD E

G

− XABG
FF ′

CD E
G + 2F ′

ABC
G XD EG

F

− XBGC
E XDFA

G + XAGC
E XDFB

G + XABG
E XDFC

G ,

(82)

where as before ∂ ′
AB = E ′

A
M E ′

B
N ∂MN = ∂AB due to the

deformation ansatz:

∂ ′
AB = E ′

A
M E ′

B
N ∂MN = E ′

A
K E ′

B
LOM

K ON
L∂MN

= 2E ′[AK E ′
B]L O5

K Om
L∂5m

= 2E ′[A5E ′
B]l O5

5O
m
l∂5m + 2E ′[Ak E ′

B]l O5
kO

m
l∂5m

= EA
M EB

N ∂MN + 2E ′[Ak E ′
B]mWk∂5m . (83)

The first term is of the desired form while to show that the
second term is vanishing on ExFT scalars we write

W[m∂n] = εmnklε
klpqWp∂q = εmnklΩ

klq∂q � 0. (84)

In analogy to the case of double field theory we con-
sider constraints coming from terms linear and quadratic in
XABC

D separately. For the latter we have

− 1

16
Ek

AE
l
B E

m
C E

n
DE

p
F Eq

E Jq[r J st]

× (εklmnεprst − εklmpεnrst ) = 0,

(85)

which is satisfied if

Jm[n J kl] = 0. (86)

Linear conditions require more work and eventually the full
list of conditions takes the form (10). Details of the deriva-
tion of these conditions are collected in Appendix B and can
be tracked in the Cadabra file BI_to_X of [58]. Interest-
ingly, the fourth linear condition on J ensures that equations
following from the antisymmetric part of δema are satisfied
identically. This is essential, as only the symmetric part gives
a generalization of the Einstein equation. Similarly in the 10D
case the antisymmetric part is zero given Im is a Killing vec-
tor. Multiplying the first linear condition on J with eam we
can rewrite it as

Lea J
kl + Jnl∂nφea

k = 0, (87)

where Lea is the standard Lie derivative along ea = eam∂m .
Equivalently this can be rewritten as

[ea, J ]kl + Jnl∂nφea
k = 0, (88)

where the bracket [ , ] is the Schouten–Nijenhuis bracket of
degree (1, 2) defined as

[A, B]m1...mp+q−1 = pAn[m1...mp−1∂n B
mp ...mp+q−1]

+ q(−1)pq Bn[m1...mq−1∂n A
mq ...mp+q−1 ,

(89)

for antisymmetric tensors and similarly for symmetric ones.
The final step for deriving equations of the generalization

of 11D supergravity is to substitute flux shift as in (75), with
XABC

D given by (72) contracted with the proper general-
ized vielbein, to the exceptional field theory equations (63).
Taking into account conditions on Jmn the equations can be
written compactly as in (8).9

9 See the file EoM_varE_ALL of [58].
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3.5 Solution examples

Although conditions (10) on the tensor Jmn seem to be
quite severe, the theory is not empty and permits interest-
ing solutions. Below we present three examples, obtained
by performing a non-unimodular tri-vector deformation on
the AdS4 × S

7 background. The J -tensor for all these solu-
tions satisfies conditions (10). Note however, that although
these conditions are essential for derivation of the equations
(8) from tri-vector deformations, one may consider this set
of equations without reference to deformations. In this case,
conditions (10) can be ignored and then theory would allow
solutions beyond non-unimodular tri-vector deformations.
At least, at our current understanding we haven’t found any
other consistency constraints that would require (10).

Let’s arrange the deformations of AdS4 × S7 by pow-
ers of coordinates inside the tri-vector expressed as Ω =
1
3! ρabcka ∧ kb ∧ kc. We will use the Killing vectors of the
AdS4 space given as:

Pa = ∂a, Ka = x2∂a + 2xaD,

D = −xm∂m, Mab = xa∂b − xb∂a,
(90)

where a, b = 0, 1, 2 and m, n = 0, 1, 2, z, and we define
x2 = ηmnxmxn and xa = ηabxb.

• P ∧ P ∧ M

We first consider the deformation with a linear tri-vector

Ω = 1

8
ρab,cd Pa ∧ Pb ∧ Mcd = 1

2

[
(α − α′)x0 + (β − β ′)x1

+ (γ − γ ′)x2

]
∂0 ∧ ∂1 ∧ ∂2,

(91)

where

α = ρ01,02,

α′ = ρ02,01,

β = ρ01,12,

β ′ = ρ12,01,

γ = ρ02,12,

γ ′ = ρ12,02 .
(92)

The resulting background was originally found in [55] and
although Ω is non-Abelian, it is a solution of the ordinary
11D supergravity for any values of ρ:

ds2 = R2

4z2 K
− 2

3

[
−(dx0)2 + (dx1)2 + (dx2)2

]

+ R2K
1
3

[
dz2

4z2 + dΩ2
(7)

]
,

F = −3R3

8z4 K−2 dx0 ∧ dx1 ∧ dx2 ∧ dz,

K = 1 + ρaxa

z3 ,

(93)

where ρ0 = α − α′, ρ1 = β − β ′, ρ2 = γ − γ ′ and R is the
AdS radius.

In the present context we are interested in this deforma-
tion for a different reason: a specific choice of ρ renders it a
solution to generalized 11D supergravity. Indeed, examina-
tion of the quadratic Bianchi constraints Jm[n J kl] = 0 yields
as one possible solution

α = −α′, β = −β ′, γ = −γ ′. (94)

With this choice, the generalized Yang–Baxter equation (5)
reduces to a single constraint:

α2 = β2 + γ 2. (95)

For any ρ satisfying this, the deformed background is non-
unimodular and is a solution to generalized supergravity with
J = 1

4 (α ∂2 ∧ ∂1 + β ∂2 ∧ ∂0 + γ ∂0 ∧ ∂1).

• D ∧ P ∧ P

This deformation was first found in [55]. The ρ-matrix is
three-parametric and the tri-vector is

Ω = 2

R3 D ∧ (ρaε
abc Pb ∧ Pc). (96)

The ρ-tensor chosen in this way satisfies the generalized
Yang–Baxter equation for any values of ρa . The solution to
the generalized 11-dimensional supergravity equations reads

ds2 = R2

4z2 K
− 2

3

[
− (dx0)2 + (dx1)2 + (dx2)2

+
(

1 + ρaxa

z3

)
dz2 − 1

z2 ρadx
adz

]
+ R2K

1
3 dΩ2

(7),

F = −3R3

8z4

(
1 + ρ2

12z4

)
K−2 dx0 ∧ dx1 ∧ dx2 ∧ dz,

Jab = − 4

3R3 εabcρc,

K = 1 + ρaxa

z3 − ρ2

4z4 ,

(97)

where we denote ρ2 = ρaρbη
ab. It is worth mentioning,

that for ρ2 = 0 the deformed background solves equa-
tions of motion of the usual supergravity [55]. This is an
11-dimensional example of what was called trivial solutions
to generalized supergravity equations in [92], when terms
with Im (or in the present case Jmn) vanish separately.

• D ∧ M ∧ M
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Our last example is a non-trivial solution to the equations
of the 11D generalized supergravity and is based on the defor-
mation given by the tri-vector

Ω = 4

R3 ρaε
abc D ∧ Mbd ∧ Mc

d

= 4ρaxa

R3

(
xbxb ∂0 ∧ ∂1 ∧ ∂2 − 1

2
z εbcd xb ∂c ∧ ∂d ∧ ∂z

)
.

(98)

The ρ-matrix should have ρ2 = ρaρbη
ab = 0 due to the

generalized YB equation and the solution is

ds2 = R2

4z2 K− 2
3

[
dxadx

a + 1

z2 ρax
axbdxbdz

+
(

1 − xaxaρbxb

z3

)
dz2

]
+ R2K

1
3 dΩ2

(7),

F012z = −3

8

R3

z4 K−2
(

1 + 1

12

xaxaρbρcxbxc

z4

)
,

Jma = 32

R3 ρbε
abcxcx

m,

K = 1 + xaxa

z3 ρbx
b

(
1 − ρcxc

4z

)
.

(99)

4 Conclusions and discussions

In this paper we present a detailed description of the gen-
eralization of equations of 11D supergravity announced in
[1]. These equations are satisfied by non-unimodular tri-
vector generalized YB deformed supergravity backgrounds.
In this respect our result is a natural extension 10D gener-
alized supergravity to 11D. The approach we develop here
is based on the formalism of exceptional and doubled field
theory, where (generalized) YB deformations become sim-
ply a local T/U-duality transformation, that preserve fluxes.
Non-unimodularity then shifts fluxes generating the Killing
vector Iμ in 10D and a tensor Jmn with no index symmetry
in 11D. The tensor Jmn enters explicitly into the general-
ized equations (8) and additionally satisfies a list of condi-
tions (10). Although looking quite restrictive, these allow
non-trivial solutions several examples of which are given
here.

The equations obtained contain those of 10D generalized
supergravity for particular backgrounds of the form M7×M3,
that is dictated by the formalism and the truncation we used.
In general, we expect no obstacles for repeating the deriva-
tion for arbitrary backgrounds, which is however an inter-
esting task for the reason we discuss below. The reduction
to 10D goes basically along the lines of the reduction of
the scalar sector of SL(5) ExFT to the O(3, 3) DFT [93].
On top of that one must restrict to only bi-vector defor-

mations, which is done by choosing on of the Killing vec-
tors entering the deformation ansatz to commute with the
others. Choosing the adapted basis and denoting the cor-
responding direction x∗ we decompose the tensor Jmn as

Jmn → J ∗∗, J ∗a, Ja∗, Jab, (100)

where m, n = 1, . . . , 4 and a = 1, 2, 3. From the definition
(7) it follows that only

J ∗a = ρ∗α1α2 fα1α2
α3k∗∗kα3

a = I a, (101)

must be kept. All the others vanish that is guaranteed by
restricting to only bi-vector deformations, i.e. rα1α2 =
ρ∗α1α2 , ρα1α2α3 = 0, and by setting fα1α2

∗ = 0. Hence,
10D non-unimodular Yang-Baxter deformed backgrounds
(of the appropriate 10=7+3 form) also solve our equa-
tions.

A natural question that arises here is whether the equations
(8) are enough for the GS supermembrane to preserve κ-
symmetry in analogy to 10D generalized supergravity equa-
tions, which ensure κ-symmetry of the GS superstring. As it
has been discussed in the Sect. 1 for the superstring the gener-
alization is possible since a spinor superfield corresponding
to the dimensions 1

2 of the supertorsion is no longer simply a
spinorial derivative of the dilaton and contains an additional
vector Iμ. From the DFT point of view the vector Im , that
enters in Xm , is related to derivative of the dilaton w.r.t. a
dual coordinate. A similar interpretation for the supermem-
brane lacks both the vector superfield and the dilaton to allow
dependence on dual coordinates. The approach considered
here resulting in a generalization of 11D supergravity, gives
a clue to how to overcome the above obstacles. The main
observation here is that ExFT is a theory with explicitly bro-
ken global GL(11) symmetry as part of it enters the U-duality
group. Similarly, the local symmetry of diffeomorphisms in
11 dimensions is broken such as its 4-dimensional part enters
the generalized Lie derivative. The diagonal GL(1) manifests
itself in a scalar field φ, which arises e.g. in the non-linear
realization of the SL(5)×R

+ U-duality symmetry [90]. A
natural expectation would be that similar symmetry breaking
in 11D would generate a proper superfield, that can be gener-
alized to contain Jmn . A hint for why this could be possible is
precisely the breaking of the local 11-dimensional diffeomor-
phism symmetry, which is the analogue of the Weyl-to-scale
symmetry breaking for the RNS superstring on a generalized
supergravity background. Most probably, to see the complete
picture one should repeat our procedure for the full ExFT.

It is not yet clear whether there exists an interpreta-
tion of Jmn in terms of derivatives along dual coordi-
nates. The most naive expectation based on similarity of
the truncated ExFT and DFT is that dual derivative of
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the field φ entering the generalized metric would give
at least the antisymmetric part J [mn] ∝ ∂̃mnφ. How-
ever, our preliminary analysis suggests that this may not
be enough as the external vielbein might also need to
depend on dual coordinates to reproduce the correspond-
ing shift of generalized flux. We plan to return to this issue
soon.

Another interesting direction for further investigation is to
ask what happens if one reduces the generalized supergravity
equations obtained here to 10D as above but keeping tri-
vector deformations, i.e. ρα1α2α3 �= 0. This would give an
extension of 10D generalized supergravity by adding tensor
components Jab. Naturally one is interested to see whether
such equations ensure κ-symmetry of the superstring and
whether such deformations preserve integrability of the 2D
σ -model.
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Appendix A: Ricci tensor and Ricci scalar in terms of
anholonomicity coefficients

As we showed in this paper supergravity equations and their
deformations can be derived from generalized flux formu-
lation of extended field theories. To identify Einstein (and
dilaton in the 10D case) equations in the standard form using
this method we need to rewrite Ricci tensor and Ricci scalar
in terms of anholonomicity coefficients (here referred to as
fluxes) defined as usual as [ea, eb] = fabcec. Since we keep
these general and non-constant, fabc are convenient variables
that encode geometric properties of the background. For the
vielbein components eam , eam we have

fab
c = −2ea

meb
n∂[men]c, fa = fab

b. (1)

All covariant objects built from vielbeins, such as Rie-
mann and Ricci tensors and Ricci scalar, can be expressed in
terms of these fluxes. To show that, we start with the expres-
sion for Christoffel symbols

Γmn
k = 1

2
hkl(∂mhln + ∂nhlm − ∂l hmn )

= − 1

2
ea me

b
ne

c
l fac

dhbdh
kl

− 1

2
fab

cec
kea me

b
n

− 1

2
ea me

b
ne

c
l fbc

dhadh
kl , (2)

and we obtain the Ricci tensor as

Rnl = ∂kΓnl
k − ∂nΓkl

k + Γnl
pΓkp

k − Γkl
pΓnp

k

= − 1

2
ea le

b
n fbc

d fa
c
d − 1

2
∂m fa

b
c eb

mec le
a
n

+ 1

2
eale

b
n f

c fbc
a − 1

2
ea le

b
n fac

d fbd
c

− 1

2
∂m fab

c ec
mea le

b
n − 1

2
∂m fa

b
c eb

mea le
c
n

+ 1

2
eane

b
l f

c fbc
a + ∂n fa e

a
l

+ 1

2
ea le

b
n fc fab

c + 1

4
ealebn fcd

b f cda, (3)

and the Ricci scalar as

R = hnl(∂kΓnl
k − ∂nΓkl

k + Γnl
pΓkp

k − Γkl
pΓnp

k)

= −1

2
fab

c fcd
ahbd

− 1

4
fab

c fd f
ghcgh

adhbf + ∂m fa eb
mhab

− fa fbh
ab + ∂m fa e

a
nh

mn . (4)

Appendix B: Linear part of the Bianchi identities on Jmn

Here we give details of the computation of the linear con-
straints on Jmn listed in (10) where Cadabra computer alge-
bra with the code BI_to_X of [58] was used. To ana-
lyze constraints on Jmn coming from Bianchi identities
ZMN ,K L ,P

Q = 0 written in “curved” indices, it is convenient
to decompose all expressions under the gl(4) subalgebra of
sl(5). For that we first split the index M = (5,m) and list all
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non-vanishing components of ZMN ,K L ,P
Q :

Z[12,34,5]l = ∂p J
pl + J pq∂peq

a ea
l − J pl∂pφ

+ J pl∂peq
a ea

q ;
Z[mn],[kl] p = δm

p (−εnklq∂r J
rq + 2 Jqr εnrkl∂qφ

−Jqrεnkls∂qer
a ea

s

−Jqrεnrkl∂qes
a ea

s)

− εmklq∂n J
pq − J pqεmklr∂neq

a ea
r

+ J pqεmqkl∂nφ

+ J pqεmnqr∂kel
a ea

r

+ J pqεmnqk∂l er
a ea

r

− J pqεmnqk∂r el
a ea

r − J pqεmnqk∂lφ

− J pqεqklr∂men
a ea

r

− Jqrεmrkl∂qen
a ea

p;

(5)

Zm,l,[nk] p = δl
p
(

1

2
εmnkq∂r J

rq − 3

2
Jqr εmrnk∂qφ

+1

2
Jqr εmnks∂qer

a ea
s + 1

2
Jqrεmrnk∂qes

a ea
s
)

− δm
p Jqr εrlnk∂qφ + εlnkq∂m J pq − εmnkq∂l J

pq

+ J pqεlnkr∂meq
a ea

r

+ J pqεqlnk∂mφ

− J pqεmnkr∂l eq
a ea

r + J pqεmqnk∂lφ

− 2 J pqεmqlr∂nek
a ea

r

− 2 J pqεmqln∂ker
a ea

r

+ 2 J pqεmqln∂r ek
a ea

r + 2 J pqεmqln∂kφ

− J pqεqnkr∂mel
a ea

r

+ J pqεqnkr∂l em
a ea

r

− Jqr εmrnk∂qel
a ea

p − Jqr εrlnk∂qem
a ea

p;
Z[mn],k,l p = δk

p Jqr εmnrl∂qφ − εmnlq∂k J
pq

− 2 J pqεmqlr∂nek
a ea

r + 2 J pqεmqlr∂ken
a ea

r

− J pqεmnql∂ker
a ea

r + J pqεmnql∂r ek
a ea

r

+ J pqεmnql∂kφ

− 2 J pqεmqlk∂nφ

− J pqεmnqr∂l ek
a ea

r + J pqεmnqr∂kel
a ea

r

− J pqεmnqk∂lφ − J pqεmnlr∂keq
a ea

r

+ Jqr εmnrl∂qek
a ea

p.

(6)

These in general belong to reducible representations of gl(4)

and can be further decomposed. The first line Zm ∈ 4 is
already an irrep, hence, we proceed with the second line:

Z[mn],[kl] p ∈ 6 × 6 × 4̄ → (1 + 15 + 20′) × 4̄. (7)

Direct check shows that for the given XABC
D the part in 20′

identically vanishes, leaving us with

Z[mn],[kl] p ∈ (1 + 15) × 4̄ = 4̄ + 4̄ + 20 + 36. (8)

In tensor components these can be written as follows

4̄ : εmnkl Zmnkl
p,

4̄ : εmnkl Zmnkp
p − 1

4
εmnkp Zmnkp

l ,

20 : εmnk[p Zmnkl
q] − tr,

36 : εmnk(p Zmnkl
q) − tr.

(9)

where the trace parts include the irreps in the first two lines
and hence vanish. Explicitly these give the following con-
straints

4̄ : ∂n I
nm − 2I nm∂nφ + I nme−1∂ne = 0,

4̄ : −4Um∂n J
nm + 12Um Jnmdn − 8Um Jnk∂nek

a ea
m

− 4Um Jnm∂nek
a ea

k − 2Um∂n J
mn

+ 3Um Jmndn + 2Um Jnk∂ken
a ea

m

− 2Um Jmn∂nek
a ea

k;
20 : AmnU

k(−Jml∂l ek
a ea

n + J lm∂l ek
a ea

n − ∂k J
mn )

+ AmnU
m(J kl∂kel

a ea
n − J kl∂l ek

a ea
n)

+ 6 AmnU
n Jkmdk = 0,

36 : SmnU
k(2 Jml∂l ek

a ea
n + 2 ∂k J

mn + 2 J lm∂l ek
a ea

n)

+ SmnU
n(−Jmkdk + 2 J kmdk);= 0,

(10)

where Jmn = Imn + Smn . Note that expressions in the third
and the fourth line are not irreducible representations, but
some combinations of that with the trace part.

Consider now Z[mn],k,l p, whose lower index structure
decomposes as

Z[mn],k,l ∈ 6 × 4 × 4 → 6 × (6 + 10)

= (1 + 15 + 20′) + (15 + 45). (11)

As before, direct check shows that the 20′ and 45 identically
vanish. Hence, in total we have Z[mn],k,l p ∈ (1 + 15 + 15)×
4̄. Before proceeding with decomposing these irrep products
we notice that the difference between the two 15 × 4̄’s can
be represented in the following nice form

∂m Jkl + J kn∂nem
aea

l + Jnl∂nem
aea

k + J knδm
l∂nφ

+Jnlδm
k∂nφ = 0, (12)

given which it is enough to keep only one of these represen-
tations. Next we consider the 4̄’s, which given the previous
conditions both boil down to

Jmn∂nφ = 0. (13)
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Given these conditions the remaining parts in the 20+36 are
equivalent to the previous constraints. The same is true for
Zm,n,[kl] p. Collecting all the conditions together we have

1. Jmn∂nφ = 0,

2. ∂p J
pl + J pq∂peq

a ea
l − J pl∂pφ + J pl∂peq

a ea
q = 0,

3. ∂n I
nm − 2I nm∂nφ + I nme−1∂ne = 0,

4. − 2Um∂n J
nm + 6Um Jnmdn − 4Um Jnk∂nek

a ea
m

− 2Um Jnm∂nek
a ea

k − Um∂n J
mn

+ Um Jnk∂ken
a ea

m − Um Jmn∂nek
a ea

k = 0,

5. ∂m Jkl + Jkn∂nem
aea

l + Jnl∂nem
aea

k + Jnlδm
k∂nφ = 0,

6. AmnU
k(−Jml∂l ek

a ea
n + Jlm∂l ek

a ea
n − ∂k J

mn )

+ AmnU
m(Jkl∂kel

a ea
n − Jkl∂l ek

a ea
n)

+ 6 AmnU
n Jkmdk = 0,

7. SmnU
k( Jml∂l ek

a ea
n + ∂k J

mn + Jlm∂l ek
a ea

n)

+ SmnU
n Jkmdk = 0.

(14)

A combination of 2, 3 and 4 gives

8. −Uk J
mn∂men

a ea
k

+5Um Jnmdn +Uk J
mn∂nem

a ea
k = 0. (15)

Sum of 6 and 7 together with 8 gives 5. Trace of 5 together
with 8 gives 2. Trace of 6 together with 8 gives 3. Hence, the
only independent conditions are

0 = ∂m Jkl + J kn∂nem
aea

l + Jnl∂nem
aea

k + Jnlδm
k∂nφ,

0 = Imn∂men
aea

k − 5

2
J lk∂lφ −→ ∇m

(
e−φ Imn) = 0,

0 = Jmn∂nφ.

(16)

Terms in Bianchi identities that are proportional to the
gauge field Vm appear independently from the above. Fol-
lowing the same steps we arrive at

∇[m Zn] − 1

3
J kl Fmnkl = 0,

∇k

(
e−φ J k[l V p]) = 0,

∇k(J
(pl)V k) − ∇k(V

(p J l)k) = 0.

(17)

Interestingly enough, the first condition ensures that equa-
tions following from the antisymmetric part of δema are sat-
isfied identically.
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