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1 Introduction

On certain backgrounds, string theory admits a consistent truncation to a subset of modes
in its Kaluza-Klein (KK) spectrum whose complete non-linear dynamics is captured by a
gauged supergravity in lower dimensions. Notable examples include the reduction of eleven-
dimensional supergravity on AdS4 × S7 [1–4] and on AdS7 × S4 [5–7], and the reduction
of type IIB supergravity on AdS5 × S5 [8–10].

Such consistent truncations are in general difficult to construct, but when they exist they
constitute a fundamental tool for obtaining solutions in ten and eleven dimensions, as the
consistency of the truncation guarantees that every solution of the lower-dimensional gauged
supergravity can be embedded into a configuration that solves the equations of motion of the
parent theory. This approach has been particularly fruitful in holographic set-ups, where the
gauged supergravity techniques have made possible the construction of hundreds of different
AdS solutions — see [11–15] for recent surveys — that are dual to different conformal field
theories (CFTs) and can be used, among other things, as a playground to check Swampland
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conjectures, such as the AdS conjecture [16] or the CFT distance conjecture [17]. Furthermore,
the relative simplicity of the lower-dimensional theories has allowed the analysis of other
holographically relevant phenomena, such as black holes [18, 19] describing finite temperature
states in the CFT, or domain walls realising CFT interfaces [20, 21] and RG-flows between
different CFTs [22, 23]. Additionally, the existence of these consistent truncations also
facilitates even some intrinsically higher-dimensional computations such as the spectrum
of masses of the KK modes [24].

Recently, reformulations of string theory based on its duality symmetries [25, 26] have
played a pivotal rôle in our understanding of consistent truncations [27, 28]. In fact, at
present there are theorems [29] that guarantee the existence of these reductions for wide
classes of theories and backgrounds in terms of suitable factorisations of duality-covariant
fields. However, explicit KK Ansätze for the standard higher-dimensional metric and fluxes
keeping the entire dependence on the lower-dimensional fields and their derivatives are often
not known due to the intricate nature of the dictionary relating the original supergravities
to the duality-covariant counterparts. A convenient way to describe the embedding of these
non-trivial profiles makes use of the tensor hierarchy, which is a supplement to the p-forms in
the ungauged supergravity that are introduced so as to guarantee that the gauged theory is
formally covariant under the original global symmetry group [30–33]. The redundancies so
introduced can be eliminated at the level of the field strengths, and an explicit KK Ansatz in
terms of the original fields and their derivatives can thus be obtained [34–36]. These extra
forms allow us to trade some complicated dualisations with respect to the internal metric for
much simpler dualisations with respect to the four-dimensional metric.

It has been observed [15, 37] that there exists a non-trivial network of gauged super-
gravitites in four dimensions that are connected by singular limits of their moduli. When
the original gauged supergravity admits an uplift to string theory, one can follow this limit
also in higher dimensions [38, 39], and thereby connect one consistent truncation to another.
This technique can also be employed to construct new solutions from known ones [40]. In
this paper, we employ these relations to describe the truncation of type IIB supergravity
on AdS4 × S5 × S1. There are in fact several inequivalent truncations on this geometry,
and in this work we focus on the ones in which the resulting gaugings are SO(6) ⋉R12 [41]
and [SO(6) × SO(2)] ⋉R12 [42, 43]. The latter can be understood as a modification of the
former where an extra vector is dyonically coupled to the matter fields. Even though the
consistency of these truncations is well known [44], complete KK Ansätze are unavailable.
For simplicity, we focus here on the truncation of these four-dimensional theories down to
the STU sector so that only six scalars and four vectors can have a non-trivial profile. The
STU model obtained from the SO(6) ⋉ R12 theory can be obtained as a singular limit of
the STU model corresponding to the SO(8) gauging of [19], and we show that the S5 × S1

background in type IIB can be obtained as a singular limit of eleven-dimensional supergravity
on the S7 followed by a circle reduction and T-duality. The explicit Ansatz embedding both
theories in type IIB is presented in equations (4.32)–(4.37).

The rest of the paper is structured as follows. In the next section we introduce the
4d models which we are going to analyse, and discuss some of their properties and their
reformulation in terms of the tensor hierarchy. Section 3 briefly reviews E7(7)-Exceptional

– 2 –



J
H
E
P
0
3
(
2
0
2
4
)
0
9
7

Field Theory (ExFT) [45] and the description of consistent truncations down to maximal
gauged supergravities in the language of generalised Scherk-Schwarz reductions [28], which
will be subsequently used to describe the uplift of the STU models into M-theory on S7

and type IIB supergravity on S5 × S1, and the consistency of these embedding is explicitly
checked in a simpler sub-truncation. New solutions in these gaugings are then constructed in
section 5 and we conclude by discussing some possible future directions and include further
technical details in two appendices.

2 Gauged STU supergravity

We consider D = 4 theories that arise as a truncation of N = 8 gauged supergravity [46, 47] by
requiring invariance under the maximal torus of the relevant gauge group — see appendix A
for the expression of the generators of these Cartan subalgebras in terms of the generators
of E7(7). The bosonic field content of these theories consists of the metric, four vectors and
six (pseudo)scalars corresponding to the scalar manifold

(SL(2,R)
SO(2)

)3
⊂

E7(7)
SU(8) , (2.1)

parametrised by ui = χi − ie−φi , with i = 1, 2, 3. The bosonic sector of the Lagrangians
of these STU supergravities can then be written as

L = (R − V ) vol4 + LNLSM + Lvec . (2.2)

The scalar kinetic terms read

LNLSM = 1
2
∑

i

[
dφi ∧ ∗dφi + e2φidχi ∧ ∗dχi

]
, (2.3)

and the vector kinetic terms are given by

Lvec = 1
2IabF a ∧ ∗F b + 1

2RabF a ∧ F b , (2.4)

with a = 1, 2, 3, 4. These non-minimal couplings can be extracted from the symmetric coset
representative of the maximal theory in (A.9) via the block decomposition in (A.12) after the
identifications in (A.11). The result can be given as the period matrix Nab = Rab + iIab

1

Nab = i

W


−Y 2

1 Y 2
2 Ỹ 2

3 q1 Y 2
1 q3 Ỹ 2

3 q2 Y 2
2

q1 Y 2
1 −Y 2

1 Ỹ 2
2 Y 2

3 q2 Ỹ 2
2 q3 Y 2

3
q3 Ỹ 2

3 q2 Ỹ 2
2 −Ỹ 2

1 Ỹ 2
2 Ỹ 2

3 q1 Ỹ 2
1

q2 Y 2
2 q3 Y 2

3 q1 Ỹ 2
1 −Ỹ 2

1 Y 2
2 Y 2

3

 , (2.6)

1This period matrix recovers the kinetic and Chern-Simons terms in [48] under χthere
i = −χhere

i and the
following redefinition of the vector fields:

F here
1 = F there

4 , F here
2 = F there

3 , F here
3 = −F there

1 , F here
4 = F there

2 . (2.5)

In section 4.1, this same relabelling applies to the coordinates µa, ϕa, and similarly to Wa and Za.
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in terms of the shorthands [48]

Ỹ 2
i = e−φi + eφi χ2

i , Y 2
i = eφi , bi = eφiχi , (2.7)

and
W = P0 − i P̃0 , qi = i bi + bj bk , with i ̸= j ̸= k , (2.8)

with
P0 = 1 + b2

1 + b2
2 + b2

3 , and P̃0 = 2b1b2b3 . (2.9)

For the potential, we consider the parent N = 8 supergravity to have one of the following
gauge groups: SO(8) [49], its CSO contraction SO(6) ⋉ R12 [41, 50] or the dyonic CSO
[SO(6) × SO(2)] ⋉R12 [42, 43] gaugings, which all admit a higher-dimensional interpretation.
These gaugings can be described by embedding tensors with non-vanishing components in
the 36′ ⊕ 36 of SL(8,R) as in (A.1), with the components θAB and ξAB given by

θ = g diag(1, 1, 1, 1, 1, 1, x, x) ,

ξ = m diag(0, 0, 0, 0, 0, 0, x̃, x̃) ,
(2.10)

where g (resp. m) is the electric (resp. magnetic) coupling constant. By construction,
these are valid gaugings satisfying the linear and quadratic constraints for the embedding
tensor [44, 46] whenever xx̃ = 0. The three inequivalent choices are

θ(8) = g diag(1, 1, 1, 1, 1, 1, 1, 1) , ξ(8) = 0 ,

θ(6) = g diag(1, 1, 1, 1, 1, 1, 0, 0) , ξ(6) = 0 ,

θ(6c) = g diag(1, 1, 1, 1, 1, 1, 0, 0) , ξ(6c) = m diag(0, 0, 0, 0, 0, 0, 1, 1) ,

(2.11)

with the labels respectively denoting the three different gauge groups above, with c = m/g ̸= 0
in the latter case.

In the STU truncation, these embedding tensors induce Fayet-Iliopoulos gaugings, whose
potentials read

V(8) = −4g2 ∑
i

(
Ỹ 2

i + Y 2
i

)
, (2.12a)

V(6) = V(6c) = −4g2 (Ỹ 2
1 + Y 2

2 + Y 2
3
)

. (2.12b)

The potential (2.12a) only admits one critical point. It sits at the scalar origin and corresponds
to the SO(8) maximally supersymmetric solution. In turn, the potentials (2.12b) do not
possess any extremum in this sector.

Even though the V(6c) potential is blind to the value of the magnetic coupling m, the
fermion couplings in this theory do depend on it. A similar situation has been previously
encountered [51] in the STU truncation of the dyonically-gauged SO(8) supergravity. In fact,
the truncated theory is not supersymmetric for non-vanishing m. On the other hand, the
electric cases are gauged N = 2 supegravities coupled to three vector multiplets. To see
this, observe that theories with N = 2 supersymmetries can necessarily be recovered in the
canonical perspective of [52, 53] in terms of special Kähler and quaternionic structures. For
the scalar manifold (2.1), the special holomorphic section can be taken as

ΩM (z) = {1, u1, u2, u3,−u1u2u3, u2u3, u1u3, u1u2} , (2.13)
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in terms of the special holomorphic coordinates in (2.1). This section describes the geometry
of the scalar manifold and encodes its Kähler potential as

K = −log
[
i Ω̄MCMN ΩN ] = −log

[
− i(z1 − z̄1)(z2 − z̄2)(z3 − z̄3)

]
, (2.14)

with CMN the symplectic form on Sp(8,R). Purely Fayet-Iliopoulos gaugings have a po-
tential [52]

V = −4g2
(
gīi∂iV

M ∂īV̄
N − 3V M V̄ N

)
ϑM ϑN , (2.15)

with V M = e−K/2ΩM (z) a section of the special U(1)-bundle, gīi = ∂i∂īK the hermitean
metric associated to the Kähler potential, and ϑM the embedding tensor describing how the
U(1) gauge group sits into the SU(2) R-symmetry group. The potential obtained from the
truncation of the SO(8) gauging is given in this language by

ϑ(8)
M = g

(
− 1, 0, 0, 0, 0, 1, 1, 1

)
, (2.16)

whereas the embedding tensor corresponding to V(6) is given by

ϑ(6)
M = g

(
− 1, 0, 0, 0, 0, 0, 1, 1

)
. (2.17)

For the electric theories, the N = 2 supersymmetry variations and fermionic mass-like terms
in the Lagrangian associated to these embedding tensors agree with the truncation of the
N = 8 fermion shifts associated to (2.11). However, for the dyonic gauging in (2.11), the
fermion shifts carry dependences on m which can not be recovered in the N = 2 language.

The potentials in (2.12b) can be obtained from V(8) by means of a singular scaling. For
that, the scalars must be redefined as

φ1 7→ φ1 − k , φ2,3 7→ φ2,3 + k ,

χ1 7→ ekχ1 , χ2,3 7→ e−kχ2,3 ,
(2.18)

the gauge coupling as g 7→ e−k/2g, and the gauge fields must also be scaled as

A1,2,3 7→ ek/2A1,2,3 , A4 7→ e−3k/2A4 , (2.19)

whilst the metric remains invariant. The singular limit k → ∞ on (2.2) after these redefinitions
maps the Lagrangian L(8) into L(6), also including the fermion couplings.

2.1 Tensor and duality hierarchies

The equations of motion of gauged D = 4, N = 8 supergravity can be written in a formally
covariant E7(7)-covariant formulation [30, 31, 54] if one introduces a set of redundant fields
in the so-called tensor hierarchy. For generic gaugings of D = 4, N = 8 supergravity, one
requires [30, 31] one-forms in the 56 representation of E7(7), two-forms in the 133 and
three-forms in the 912, together with a set of four-forms that will not play a rôle in the
following. These redundancies can be eliminated at the level of the field strengths through
a chain of dualities that relate them to the original fields and their derivatives [32, 33], so
that combinations of the equations of motion for the original fields are recovered from the
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Bianchi identities for the forms in the tensor hierarchy. In the following, we show how these
reformulations apply to the STU supergravities of interest.

The equations of motion stemming from (2.2) for the one-forms and scalars are

d
[
Iab ∗ F b + RabF b] = 0 ,

d ∗ dφi − e2φidχi ∧ ∗dχi − 1
2∂φiIabF a ∧ ∗F b − 1

2∂φiRabF a ∧ F b + ∂φiV vol4 = 0 ,

d(e2φi ∗ dχi) − 1
2∂χiIabF a ∧ ∗F b − 1

2∂χiRabF a ∧ F b + ∂χiV vol4 = 0 ,

(2.20)

which can be interpreted as Bianchi identities for two- and three-form field strengths, respec-
tively. For gaugings inside SL(8,R), as the ones considered in this work, the p-forms in the
E7(7) tensor hierarchy are conveniently decomposed into one-forms AAB, ÃAB, two-forms
BA

B, BABCD, and three-forms CAB, C̃AB, CA
BCD, C̃A

BCD in the 28 ⊕ 28′, 63 ⊕ 70 and
36 ⊕ 36′ ⊕ 420 ⊕ 420′ of SL(8,R). Their associated field strengths are given by

HAB
(2) = dAAB + θCDAC[A ∧ AB]D − ξ[A|CÃCD ∧ AD|B] + 2ξC[ABC

B] ,

H(2)AB = dÃAB − ξCDÃC[A ∧ ÃB]D + θ[A|CACD ∧ ÃD|B] − 2B[A
CθB]C ,

H(3)A
B = DBA

B + 1
2ÃAC ∧ dACB + 1

2ABC ∧ dÃCA

+ 1
2θDEÃAC ∧ ACD ∧ AEB + 1

6θACACD ∧ ÃDE ∧ AEB

− 1
2ξCDÃAC ∧ ÃDE ∧ AEB − 1

6ξEBÃAC ∧ ACD ∧ ÃDE

+ 2 θACCCB − 2 C̃ACξCB − 1
8δA

B(Trace) ,

H(3)ABCD = DBABCD + 1
4Ã[AB ∧ dÃCD] − 1

96ϵABCDEF GHAEF ∧ dAGH

+ 1
6

(
θ[A|EAEF − Ã[A|EξEF

)
∧ ÃF |B ∧ ÃCD]

+ 1
144ϵABCDEF GHAEF ∧

(
ξGIÃIJ − AGIθIJ

)
∧ AJH

+ 1
3θE[AC̃E

BCD] − 1
12ϵABCDEF GHξHICI

EF G , (2.21)

and similarly for the four-forms HAB
(4) , H̃(4)AB, H(4)A

BCD, H̃A
(4)BCD. Here the covariant

derivatives are given by the SL(8,R) decomposition of

D = d + ΘM
αAM ∧ (tα)(R) , (2.22)

with (tα)(R) the E7(7) generators in the appropriate representation. For instance,

DBA
B = dBA

B + θACACD ∧ BD
B + θCDABC ∧ BA

D

+ ξCDÃCA ∧ BD
B + ξBDÃCD ∧ BA

C ,

DBABCD = dBABCD + 4B[ABC|E ∧
(
ξEF ÃF |D] − AEF θF |D]

)
.

(2.23)

These field strengths obey the Bianchi identities

DHAB
(2) = 2ξC[AH(3)C

B] , DH(2)AB = −2H(3)[A
CθB]C ,

DH(3)A
B = H̃(2)AC ∧ HCB

(2) + 2θACHCB
(4) − 2H̃(4)ACξCB − 1

8δA
B(Trace) ,
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DH(3)ABCD = 1
4H̃(2)[AB ∧ H̃(2)CD] − 1

96ϵABCDEF GHHEF
(2) ∧ HGH

(2)

+ 1
3θE[AH̃E

(4)BCD] − 1
12ϵABCDEF GHξHIH(4)I

EF G , (2.24)

which, together with the E7(7) duality relations [32, 33]

H(2)AB = 1
2RAB CD H(2)

CD + 1
2IAB CD ∗ H(2)

CD ,

H(3)α = − 1
12(tα)M

P MNP ∗ DMMN ,

H(4)α
M = − 1

84

[
(tα)P

R XNQ
S MMN

(
MP QMRS + 7δP

S δQ
R

)]∣∣∣
912

vol4 ,

(2.25)

recover the equations of motion for the vectors and scalars. Further details on the E7(7)
generators (tα)M

P , structure constants XMN
P and scalar representative MMN can be found

in appendix A.
Demanding invariance under the H algebra in (A.4) allows us to consistently truncate

this field content to

4+4 one-forms : Aa , Ãa ,

3+4+6 two-forms : Bp , B′
a , Bab ,

4+4+12+12 three-forms : Ca , C̃a , Cab , C̃ab ,

(2.26)

with a = 1, 2, 3, 4 , and p = 1, 2, 3. The forms Bab, Cab, C̃ab are off-diagonal, and Bab are
also symmetric under exchange of indices. See (A.11)–(A.15) for the relation between the
preserved p-forms in (2.26) and the SL(8,R) objects. For convenience, we also introduce
an extra two-form B4, constrained as

B1 + B2 + B3 + B4 = 0 , (2.27)

and extend the index as a = (p, 4). If we restrict our attention to the class of gaugings
in (2.10), we can further truncate consistently the field content to

4+4 one-forms : Aa , Ãa ,

3+6 two-forms : Bp , Bab ,

4+4+3+6 three-forms : Ca , C̃a , Cp4 , C̃p4 , C̃12 = C̃43 , C̃23 = C̃41 , C̃31 = C̃42 ,

(2.28)
with C̃pq = C̃qp. The field strengths for these gauge potentials can be obtained by im-
plementing these truncations at the level of the SL(8,R) field strengths in (2.21). The
resulting expressions read

Ha
(2) = dAa , H̃(2)a = dÃa ,

H(3)a = dBa + 2 θa Ca − 2 ξa C̃a − 1
2Aa ∧ dÃa − 1

2Ãa ∧ dAa

− 1
4
∑

b

[
2 θb Cb − 2 ξb C̃b − 1

2Ab ∧ dÃb − 1
2Ãb ∧ dAb

]
,

H(3)ab = dBab + 1
12Ã(a ∧ dÃb) + 1

6
(
θaC̃ab + θbC̃ba

)
+ 1

24
∑
cd

Sabcd
[
− Ac ∧ dAd + 4 ξcCcd

]
,

H(4)a = dCa , H̃(4)a = dC̃a ,

(2.29)
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and similarly for H(4)ab and H̃(4)ab. In (2.29) there are no sums unless explicitly indicated,
and the embedding tensor components θa and ξa are related to θAB and ξAB in (2.11)
following the same pattern as the three-forms in (A.14). We have also introduced the totally
symmetric tensor

Sabcd = S(abcd) , S1234 = 1 . (2.30)

From their definition in terms of potentials, it is easy to check that the field strengths
satisfy the Bianchi identities

dHa
(2) = dH̃(2)a = dH(4)a = dH̃(4)a = dH(4)ab = dH̃(4)ab = 0 ,

dH(3)a = 2 θaH(4)a − 2 ξaH̃(4)a − Ha
(2) ∧ H̃(2)a − 1

4(sum) ,

dH(3)ab = 1
12H̃a ∧ H̃b + 1

6
(
θaH̃(4)ab + θbH̃(4)ba

)
+ 1

24
∑
cd

Sabcd
[
− Hc ∧ Hd + 4 ξcH(4)cd

]
.

(2.31)

Implementing the restrictions in (A.11)–(A.15) on (2.25), we can express the dual field
strengths in terms of the original STU fields and their derivatives. The magnetic two-form
field strengths are then given by

H̃(2)1 = 1
|W |2

[
c1(P̃0 − P0∗)H1

(2) + Y 2
1 (a1 ∗ −ã1)H2

(2) + Ỹ 2
3 (a3 ∗ −ã3)H3

(2) + Y 2
2 (a2 ∗ −ã2)H4

(2)

]
,

H̃(2)2 = 1
|W |2

[
Y 2

1 (a1 ∗ −ã1)H1
(2) + c2(P̃0 − P0∗)H2

(2) + Ỹ 2
2 (a2 ∗ −ã2)H3

(2) + Y 2
3 (a3 ∗ −ã3)H4

(2)

]
,

H̃(2)3 = 1
|W |2

[
Ỹ 2

3 (a3 ∗ −ã3)H1
(2) + Ỹ 2

2 (a2 ∗ −ã2)H2
(2) + c3(P̃0 − P0∗)H3

(2) + Ỹ 2
1 (a1 ∗ −ã1)H4

(2)

]
,

H̃(2)4 = 1
|W |2

[
Y 2

2 (a2 ∗ −ã2)H1
(2) + Y 2

3 (a3 ∗ −ã3)H2
(2) + Ỹ 2

1 (a1 ∗ −ã1)H3
(2) + c4(P̃0 − P0∗)H4

(2)

]
,

(2.32)

with W in (2.8) and

ai = bjbk

[
P0 − 2 b2

i

]
, ãi = bi P0 + P̃ 2

0
2bi

, with i ̸= j ̸= k ,

c1 = Y 2
1 Y 2

2 Ỹ 2
3 , c2 = Y 2

1 Ỹ 2
2 Y 2

3 , c3 = Ỹ 2
1 Ỹ 2

2 Ỹ 2
3 , c4 = Ỹ 2

1 Y 2
2 Y 2

3 .

(2.33)

Similarly, the three-form field strengths are

H(3)1 = 1
2 ∗ (−dφ1 − dφ2 + dφ3 + e2φ1χ1dχ1 + e2φ2χ2dχ2 − e2φ3χ3dχ3) ,

H(3)2 = 1
2 ∗ (−dφ1 + dφ2 − dφ3 + e2φ1χ1dχ1 − e2φ2χ2dχ2 + e2φ3χ3dχ3) ,

H(3)3 = 1
2 ∗ (dφ1 + dφ2 + dφ3 − e2φ1χ1dχ1 − e2φ2χ2dχ2 − e2φ3χ3dχ3) ,

H(3)4 = 1
2 ∗ (dφ1 − dφ2 − dφ3 − e2φ1χ1dχ1 + e2φ2χ2dχ2 − e2φ3χ3dχ3) .

(2.34)
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for the ones in the 63 of SL(8,R), and

H(3)12 = 1
12 ∗ e2φ1dχ1 , H(3)14 = 1

12 ∗ e2φ2dχ2 , H(3)24 = 1
12 ∗ e2φ3dχ3 ,

H(3)34 = 1
12 ∗

[
2χ1dφ1 + (1 − e−2φ1χ2

1)dχ1
]
,

H(3)23 = 1
12 ∗

[
2χ2dφ2 + (1 − e−2φ2χ2

2)dχ2
]
,

H(3)13 = 1
12 ∗

[
2χ3dφ3 + (1 − e−2φ3χ2

3)dχ3
]
,

(2.35)

for the ones in the 70. The expressions for the four-form field strengths in terms of the
scalars depend on the choice of embedding tensor. Employing (2.25) for the class of gaugings
in (2.10), we obtain

H(4)1 = 2g
[
Ỹ 2

1 + x Ỹ 2
2 + Y 2

3
]
vol4 , H̃(4)1 = 2m x̃ Y 2

2 vol4 ,

H(4)2 = 2g
[
Ỹ 2

1 + Y 2
2 + x Ỹ 2

3
]
vol4 , H̃(4)2 = 2m x̃ Y 2

3 vol4 ,

H(4)3 = 2g
[
x Y 2

1 + Y 2
2 + Y 2

3
]
vol4 , H̃(4)3 = 2m x̃ Ỹ 2

1 vol4 ,

H(4)4 = 2g
[
Y 2

1 + Ỹ 2
2 + Ỹ 2

3
]
vol4 , H̃(4)4 = 0 ,

(2.36)

and

H(4)34 = 2mx̃χ1eφ1vol4 , H(4)14 = 2mx̃χ2eφ2vol4 , H(4)24 = 2mx̃χ3eφ3vol4 ,

H̃(4)12 = −2gχ1eφ1vol4 , H̃(4)23 = −2gχ2eφ2vol4 , H̃(4)31 = −2gχ3eφ3vol4 ,

H̃(4)34 = −2gxχ1eφ1vol4 , H̃(4)14 = −2gxχ2eφ2vol4 , H̃(4)24 = −2gxχ3eφ3vol4 .

(2.37)
The forms in (2.36) can be used to reproduce the potentials in (2.12) as

∑
a

[
θaH(4)a + ξaH̃(4)a

]
= −V vol4 . (2.38)

As noted before, inserting the duality relations (2.32) into the Bianchi identities (2.31), we
obtain the scalar-Maxwell equations in (2.20) stemming from the Lagrangian (2.2). Similarly,
the Bianchi identities for the three-form field strengths are identically verified if the equations
of motion for the scalars are satisfied. The derivatives of the scalars that appear in equations
of motion for the dilatons are retrieved from

H(3)1 + H(3)2 = −2 Guv ku[h1] ∗ dΦv , H(3)1 + H(3)4 = −2 Guv ku[h2] ∗ dΦv ,

H(3)2 + H(3)4 = −2 Guv ku[h3] ∗ dΦv ,
(2.39)

with Φu a collective name for the six scalars (φi, χi) and Guv the non-linear sigma-model
metric in (2.3). The Killing vectors k[hi] are defined in (A.10). Similarly, the three-forms
in (2.35) are related to k[ei] and k[fi] in (A.10) and encode the derivatives of the axions in
their equations of motion. The derivatives of the scalar potential in (2.20) are accounted
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for by the four-form field strengths as

θ1H(4)1 + θ2H(4)2 − ξ1H̃(4)1 − ξ2H̃(4)2 − 1
2
∑

a

(
θaH(4)a − ξaH̃(4)a

)
= 1

4ku[h1]∂uV vol4 ,

θ1H(4)1 + θ4H(4)4 − ξ1H̃(4)1 − ξ4H̃(4)4 − 1
2
∑

a

(
θaH(4)a − ξaH̃(4)a

)
= 1

4ku[h2]∂uV vol4 ,

θ2H(4)2 + θ4H(4)4 − ξ2H̃(4)2 − ξ4H̃(4)4 − 1
2
∑

a

(
θaH(4)a − ξaH̃(4)a

)
= 1

4ku[h3]∂uV vol4 ,

gH̃(4)12 = 1
28ku[e1]∂uV vol4 , gH̃(4)23 = 1

28ku[e2]∂uV vol4 , gH̃(4)31 = 1
28ku[e3]∂uV vol4 ,

(2.40)

and, finally, the non-minimal couplings to the vector fields follow from

H1
(2) ∧ H̃(2)1 + H2

(2) ∧ H̃(2)2 − 1
2
∑

a
Ha

(2) ∧ H̃(2)a = 1
4ku[h1]∂u

(∑
a

Ha
(2) ∧ H̃(2)a

)
,

H1
(2) ∧ H̃(2)1 + H4

(2) ∧ H̃(2)4 − 1
2
∑

a
Ha

(2) ∧ H̃(2)a = 1
4ku[h2]∂u

(∑
a

Ha
(2) ∧ H̃(2)a

)
,

H2
(2) ∧ H̃(2)2 + H4

(2) ∧ H̃(2)4 − 1
2
∑

a
Ha

(2) ∧ H̃(2)a = 1
4ku[h3]∂u

(∑
a

Ha
(2) ∧ H̃(2)a

)
,

(2.41)

in the equation for the dilations, and

H̃(2)1 ∧ H̃(2)2 − H3
(2) ∧ H4

(2) = 1
2ku[e1]∂u

(∑
a

Ha
(2) ∧ H̃(2)a

)
,

H̃(2)1 ∧ H̃(2)4 − H2
(2) ∧ H3

(2) = 1
2ku[e2]∂u

(∑
a

Ha
(2) ∧ H̃(2)a

)
,

H̃(2)2 ∧ H̃(2)4 − H1
(2) ∧ H3

(2) = 1
2ku[e3]∂u

(∑
a

Ha
(2) ∧ H̃(2)a

)
,

(2.42)

in the one for the axions.
Turning now our attention to the singular limit relating the different gaugings, under the

scaling (2.18) the three-form field strengths in (2.34) stay invariant, the magnetic two-form
field strengths have opposite scaling to the electric forms in (2.19),

H̃(2)1,2,3 7→ e−k/2H̃(2)1,2,3 , H̃(2)4 7→ e3k/2H̃(2)4 , (2.43)

and the electric four-form field strengths reduce to

H(4)a 7→ ekH̄(4)a , (2.44)

with H̄(4)a the four-forms given by (2.36) with x = 0 and x̃ = 0. The scaling of the other
four-forms, which will not be relevant in the following, can be computed in the same way
from (2.36) and (2.37).

In the sequel, we will embed the previous D = 4 gauged supergravities into type IIB and
D = 11 supergravity using a duality-covariant reformulation of the latter higher-dimensional
theories known as Exceptional Field Theory, and encoding part of the dependence on the
4d fields in terms of a subset of the forms in the tensor hierarchy.
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3 E7(7) exceptional field theory

The bosonic field content of ExFT [45] is given by

{eµ
a , MMN , Aµ

M , Bµνα , BµνM} , (3.1)

with all fields depending on both “external”, xµ, µ = 0, . . . , 3, and extended “internal”
coordinates, Y M , M = 1, . . . , 56. This dependence and the fields themselves are restricted
by the section constraints [45]

(tα)MN QM ⊗ QN = 0 , ΩMN QM ⊗ QN = 0 , (3.2)

with QM ∈ {∂M , BµνM} and the derivatives acting on any combination of fields or gauge
parameters in the theory. Here, (tα)M

N are the algebra generators and indices are raised
and lowered with the invariant symplectic form ΩMN as

ΩMN =
(

0 128
−128 0

)
, V M = ΩMN VN , VM = V N ΩNM . (3.3)

These constraints are needed for the generalised Lie derivative to close into a local E7(7)
gauge algebra. Variations under the latter are given by [45]

δΛV M ≡ LΛV M = ΛN ∂N V M − 12PM
N

K
L ∂KΛL V N + λ(V ) ∂N ΛN V M , (3.4)

where PM
N

K
L = (tα)N

M (tα)L
K is the projector onto the adjoint representation and λ(V ) is

the weight associated to the generalised vector V M . To solve the constraints (3.2), E7(7) can
be reduced down to GL(7,R) (M-theory section) or GL(6,R) × SL(2,R) (Type IIB section).
After this reduction, the variation δΛ encodes the behaviour of the different fields under both
“internal” diffeomorphisms and gauge transformations.

3.1 M-theory section

For D = 11 supergravity, we use conventions in which our fields are subject to the action

S =
∫

d11x
√
|ĝ11|

[
R̂11 − 1

2 |F̂(4)|2
]
− 1

6

∫
Â(3) ∧ F̂(4) ∧ F̂(4) , (3.5)

with F̂(4) = dÂ(3) and contraction of indices with weight one denoted by | · |2, i.e.

|F̂(p)|2 = 1
p! F̂µ̂1...µ̂p F̂ µ̂1...µ̂p . (3.6)

Under the structure group relevant for a seven-dimensional internal space, the extended
ExFT coordinates decompose as2

E7(7) ⊃ SL(8,R) ⊃ GL(7,R)
56 → 28 ⊕ 28′ → 7+3 ⊕ 21′

+1 ⊕ 21−1 ⊕ 7′
−3 ,

{Y M} → {Y AB, YAB} → {yi , yij , yij , yi} ,
(3.7)

2The coordinate index in yi should not be confused with the index labelling the different factors in (2.1).
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with yi = Y i8, etc. The section constraint (3.2) can be solved by imposing

∂ij = ∂ij = ∂i = 0 , and Bµν
ij = Bµνij = Bµν

i = 0 , (3.8)

keeping only the Bµνi components of BµνM . Similarly, the objects in the adjoint repre-
sentation of E7(7) break according to

E7(7) ⊃ SL(8,R) ⊃ GL(7,R)
133 → 63 ⊕ 70 → 7′

+4 ⊕ 35+2 ⊕ (48 ⊕ 1)0 ⊕ 35′
−2 ⊕ 7−4 ,

{tα} → {tA
B, tABCD} → {ti , tijk , t0 , ti

j , tijk , ti} .
(3.9)

To make contact with M-theory, one needs to split the D = 11 structure group
GL(11,R) ⊃ GL(4,R) × GL(7,R). Then, the metric and three-form of D = 11 supergravity
give rise to the following fields:

{gµν , Aµ
i , ϕij ; Cijk , Cijρ , Ciνρ , Cijklmn} , (3.10)

where all of the fields depend on both xµ and yi. The forms Cijk , Cijρ , Ciνρ are related to
the components of the eleven dimensional Â(3) through the usual Kaluza-Klein decomposition
with flattening and unflattening of indices. The Cijklmn components are dual to the external
legs Cµνρ through

F(7) = ∗11dC(ext)
(3)

= dC(6) −
1
2C(3) ∧ dC(3) ,

(3.11)

with
C(ext)

(3) = 1
3!Cµνρdxµ ∧ dxν ∧ dxρ , C(3) = 1

3!Cijkdyi ∧ dyj ∧ dyk , (3.12)

as required by the infinitesimal transformations

δC(3) = LξC(3) + dΛ(2) , δC(6) = LξC(6) + dΛ(5) −
1
2dΛ(2) ∧ C(3) . (3.13)

These fields are then related to the ExFT fields branched according to (3.7) and (3.9).
For the tensor-like degrees of freedom, the dictionary reads

eµ
a = ϕ1/4eµ

a , Aµ
i = Aµ

i , Aµij = Cµij , (3.14)

and Cµνi are related to Bµν α and Bµν M . For the D = 4 scalars,

M ij = ϕ−1/2ϕij , M i
jk = 3ϕ−1/2ϕilCljk , M i jk = − 3

20ϕ−1/2ϕi[jεk]l1l2l3l4l5l6Cl1l2l3l4l5l6

(3.15)
for the components of the MMN coset representative of E7(7)/SU(8). Here and throughout,
ϕ = det ϕij . Conversely, the internal components of the three- and six-form can be given as

Cijk = 1
3ϕ1/2ϕl[iM

l
jk] , Cl1l2l3l4l5l6 = −20

3 ϕ1/2ϕijM i jkεkl1l2l3l4l5l6 . (3.16)

In the following, we will show that in the context of consistent truncations, one can
circumvent the dualisation in (3.11) by working in terms of the p-forms of the four-dimensional
tensor hierarchy, which also cleanly account for the information corresponding to the 4d

vectors Ai
µ and Cµij , and two-forms Cµνi.
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3.2 Type IIB section

Similarly to the D = 11 case, the extended ExFT coordinates decompose under GL(6,R) ×
SL(2,R) following

E7(7) ⊃ GL(6,R) × SL(2,R)
56 → (6, 1)+2 ⊕ (6′, 2)+1 ⊕ (20, 1)0 ⊕ (6, 2)−1 ⊕ (6′, 1)−2 ,

{Y M} → {yi , yia , yijk , yia , yi} ,
(3.17)

now with i = 1, . . . , 6 and a = 1, 2. The section constraint (3.2) can be solved by requiring
that all fields and parameters only depend on yi and that the only non-zero component of
the constrained two-form is Bµνi. In turn, the objects in the adjoint representation adhere to

E7(7) ⊃ GL(6,R) × SL(2,R)
133 → (1, 2)3 ⊕ (15′, 1)2 ⊕ (15, 2)1 ⊕ (35 + 1, 1)0

⊕ (1, 3)0 ⊕ (15′, 2)−1 ⊕ (15, 1)−2 ⊕ (1, 2)−3 ,
{tα} → {ta , tij , tij a , ti

j , t0 , ta
b , tij a , tij , t̃a} .

(3.18)

Contact with type IIB supergravity is achieved after splitting the ten-dimensional
structure group GL(10,R) into GL(4,R) × GL(6,R) so that the bosonic fields read

{gµν , ϕij , Φ , C0 , Cµν
a , Cµi

a , Cij
a , Cµνρσ , Cµνρi , Cµνij , Cµijk , Cijkl} , (3.19)

again with all of them depending both on xµ and yi and taking into account the flattening
and unflattening of indices with the Kaluza-Klein vector. Here, we use conventions in which
the type IIB pseudoaction is given by

S =
∫

d10x
√
|ĝ10|

[
R̂10 − 1

2(∂Φ̂)2 − 1
2e2Φ̂|F̂(1)|2 − 1

2e−Φ̂|Ĥ(3)|2 − 1
2eΦ̂|F̂(3)|2 − 1

4 |F̂(5)|2
]

+
∫

Ltop ,

(3.20)
with |F̂(p)|2 and |Ĥ(3)|2 defined in (3.6), and a topological term Ltop = Ĉ(4) ∧ Ĥ(3) ∧ F̂(3),
and the field strengths given by

Ĥ(3) = dB̂(2) , F̂(1) = dĈ(0) , F̂(3) = dĈ(2) − Ĉ(0) Ĥ(3) , F̂(5) = dĈ(4) + 1
2ϵab Ĉa

(2) ∧ dĈb
(2) ,

(3.21)
with Ĉa

(2) = (B̂(2), Ĉ(2)). In addition to the equations of motion obtained from (3.20), the
self-duality of F̂(5) needs also to be imposed. The relation to the ExFT fields branched
according to (3.17) and (3.18) then is

M ij = ϕ−1/2ϕij , M i
ja = ϕ−1/2ϕikϵabCkj

b ,

M i
jkl = ϕ−1/2ϕim(24Cmjkl + 3ϵabCm[j

aCkl]
b) ,

Miajb = 6 ϕ−1/2ϕij
(
mab − ϵacϵbdCkl

cCkld) ,

(3.22)

for the D = 4 scalars, with the IIB axiodilation encoded in the SL(2,R) matrix as

m = eΦ
(

e−2Φ + C2
0 −C0

−C0 1

)
. (3.23)
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Similarly, we have eµ
a = ϕ1/4eµ

a and Aµ
i = Aµ

i for the tensor-like components of the metric,
and the other p-form contributions we will phrase in terms of objects in the tensor hierarchy
when we turn to consistent truncations in the sequel.

To make contact with the S5 × S1 configurations, we need to further decompose under
GL(5,R) × GL(1,R) × SL(2,R) via i = (i, 6) with i = 1, . . . , 5. This subgroup is common
to both SL(8,R) and GL(6,R) × SL(2,R), and therefore its representations can be given
in terms of SL(8,R) pairs. In our conventions,

V i = (V i6, V78) , V ijk = (ϵijklm6Vlm, V ijδk
6 ) , Vi = (Vi6, V 78) ,

Via = (Via, V 6a) , V ia = (V ia, V6a) ,
(3.24)

and for the coordinates we further introduce yi = ŷi and y6 = ỹ.

3.3 Generalised Scherk-Schwarz Ansätze

The ExFT fields (3.1) can be parametrised in terms of D = 4 N = 8 supergravity fields
via a Scherck-Schwarz Ansatz [28]3

gµν(x, Y ) = ρ−2(Y ) gµν(x) ,

MMN (x, Y ) = UM
M̄ (Y )UN

N̄ (Y )MM̄N̄ (x) ,

Aµ
M (x, Y ) = ρ−1(Y )(U−1)M

M̄ (Y )Aµ
M̄ (x) ,

Bµνα(x, Y ) = ρ−2(Y )Uα
ᾱ(Y )Bµνᾱ(x) ,

BµνM (x, Y ) = −2ρ−2(Y )(U−1)P
S̄(Y )∂M UP

R̄(Y )(tᾱ)R̄
S̄Bµνᾱ(x) .

(3.25)

This Ansatz provides a consistent truncation of the ExFT equations of motion down to
D = 4 maximal supergravity provided that the twist matrix and scaling factor define a
generalised frame UM̄

M = ρ−1(U−1)M
M̄ such that

LUM̄
UN̄ = XM̄N̄

P̄ UP̄ , (3.26)

with L given in (3.4) and XM̄N̄
P̄ a set of constants to be identified with the embedding tensor

of the lower-dimensional supergravity, specified in our cases by (2.11) through XM̄N̄
P̄ =

ΘM̄
ᾱ(tᾱ)N̄

P̄ , with ΘM̄
ᾱ given in (A.1) in terms of the components in (2.10).

For the gaugings under consideration, the twist matrix can be written as

UM
M̄ (y) =

(
UAB

ĀB̄(y) 0
0 (U−1)AB

ĀB̄(y)

)
, (3.27)

with
UAB

ĀB̄(y) = 2 U[A
Ā(y)UB]

B̄(y) . (3.28)

The S7 reduction [3] can be described via (3.25) [28] in terms of the scaling function

ρ = (1 − g2|y|2)1/4 . (3.29)
3In the following, we add bars to the E7(7) and SL(8,R) indices in the previous section to distinguish flat

and curved counterparts.
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The components of the SL(8,R) matrix UA
Ā(y) in (3.28) under the splitting (3.7) for local

and global indices are

Ui
j̄ = (1 − g2|y|2)−1/8(δj

i + g2yi yj K1(y)
)

,

Ui
8̄ = g (1 − g2|y|2)3/8 yi ,

U8
j̄ = g (1 − g2|y|2)3/8 yjK1(y) ,

U8
8̄ = (1 − g2|y|2)7/8 ,

(3.30)

with
K1(y) = −2F1

(
1, 3, 1

2 , 1 − g2|y|2
)

, (3.31)

and |y|2 = δijyi yj . In terms of these coordinates, the round metric obtained through (3.15)
by setting the scalars to zero reads

ds2(S7
round) = δijdyi dyj + g2(δijyi dyj)2

1 − g2|y|2
. (3.32)

The uplift of the dyonic CSO gaugings of [42] can also be described via (3.25) with
block diagonal twist matrix (3.27) with (3.28) [44]. For the [SO(6) × SO(2)] ⋉R12 gauging,
the scaling function reads

ρ = ρ̂(ŷ)ρ̃(ỹ) ≡ (1 − g2|ŷ|2)1/4(1 − m2ỹ2)1/4 , (3.33)

and the components of the SL(8,R) matrix UA
Ā(y) under the splitting (3.24) for local and

global indices are

Ui
j̄ = ρ̂−1/2ρ̃1/2(δj

i + g2 ŷi ŷj K2(ŷ)
)

, U7
7̄ = ρ̂−1/2ρ̃1/2 ,

Ui
6̄ = g ρ̂3/2ρ̃1/2 ŷi , U7

8̄ = −m ρ̂−1/2ρ̃−3/2 ỹ ,

U6
j̄ = g ρ̂3/2ρ̃1/2 ŷj K2(ŷ) , U8

7̄ = m ρ̂−1/2ρ̃−3/2 ỹ ,

U6
6̄ = ρ̂7/2ρ̃1/2 , U8

8̄ = ρ̂−1/2ρ̃1/2 ,

(3.34)

with |ŷ|2 = δij ŷi ŷj and

K2(ŷ) = −2F1
(
1, 2, 1

2 , 1 − g2|ŷ|2
)

. (3.35)

The generalised frames (3.29)–(3.31) and (3.33)–(3.35) can be checked to satisfy (3.26)
with the embedding tensors corresponding to (2.11) via (A.1).

4 Supergravity embeddings

4.1 SO(8) gauging on S7

In the following, it is convenient to introduce coordinates (µa, ϕa), with a = 1, 2, 3, 4, as4

y1 = g−1µ1 cos ϕ1 , y3 = g−1µ2 cos ϕ2 , y5 = g−1µ3 cos ϕ3 , y7 = g−1µ4 cos ϕ4 ,

y2 = g−1µ1 sin ϕ1 , y4 = g−1µ2 sin ϕ2 , y6 = g−1µ3 sin ϕ3 ,

(4.1)
4These coordinates are related to the ones in [48] through the redefinitions in footnote 1.
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constrained by
4∑

a=1
µ2

a = 1 . (4.2)

In terms of these coordinates, the metric with (3.25) and (3.30) becomes [48]

ds2
11 = Ξ1/3

1 ds2
4 + g−2Ξ−2/3

1

[∑
a

Za(dµ2
a + µ2

aDϕ2
a)

− 2b2b3(µ2
3µ2

4Dϕ3Dϕ4 + µ2
1µ2

2Dϕ1Dϕ2)
− 2b1b3(µ2

2µ2
3Dϕ2Dϕ3 + µ2

1µ2
4Dϕ1Dϕ4)

− 2b1b2(µ2
1µ2

3Dϕ1Dϕ3 + µ2
2µ2

4Dϕ2Dϕ4)

+ b2
1(µ1dµ1 + µ2dµ2)2 + b2

2(µ2dµ2 + µ3dµ3)2 + b2
3(µ1dµ1 + µ3dµ3)2

]
,

(4.3)

where
Ξ1 = Ỹ 2

1 Ỹ 2
2 Y 2

3 µ4
1 + Ỹ 2

1 Y 2
2 Ỹ 2

3 µ4
2 + Y 2

1 Y 2
2 Y 2

3 µ4
3 + Y 2

1 Ỹ 2
2 Ỹ 2

3 µ4
4

+ (Y 2
2 Ỹ 2

2 + Y 2
3 Ỹ 2

3 )
(
Y 2

1 µ2
3µ2

4 + Ỹ 2
1 µ2

1µ2
2
)

+ (Y 2
1 Ỹ 2

1 + Y 2
3 Ỹ 2

3 )
(
Y 2

2 µ2
2µ2

3 + Ỹ 2
2 µ2

1µ2
4
)

+ (Y 2
1 Ỹ 2

1 + Y 2
2 Ỹ 2

2 )
(
Y 2

3 µ2
1µ2

3 + Ỹ 2
3 µ2

2µ2
4
)

,

(4.4)

and
Za = µ2

a + Wa , (4.5)

with
W1 = Y 2

2 Ỹ 2
3 µ2

2 + Y 2
1 Y 2

2 µ2
3 + Y 2

1 Ỹ 2
3 µ2

4 , W2 = Ỹ 2
2 Y 2

3 µ2
1 + Y 2

1 Y 2
3 µ2

3 + Y 2
1 Ỹ 2

2 µ2
4 ,

W3 = Ỹ 2
1 Ỹ 2

2 µ2
1 + Ỹ 2

1 Ỹ 2
3 µ2

2 + Ỹ 2
2 Ỹ 2

3 µ2
4 , W4 = Ỹ 2

1 Y 2
3 µ2

1 + Ỹ 2
1 Y 2

2 µ2
2 + Y 2

2 Y 2
3 µ2

3 .
(4.6)

For this gauging, the covariant derivatives on the angles denote the fibering with the four
vectors

Dϕa = dϕa − gAa . (4.7)

with Aa given in terms of SL(8,R) objects in (A.11). The three-form potential can be
written in terms of the 4d potentials in (2.28) suitably coupled to the S7 coordinates, and
an internal contribution as dictated by (3.15). The link between the tensor hierarchy fields
and the sphere coordinates is in fact fixed by their respective SL(8,R) structure, and gauge
invariance demands that the different terms combine into the field strengths in (2.29) when
acted upon by the exterior derivative. Notably, only a subset of the forms in (2.28), dubbed
“restricted tensor hierarchy” in [33, 34], enters the KK Ansatz. For the STU truncation, the
eleven-dimensional three-form can be decomposed as simply

Â(3) =
4∑

a=1

[
−Ca µ2

a + 1
2g

[
Ba + 1

2Aa ∧ Ãa
]
∧ d(µ2

a) − 1
2g2 Ãa ∧ d(µ2

a) ∧ Dϕa
]

+ C(3) , (4.8)

with the overall scaling fixed by the equations of motion. This result agrees with the
truncation of [34] through (A.11)–(A.15). The expression for the internal three-form can
also be obtained from (3.15) with (3.25) and (3.30), and reads

C(3) = 1
2
∑
abc

Ca,bcdµa ∧ Dϕb ∧ Dϕc , (4.9)
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with components Ca,bc = Ca,[bc] given by

Ca,12 dµa = −b1
2 g3 Ξ1

[
µ2

1 W2 d(µ2
2) − µ2

2 W1 d(µ2
1) + µ2

1µ2
2
(
Y 2

2 Ỹ 2
2 dα23 − Y 2

3 Ỹ 2
3 dα13

)]
,

Ca,34 dµa = −b1
2 g3 Ξ1

[
µ2

3 W4 d(µ2
4) − µ2

4 W3 d(µ2
3) − µ2

3µ2
4
(
Y 2

2 Ỹ 2
2 dα23 + Y 2

3 Ỹ 2
3 dα13

)]
,

Ca,23 dµa = −b2
2 g3 Ξ1

[
µ2

2 W3 d(µ2
3) − µ2

3 W2 d(µ2
2) + µ2

2µ2
3
(
Y 2

3 Ỹ 2
3 dα13 − Y 2

1 Ỹ 2
1 dα12

)]
,

Ca,14 dµa = −b2
2 g3 Ξ1

[
µ2

1 W4 d(µ2
4) − µ2

4 W1 d(µ2
1) − µ2

1µ2
4
(
Y 2

1 Ỹ 2
1 dα12 + Y 2

3 Ỹ 2
3 dα13

)]
,

Ca,13 dµa = −b3
2 g3 Ξ1

[
µ2

1 W3 d(µ2
3) − µ2

3 W1 d(µ2
1) + µ2

1µ2
3
(
Y 2

2 Ỹ 2
2 dα23 − Y 2

1 Ỹ 2
1 dα12

)]
,

Ca,24 dµa = −b3
2 g3 Ξ1

[
µ2

2 W4 d(µ2
4) − µ2

4 W2 d(µ2
2) − µ2

2µ2
4
(
Y 2

1 Ỹ 2
1 dα12 + Y 2

2 Ỹ 2
2 dα23

)]
,

(4.10)

and shorthands

α12 = µ2
1 + µ2

2 , α23 = µ2
2 + µ2

3 , α34 = µ2
3 + µ2

4 , etc. (4.11)

This result matches (4.19) of [48] upon making the identifications in footnote 1. The
eleven-dimensional four-form is then produced by the exterior derivative of (4.8), which
by using (2.29) can be given as

F̂(4) =
4∑

a=1

[
−H(4)a µ2

a + 1
2g H(3)a ∧ d(µ2

a) + 1
2g2 H̃(2)a ∧ d(µ2

a) ∧ Dϕa
]

+ g
∑
abc

Ca,bcdµa ∧ Dϕb ∧ Hc
(2) + 1

2
∑
abcd

∂dCa,bcdµd ∧ dµa ∧ Dϕb ∧ Dϕc

+ 1
2
∑
abc

∂µCa,bcdxµ ∧ dµa ∧ Dϕb ∧ Dϕc ,

(4.12)

and thus making use of only the original fields appearing in the N = 8 action and their
derivatives through the duality relations (2.32)–(2.36), with the last equation particularised
for this gauging to

H(4)1 = 2g(Ỹ 2
1 + Ỹ 2

2 + Y 2
3 )vol4 , H(4)2 = 2g(Ỹ 2

1 + Y 2
2 + Ỹ 2

3 )vol4 ,

H(4)3 = 2g(Y 2
1 + Y 2

2 + Y 2
3 )vol4 , H(4)4 = 2g(Y 2

1 + Ỹ 2
2 + Ỹ 2

3 )vol4 .
(4.13)

Singular limit. Scaling the fields and couplings as in (2.18) and (2.19), the configuration
remains finite up to a trombone scaling if we also transform the internal coordinates as

µ4 7→ e−kµ4 , (4.14)

with the coordinates (µā, ϕā, ϕ4) invariant. Doing so, the warping (4.4) factorises into

Ξ1 7→ Ξ̄1 = ek H Ξ2 , (4.15)

with
H = Ỹ 2

2 µ2
1 + Ỹ 2

3 µ2
2 + Y 2

1 µ2
3 , Ξ2 = W4 . (4.16)
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Accordingly, the metric becomes

ds2
11 7→ ds̄2

11 = ek/3
{

(H Ξ2)1/3ds2
4 + g−2 (H Ξ2)−2/3

[
Ξ2(dµ2

4 + µ2
4dϕ2

4)

+ H
(
Y 2

2 (dµ2
1 + µ2

1Dϕ2
1) + Y 2

3 (dµ2
2 + µ2

2Dϕ2
2) + Ỹ 2

1 (dµ2
3 + µ2

3Dϕ2
3)
)

−
(
b2µ2

1Dϕ1 + b3µ2
2Dϕ2 + b1µ2

3Dϕ3
)2]}

, (4.17)

and the three-form components (4.10) transform as

Ca,bcdµa 7→ ek/2C̄a,bcdµa , (4.18)

with

C̄a,12 dµa = b1 µ1µ2
g3 Ξ2

(
Y 2

2 µ2dµ1 − Y 2
3 µ1dµ2

)
, C̄a,23 dµa = b2 µ2µ3

g3 Ξ2

(
Y 2

3 µ3dµ2 − Ỹ 2
1 µ2dµ3

)
,

C̄a,13 dµa = b3 µ1µ3
g3 Ξ2

(
Y 2

2 µ3dµ1 − Ỹ 2
1 µ1dµ3

)
,

(4.19)
and

C̄a,41 dµa = b2
2g3H

µ2
1 d(µ2

4) , C̄a,42 dµa = b3
2g3H

µ2
2 d(µ2

4) ,

C̄a,43 dµa = b1
2g3H

µ2
3 d(µ2

4) .

(4.20)

Therefore, the four-form (4.12) becomes

F̂(4) 7→ ¯̂
F(4) = ek/2

{ 3∑
ā=1

[
−H̄(4)ā µ2

ā + 1
2g H(3)ā ∧ d(µ2

ā) + 1
2g2 H̃(2)ā ∧ d(µ2

ā) ∧ Dϕā
]

+ 1
2
∑
āb̄c̄

d
[
C̄ā,b̄c̄dµā ∧ Dϕb̄ ∧ Dϕc̄

]
(4.21)

+ 1
2g2 H̃(2)4 ∧ d(µ2

4) ∧ dϕ4 −
∑

ā
d
[
C̄4,ā4Dϕā

]
∧ dµ4 ∧ dϕ4

}
,

with the H̄(4)ā in (2.44) reading

H̄1 = 2g(Ỹ 2
1 + Y 2

3 )vol4 , H̄2 = 2g(Ỹ 2
1 + Y 2

2 )vol4 , H̄3 = 2g(Y 2
2 + Y 2

3 )vol4 . (4.22)

IIA reduction and dualisation to IIB. The metric and four-form in (4.17) and (4.21)
formally describe a warped compactification on S5 × R2, with the R2 factor parameterised
by (µ4, ϕ4) and the sphere by (µā, ϕā) satisfying

3∑
ā=1

µ2
ā = 1 , (4.23)

which follows from (4.2) after taking the k → ∞ limit on (4.14). Introducing coordinates z1,2 as

z1 = g−1µ4 cos ϕ4 , z2 = g−1µ4 sin ϕ4 , (4.24)

we can promote the R2 factor into a two-torus by imposing z1,2 ∼ z1,2 + 2πR1,2. The
eleven-dimensional configuration, (4.17) and (4.21), can then be interpreted as a type IIA
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supergravity solution upon reducing on one of the circles, say z2. The resulting IIA geometry
has an S1 factor that allows one to perform a T-duality transformation and in this way
obtain a solution of type IIB supergravity.

To ease our notation, we introduce the following shorthands

X(4) =
3∑

ā=1

[
− H̄(4)ā µ2

ā + 1
2g H(3)ā ∧ d(µ2

ā) + 1
2g2 H̃(2)ā ∧ d(µ2

ā) ∧ Dϕā
]

+ 1
2
∑
āb̄c̄

d
[
C̄ā,b̄c̄dµā ∧ Dϕb̄ ∧ Dϕc̄

]
,

X(2) = H̃(2)4 + d

[
1

gH

(
b2 µ2

1Dϕ1 + b3 µ2
2Dϕ2 + b1 µ2

3Dϕ3
)]

, (4.25)

such that the eleven-dimensional four-form can be written as

¯̂
F(4) = X(4) + X(2) ∧ dz1 ∧ dz2 . (4.26)

Both X(2) and X(4) are exact, and a representative potential for X(2) can be read off from (4.25)
to be

A = Ã4 + 1
gH

[
b2 µ2

1Dϕ1 + b3 µ2
2Dϕ2 + b1 µ2

3Dϕ3
]

. (4.27)

Following the conventions stated in appendix B, the type IIA configuration resulting
from reduction of (4.17) and (4.26) on z2 is

eϕIIA = Ξ1/4
2√
H

, H(3)IIA = X(2) ∧ dz1 , F(2)IIA = 0 , F(4)IIA = X(4) ,

ds2
IIA = H1/4Ξ3/8

2 ds2
4 + g−2 H−3/4Ξ−5/8

2

[
g2 Ξ2 dz2

1 − (b2µ2
1Dϕ1 + b3µ2

2Dϕ2 + b1µ2
3Dϕ3)2

+ H
(
Y 2

2 (dµ2
1 + µ2

1Dϕ2
1) + Y 2

3 (dµ2
2 + µ2

2Dϕ2
2) + Ỹ 2

1 (dµ2
3 + µ2

3Dϕ2
3)
)]

, (4.28)

and the type IIB solution obtained by T-dualising along the z1 direction employing the
relations (B.8)–(B.9) reads

ϕIIB = χ = 0 ,

ds2
IIB = Ξ1/2

2 ds2
4 + g−2 Ξ− 1

2
2
[
Y 2

2 (dµ2
1 + µ2

1Dϕ2
1) + Y 2

3 (dµ2
2 + µ2

2Dϕ2
2) + Ỹ 2

1 (dµ2
3 + µ2

3Dϕ2
3)

− H−1(b2µ2
1Dϕ1 + b3µ2

2Dϕ2 + b1µ2
3Dϕ3)2 + g2H(dz1 + A)2] ,

H(3)IIB = F(3)IIB = 0 ,

F(5)IIB = (1 + ∗10)
[
X(4) ∧

(
dz1 + A

)]
. (4.29)

4.2 [SO(6) × SO(2)] ⋉ R12 gauging on S5 × S1

The type IIB configurations that uplift from D = 4 gauged supergravity with gauging
specified by (θ(6c), ξ(6c)) in (2.11) can also be obtained from (3.25), by employing the twist
in (3.33)–(3.35) and the ExFT dictionary. For the STU sector, this configuration is related
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to the singular limit of the S7 configurations in M-theory in the last section. To accomplish
this, we use the coordinates (µā, ϕā) above related to yi as

ŷ1 = g−1µ1 cos ϕ1 , ŷ3 = g−1µ2 cos ϕ2 , ŷ5 = g−1µ3 cos ϕ3 ,

ŷ2 = g−1µ1 sin ϕ1 , ŷ4 = g−1µ2 sin ϕ2 ,
(4.30)

and constrained by (4.23). A coordinate z can also be introduced such that

ỹ = m−1 sin mz , (4.31)

which reduces to ỹ = z in the vanishing m limit. The metric obtained from (3.22) reads

dŝ2
10 = Ξ1/2

2 ds2
4 + g−2Ξ−1/2

2

[
Y 2

2 (dµ2
1 + µ2

1Dϕ2
1) + Y 2

3 (dµ2
2 + µ2

2Dϕ2
2) + Ỹ 2

1 (dµ2
3 + µ2

3Dϕ2
3)

− H−1(b2µ2
1Dϕ1 + b3µ2

2Dϕ2 + b1µ2
3Dϕ3

)2
+ H

(
g dz + gÃ4 + H−1(b2µ2

1Dϕ1 + b3µ2
2Dϕ2 + b1µ2

3Dϕ3
))2]

,

(4.32)
where Ξ2 and H are given in (4.16) and, for this gauging, the covariant derivatives on the
angles denote the fibering with the four vectors

Dϕā = dϕā − gAā , (4.33)

with Aā = {A12 , A34 , A56} in terms of SL(6,R) indices. Note that for these flat indices,
SL(6,R) ⊂ SL(8,R). In this sector, the axiodilaton vanishes

Φ = 0 , C0 = 0 , (4.34)

as well as the two-form potentials

C(2)
a = 0 . (4.35)

Finally, the four-form gauge potential can also be derived from the ExFT dictionary. The
purely internal contribution can be obtained from (3.22) to be

C(4) = −g−4µ1µ2(1 + K2)cot ϕ3
µ2

3
dµ1 ∧ dµ2 ∧ dϕ1 ∧ dϕ2

− g−4µ1µ2
[
K2(µ2dµ1 − µ1dµ2) + Ξ−1

2 Ỹ 2
1 (Y 2

2 µ2dµ1 − Y 2
3 µ1dµ2)

]
∧ dϕ1 ∧ dϕ2 ∧ dϕ3

+ 1
2g3 Ξ−1

2

[
b1
(
Y 2

2 µ2
2d(µ2

1) − Y 2
3 µ2

1d(µ2
2)
)
∧ dϕ1 ∧ dϕ2

+ b2
(
Y 2

2 µ2
3d(µ2

1) − Ỹ 2
1 µ2

1d(µ2
3)
)
∧ dϕ1 ∧ dϕ3

+ b3
(
Y 2

3 µ2
3d(µ2

2) − Ỹ 2
1 µ2

2d(µ2
3)
)
∧ dϕ2 ∧ dϕ3

]
∧ dz .

(4.36)
We recognise that, stripped of dz, the contributions in the last three lines in (4.36) precisely
match the coefficients C̄ā,b̄c̄ in (4.19), and the derivatives of the first two lines are dual to the
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contributions in (4.19) given by the forms in the tensor hierarchy. Therefore, the associated
self-dual five-form field strength is given by

F̂(5) = (1 + ∗10)
{[ 3∑

ā=1

(
− H(4)ā µ2

ā + 1
2g H(3)ā ∧ d(µ2

ā) + 1
2g2 H̃(2)ā ∧ d(µ2

ā) ∧ Dϕā
)

+ 1
2
∑
āb̄c̄

d
(
C̄ā,b̄c̄dµā ∧ Dϕb̄ ∧ Dϕc̄

)]

∧
[
dz + Ã4 + 1

gH

(
b2 µ2

1Dϕ1 + b3 µ2
2Dϕ2 + b1 µ2

3Dϕ3
)]}

,

(4.37)

with C̄ā,b̄c̄ given in (4.19), and the field strengths in the tensor hierarchy given by (2.32), (2.34)
and (2.36) with x = 0 and x̃ = 1, which coincide with the ones in (4.22). The uplift
formulae (4.32)–(4.37) precisely match the type IIB configuration obtained in (4.29) if one
identifies the angles on S1.

Even though the gauge coupling m does not enter into the Kaluza-Klein Ansätze for the
type IIB bosonic fields, it mediates the relation between ten- and four-dimensional spinors,
as expected from the different fermion couplings observed in four dimensions.

To perform a thorough check of the Ansatz in (4.32)–(4.37), we will restrict our attention
to a simpler truncation that identifies the fields as

φ1 = −φ2 = −φ3 = 1√
3φ , χ1,2,3 = 1√

3χ , A1,2,3
(1) = 1√

3A(1) , (4.38)

and leaves A4
(1) unfixed. For the SO(6) ⋉R12 gauging, this theory can be obtained as a circle

reduction of the N = 4 SU(2) × U(1) gauged theory in D = 5 [55, 56] truncated so that the
five-dimensional scalar vanishes and the gauge group is reduced as U(1) ⊂ U(1) × U(1) ⊂
SU(2) × U(1). After the circle reduction, one can identify A4

(1) with the dual of the KK
vector. In the following, we only consider configurations with χ = 0, which per (2.31) cannot
be dyonically charged so as to guarantee Ha

(2) ∧ Hb
(2) = 0. The Lagrangian (2.2) for the

SO(6) ⋉ R12 and [SO(6) × SO(2)] ⋉ R12 gaugings then becomes

e−1L = R − 1
2(∂φ)2 − 1

4eaφH2 − 1
4e−φ/a(H4)2 + 12g2e−aφ . (4.39)

with H(2) = dA(1). To make contact with the STU models in (2.2), the dilaton coupling
needs to be set as a = 1/

√
3, but we find it convenient to keep it unspecified at the

four-dimensional level.
For a = 1/

√
3, we can embed any solution of the 4d theory in ten dimensions. From (4.32),

the metric reads

dŝ2
10 = e

−φ√
3 ds2

4 + g−2
[
dµ2

1 + dµ2
2 + dµ2

3 + µ2
1Dϕ2

1 + µ2
2Dϕ2

2 + µ2
3Dϕ2

3

]
+ e

2φ√
3
(
dz + Ã4

)2
,

(4.40)
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and the tensor hierarchy fields in (4.42) allow us to write the five-form as

F̂(5) = (1 + ∗10)
{[

− 4g e
− φ√

3 vol4 − 1
2
√

3g2 e
φ√

3 ∗ H(2) ∧
3∑

ā=1

(
d(µ2

ā) ∧ Dϕā)] ∧ (dz + Ã4
)}

=
(
− 4g e

− φ√
3 vol4 − 1

2
√

3g2 e
φ√

3 ∗ H(2) ∧
3∑

ā=1

(
d(µ2

ā) ∧ Dϕā)) ∧
(
dz + Ã4

)
− 4g−4 µ1µ2dµ1 ∧ dµ2 ∧ Dϕ1 ∧ Dϕ2 ∧ Dϕ3

+ 1√
3g3 H(2) ∧

[
µ1µ2(µ1dµ2 − µ2dµ1) ∧ Dϕ1 ∧ Dϕ2

+ µ2µ3(µ2dµ3 − µ3dµ2) ∧ Dϕ2 ∧ Dϕ3 + µ1µ3(µ1dµ3 − µ3dµ1) ∧ Dϕ1 ∧ Dϕ3
]

,

(4.41)
using the duality relations (2.32)–(2.36), that reduce to

H̃(2) 1,2,3 = − 1√
3 e

φ√
3 ∗ H(2) , H̃(2) 4 = −e−

√
3φ ∗ H4

(2) ,

H(3) 1,2,3 = − 1
2
√

3
∗ dφ , H(3) 4 =

√
3

2 ∗ dφ ,

H(4) 1,2,3 = 4g e
− φ√

3 vol4 , H(4) 4 = 6g e
φ√

3 vol4 ,

(4.42)

upon using the truncation (4.38) with χ = 0. From (3.20), the Bianchi identity for the five-
form and Einstein equations are the only equations to be checked in ten dimensions. Since
the axiodilation and two-forms in (4.34) and (4.35) are zero, the equation of motion for the
type IIB five-form amounts to demanding that F(5) be closed. In (4.41), it is straightforward
to see that this is in turn an immediate consequence of the four-dimensional Bianchi identities
and equations of motion from (4.39).

For vanishing axiodilaton and two-forms, Einstein equations in 10d in turn reduce to

Ĝ = T̂ = − 1
480

[
F̂µ̂ρ̂1ρ̂2ρ̂3ρ̂4F̂ν̂

ρ̂1ρ̂2ρ̂3ρ̂4 − 1
10 ĝµ̂ν̂F̂ρ̂1ρ̂2ρ̂3ρ̂4ρ̂5F̂ ρ̂1ρ̂2ρ̂3ρ̂4ρ̂5

]
vµ̂vν̂ , (4.43)

with Ĝ = Ĝµ̂ν̂vµ̂vν̂ the Einstein tensor for ĝ10. We find it convenient to expand our tensors
in the one-form basis

vµ̂ =
{
dxµ, vm} =

{
dxµ, dα, dβ, Dϕ1, Dϕ2, Dϕ3, Dz

}
, (4.44)

where dxµ is a coordinate basis for the four-dimensional spacetime and the angles on the
sphere are given by

µ1 = sin α cos β , µ2 = sin α sin β , µ3 = cos α . (4.45)

In this basis, the Einstein tensor reads

Ĝµν = Gµν − 1
6e

φ√
3

(
HµρHν

ρ − 1
4gµνHρσHρσ

)
− 1

2e
√

3φ
(

H̃4µρH̃4ν
ρ − 1

4gµνH̃4ρσH̃ρσ
4

)
− 1

2
(
∂µφ∂νφ − 1

2gµν∂ρφ∂ρφ
)
− 10g2e

− φ√
3 gµν , (4.46a)
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Ĝµmvm = 1√
3g
∇ν(e φ√

3 Hνµ
)(

µ2
1Dϕ1 + µ2

2Dϕ2 + µ2
3Dϕ3

)
−∇ν(e√3φH̃4νµ

)
Dz , (4.46b)

Ĝmnvmvn = 1
2e

φ√
3

[
gµνGµν + 1

12e
φ√

3 HµνHµν + 1
4e

√
3φH̃4µνH̃µν

4 − 1√
3□φ

+ 1
2∂µφ∂µφ − 12g2e

− φ√
3

]
(dα2 + sin2αdβ2 + µ2

1Dϕ2
1 + µ2

2Dϕ2
2 + µ2

3Dϕ2
3)

+ 1
2e

√
3φ
[
gµνGµν + 1

12e
φ√

3 HµνHµν + 3
4e

√
3φH̃4µνH̃µν

4 −
√

3□φ

+ 1
2∂µφ∂µφ − 20g2e

− φ√
3

]
Dz2

+ 1
12g2 e

2φ√
3 HµνHµν(µ2

1Dϕ1 + µ2
2Dϕ2 + µ2

3Dϕ3
)2

+ 1
2
√

3e
4φ√

3 HµνH̃µν
4
(
µ2

1Dϕ1 + µ2
2Dϕ2 + µ2

3Dϕ3
)
Dz , (4.46c)

and the stress-energy tensor has components

T̂µν = −1
3e

− φ√
3

[
12g2gµν − e

2φ√
3
(
HµρHν

ρ − 1
4gµνHρσHρσ

)]
, (4.47a)

T̂µmvm = 0 , (4.47b)
T̂mnvmvn = 4g2(dα2 + sin2αdβ2 + µ2

1Dϕ2
1 + µ2

2Dϕ2
2 + µ2

3Dϕ2
3)

− 1
12e

2φ√
3
(
48g2 + e

2φ√
3 HµνHµν

)
Dz2

+ 1
12g2 e

2φ√
3 HµνHµν(µ2

1Dϕ1 + µ2
2Dϕ2 + µ2

3Dϕ3
)2

+ 1
6g e

√
3φHµν(∗H)µν(µ2

1Dϕ1 + µ2
2Dϕ2 + µ2

3Dϕ3
)
Dz . (4.47c)

It is immediate to verify that the external components of (4.43) are satisfied on the four-
dimensional Einstein equations, the mixed components amount to the Maxwell equation for
H and Bianchi identity for H4, and the internal components of (4.43) are a combination of
the trace of the Einstein equations and the equations of motion for the scalars.

5 Black hole and domain wall solutions

In the previous section, we have described how to embed any solution of the four-dimensional
gauged STU models presented in section 2 into M-theory or type IIB supergravity. We
now switch gears to present new black-hole solutions in these theories, first by considering
singular limits of previously known solutions and later by directly solving the equations
of motion for a suitable Ansatz.

5.1 AdS-BH limits

Setting the axions to zero, the potential (2.12a) for the STU truncation of the SO(8) gaug-
ing reads

V = −8g2(cosh φ1 + cosh φ2 + cosh φ3) . (5.1)
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This theory admits four-charge AdS-black hole solutions [19],

ds2
4 = −(H1H2H3H4)−1/2f dt2 + (H1H2H3H4)1/2(f−1dr2 + r2dΩ2

2,κ

)
,

Ai = H−1
i

√
σκ + κ sinh2(√σκβi)

sinh(√σκβi)
dt ,

e2φ1 = H1H2
H3H4

, e2φ2 = H1H3
H2H4

, e2φ3 = H1H4
H2H3

,

(5.2)

with

f = κ − µ

r
+ 4g2r2 H1H2H3H4 and Hi = 1 + µ

r

(
1

√
σκ

sinh (
√

σκβi)
)2

. (5.3)

Here, dΩ2
2,κ denotes the line element for the unit radius metric on the sphere, torus and

hyperboloid for κ = 1, 0,−1, respectively given by

dΩ2
2,κ =


dθ2 + sin2θ dϕ2, κ = +1 ,

dθ2 + dϕ2, κ = 0 ,

dθ2 + sinh2θ dϕ2, κ = −1 ,

(5.4)

and we also define

σκ = lim
ϵ→0+

sign(κ + ϵ) =

+1, κ = +1, 0 ,

−1, κ = −1 .
(5.5)

These black holes have charges5

qi = πµ
√

σκ
sinh(

√
σκβi)

√
σκ + κ sinh2(

√
σκβi) =


1
2πµ sinh 2βi , κ = +1 ,

πµ sinh βi , κ = 0 ,
1
2πµ sin 2βi , κ = −1 .

(5.6)

Domain-wall limits of these solutions can be constructed by considering rescalings of
the metric and vectors and shifts of the dilatons so that the equations of motion remain
invariant up to a change in the scalar potential resulting from the loss of some of the terms
in (5.1) after taking a singular limit [40]. Taking

φi 7→ φi + λ , with λ = log(g̃/g) , (5.7)

the potential (5.1) becomes

V = −4g̃2(eφ1 + eφ2 + eφ3) − 4g2(e−φ1 + e−φ2 + e−φ3) , (5.8)

and the equations of motion are solved by (5.2) with now

H1 =
(

g

g̃

)2[
1 + µ

r

( 1
√

σκ
sinh(

√
σκβ1)

)2]
,

Hi ̸=1 = 1 + µ

r

( 1
√

σκ
sinh(

√
σκβi ̸=1)

)2
,

(5.9)

5Our βi parameters are always taken to be real. These configurations agree with those in [19] if one
identifies βthere

i = i βhere
i in the hyperbolic case.
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and

f = κ − µ

r
+ 4g̃2r2 H1H2H3H4 . (5.10)

In this case, it is possible to take the g → 0 limit of the potential (5.8) while keeping
non-trivial solutions provided that g sinh(√σκβi) can be kept constant by sending βi to
infinity. Note that this cannot be achieved for the hyperbolic horizon (κ = −1) case above,
and therefore only domain walls with spherical and toroidal horizons can be constructed
with this method.

We note that the potential (5.8) after the g → 0 limit corresponds to the STU sector of a
maximal supergravity with SO(6)⋉R12 gauging which is related by duality to the one discussed
above. In particular, instead of by the embedding tensor Θ(6) in (2.11), it is described by

θAB = 0 , ξAB = 0 , ζA
BCD = 0 ,

ζ̃4
123 = −ζ̃3

124 = ζ̃2
134 = −ζ̃1

234 = ζ̃5
678 = −ζ̃6

578 = g̃ ,
(5.11)

with only non-trivial components in the 420 representation. Using the same scalings as the
ones studied in section 4.1, this gauged supergravity can be proved to uplift consistently
into an S5 × T 2 configuration of D = 11 supergravity.

The potential (2.12b) can be similarly obtained by taking

φ1 7→ φ1 − λ , φ2,3 7→ φ2,3 + λ , with λ = log(g̃/g) , (5.12)

so that (5.1) becomes

V = −4g̃2(e−φ1 + eφ2 + eφ3) − 4g2(eφ1 + e−φ2 + e−φ3) . (5.13)

However, in this case the rescaled solution is (5.2) with

H2 =
(

g

g̃

)−1[
1 + µ

r

( 1
√

σκ
sinh(

√
σκβ2)

)2]
and

Hi ̸=2 =
(

g

g̃

)[
1 + µ

r

( 1
√

σκ
sinh(

√
σκβi ̸=2)

)2]
,

(5.14)

so that the g → 0 limit is ill-defined.

5.2 DW-Ansätze

The fact that domain-wall solutions for the SO(6) ⋉R12 and [SO(6) × SO(2)] ⋉R12 theories
cannot be constructed through singular limits of the AdS-black holes in [19] does not mean
that such solutions do not exist. To find them, we consider the simpler truncation in (4.38)
and the Ansatz

ds2
4 = −e2udt2 + e−2udr2 + L2e2AdΩ2

2,κ , A(1) = v dt , A4
(1) = w dt , (5.15)
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with φ, u, v, w and A being functions on r only, and L a constant radius. The equations
of motion stemming from (4.39) reduce to

φ′′ + 2(u′ + A′)φ′ + 1
2a eaφ−2u(v′)2 − 1

2a e−φ/a−2u(w′)2 − 12a g2e−aφ−2u = 0 ,

(e2A+aφv′)′ = 0 ,

(e2A−φ/aw′)′ = 0 ,

A′′ + A′ + 1
4(φ′)2 = 0 ,

A′′ + 2A′(u′ + A′) + 1
4eaφ−2u(v′)2 + 1

4e−φ/a−2u(w′)2 − 12g2e−aφ−2u − κ

L2 e−2A−2u = 0 ,

u′′ + 2u′(u′ + A′) − 1
4eaφ−2u(v′)2 − 1

4e−φ/a−2u(w′)2 − 12g2e−aφ−2u = 0 ,

(5.16)
with primes denoting derivatives with respect to r. For any a in the range −

√
3 < a <

√
3,

this system of equations admits a solution in the κ = 0 case, which reads

ds2
4 = −f dt2 + f−1dr2 + L2

(
r

r0

)2/(1+a2)
dΩ2

2,0 ,

A(1) = λ

r
dt , A4

(1) = 0 ,

eφ =
(

r

r0

)2a/(1+a2)
,

(5.17)

with

f = 1 + a2

4

24g2r2
0(1 + a2)

3 − a2

(
r

r0

)2/(1+a2)
+ λ2

r2
0

(
r0
r

)2/(1+a2)
− µ

r0

(
r0
r

)(1−a2)/(1+a2)
, (5.18)

for r0 a length parameter and λ and µ constants encoding the charge and mass of the solution.
This class of solutions recovers (A.6) of [40] for a = 1, while for a = 1/

√
3 it reduces to

ds2
4 = −

√
r

r0

[
4g2r0r + λ2

3r2 − µ

r

]
dt2 +

√
r0
r

[
4g2r0r + λ2

3r2 − µ

r

]−1

dr2 + L2
(

r

r0

)3/2
dΩ2

2,0 ,

A(1) = λ

r
dt , A4

(1) = 0 ,

eφ =
(

r

r0

)√
3/2

, (5.19)

which describes a charged black hole with domain-wall asymptotics. At r = 0, this solution
has a curvature singularity for all possible values of the charge and mass. When

µ3 > 3g2λ4r0 , (5.20)

the singularity is covered by two horizons sitting at

r± =
√

µ

3g2r0
cos

[
1
3 arccos

(
−gλ2

√
3r0
µ3

)
− π

3 ± π

3

]
(5.21)

that coalesce when the bound (5.20) is saturated. When µ3 < 3g2λ4r0, the solution displays
a naked singularity.
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For this choice of dilaton coupling, we can embed the solution in ten dimensions us-
ing (4.40)–(4.41) with the tensor hierarchy fields in (4.42), which become

H̃(2) 1,2,3 = − λL2
√

3r2
0

dθ ∧ dϕ , H̃(2) 4 = 0 ,

H(3) 1,2,3 = −1
3H(3) 4 = L2

4r

(
r

r0

)2 [
4g2r0r + λ2

3r2 − µ

r

]
dt ∧ dθ ∧ dϕ ,

H(4) 1,2,3 = 4gL2
(

r

r0

)
dt ∧ dr ∧ dθ ∧ dϕ , H(4) 4 = 6gL2

(
r

r0

)2
dt ∧ dr ∧ dθ ∧ dϕ ,

H̃(4) 1,2,3 = 2mL2
(

r

r0

)
dt ∧ dr ∧ dθ ∧ dϕ , H̃(4) 4 = 0 .

(5.22)

Other solutions to the equations (5.16) can be found for specific values of the dilaton
coupling a. If we commit to the choice a = 1/

√
3 corresponding to the STU model, a class

of solutions with spherical horizon is given by

ds2
4 = −f dt2 + f−1dr2 + λ2

(
r

r0

)3/2
dΩ2

2,1 , with f =
√

r

r0

[
4g2r0r + r2

0
λ2 − µ

r

]
,

A(1) = 0 , A4
(1) = r

λ
dt , eφ =

(
r

r0

)√
3/2

.

(5.23)
Note that this solution only exists for non-vanishing electric charge, and for µ > 0 it has
a single horizon at radius

rH = r0
8g2λ2

[√
1 + 16g2λ4µ

r3
0

− 1
]

. (5.24)

For this solution, the type IIB uplift is given by (4.40)–(4.41) with tensor hierarchy fields

H̃(2)1,2,3 = 0, H̃(2)4 = λ sin θdθ ∧ dϕ,

H(3)1,2,3 = −1
3H(3)4 = λ2

4r

(
r

r0

)2 [
4g2r0r + r2

0
λ2 − µ

r

]
sin θdt ∧ dθ ∧ dϕ,

H(4)1,2,3 = 4gλ2
(

r

r0

)
sin θdt ∧ dr ∧ dθ ∧ dϕ, H(4)4 = 6gλ2

(
r

r0

)2
sin θdt ∧ dr ∧ dθ ∧ dϕ,

H̃(4)1,2,3 = 2mλ2
(

r

r0

)
sin θdt ∧ dr ∧ dθ ∧ dϕ, H̃(4)4 = 0.

(5.25)

6 Discussion

In this paper, we have shown that singular limits of gauged supergravities can offer insights
not only into how to construct new solutions in the resulting gauged supergravity, but also
on its consistent uplift to higher dimensions if the resulting gauged supergravity can itself be
obtained as a consistent truncation. We have exemplified this idea relating the STU sector of
the electrically gauged SO(8) supergravity to the STU sector of the CSO theory with the
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SO(6) ⋉ R12 gauging, and we have used the known consistent uplift of the former theory
into M-theory on S7 to construct an embedding of the latter into type IIB supergravity on
S5 × S1. It would be interesting to investigate if singular limits such as the ones we studied
can be used to relate gauged supergravities with larger field contents.

To describe the uplifts of these gauged supergravities, we have employed techniques that
exploit the formal duality-covariance of the embedding tensor formulation of the gauging.
In particular, apart from making use of the generalised Scherk-Schwarz factorisation of
the higher-dimensional fields expressed in the language of Exceptional Field Theory, we
have recast all the contributions of p-form fields in D = 4 in terms of the four-dimensional
tensor hierarchy (suitably restricted to the STU sector). This has provided a simple way
of circumventing some complicated dualisations in ExFT involving the internal metric. To
illustrate the power of this technique, we have explicitly checked that the higher-dimensional
equations of motion follow from the four-dimensional ones, and constructed new families of
charged black hole solutions in 4d. These black holes involve non-trivial scalar profiles, and
their asymptotics do not approach an AdS solution, but a domain wall.

A close cousin of the dyonic CSO theory we have considered comes equipped with an
[SO(6) × SO(1, 1)] ⋉ R12 gauge group. This theory has been shown to uplift into type IIB
supergravity on S5×S1 with a non-geometric patching of the circle [44]. This theory possesses
a very rich structure of AdS vacua [57], both supersymmetric and non-supersymmetric,
including continuous families realising a holographic conformal manifold [58–63]. It will
be interesting to extend our results to describe more explicitly the uplift of this gauging,
and to construct in this way ten-dimensional solutions arising from non-trivial profiles of
the fields in the consistent truncation. These new solutions may play an important rôle in
understanding the holography of the T[U(N)] theories and the J-folds of N = 4 SYM that
are conjectured to be dual to this solution [64].
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A STU truncation

In its SL(8,R) basis, the generators of E7(7) can be split as tα = {tA
B, t[ABCD]}, with

the index A = 1, . . . , 8 labelling the fundamental of SL(8,R) and tA
A = 0. The gaugings

considered are described by an embedding tensor ΘM
α with non-trivial components

ΘAB
C

D = 2δ[A
CθB]D , ΘABC

D = 2δD
[AξB]C , (A.1)
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where θAB and ξAB respectively belong to the 36′ and 36 of SL(8,R). This embedding
tensor determines the covariant derivatives as

D = d + AM ΘM
αtα

= d + AAB θBC tA
C + ÃAB ξBC tC

A .
(A.2)

and appears in the potential and mass matrices through the generators XMN
P = ΘM

α(tα)N
P .

For these gaugings, the gauge group G is embedded in E7(7) as

G ⊂ SL(8,R) ⊂ E7(7) . (A.3)

The H = SO(2)4 Cartan subalgebra of the gaugings discussed in the main text can be
taken to be6

T12 = t1
2 − t2

1 , T34 = t3
4 − t4

3 , T56 = t5
6 − t6

5 , T78 = t7
8 − t8

7 , (A.4)

and its commutant within E7(7) is

CommH E7(7) = SL(2,R)1 × SL(2,R)2 × SL(2,R)3 . (A.5)

Each factor is generated by {hi, ei, fi}, which are given in terms of E7(7) generators as

h1 = 1
4
(
t1

1 + t2
2 + t3

3 + t4
4 − t5

5 − t6
6 − t7

7 − t8
8) ,

e1 = 12 t1234 , f1 = 12 t5678 ,

h2 = 1
4
(
t1

1 + t2
2 − t3

3 − t4
4 − t5

5 − t6
6 + t7

7 + t8
8) ,

e2 = 12 t1278 , f2 = 12 t3456 ,

h3 = 1
4
(
− t1

1 − t2
2 + t3

3 + t4
4 − t5

5 − t6
6 + t7

7 + t8
8) ,

e3 = 12 t3478 , f3 = 12 t1256 ,

(A.6)

with non-vanishing brackets

[hi, ej ] = ei δij , [hi, fj ] = −fi δij , [ei, fj ] = 2hi δij . (A.7)

The representative of the scalar manifold (2.1) is taken to be

V = eχ1e1+χ2e2+χ3e3 e−φ1h1−φ2h2−φ3h3 , (A.8)

which leads to (2.2) through the symmetric matrix MMN = (VVT )MN and its inverse as

LNLSM = − 1
48dMMN ∧ ∗dMMN . (A.9)

The symmetry group (A.5) is then realised through the Killing vectors

k[hi] = 2∂φi − 2χi∂χi , k[ei] = ∂χi , k[fi] = 2χi∂φi + (e−2φi − χ2
i )∂χi , (A.10)

which close into (A.7) under the Lie bracket.
6For the SO(6) ⋉R12 gauging, T78 strictly speaking corresponds to a global symmetry commuting with the

gauge group, following the m → 0 limit.
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There are four electric vectors Aa and four magnetic counterparts Ãa in the H-invariant
truncation of the maximal theory. In terms of the original 28 ⊕ 28′ of the N = 8 theory,
they are given by

A1 = A12 , A2 = A34 , A3 = A56 , A4 = A78 ,

Ã1 = Ã12 , Ã2 = Ã34 , Ã3 = Ã56 , Ã4 = Ã78 .
(A.11)

These identifications allow one to extract the non-minimal gauge couplings from M through
the block decomposition

M =
(
−I −RI−1R RI−1

I−1R −I−1

)
, (A.12)

and the index restriction AM = (A[AB], Ã[AB]) → (Aa, Ãa) in (A.11).
Similarly, the preserved two-forms in (2.26) are related to the SL(8,R) objects through

B1 = B1
1 = B2

2 , B2 = B3
3 = B4

4 , B3 = B5
5 = B6

6 , B4 = B7
7 = B8

8 ,

B′
1 = B1

2 = −B2
1 , B′

2 = B3
4 = −B4

3 , B′
3 = B5

6 = −B6
5 , B′

4 = B7
8 = −B8

7 ,

B12 = B1234 , B13 = B1256 , B14 = B1278 ,

B23 = B3456 , B24 = B3478 , B34 = B5678 , (A.13)

and the three-forms as
C1 = C11 = C22 , C2 = C33 = C44 , C3 = C55 = C66 , C4 = C77 = C88 ,

C̃1 = C̃11 = C̃22 , C̃2 = C̃33 = C̃44 , C̃3 = C̃55 = C̃66 , C̃4 = C̃77 = C̃88 ,
(A.14)

for those in the 36 ⊕ 36′ of SL(8,R), and those in the 420 ⊕ 420′ as

C12 = C1
234 = −C2

134 , C13 = C1
256 = −C2

145 , C14 = C1
278 = −C2

178 ,

C21 = C3
412 = −C4

312 , C23 = C3
456 = −C4

356 , C24 = C3
478 = −C4

378 ,

C̃12 = C̃1
234 = −C̃2

134 , C̃13 = C̃1
256 = −C̃2

145 , C̃14 = C̃1
278 = −C̃2

178 ,

C̃21 = C̃3
412 = −C̃4

312 , C̃23 = C̃3
456 = −C̃4

356 , C̃24 = C̃3
478 = −C̃4

378 ,

etc.

(A.15)

B A D = 9 detour

B.1 Reduction from D = 11 to D = 9

The relation between the eleven-dimensional and type IIA fields in Einstein frame reads

dŝ2
11 = e−

1
6 ϕAds2

IIA + e
4
3 ϕA(dz2 + A′)2 ,

F̂(4) = F(4)IIA + H(3)IIA ∧ (dz2 + A′) .
(B.1)

Further reducing type IIA on another circle, we get maximal supergravity in D = 9. The
reduction Ansatz is

ds2
IIA = e

− 1
2
√

7
φAds2

9 + e
√

7
2 φA

(
dz1 + AKK)2 ,

H(3)IIA = HA
(3) + HA

(2) ∧
(
dz1 + AKK) ,

F ′
(2)IIA = FA

(2) + FA
(1) ∧

(
dz1 + AKK) ,

F(4)IIA = F A
(4) + F A

(3) ∧
(
dz1 + AKK) ,

(B.2)
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with F ′
(2)IIA = dA′ and the D = 9 field strengths given by

FA
(1) = dARR

(0) ,

FA
(2) = dARR

(1) − dARR
(0) ∧ AKK

(1) , HA
(2) = dANS

(1) ,

HA
(3) = dANS

(2) − dANS
(1) ∧ AKK

(1) , F A
(3) = dARR

(2) + ANS
(1) ∧ dARR

(1) − ARR
(0) dANS

(2) ,

F A
(4) = dARR

(3) + ANS
(2) ∧ dARR

(1) − (dARR
(2) − ARR

(0) dANS
(2) − ANS

(1) ∧ dARR
(1) ) ∧ AKK

(1) . (B.3)

Comparing with (4.17) and (4.21), we find

eϕIIA = Ξ1/4
2√
H

, e−
2
√

7
3 φA = H√

Ξ2
, ANS

(1) = A ,

ARR
(0) = AKK = ARR

(1) = ANS
(2) = ARR

(2) = 0 , dARR
(3) = X(4) , (B.4)

with A in (4.27), and

ds2
9 = H−6/7Ξ−4/7

2

[
HΞ2 ds2

4 − (µ2
1b2Dϕ1 + µ2

2b3Dϕ2 − µ2
3b1Dϕ3)2

+ H
(
Y 2

2 (dµ2
1 + µ2

1Dϕ2
1) + Y 2

3 (dµ2
2 + µ2

2Dϕ2
2) + Ỹ 2

1 (dµ2
3 + µ2

3Dϕ2
3)
)]

.
(B.5)

B.2 Type IIB reduction to 9 dimensions

The same nine-dimensional theory can be obtained starting from type IIB supergravity. In
this case, the Kaluza-Klein Ansatz reads

ds2
IIB = e

− 1
2
√

7
φB ds2

9 + e
√

7
2 φB (dz1 + BKK)2 ,

F(5)IIB = (1 + ∗10)[F B
(4) ∧ dz1] ,

F(3)IIB = F B
(3) + F B

(2) ∧ (dz1 + BKK) ,

H(3)IIB = HB
(3) + HB

(2) ∧ (dz1 + BKK) ,

(B.6)

and the field strengths can be given as [65]

HB
(2) = dBNS

(1) , F B
(2) = dBRR

(1) − BNS
(1) ∧ dχ ,

HB
(3) = dBNS

(2) − dBNS
(1) ∧ BKK

(1) ,

F B
(3) = dBRR

(2) + BNS
(2) ∧ dχ − (dBRR

(1) − BNS
(1) ∧ dχ) ∧ BKK

(1) ,

F B
(4) = dBRR

(3) + BRR
(1) ∧ dBNS

(2) − BNS
(1) ∧ dBRR

(2) − BNS
(1) ∧ BNS

(2) ∧ dχ .

(B.7)

In this context, T-duality between the two type II theories stems from the uniqueness of
maximal D = 9 supergravity. The relation between IIA and IIB fields can thus be obtained
by relating the nine-dimensional scalars, metric and potentials in (B.3) and (B.7). Using
the rules in [65] (disregarding the doubled fields there) on (B.4), we find that the 9d metrics
are equal, the dilatons are given by

eϕB = 1 , eφB = H2/
√

7 Ξ−1/
√

7
2 , (B.8)

and the only non-vanishing p-forms are

BKK
(1) = A , BRR

(3) = ARR
(3) . (B.9)

The total type IIB configuration is given in (4.29) in the main text.
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