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We investigate the embedding formalism in conjunction with the Mellin transform to determine tree-level
gluon amplitudes in AdS/CFT. Detailed computations of three to five-point correlators are conducted,
ultimately distilling what were previously complex results for five-point correlators into a more succinct and
comprehensible form. We then proceed to derive a recursion relation applicable to a specific class of n-point
gluon amplitudes. This relation is instrumental in systematically constructing amplitudes for a range of
topologies. We illustrate its efficacy by specifically computing six to eight-point functions. Despite the
complexity encountered in the intermediate steps of the recursion, the higher-point correlator is succinctly
expressed as a polynomial in boundary coordinates, upon which a specific differential operator acts.
Remarkably, we observe that these amplitudes strikingly mirror their counterparts in flat space, traditionally
computed using standard Feynman rules. This intriguing similarity has led us to propose a novel dictionary:
comprehensive rules that bridge AdS Mellin amplitudes with flat-space gluon amplitudes.
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I. INTRODUCTION

In recent decades, the study of holographic theories has
become a significant area of theoretical research. Among
these theories, the most developed are those within the
framework of asymptotically anti—de Sitter (AdS) space-
times [1,2]. These theories present a contrast to the tradi-
tional “in” and “out” states found in Minkowski spacetime,
crucial for scattering amplitudes. In AdS spacetimes,
particles are intrinsically confined, leading to perpetual
interactions. Despite this, interactions at the timelike boun-
dary of AdS permit the creation and annihilation of particles
within this spacetime. Notably, these transition amplitudes
in AdS have a direct analogy to correlation functions in the
corresponding conformal field theory (CFT). This correla-
tion allows for the interpretation of CFT correlation func-
tions as scattering amplitudes in the AdS context.

Scattering amplitudes in anti—de Sitter (AdS) space can
be computed using Witten diagrams, which are the AdS
counterparts of Feynman diagrams used in flat space. Initial
efforts by researchers to extend their analysis beyond three
or four-point Witten diagrams faced significant computa-
tional challenges (e.g., [3-7]). Two primary difficulties
emerged in this field: the complexity of bulk integrals and
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the intricacies involved in dealing with spin-bearing exter-
nal operators. Overcoming these challenges has defined
much of the ongoing research in this area. In this paper, we
directly address both these challenges. We will embark on
the calculation of higher-point external spinning field.
Our work draws inspiration from the recent wave of
diverse and intriguing contributions to the computation of
both scalar and spinning correlators in AdS, employing
varied methodologies: momentum space [8—33], position-
Mellin space [34—49,49-55], and more recently momentum-
Mellin space [56-58]. In this paper, our primary focus is on
studying gluon scattering within AdS. We find the advance-
ments in flat space scattering amplitudes, particularly those
involving gluon and graviton scattering, to be remarkably
intriguing [59]. These developments not only bolster
experimental results at major colliders like the LHC but
also revitalize foundational quantum field theory research.
A notable aspect of gluon amplitudes in flat space is their
simplicity and elegance; despite the complexity of inter-
mediate calculations, the final results, as epitomized by
the classic Parke-Taylor formula, are often concise and
elegant [60]. Furthermore, these advancements unveil fas-
cinating connections between core physics and diverse
mathematical fields [61,62]. Motivated by these develop-
ments, our focus is on studying gluon scattering within AdS.
We use Mellin space as our investigative tool and it
offers unique advantages. In Mellin space, amplitudes are
clearly presented as meromorphic functions of their
variables, echoing the well-understood analytic properties
of the S-matrix in flat space. However, Mellin space has
not been fully explored, especially when examining spin-
ning correlators [63—-66]. Our study additionally focuses
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on addressing the challenging issue of higher-point
correlators with external spin, a task underscored by the
limited amount of analytical work in this area due to its
technical complexity. Yet, these higher-point analysis are
important for major theoretical breakthroughs. Insights
from the modern S-matrix program show that deeper
exploration of higher-point gauge and gravity amplitude
(including loop amplitudes) has greatly helped us unravel
deep mathematical structures. Hence, a thorough exami-
nation of higher-point spinning structures in anti—de-Sitter
(AdS) space is essential to uncover potential simplicities
and mathematical insights akin to flat space scattering
amplitudes.

In addition to their relevance in anti—de Sitter (AdS)
space, these structures carry broader implications. Notably,
they are interconnected with de Sitter (dS) [67,68] aligning
well with the program to construct cosmologically relevant
correlators [69—72]. Spinning correlators in AdS could
have substantial importance in the cosmological frontier.
Moreover, specific case studies are crucial for advancing
our understanding of the still-ambiguous double copy
principle in curved spacetime. This principle is particularly
important when applied to higher-point structures, and
thus, concrete examples are indispensable for its possible
formulation akin to flat space.

In this paper, we unveil a formalism anchored in
embedding-space techniques to meet our research objec-
tives. Utilizing key differential operators, we streamline the
complex calculations tied to higher-point correlators with
external spinning fields. By methodically building upon
lower-point AdS correlators, we achieve recursive compu-
tations of higher-point amplitudes in AdS. The paper’s
structure is as follows: In Sec. II, we articulate the
foundational principles and techniques vital for AdS
amplitude calculations. We delve into the embedding
formalism specific to AdS space and highlight the role
of Mellin space as an eigenspace for these amplitudes. We
also present a summary of our main results. Section III
offers a comprehensive computation of three, four, and
five-point amplitudes, paving the way for subsequent, more
nuanced higher-point analysis. Here, the elegant mapping
between flat-space Feynman rules and AdS begins to
emerge. In Sec. IV, we derive a recursion formula for
n-point amplitudes, to assist an ambitious calculation of
six-point, seven-point, and eight-point gluon topologies.
Notably, we again notice that Mellin amplitudes for gluons
strikingly parallel flat-space scattering amplitudes, despite
the complexity of intermediate calculations. This revelation
leads us to propose a remarkably streamlined map to flat
space for n-point gluon amplitudes. Finally, we discuss
important work that can spur from our results in Sec. V.

This paper is a substantial expansion of the companion
version [73], which we recommend to the reader who want
to skip technical details and interested in the main essence
on the first reading.

II. PRELIMINARIES AND SUMMARY

AdS amplitude is holographically dual to conformal field
theory correlation function, (O, (Py)--- O, (P,)), where P;
denotes the AdS boundary coordinate where the operator
O; is inserted. Here, we provide an overview of the
fundamental ingredients and concepts involved in calculat-
ing AdS amplitudes.

A. Embedding space formalism

The calculation of Witten diagrams is markedly stream-
lined with the application of the embedding formalism [36]."
This formalism stands as a robust tool for the in-depth
exploration and analysis of the properties and dynamics
inherent in AdS spaces. This formalism allows us to
describe an AdS,,,; space by embedding it in a higher-
dimensional Minkowski space, denoted as R+ AdS
coordinate vectors X satisfy the following property:

X - X =y XMXN = —R?. (2.1)

Throughout the paper, we will take R = 1. The boundary of
the AdS,, | space is at X — oo, where (2.1) asymptotes to
an equation of a light cone. It is convenient to think of the
conformal boundary of AdS as the space of null rays.

We use P to denote the fixed boundary point. Hence,
PP =nyunyP"PN = 0. Therefore, the distance between
any two boundary points P; and P; is defined by P,

j i=
(P;—P;)* = -2P;- P;.

B. Mellin space

Another key mathematical apparatus utilized in our
study is the Mellin space.2 Mellin amplitudes have struc-
tural similarity to flat space momentum space scattering
amplitudes. Many researchers have demonstrated that the
Mellin representation has advantages in analyzing CFT
correlation functions, particularly within the large N
expansion.

The basis of Mellin space is [];_; Pi_jyij , where y;; are
called Mellin variables. The scaling dimension of this basis
for P; is Z#i vij- First, we focus on the scalar cases.
Expanded in Mellin space, an n-point amplitude can be
expressed as

'In a seminal work by Dirac [74], it was proposed that the
conformal group SO (d + 1, 1) naturally “lives” in the embed-
ding space R4+!1:1. Here, it can be understood as the group of
linear isometries. This suggests that constraints imposed by
conformal symmetry could be as straightforward as those from
Lorentz symmetry. Also, see Weinberg’s paper [75].

See [39] for a nice review of Mellin Space in the AdS/CFT.
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where M,,(y;;) is called the Mellin amplitude. Note that the
delta functions restrict the correct scaling behavior of
O;(P;). For the sake of notational simplicity, we will forgo
including them in our subsequent equations.

In the context of vector fields J¥i(P;), our primary
interest in this paper, the amplitude takes on a slightly
different form to incorporate the indices. We can write it as

) {2z

<j

x MMM (vij» Pi)-

(2.3)

In this context, it is crucial to underline a subtle difference
as compared to the scalar scenario. Specifically, the Mellin
amplitude MM Mo (y ;- P;) is a function not only of the
Mellin variables y,;, but also of the boundary coordinates
P;. This is attributed to the possibility that the vector Mellin
amplitude may contain P; with free indices.’

C. AdS amplitudes and toolkit

The Witten diagram, a powerful tool for computing
amplitudes in anti—de Sitter space, provides a systematic
approach to analyze scattering processes. It is composed of
two key elements: vertices and propagators. Vertices
represent the interaction points where particles or fields
within the AdS theory come together. They are integrated
over the entire AdS space, encapsulating the bulk
interactions.

Propagators, on the other hand, come in two forms:
Boundary-to-bulk propagators connect a point on the AdS
boundary to a vertex in the bulk, capturing the information
flow from the boundary into the bulk. Meanwhile, bulk-to-
bulk propagators link two vertices within the bulk, account-
ing for the propagation of particles or fields between these
interaction points.

1. Scalar

The boundary-to-bulk propagator for a scalar field O; is a

function of the boundary point P; and the bulk point X, i.e.,
_ I'(A)

2 (A 1=h)

Ch,

i

S(Pl-,X) :m,

(2.4)

A

*More generally, each field in the correlation function has a
spin of /;. Then, there are totally > ", /; free indices in the Mellin
amplitude.

where h=d/2. To illustrate this, let us consider the
calculation of the three-point scalar amplitude. In this case,
we can compute the amplitude by utilizing the boundary-to-
bulk propagator in the following straightforward manner:

(O1(P1)O,(P,)O53(P3)) = igAdS dX E(Py, X)

x E(Py, X)E(P3, X), (2.5)
where ¢ is the coupling constant. The Mellin amplitude, as
it turns out (see Appendix A for more details), is given
(as shown in, for instance, [37]),

3
. zr + A, +A;—d
M;(Py, Py, P3) = ZII < l 22 : >

(2.6)
2. Vector

In this paper, we compute higher-point amplitudes,
taking into account fields with spinning degrees of freedom
in both the internal propagator and external state. The
boundary-to-bulk propagator for a vector field can be
obtained by applying a differential operator to a scalar
boundary-to-bulk propagator [37]. These operators act as
projectors, projecting the spinning Mellin amplitude

MMM onto a subspace that remains conformally
invariant. Specifically, for a vector field JM:(P;),

NP, X) = DMAEPLX),  (27)
where the operator D™ is defined as follows:
R A -1 1 0
DM = L pMiA; ——P 2.8
TRy P (2.8)
We want to highlight that the operator D™ simplifies

the index structure of vector amplitudes, making it easier to
relate to scalar amplitudes. In anticipation of future
computations and for the sake of notational simplicity,
let us introduce a concise version of the operator as follows:

n

n N - CA,» AMA,
(1T ) =TTy 2

i=1

(2.9)

3. Etude of momentum conservation analogues

We provide some properties of the differential operator
given in (2.8). This observation will be instrumental in
deriving analogues of momentum conservation, as illus-
trated below.

An eigenfunction of the differential operator i can
be expressed as ﬁl’ 5,(P;), where Fj(P;) denotes any

DMA

function of P; with the scaling dimension of §;. That is,
Pl 0PF5( )_—6F5( ,-).Then,
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Notably, when §; = A; —

—1-5, 0

1, or the scaling dimension of the eigenfunction #

(2.10)

- Fs.(P;) is A, the eigenvalue is zero.

Lets us see a couple of examples. Firstly, by substituting F5 _y = f(7:;) [ [, T(7im) P, for some i [with any function

f(7i;) of Mellin variables y;; for all j # i] in (2.10), with A; — 1

Im

= >z 7ij» we deduce that

0= /Hdwm DM ‘Z|:PkAf yi) i+ P T Tlrm) Pr ]

I<m k#i

= / dezm DM Z {P kS Vij e Vie = 1

l<m k#i

In the final step, we have shifted the Mellin varia-
bles, 7 — 7 — 1.}
As another example, by substituting F A -1 =
Pia, F@i ) iem T(rim) P,y for some iy and i,, into
2. 10) we deduce that

= / Hd}’z

l<m

M '1 |:'7A A; f }/z]] HF Vim Pl i

l<m

= 2P a, ZPk,A[lfO/ilj,j;ék’ Yigk — 1)HF(71m)P1_,Z""]-

k#i, I<m
(2.12)

These identities are crucial for significantly simplifying
our target expression for higher-point functions and uncov-
ering underlying structures.

4. Bulk-to-bulk propagators

A bulk-to-bulk propagator represents the exchange of a
primary field with a scaling dimension of A, including its
descendant fields. It is convenient that such propagators for
both scalar and spinning particles can be written as the
product of two boundary-to-bulk propagators glued
together by integration over the boundary point Q. This
property can help us recycle the lower-point function and
obtain the higher-point function by appropriately gluing
lower-point amplitudes. For pedagogical value, we first
write the propagator associated with simpler scalar fields,

i dc 22

Ga(X1.X5) :/—inmm

x / dQ €,..(0.X))Er(0.X,). (2.13)
0AdS

4So now D i Yij = A

I<m

(1m)#(ik)

)Hr(ylm)Pl_erm] .

I<m

(2.11)

We can deform the integration contour in (2.13) and
integrate around the pole, e.g., ¢ = A —h. We sub-
sequently get

Ga(X1.X2) = (h— A) / 0 £4(0.X))E,-a(0.Xs).
(2.14)

Similarly, for vector fields, the bulk-to-bulk propagator
is [37]

i ¢

~—falc)

ico 2701

GAF(X,, X,) = /

XAA dQ EYA(Q. X1 )nunER®.(0.X,),
(2.15)

where

4c?(h* - ?)

In principle, the existence of second-order poles in f»(c)
complicates the calculation of the contour integral.
However, we will show that for a bulk-to-bulk propagator
(one end of which is a three-vertex connected to two
external fields on the boundary), these second-order poles
simplify to first-order poles. This simplification enables
easier integration with respect to ¢ and facilitates a
recursive calculation of amplitudes in the channel with
at most a single four-vertex. In summary, the structure of
vector amplitudes is similar to that of scalar fields; i.e., both
can be decomposed into products of lower-point
amplitudes.

fale) = (2.16)

D. Summary of the main results

In this paper, we explicitly calculate the gluon Mellin
amplitudes for several diagrams, spanning from three
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TABLE 1. The correspondence between gluon flat-space am-
plitudes and Mellin amplitudes.

Minkowski
Description momentum space  AdS Mellin space
Kinematic variable ik; 2P;

i 1

Internal propagator TSEE >
Three-vertex coupling g gViet
Four-vertex coupling I GV

points to eight points. In addition to detailed calculations,
this paper also serves as a repository for explicit higher-
point results. To assist the reader, here we direct the reader
to the main results of the paper.

The three-point gluon Mellin amplitude is presented
in (3.2). Similarly, the four-point amplitudes include both
contact and exchange channels. The explicit results for
these are given, respectively, in (3.6) and (3.13), where we
have reproduced the results calculated in [37].

For the five-point amplitudes, we have drastically
simplified the results from [40] and expressed them in a
more succinct form, as illustrated in (3.25) and (3.35).
Subsequently, we derive a recursion formula, shown
in (4.7), for n-point amplitudes. We then apply this formula
to construct higher-point calculations. More specifically, we
present six-point amplitudes [refer to (4.13) and (4.18)], a
seven-point amplitude [refer to (4.22)], and an eight-point
amplitude [refer to (4.26)].

Besides presenting explicit novel computations, we
compare our results with their flat-space counterparts.
This comparison uncovers a remarkable resemblance
between Mellin amplitudes and flat-space amplitudes, as
detailed in the dictionary presented in Table I. In this table,
the summation over the Mellin variables is defined in (4.28).
Additionally, the definitions of the vertex factors V5 and V,
are provided in (4.12e) and (4.25e), respectively. It is
important to note that on the Mellin side of the dictionary,

an additional factor of Z' ]2, D should be applied.

III. SETTING THE STAGE: THE THREE, FOUR,
AND FIVE-POINT GLUON AMPLITUDES

We are now poised to calculate gluon amplitudes in AdS.
The non-Abelian gauge theory in anti—de Sitter space is
characterized by the action,

1
Sy = _/ddﬂx\/%ZTT(FABFAB)’ (3.1)

where F%, = 04A% — 0gA4 + gf**°A5AG and f° re-
present the structure constants of the gauge group.
Gluon amplitudes correspond to current correlation func-
tions and have scaling dimensions A; =d — 1.

A. Three-point gluon amplitude

The three-point gluon Mellin amplitude shown in
Fig. 1(a), is [37]

h
MMM, . T Al+A+A3—d+ 1
3 Z_ faaa
M3v g 2 f < 2

3

X (H @M[A;>IA1A2A3, (32)
i1

where we remind the readers again that [}_, DM =

Cp. A
3 A M;A;
i-1 Tay P and

Ta a8, = 24,4, (P1 = P2) 4, + cyclic permutations-  (3.3)
Throughout this paper, we establish a beautiful correspon-
dence between flat-space and AdS amplitudes. As evident,
already from the simple three-point function, the Mellin
amplitude remarkably resembles its flat-space counterpart,
obtained from the Feynman rules,

= —gf "%y 4, (ky = kz)A3

+ cyclic permutations.

ABV,A,A2A3
(3.4)

This similarity becomes apparent when the momenta ik; 4
are mapped to 2P; 4 and the three-vertex coupling constant

g is associated with ng’O’O, where

Vil =r(d-1). (3.5)

The three null arguments in (3.5) indicate that the three-
vertex is linked to three boundary-to-bulk propagators. This
correspondence holds, taking into account the differential

h
operators [[?_, DV and a constant factor .

B. Four-point gluon amplitudes

1. Contact diagram

For the four-point contact diagram [Fig. 1(b)], the Mellin
amplitude is [40]

h
M\MM3My _l-gZ% (fa|a4b'fazasb' +fa1a3h’fu2a4h’)

Contact
4 4
A\ iz B —d
X (H QDM:Az>F< 12 : MA,A,M1A5A,

i=1

+ cyclic perm. of (123). (3.6)

Note that it is also the same as the flat-space counterpart
from the Feynman rules in Yang-Mills theory,

°A detailed calculation can be found in Appendix A.
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(a) (b) ()

FIG. 1. From left to right, (a) the three gluon amplitude, (b) the contact diagram of the four gluon amplitude, and (c) the s-channel
representation of the four gluon amplitude.

Acontact = —igh(fres?’ foast 4 faal faslin, o ny.a, + cyclic perm. of (123), (3.7)

up to ”7”]_[;‘:1 DMidi | with the identification of the four-vertex coupling constant, i.e., ngg’O’O'O, where

d—4
Voo = r<—3 5 ) (3.8)

2. Exchange diagram

The s-channel is shown in Fig. 1(c). The amplitude can be expressed in terms of the three-point function by utilizing the
factorization in (2.15),

4 i de
<H JMf <P,»>> = [T arse) [ aoun ) e ()
X UL (O (I (P), (39)

where the subscripts / =+ ¢ of the exchange vector field indicate its scaling dimension. The integration over Q can be
performed by employing Symanzik’s formula [76],

AAdS dQ Hr(li)(—ZPi Q)7 = gh / (H C;;’; F(yij)Pi—jYi./> H 5(2 vij— ll-) (3.10)

i=1 i<j i=1 j#i

(note, » 7 | I; = d). For review, we refer the reader to Appendix B.
For Q’s with free indices in (3.9), we replace all the occurrences by P;’s employing (2.10) [37,40]. Therefore, we get

h 2
M, M, M _ o T g anb M,A, Chsc AN+A+hE+c-d+ 1
(JMi(P) M2 (Py) 3 (Q)) = 195 A <| | D ) Tkt c)F< 5

i=1

2 2
XF —A1+A2+h:|:c—1 h:l:C—l
2 h+c

Ap+8y—(hte)+1

< {XMYx P, 2 (=2P, Q) (=2P, Q)N 4 (1e2), (311
where
(XY} =20na0 PV =26 Pia) = (i < j). (3.12)

Note that in (3.11), we have explicitly performed the action of the differential operator ﬁ%fc.
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hic

Let us take a moment to scrutinize the factor Lin (3.11). One can see that it possesses simple zeros at ¢ = +(h + 1).
Importantly, with A = d — 1, the simple zeros are at the same position as the double poles of f(c). Therefore, the poles
reduce to simple poles.

Integrating around one of the simple poles, say ¢ = & + 1 without loss of generality, one get the Mellin amplitude for the
s-channel [37],

S TG+ ) -4+ n) (3.13)

4 1n,0,0 1n,0,0
MJEV11A;112M3M4 —_g ﬂ_hfalazbfa3a4b (H @M,-A;) (Z {XVIVEPE x VO X5, M}>
XC 2 9
i=1

where (a), =a(a+1)(a+2)---
and

(a + n — 1) is the Pochhammer symbol, the contribution of the boundary points is {X}/

V00 = <§ - n> rd-1)

stands for the contribution of the three-vertices connecting to one bulk-to-bulk propagator. Note that with n = 0, Vg,o,o
reduces to the expression defined in (3.5).

The series of simple poles, y, = ‘5’ — n, comes from the gamma function I'(y;,) in (3.10), where y, should be shifted in
order to incorporate the power of P, in (3.11). Interestingly, for even d, the infinite sum is cutoff at n = g. So,

0 VnOOXVnOO
2T )47

n=

(3.14)

(C(d-1))* (Cd-1)(§-1))°
4F( Yriz—9) ATE+ D)y -45+1)

D(d-1)((§-1!)7?
LTSy

(3.15)

Similar to the three-point and contact examples, one can map the Mellin amplitude (3.13) from the flat-space amplitude,
which from the Feynman rules is

Asen = g f 0P four (1< 2))

l
T o (ki = 2iavkia, =

X (M4, Ky =203 k3.0, = (3 < 4)), (3.16)

by replacing the momenta ik; — 2P;, the propagator,

i 1
(ky + ky)? 4”'F( +n)(yin—4+n)

(3.17)

(with integer n to be summed from O to the infinity), and the
three-vertex coupling constant g — ng"O’O.

It is worth mentioning that there does not exist a unique
way to express Mellin amplitudes, since it is a part of the
integrand in the full correlation function (2.3). For example,
the term P, - P; can be absorbed into the Mellin basis with a
shift of Mellin variable y13 — ;3 + 1, as in [37]. However,
we express the Mellin amplitude in a transparent way to
show resemblance to the flat-space amplitude.

In this work, we aim to investigate Mellin gluon ampli-
tude beyond four-point functions for different topologies.

As an initial demonstration, we focus our attention on the
five-point amplitudes.

FIG. 2. Five-point channel consisting of contact and three-point
vertex interactions.
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C. Five-point gluon amplitudes

In this section, we explore five-point gluon AdS ampli-
tudes in Yang-Mills theory, denoted as (JMi(P))---
JMs(Ps)). These amplitudes encompass channels with
two distinct types of topologies. The calculation for each
five-point function involves three major steps: 1)
Factorizing the five-point correlation function into a
three-point function and a four-point function, implement-
ing the integration over Q using Symanzik’s formula. 2)
Simplifying the double poles in the integration over c. 3)
Performing the integration over the Mellin variables in the
four-point function. These steps enable the computation of

<i12]]:JM[<Pi)> :/_:j—;fA(C)AAdeQ<lf[lJMf(P,-)J24+C(Q)>

3viv

explicit expressions and facilitate the mapping between
Mellin amplitudes and flat-space amplitudes.

1. Channel with a three-vertex and a four-vertex

We initiate our investigation by focusing on a topology,
wherein a bulk-to-bulk propagator establishes a connec-
tion between a four-vertex with points P, P,, and P3, and
a three-vertex involving points P, and Ps. This configu-
ration is visually represented in Fig. 2. Using the factori-
zation property given by Eq. (2.15), the amplitude can be
written as

Mun (T (@)Y (P4)JYs (Ps)).

Contact

(3.18a)

Let us first look at the expression for contact diagram (3.6). We will identify P, in (3.6) with Q to match the factorized
contact diagram as shown in Fig. 2. By acting with the differential operator D+44, we substitute P, with a free index into
(3.6). Utilizing Eq. (2.10), we can succinctly recasts the four-point contact diagram as follows [40]:

4 h 3
C
JMi P. — 2” ayash’ fa,asb’ ayazb’ rara,b’ :;)M,A,- 4
<,~”] ®)) i (et vt gty (T ) o

4
dyi iy (Bs—1 y
F / P kl 4
X / H2m’ V)P A, n

Contact

k<l

4 . —
X F(Eil;l d

)nAlAZ + cyclic perm. of (123).

i—1 F(A4>

1

— (PP P P (1 2)))

(3.18b)

Starting from the constraint imposed by the Mellin variables, denoted as A} =~ ., v}; (note that A} is not necessarily A;.

For example, the term P, A3P]1W4 has scaling dimension of =2 for P. To compensate that, A] = A; + 2), we have the
opportunity to dispense with y/, to arrive at the following constraint:

3
2) = AL+ AL+ AL - AL

i<j

(3.18c¢)

We now transition to substituting P, with the integration variable Q in the existing formulation.
Next, we proceed by substituting (3.11) and (3.18b) into (3.18a). Employing the Symanzik’s formula (3.10), we obtain

the Mellin amplitude,

MMM M Ms

h
i — g3 ﬂ_ (fa]bb’fa2a3b’ + fa|a3b’fa2bb’)fba4a5 /
2

o de = (h—1)?
—ioo 27i (¢ = (A — h)?)?

5
% H@M,»Ai 1 p(BatAsth—c—d+ 1\ (Ay+As—htc+]
i=1 20 ()l (=c) 2 2

F(m—%)r(m+A2+A3+h+c—d>
2

[(y45)
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d}/ h+c— A=Ay — Ay 25 T = 7))
/ klé(Zﬂd"’ 12 2 3) H JF J J Maa,
k<1

k<l i<j (7i))

X { X500} ¥ {;1% - (Pia,(PY+PY+ P+ (1 < 2))} + cyclic perm. of (123).  (3.19)

h+c—-1

Note again that A} depends on the scaling dimension of each term in the last line. In particular, for a term which has scaling
dimension of §; in P;, Al = A, — §;.

Indeed, the expression (3.19) is very complicated, and our goal is to simplify it further. First, we bring the external
fields on shell, i.e., A; = d — 1. The product of the P, ,, term in {Xys ,} and the second term in the second curly bracket
of (3.19) gives

NaasPapt(Pra, (P + PY 4+ PY) + (1 <> 2)) = na,a,Pia,(d—1—y45) + (1 < 2), (3.20)

where we have shifted the Mellin variables [e.g., F(yM)Pl_j"“H = 71l (y14)P11"] and used that > 3, vy + 745 =
Ay =d—1. Since (3.20) is symmetric under the interchange of labels 4 and 5, its contribution vanishes due to the
antisymmetric property of {Xys}-

The contribution from the multiplication of the P, 4, term in {Xys 5, } and the second term inside the second curly bracket
of (3.19) also vanishes due to the antisymmetry under 4 <> 5. To see this, we can use (2.12) with

1—\(7/4 _ A4+A5;h+C+l)

f(yélﬁ) - F(]/45)

: (3.21a)

and get

3
1
f(7as) (E Pi,A4> Pya, = f(745)§’7A4A5 — f(ras = 1)PsaPsa, + -, (3.21b)
i=1

where - - - denotes the term vanishing upon the action of D+4+. Now it is clear that (3.21b) exhibits symmetry under 4 <> 5.
Therefore, the antisymmetric property of {X,s ,} results in a total cancellation. As a result of the above observations, we
find that the second term inside the second curly bracket of (3.19) can be neglected.

We also note that with A = d — 1, the factor,

c?—(h—-17%* 1
(= (a=np)  =(h=1)

(3.22)

which gives simple poles at ¢ = +(h — 1). Therefore, with the integration of ¢ around the pole & — 1, (3.19) can be
simplified to

MyMyMsMyMs S”h a,bb’ payazb’ ajasb’ ra,bb'\ fhasas : M;A; F(d_l)
Miyay = g (fr fest 4 gl pertt) proc | [T oM ) —==—=

i=1

[(ysys —d+1) 3 Ay T (i = 7))L (Vi)
X = - Yig—d+1
[(y4s)0(1—9) H 27 (yu) Z M

k<l k<l

3d -4 .
X F( 5 )r]AIAZ{X“,A}} + cyclic perm. of (123). (3.23)
After integrating (3.23) over the Mellin variables y},, for 1 < k, [ < 3, we encounter poles at y,, = y; + n4;, with any non-
negative integers n;;. However, because of the presence of a delta function, one of these pole terms does not get integrated
out.® To compare the expression (3.23) to flat-space amplitude, we need to simplify it even further. We begin by considering

®Note that the scalar case has a similar construction [39].
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the integral term in the second line of (3.23),

3
d?’;dr(ykl 7kl sz)
—= Yy —d+1 3.24a

Through the integration around the poles y}; = yy; + 1y, this term reduces to

(ylZ)n (7/13)11 (7/23)n
—)r e 3.24b
Z t</7U d+1+m Z =D nip!ngzing! ( )

Further simplification leads it to

Z ) (22 7ii)m i (D"(d=1=m), (3.24c)

Km, d+1+m m! m! (320 vij—d+1+m)

At the pole of (3.24c), >°7_;7;j = d — 1 — m, from the constraint ) ;_; 5;; = A} on the Mellin variables and A; = d — 1,
we have

Ag+As+1-3 A+2Y3 v d
Vas = —— - 2ii =5-m (3.244)

Hence, the first term in the second line of (3.23) becomes

C(yss —d+1) (—l)m(%’—m)m

= (3.24e)
C(y45)0(1=9) L4+ m)
Finally, the Mellin amplitude becomes remarkably simple,
zrh >
M3v4vM5 _ E(falbb’fazagb/ +fa|a3b/fa2bb/)fba4a5 <H gM,-A,-)
i=1
{X45 n V O 0 Vm O 0 0 )
) + cyclic perm. of (123), 3.25
Z AT ( + m)(ras — 4 + )77A1A2 ychc p (123) (3.25)
where we have defined
3d—-4
V000 = (g1 - m)mF(T> . (3.26)
Note that with m = 0, it reduces to Vg,o.o,o given in (3.8). We should remark that the summation over m is truncated at

m = d — 1 for odd values of d, and at m = min{d — 1, %’} for even d. With this stipulation in place, we are now in an ideal
position to compare (3.25) with its corresponding flat-space expression. From the Feynman rules,

Asygy = igP (fbV faaast! o parash! pasbll) phasas (. 0 Ky g = 21p,0,kan, — (4 < 5))

l
X —— + cyclic perm. of (123). 3.27
A, A, (ks + k5)2 y p (123) ( )

One can immediately see that the simplification seen at three and four-point gluon amplitudes, as elaborated in Sec. III,
carries for the higher-point structure with three-vertex and four-vertex topology. Specifically, we find that the Mellin
amplitude in the current channel can be straightforwardly derived from its flat-space counterpart through a well-defined set
of substitutions. Explicitly, for any momentum term ik;, it should be replaced by 2P,. For the propagator,
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Ps

FIG. 3. The channel of five-point gluon amplitude for (3.30a).

i 1
- 3.28
(ky +ks)*  4(yas =5+ m)T(§ + m)m! (328)
with m to be summed over. For the three- and four-vertex coupling constant,
gr>gVi®Y and ¢ > PVPO00, (3.29)

respectively. In summary, our exhaustive computational analysis reveals a striking simplification in the Mellin amplitude
associated with the five-point function. In the ensuing section, we will delve into the other topological configurations that
constitute this five-point function.

2. Channel with three three-vertices

In this part of the paper, we focus on the other five-point channel configuration where there are three-vertices, one links
P, P, with a bulk-to-bulk propagator, one links P,, P5 with another bulk-to-bulk propagator, and the other links P; with
the two bulk-to-bulk propagators. This diagram depicted in Fig. 3. By employing the relationship specified in (2.15), we can
derive the corresponding amplitude for this configuration,

ﬁJMf(Pi) = fmd—c.fA (e) [ do(][™(P)I.(0)
<i1 > /_,oo 2ri / < >Exch

X pn (Ty_ e (Q)IM4(Py)JMs (Ps)). (3.30a)

The exchange contribution, with A; = d — 1, is given by (3.13). Performing the action of D™*4+ explicitly, one rewrite the
expression

ﬁ JM: (P ) Zfalazb’fa agb’ " ﬁ MiA; C4 / H dykl F( )P_}’;d
i i — _g 3 N i
P e 2 [(Ay) ) 125 2xi K

i=1

(- DG ) (A1, 2 pi | pie
< o + = (P 4 P 4 PYYH ,
( AT 1) (=4 ) U v

(3.30b)

where

Ay
gA,A2A3A,, = {X12b }{Xbb’,A3}’ P,=—-Py—P,—P3, Py =P+ Py, (3~30C)
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and Hy, 4,4, is obtained from the product P‘: "Ga,a,4,4, followed by the elimination of the P, dependence using (2.11)
and (2.12).

After substituting (3.11) and (3.30b) into (3.30a), we proceed to integrate over Q by using the Symanzik’s formula (3.10).
Upon completing the integration, the resulting expression yields the Mellin amplitude,

h i 2
_ i3 rajarb’ razbb’ rba a5”_ zooﬁ ¢ (h MA; 1
M3v3v3v = —1g f ! f 3 f 4 > /_ioo 27”—( 5 (A Y (HQ) ) 2F(C) ( )

XF(A4+A5+h—c—d+1)F(A4+A5—h+c+1)r(y45—W)
2 2 F(745)

3 / 3 /
Ay Ty —vi)T () h—l—c— Al
X/ <H2k1 . )T (Vi Z v+
kel “7t Vi) <l
D SRR AN,
2T T Wit~ 7)

{X45}{QA AAsM T (Py+ Py + PS)MHA1A2A3}- (3.31)

h4+c—-1

Note again that here A} is not necessarily A,. From the  where we have used that > 3 vy 4745 = Ay =d— 1.

expression of Gy 4 a,m> (3.30¢), >3 AL=>"3 | A;+2  Since (3.32) is symmetric under 4 <> 5, its contribution

for the G term, and Y3 | A} = 373 | A; + 4 forthe H term. ~ Vvanishes due to the antisymmetric property of {X45.}- The
Now we simplify the expression (3.31) further. Taking ~ product of 74,y/P4 4, in {X%-}, the second term inside the

A; = d — 1, the result obtained by multiplying the 1744, P second curly bracket of (3.31) and

term from {X}%} with the second term inside the second

curly bracket of (3.31) is [similar to (3.20)] T(yy4s — %)
f(ras) = . (3.33a)
5 ['(745)
e d—1—-y,5)H Py, Py, P3),  (3.32 - .
h+c— lnA“AS( vas) A‘A2A3( P2, P3) ( ) similar to (3.21b), gives
|
F(ras)(Pra, + Poa, + P3a,)Psn,Haa,a,(P1, Py, P3)
1
= (f(745) E”IA4A5 —f(745 - 1>P4,A5P5,A4>HA1A2A3 (P1,P2, P3) + (3'33]3)

where - - - denotes the term vanishing upon the action of D+4+. The expression (3.33b) exhibits symmetry under 4 <> 5. As
a result, again due to the antisymmetry of {Xﬁg , (3.33b) gets canceled out. Consequently, based on the preceding
arguments, we can conclude that the Hy 4,4, term of (3.31) can be safely disregarded. Then, the same as in the other
channel, the poles of ¢ become simple. And we can integrate around the pole ¢ = h — 1.

Besides, the pole of 7} ; (for 1 <i < j<3)isaty;; + n;, with any non-negative integers n;;. Integrating over it around
the pole, we have

dykl : s F(}’ij - 72)1—‘(7;) 1
5 I —d J J
f1ig (z 1Ee

i<j (i) Vio—4+n
S 5 o,
l<]7/l] d‘l‘l’}’lz:z - nlz!n|3!n23! y12—|—n12_%+n
i<j'i
Z Zm: (c1yn 12718 4 725y ! . (3.34a)
Xty _d+mn|2:0 npl(m—=np)!  yp+np—45+n

The above equation has poles at
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3
- d
Z]/” =d—-m and Y12 :E—n—nu. (334b)
i<j
Using (3.34b) and shifting n — n — ny,, we get
Em: (12)n,, (713 + 723) menyy (O(d = 1)(g=n),) mn0 rd-1)(§-n), (3.34¢)
0 np!l(m—nyp)! 4nl0E + n)(y1a + nip —4+n) 3 4minT &+ n)(yip —4+n)’

where

m,n,0 __
VirO=0(d-1)m! > ,

np=0 I’l12.<m

min{m,n} /d d
d }(§_m+”)m(§_”+”l2)n—n)1'z(”_”12+1)"12:r(d_1)<g—n+m> (g—m+n> )
—nyp): n m

(3.34d)

Note that Vg””'o is explicitly symmetric under m <> n. It can also be easily checked that with n = 0, Vg”'o’o reduces to
(3.14). Now, we can rewrite the Mellin amplitude in the simplified form,

[Se]

h 5
My-Ms _ .3 b pazbb’ phagas M,A, m,n,0
M3ysg3y = —ig’ fa®? fa00 f a4a57 DY {Xppa, 1 V5
i=1

m,n=0

Just as in the channel (3.25), we can compare (3.35) to its flat-space counterpart,

A .0,0 Ay 0,
{X45h}V3 X {Xlé }Vgoo (3 35)
4mIT(§ +m)(yas —§+m)  4n'T(§+n)(rip —4+n)
For even d, the infinite sums are cutoff at m = ‘51 and n = %, and only finite number of terms remain.
Asyzyzy = —gP fhr2t fesbl’ phasas (Mvmr9a, = 2ma, 9 — (gM < g'M"))
M M i
X (Ma,aky’ =204 kapy — (4 < 5)) Ttk

U 2 i

X (Ma,4,K" = 204 kyay = (1 < 2))7(](1 ) (3.36)
|

g— ngn,OVO, ngVO,O’ ngnnO (339)

with ¢ = —k; — k, — k3 and ¢’ = k| + k,. The dictionary
between the Mellin amplitude and the flat-space amplitude,
which is obtained from the Feynman rules, can be read off as
follows. For the momenta, ik; — 2P;. For the propagator,

i 1
- , (3.37)
(ky + ks)? 4m!1“(§ +m) (745 — % + m)
with m to be summed over. And
] 1
! (3.38)

_) b
(ki +k)*  4nl0(G+n)(yin — 4+ n)

with n to be summed over. For the three-vertex coupling
constant,

Note that the former two, each of which has two zero
arguments, are for the three-vertices connected to two
external fields, while the last one, which has only one zero
argument, is for the three-vertex connected to only one
external fields.

IV. HIGHER-POINT GLUON AMPLITUDES

A. Factorization of (n +1)-point gluon amplitudes

So far, we have presented lower-point gluon amplitudes
(three to five-point) that already exist in the literature.
Particularly, we have considerably simplified the five-point
result. There, we demonstrated how the calculation of the
five-point gluon amplitude can be done by factorizing it
into a four-point amplitude and a three-point amplitude.
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One interesting finding is that the antisymmetry between
the two external legs P, and Ps, which are brought together
to a three-vertex, kills the term Hy 4,4,. And the remaining
term has simple poles at ¢ = +(h — 1).

It is important to observe that this simplification does
not depend on the details of the four-point amplitude, i.e.,
Ga,a,a,m and Hy 4.4, in (3.30b). So, presumably for any
(n + 1)-point gluon amplitude factorized into an n-point
amplitude and a three-vertex (see Fig. 4), we expect
a similar simplification. In this section, we will explicitly
demonstrate this fact and apply it in higher-point
computations.

First, from the factorization of bulk-to-bulk propagator

FIG. 4. A (n+ D-current amplitude for involving a (2.15), we can calculate the (n + 1)-point gluon amplitude
three-vertex. from the lower-point amplitudes,

<i_[JMi(P,~)>: [ [ deQ<HJM >>nMN<Jf,y_L.<Q>JM~<Pn>JMn+'(Pn+1>>. (4.1)
i=1 e oA

An n-point Mellin amplitude can be written in the following form:
ottty _ [ TT eyt | 2 (17 wa, | _C
MM, — DMiA; dydy=dy 77 DMiA; n
M 2 g MA]Az“'A,, 2 E F(An>
A, -1 ~ dvay 1 1a2a
x (A— A M0+ A, oo H (4.2)

where H3'2 7% = P MGG

As in the examples 2.11), (2. 12) and their generalizations with more free indices, we can always use (2.10) to replace P2
by the other P? ’s. In this way, we can eliminate the dependences of M AAy-A, A0 Hy 4 .4 o0 P,. Then, the second term
in the last line of (4.2) can be further calculated as follows:

0
WHAIAZMAH(Pth, N HF V)P y“ = ZZP "Hayayet, (Vin = Vin = HF Y1) klykl’ (4.3)
n k<l i=1 k<l

where 7/ j denote the Mellin variables for the lower point Mellin amplitude M,,. Plugging (3.11), (4.2), and (4.3) in (4.1),
we have

ah fiode r—(h—1)* [ 1
MM, _ anan+]b R S — MA Yy —
M =/ 2 /_,-oo 27i (2 — (A — h)?)? (1:[1 ) o=

XF(A,, + A th—c—d+ 1>F(An+An+1 —h+c+ 1> L(7anen) = =)
2

2 F(},n(nJrl))
/ﬁdyz] ylj }/U J/zj Z - Z?:_ll A;
kl
i<j 2zi yl] k<l

) -

2y b 2 Ap1b

A {5 ) e S PG ) 44)
i=1
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Now, we take A; = d — 1 and show that the contribution
of Hy, 4., , vanishes. First,

n—1

M
Naay P PiaMaasen,
i=1

1
= =50 (= 1= Vaen) Haaoa, o (45)

where we have shifted the Mellin variables y;, — 7;, + 1
(no prime) for each term in the sum and used that
"Ly + Yn(n+1) = A, = d — 1. Since (4.5) is symmetric
FIG. 5. The “snowflake” channel of six point gluon amplitude ~ under the interchange of labels n and n+1 (e,
for (4.8). n <> n+ 1), the contribution of it vanishes due to the
antisymmetry of {Xy(n +1}- Second, using (2.12) with

Again A} = A; — §; where §; denotes the scaling dimension

1—\(7/ . _A,,+A,,+1—h+6‘+1)
of P; for each term in the last line. Note that for all the terms F W) = nn+1) 2 , (4.6a)
in the sum in the last line, they have the same total scaling r (}’n(Hl))
dimension > "' Al
we can get
|

n—1 1
F i) ZPi,AnPn.A,,HHA,AZ---A,,,I = (Ef(yn(m»l))nA,,A,,H — f(Vnns1) — 1)Pn,An+1Pn+1,An>HA,A2-~-A,,1 +---,  (4.6b)

i=1

where - - - denotes the term vanishing upon the action of DM+Ar The expression (4.6b) again exhibits symmetry under
n < n+ 1. As aresult, its contribution gets completely canceled out from the antisymmetry of {Xﬁ‘f(n -1} Combining these,
we can conclude that the H term in (4.4) vanishes.

Finally, the integration around the simple pole ¢ = A — i (with A = d — 1) and the poles ¥’ = Vit n with any non-
negative integers n;; gives the important recursion formula from an n-point amplitude to an (n + 1)-point amplitude,

h sn+l &) {XM }Vgn,().()
ManMz'“M"“ _T ( @M,A,») igfananiib n(n+1)
i 2 H ;4F([§1 + m)(yn(n—‘rl) - %l + m)

i=1

n= (vij)
JjIn; o~ ey b
Z H n..! ,MZJXIZA;“I‘\Ion(Pl’ LETRR P”_1)|7f./_’7ij+”if’ (4.7)

One can use this recursion formula to calculate any n-point gluon amplitudes with at most one four-vertex. For example, if a
channel contains one four-vertex, we can start from the four-vertex and add three-vertices one by one. And at each step of
adding one more three-vertex, the amplitude can be calculated by using (4.7).”

B. Six-point amplitude: Snowflake channel
We can use (4.7) to calculate the six-point gluon Mellin amplitude for the diagram in Fig. 5. As shown in the figure, the

amplitude can be factorized into a five-point gluon amplitude and a three-point gluon amplitude. Therefore,

"To calculate amplitudes in channels containing more than one four-vertex, we would expect to derive a recursive formula from n-
point to (n + 2)-point by attaching to the n-point diagram a four-vertex. But this formula might be more complicated.
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MM[Mz"'M@ :ﬂ_h ﬁ@MiAi igfaSaf’b{X }Z VmOO
Snowflake 2 P 4F 756 ) + m)

(71});1 b
x > H EMEEE At (P P2 P3Py Ly (4.8)

n;
Zﬁ‘ nyy=m 1<J l]
i<j

In (4.8), M 3v3v3v can achieved by eliminating the P; dependence in the Mellin amplitude (3.35), interchanging the
labels 1 <> 2 and 3 <> 5, and replacing (As, as) by (M, b). We first eliminate P5 in the Mellin amplitude. One appearance of
P; is either in the inner products P; - P3 — (i <> j) [where (i,j) = (1,2) or (4,5)], or in the terms with free indices,
Pj4, P34, — (i < j). For the former, by shifting the Mellin variable y;(;3 = i(j3 + 1. we have

o 1
Pi'P3_(l(_>])_’_§7i3 (i < j) Z%k—le] ZP Py —(i < j), (4.9)
k;él3 k#i

where in the second step, we have used A; = A; = d — 1, and in the last step, we have shifted y; ;) = 7(jx — 1. For the
latter, we can use (2.12) to replace P3sAi(j)' So, it becomes

Pia Py — (i j)— —Piy, ZPkA (i < Jj). (4.10)
k#3

Combining (4.9) and (4.10), the net result is that we can replace P5 in (3.35) by — Zkﬂ P,. After getting rid of the P;
dependence, and interchanging the labels 1 <> 2 and 3 <> 5, we can read off that

Mgi;ajfv;i;A Ay = _lg3fa1a2b fasb”b’f“3a4b” Z {Xb”b’A }Vm 1,0
m' ,n=0
{XAl,// }Vm ,0,0 {XA;,/ }Vn ,0,0
, 4.11
TG+ ) (e =T ARGt 1)y — 1) 1
with P, = Py + P4, P,y = P, + P,. Plugging it in (4.8), we see that the poles are at
d d
756 :E—”% 712 Zi—n—”m 734 Ii—ml—nm- (4.12a)
And from the delta function restriction,
AN —As—Ag+2 d
Y13+ Via + 723 +yag = S5 25 6 —I—y56—y12—y34:§—m+n+m’+n12+n34. (4.12b)
The sum over n;; in (4.8) at the poles yields
T 110 113y =0 n3y! (m—nyp — n3y)!

Shifts of m’ — m' — ny, and n - n — ny, lead to
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m e (G —n— n12)n, G —m' - n34) s, G-m+n+m+n,+ 134) m—nyy—nss

113=0 113=0 np! n3y! (m —nip = n3y)!
P(d=1)E-m), wno Td=1)E=n),
Am'\CE+m)(rss +nyg —S+m') 7 4nT(E +n)(rip +np =4+ n)
L T@=DE=m)y i Td=1DE=m),

= A _d 3 (4 _d ’
m!4m .F(2 m')(y34 +m) 4n'C(§+n)(yin—5+n)

where we have defined

min{m,n} min{m—ny,m'} d_ /
Vm’,n.,m = m! (2 mntm )m_nlz_n34

m —n3+1
1a=0 1g—=0 nip!ngy! (m—=njy —ny)! ( * )n34

d d =
x (5 +m' - ”34) (n—np+1),, (5 +n— mz) vy ezl
n3y4 nyy

(4.12d)

(4.12¢)

Presumably, this definition is symmetric among m’, n and m, and reduces to the one defined in (3.34d) when one of the
integers is set to 0. While we do not have a proof for the symmetry property, we can check that the reduction property is true.

First, plugging m = 0 in (4.12¢), we find that the rhs reduces to V'”/ "0 consistent with the lhs. Besides, from the definition

(4.12e), we find V’" D,m V0 mm - and it is equal to Vi 0 from the definition in (3.34d).
With the aid of the newly deﬁned V’” M we can rewrite the Mellin amplitude (4.8) as

h 6
MMM 4 b pazasb” rasagh £bb"b' MA;
MYUMaMs g4 parach! pasasd” pasach g HQ}
Snowflake 2 P

{XM VmO()
4m!L(§ + m)(yse =5+ m)

()
X Z {Xpry VI

m' ,n,m=0
y {XA;/'}Vm ,0,0 5 {XA;,/}VnOO
4m’VF( +m')(y3 2—|—m’) 4n‘F( + n)(r, 2+n)'

Compare it with the flat-space analog,

Aglonzfl[g}Ee = gt farb’ fasab’ pasach fhb'Y (e @ = 20 mdyy — (§"M" < g'M"))
i "
X (s kY =2 ks 4, — (5 <> 6)) (ks + k)2 5 (Maga k5" =208 ks 4, — (3 < 4))
i i

L — M oM — (1 2)—m

where ¢" = k3 + k4 and ¢’ = k; + k,, we have the dictionary that ik; - 2P; for the momenta,

i 1
_) b
(ki +k;)*  Am!D(§+ m)(yi; = § +m)

with m to be summed over for the propagators, and g — ng"/’"’m for the three-vertex coupling constant.

C. Six-point amplitude: Channel with two three-vertices and a four-vertex

(4.13)

(4.14)

(4.15)

Now we calculate the six-point gluon Mellin amplitude in another channel as depicted in Fig. 6. The amplitude can be

factorized into a five-point amplitude and a three-point amplitude. Using (3.11), (3.25), and (4.7), we have
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FIG. 6. The channel of six point gluon amplitude for (4.16).

Mo 6 0 Vm,O,O
M V. \77 v gMiAi 3
e ,11 Z4F(‘§i+m)(756—%1+m)
}/Ij nj o V}’l 00 Vn,U.O,U b p
X i asagh { xM 1/ fazasb
Zzn:v mg ; An'C(§ + n)(r3 + naa = +”)f Vsl
ij=

X ((fa‘b”b/fazbbl + fazb”blfa‘bb/){X34,M}’1A1A2 + cyclic perm. of (Ayay,Aa,, MD)). (4.16)
The poles of Mellin variables are at

d d

Then, from the equation which results from the restrictions on the Mellin variables, i.e.,

A5—|—A6—|—1—2y56—ZA +1—2Zy,], (4.17b)

i=1 i<j

we have

Z H 71/ n,j _ Z 34 n34(d —l-min+ n34)m—n34 . (4.17¢)

1(m — !
= i<j =0 n3gl(m — nyy)!

A shift of n - n — ny, amounts to

Zm: (§—n—nz),,(d=T=m+n+ny),_,, (§—n),(d=1-n),
nagl(m — nyy)! n!T(§ + n)(yas + n3s =5 +n)

n3,=0
Vm.n.O,O (c_zl _ n)

LS mn!T(§+n)(yas —%+n)’

(4.17d)

where

d
x(n—ny+1),, <2 +n-— n34> (d=1=n+ny),,., . (417

N34

min{m,n}
3d—4 d-—1-m+n),_,
;Zun.o,o___r — |m! ( T )' 34
2 n3!(m—nsy)!

1n34=0
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One can check that from this definition V" 0,00 VO m00 "which is also identical to the vy 000 given in (3.26). Now, we
can rewrite (4.16) as

Mg/{\,g{,iv 6 (H M4, )

v
4n\C(§+ n)(yas —§ +n)
X Mg, a, M + cyclic perm. of (Ayay,Aya,, MD)). (4.18)

Z an()O {XM VmOO
4m!T(§ + m)(yse —§ +m)

m,n=0

asagh rasasb” a,b"b' ra,bb’ a,)b"b' ra,bb’
Jsel fas@sPi((fnP'? feiv 4 febi fadt)

Like the previous cases, the Mellin amplitude (4.18) can be obtained from the flat-space Feynman rules by replacing
ik; — 2P; for the momenta,

i 1
_) 9
(ki +k;)*  4m!D(§+m)(y; =5+ m)

(4.19)

with m to be summed over for the propagators, g — gV4-** for the three-vertex coupling constant and ¢*> — ¢* V"% for
the four-vertex coupling constant.

D. Seven-point amplitude: Scarecrow channel

Let us proceed to compute the seven-point gluon amplitude, as depicted in Fig. 7. Using (3.11), (4.18), and (4.7), we have

e — % (H @MA) > e Ve,

i1 =0 (%“rm 767—§+m)

y” ”r/ > mnOO (d_l)(__m) /
% :
Z H Z ) 4m"\C(§ + m')(yas + nys —§ +m')

ngj=m i<j m' ,n=0
i<j

I(d-1)(¢-n), )
X fba6a7 XM fa4a50 XN fazaqb
4nIT(§ + n)(ya + nys —§+n) X7} s}
X ((fhb”h/fa”hl + fu]h”h/fbcb/){XB,N}r/MA, + cyclic perm. of (Mb,Aa,,Nc)). (4.20)
At the pole,
d i
Y67 :E_m’ 723 :E—”—’m, V45 :E_m — Nys, (4.21a)

FIG. 7. The “scarecrow” channel of seven-point gluon amplitude for (4.20).
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with Ag+ A7 + 1 =2y =37 | A; +2— 2Zf<j 7ij» we have

Z H (ylj)n” = Zm: minf} @ —n- n23)"23 (g —-m' - n45)"45 (d —l-m4n+m'+ nos + n45)m—”23_”45 . (421b)
S niit =5 No3lnys!(m — nyz — nys)!
i<j
Shift n - n — nyy and m' - m' — nys,
zm: mfz §—n—ny),. (§—m —ys)p (d =1 =m+n+m +ny+n4s)p_p .
1g=0 n4a—0 npslngs!(m — ny3 — nys)!
(tz_i - ml)m’ m',n,0,0 (g - n)
m' \C(§+m')(yas + nas —4+m') ! nC(&+n)(ras +nps — 4+ n)
1 d_mh d_,
Vm ,n,m,0 - (2 / ) 7 <2 >n 7 s (421C)
m' m 'F( +m )(745 ) + m ) H'F(E‘F I’l)(]/23 ) + I’l)
where
) min{m,n} min{m—ny3,m’} d—1—-m+n+m
VT .m0 — m! ( ' )'"—"23—”45 (m/ — s + 1)'145
10 Py no3tngs!(m — nys — nys)!
d 1 m' —nys,n—n»3,0,0 d
X 5+m — Nys V X (n—n23+ 1)n23 §+n—n23 . (421d)
45 123

One can check that from this definition Vj"" 0.0 VO om0 =V, 00 and reduces to v, 99 in (4.17¢). Furthermore,
with (4.21d), we can rewrite the Mellin amphtude 4. 20) as

h 7 &) , {XM}Vm,O,O
Mttt =% (T ov) 3 v I
: (L) 2 V" i@ e — T
% {X }Vm 00 % {X }Vn o0 fa6a7bfa4ascfa2a3b”
4m'\0(§ 4+ m)(yas =5 +m')  4n'0(§+n)(y3 =4 +n)
X ((fbhub/fa,Lh’ fa]hllb/beh/)ﬂMAlﬂM’N + cyclic perm. of (Mb,Alal,M/C)), (4_22)

which can be mapped from the flat-space counterpart by replacing ik; — 2P; for the momenta,

i 1
_) 9
(ki +k;)*  4m!D(§+m)(y; =4+ m)

(4.23)

with m to be summed over for the propagators, g — gVT’O’0 for the three-vertex coupling constant and g> — gZVT/’”’"”O for
the four-vertex coupling constant.

E. Eight-point amplitude: Drone channel

In this subsection, we calculate the eight-point gluon amplitude in the drone channel, as shown in Fig. 8. To calculate the
amplitude, we factorize the diagram into a seven-point amplitude and a three-point amplitude. Using (3.11), (4.22), and
(4.7), we have
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FIG. 8. The “drone” channel of eight-point gluon amplitude for (4.24).

h 8 0 _ d _ 6 ( )
MMMy _ . 670 RMA; F(d 1)(2 m)m Vijn;
Drone g D) <H ) Z4m!r‘(t2_i + m) (7/78 _ ) Z H |

m=0 Zﬁ ni=m 1< Mij:
I'id-1)(5—-n") , I'd-1)(5-m") ,
% Z annO / ( )( ) / / d( )( ) . /
=0 An'\0(§ + 1) (rs6 + nse — 5 + ') 4m'\D(§ + m') (y3q + 3y = § +m')
I(d-1)(¢-n), ) ,
arag X asagc’ XM a3a,C X
PP B T )f { X0 1ot Xsg Hfaue{ X3y}
X ((feV"V foeb y o0V fe fb’){xlz,N}nMM/ + cyclic perm. of (M'¢', Mb,Nc)). (4.24)
At the pole,
d d d d
778 :E_m’ 712 :E—" — N, V34 = E—ml — N3y, 756 :E—"” — Nse, (4~253)
with
Ar+Ag+1 =2y = ZA +3— 2Zyl], (4.25b)
i<j
we have

6 . m  m— m”lz—"34 d_ 0 _ d_ 0 _
Z (?’t/)n,;, _ Z Z —np),, (=M —n3), (5—n" —nse),

: n; Ny nsylnseg!

Z ' ng=m i<j ij n12=0 n34=0 5=0 12-7%34-1256
i<j
(d—1—m+n+m’+n/+n12+n34+n56)
M—nyjpy—Hn3,—n
x 127 (4.25¢)

(m —nyy — nzg — nsg)!

Shift n > n—ny,, m' - m' —nyy and ' — n' — nsg,
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(fﬁ N Z (@=n—np),, G —m' —ns), E—n' = nse),,
117=0 133=0  15g=0 nip!nzsnse!
(d=1=m+n+m +n'+npy+ns+ nse) .
(m —nyy — n3y — nsg)!
x =),y (4=, )
m L&+ m')(y3g + nyy =S4+ m') n'T(E +n)(y12 + nip — 4+ n)

§=n),

n’!F(%‘ +n')(ys6 + nse — %1 +n')

—N34—Nse yym',n,n’,0
X A\

- <V4’” e o)y o), ) (4.25d)

W\D(E+n')(yse =5 +n) m' UG+ m)(y3 =5+ m') n'T(§ + n)(yi2 —§ +n)

where
Vm/ o ’min{mﬁn} min{m—ns4,m'} min{m—n,—ns,.n'} (d “l—m4n+m+ n/)m_7112_n’;4_n56
| ;
* =0 Hg—0 Hee0 niplnagnsg!(m — nyy — nag — nsg)!
m'—ns3g,n—nyp,n'—nsg,0 /4 d /
x V} (n' = nsg + 1), §+n — nsg
Ns6
/ d / d

X (m —Vl34+ 1)}134 §+m — N3y (l’l—n12+ 1)”|2 E-f—n—l’llz . (4256)

nyy n2

One can check that from this definition VZ”/'””"’O = VT/’”’O"" = VZ’I’O’””" = Vg’ml’”’m and reduces to VT/’””"’O in (4.21d).

With such a definition of VZ”*"'"/””, we can rewrite the Mellin amplitude (4.24) as

M My--M 67 : M;A . " X% Vgn,o,o
1My---Mg — —l ~ @ A; Vm sh,n,m
72 11 2, Vi 4mIL(5 +m)(y7s =4 + m)

n' =0
UV v
T+ )50~ ) AT+ )45 )
iy
4n'0(§+n)(yi—4+n)
X ((feV"Y fhet’ g fob"Y ey g + cyclic perm. of (M'c’, Mb, Nc)), (4.26)

fa7agbfa5a6c’fa3a4cfa| a)b”

which is related to the flat-space counterpart by the following replacements up to an overall %h 8 DM For the
momenta, ik; — 2P;. For propagators,
i 1
27 d d ’

(4.27)

with m to be summed over. For the three-vertex coupling constant, g — gV3’"’0’O, and for the four-vertex coupling

! ’
constant g — g2V """,

F. Dictionary between gluon Mellin amplitude and flat-space gluon amplitude

Reflecting on the diverse range of examples that we have provided, spanning from three to eight-point amplitudes, an
intriguing similarity emerges between the Mellin amplitude in anti—de Sitter (AdS) spaces and the flat-space amplitude
perturbatively derived from the Feynman rules. This correspondence is not just supeficial, and there is a precise dictionary
between them, as shown in Table I.

The emergence of kinematic variables in scattering amplitudes is traced back to the derivative terms in the action.
Specifically, in flat space, applying the derivative d,+ to the Fourier basis '’ introduces a factor, ik*. In contrast, within
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AdS space, the operation of dya on the boundary-to-bulk
propagator, represented as S[Z_"A" (P;, X), produces a factor

of 2P%. This analogy provides a rationale for the presence
of ik and 2P; on respective sides of the established
dictionary.

Indeed, the map 2P; <> ik; has been substantiated
through several examples, which demonstrate a notable
parallelism in their behaviors. Firstly, both Mellin ampli-
tudes and flat space amplitudes conform to the null
condition, expressed as P? = 0 and k*> = 0. Additionally,
analogues of momentum conservation, referenced by
Egs. (2.11) and (2.12), are observed for these boundary
points.

For the internal propagator in the flat-space amplitude,
ie., i/(3 i ki)> =i/2) ki - kj, we have 1/, _iy;; on
the Mellin side, where we have defined

Zm = 4m!1“(§ + m) [Zm " (d; 1)

i<j i<j
1

where again §; denotes the scaling dimension of P; in the
Mellin amplitude. The map between the Mandelstam
|

(4.28)

71'h d CA,
Mn(Ai’Yij)z?gF(Ai) 0

It is natural to generalize the flat-space limit to gluon Mellin
amplitudes. Following the dictionary Table I, we propose
that the generalization of flat-space limit is

h n 00 " i~
MMM, z% (H Q)MiA,») / dﬁﬂ@‘le—ﬁ
0

i=1
1

i
(Ziki)z ” 4ﬁ2i<j7ij’
ik; — 2\/ﬁPi).

X Ay a4, (
(4.32)

We perform several checks for this formula in

Appendix C 2.

V. CONCLUSION AND OUTLOOK

In this study, we present a rigorous computation of the
gluon amplitude in anti-de Sitter (AdS) space. We
employed the embedding formalism, Mellin space tech-
niques, and an approach utilizing differential operators,
successfully computing novel higher-point correlators.
Despite the complexity of the intermediate steps, we

/ Appr i A=t B A (p, - pj = 2Prij)-

invariants, k;-k; and y;; resembles the relationship in
the scalar scenario, as referenced in [37].

From (4.28), it is clear that each bulk-to-bulk propagator
is associated with an integer m to be summed over from O to
oo. Then, for a three-vertex connecting the propagators
associated with integers m,, m,, and mjs, the three-vertex
coupling is

my,my,ms

g< gVy (4.29)
This may contain boundary-to-bulk propagators with
m; = 0. Similarly, for a four-vertex connecting propagators
associated with integers m;, m,, ms, and my, the coupling
is supposed to be

G < gV, (4.30)

It is interesting to extend the dictionary to general Witten
diagrams, including even-higher-point amplitudes as well
as channels involving more than one four-vertex (as
mentioned in footnote 7). We leave it to future work.

It is also noteworthy that in scalar cases a high energy
limit y;; — oo takes Mellin amplitudes to flat-space ampli-
tudes up to a transform [39]. Specifically, as reviewed in
Appendix C 1, in the flat-space limit an n-point scalar
Mellin amplitude becomes

(4.31)

distilled the Mellin results into remarkably succinct
expressions. Intriguingly, we observed that our results
exhibit a striking resemblance to structures in flat space.
This work potentially opens new avenues for research.

It is conceivable that one could rewrite these expressions
in spinor helicity formalism. Conventionally, flat space
scattering amplitudes are written using polarization vectors.
However, the preceding twenty years have witnessed
advancements through the adoption of spinor helicity
variables. These variables are distinguished by their trans-
formation properties under the spinor representations of
both the Lorentz group and the little group. It would be
interesting to see if one could use a different variable to
simplify the expressions.®

In the context of Mellin space, the domain of external
gravitons presents a significant avenue for further explora-
tion. Only a handful of works have been conducted in this
direction [10,78-80]. The four-point external graviton falls
within our investigative purview. Moreover, the potential to

*For a bispinor formalism of AdS correlators in embedding
space, see [77].
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establish a map between flat space graviton scattering and
graviton bulk scattering in the AdS framework is both
promising and of considerable practical relevance from
AdS as well as dS point of view.

Related to the graviton Mellin amplitudes, several
research groups have made progress in the (A)dS color
kinematics and double copy frontier, though predominantly
limited to three and four-point configurations [14,81-97].
To truly harness the potential for double copy, it is
important to systematically explore higher-point configu-
rations! Digging deeper into these intricate structures not
only broadens the range of computable amplitudes but also
underscores the efficacy and profound insights offered by
the double copy approach. Our method for tackling higher-
point configurations and its resemblance to flat space could
be important for constructing the double copy that mirrors
the flat-space version.

An exciting opportunity presents itself in exploring the
computation of spinning loops within AdS (see some work
in this direction [12,98,99]). Previous investigations into
loop calculations in flat space have revealed crucial links
between trees and loops, bridging gravitational theories
with gauge theories. In flat space, these loop amplitudes
also exhibit connections to intricate geometric structures. It
would be fascinating to investigate whether similar patterns
or connections emerge in the loops within AdS.
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APPENDIX A: THREE-POINT SCALAR AND
GLUON AMPLITUDES: SCHWINGER TRICK

In this appendix, we review the calculation of the three-
point AdS amplitudes [37]. For the scalar case, as discussed

y
/+

(O1(P1)O,(P,)O3(P3))

ﬁ
o i

where P;; = —2P; - P;.

above, the correlation function can be calculated by
integrating the bulk-to-boundary propagators, i.e.,

(O1(P1)O,(P2)O5(P3))

= ig / dX E(P,, X)E(Py. X)E(P, X).  (Al)
AdS

To perform the integration, it is convenient to express the
bulk-to-boundary propagator with Schwinger parameter,

CA, +oo dt: A,
g P,X = ! lt 2!P X A2
Fo ) F(Ai)/) ti ! (42)
Then, the integration becomes
3
: Cp, [Heodt; o
(O1(P1)02(P2)O5(P3)) = IQHF(AI')A t_it i
x [ dXe*X, (A3)
AdS

where T = "3 | 1,P;. Since t; are positive and P; are null
vectors, 7 must be timelike. In the rest frame where
T = (T° 7*) = (|T|,0), parametrize the AdS,,, space by

o

which satisfies the Eq. (2.1) for R = 1. Then,

[ axemeo [0 [ g
AdS
_ 7[]1 /+°° de
0

l+x3+x% 1—x3—x°

’

, x") , (A4)

ZXO 2X0

1+A2+t

+o0 dx() 0

d+1

I7]

12
(AS)
0

So,

® d; A/
0

L

dt A; T2 /+°° d.XO
‘e 3

L 0 h— —A

S+l
X0

+0o0 de

72
e —X0 +x_
xh+1
0

A
—t e
+oo dtl A

—t15,P1y—t113P 13—t 13 P,
l e hhP=hizbi—hiz s

l
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For the integration over Schwinger parameters 7;, we change the variables m;; = 1;t;. Then,

(O1(P1)Oy(P)03(P3)) = ig— F<Z’ 1A = ) 3 CA H/+°° dm’{ Tij ;P

2 2 AL .
i<j
7t (3 Ai-d i
=ig5T 5 H Hr 7ij)Pi; (A7)
l i<j

which gives the three-point scalar Mellin amplitude (2.6).
Similarly, for the three-point gluon amplitude, we have

0
(J1(P1)J2(Py)J3(P3)) = —igft®s /\ds dx |:’7A1A2 <F5M2A2 (P, )>5M2A2(P27X)5M3A3 (P3.X)

— (1 < 2) +cyclic permutations]
T i Ay As+1,A 27X
=—ig “1“2“31:[1@ i i|:2’7A1A2P2,A311_[/ LAty 1Ads dxe*’
— (1 <> 2) + cyclic permutations]

Zl 1 A d+1 ajaa; M;A 7!]
2r<2 igf H@ IIIAAzAKEF vii)P; (A8)

from which the Mellin amplitude, (3.2), can be read off.

APPENDIX B: SYMANZIK’S FORMULA

As seen in this paper, the Symanzik’s formula is crucial for calculating higher point amplitude from lower point
amplitudes. Here, we review the derivation of this formula.
First, with Schwinger parameters, the lhs of (3.10) can be written as

n n +oo dt.
d F li _2Pl _li - / — li/ d ZTAQ, Bl
/dAdS QH () 0) 11:[1 0 tit 0AdS Q¢ (B1)

i=1

where 7= )", 1;P;. Since t; are positive and P; are null vectors, 7 must be timelike. In the rest frame where

T = (T° 7*) = (|T|,0), parametrize the boundary of AdS,,, by
x24+1 21
= H . B2
0~ (5 ) (B2)
Then,
o _
dQe "% = ——¢e I, B3
/9AdS |T|" (B3)
where |T| = \/— Doty titiPi - Py
Change variables t; — t;|T|. Then,
n [ di; +oo det(d, 1| T|) | T| 2201 v di;
H/ —’ﬂf/ dQ€2T'Q:7Th/ (,,,n,l DIT| - [[= e, (B4)
srJo ti Joaas 0 7| VAR
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The Jacobian is

2 nPy - P D obict iliPy - P )
det(d, t;|T]) —det<5 T - Zkzl%) = |T|"<1— k IITIZ > =2|T|", (B5)

where in the second step, we have used the formula det(5;; + A;B;) = 1 + ), A;B;. For > "' | I, = d, (B4) becomes

dt; dt Y .
27" / H LlieITE = 27" i< P, (B6)
Recall that in (A7), we have derived that
o H/ dl‘, A e—12Po—t1Ps—h1Py _ ph ﬁr(}/~)P~_.y"j (B7)
i) 1 .
i= i<j !

More generally,

dt ~ " n . e n n

2 h / ar; l r<, Py _ o /HZVJ Pij%_/ I |5<§ Vii = ll_>, (B8)
| | i '
i i<j

i=1 JFi

and thus proves the Symanzik’s formula (3.10).

APPENDIX C: FLAT-SPACE LIMIT

1. Review: Flat-space limit of scalar correlators

In [38,39], it was shown that in the limit of y,; — oo, a scalar Mellin amplitude M (4, y;;) reproduces the flat-space
amplitude A(p;). In particular, in the case of massless scalar scattering, the flat-space limit is given by

ﬂ'h n C ) o 1
M”(Ai’Yi-f)zTHF(zli)/o B A B A, (p; p; =2Prij)- (C1)

For example, in ¢ theory, this relation is simply true for three-point amplitude without even taking the limit (actually the
Mellin variables are fixed for this case, so no limit can be taken). To see that, we plug A; = ¢ in the rhs of (C1) and get

h3 d 3 3

T CA. © 1(23 A=d)=1 - 2 CA~ Z 1 —d

- [ 2 i=1"" = q— =T i= 2
95 Ii:Il F(A,»)A wr ) I,.:I, r(4;) > ) ©

which is precisely the scalar three-point Mellin amplitude (2.6). A slightly nontrivial example is the four-point amplitude. In
the s-channel with the exchange field of scaling dimension A, the Mellin amplitude is [37]

o) 5125 :
Exch 2 41 ,04n'F(1+A—h+n)(y12 &—i—n)
(A1+A2+A d)(l_A1+A2—A> F<A3+A4+A—d><1_A3+A4—A> ()
2 . 2 2 0

In the flat-space limit, y, — oo,

For more discussion on flat-space limit in AdS, see [8,100].
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MExch

N|i

H Ca, e 1
1 T(A 4)/12 —n!I'(1 + A—d/2+n)

< / /31/32 Artdota=d)-l g, tz( A —A)— 1)
atrl

y ﬂ/ dp, /jzAﬁ—Aﬁ-A d)-1 _ﬂ7t2(A3+A4—A)—1
02‘5’ 0

X

=1

(C4)

=1

Rescaling the integration variables f;, — f,/t;, and using the following identity proven in Appendix C.3 of [39],
namely:

. 0" 0" _hf _papdo) —Aatdod
Fon nens =p et , cs
nzn'r +A d/2 + n) <at? R ) I A olp = o) (©5)
we get
h_4 C . 92

T A 1 4 o
M %<C Ai N—l | ! d 2(2[:] A d) l—e_ﬂ. C6
() 2 i=1 I'(A) Jo w 4Py 12 (C6)

Note that it is consistent with (C1) with Az, (p;) = ¢*(2p, - p»)~! the flat-space amplitude in the s-channel.

2. Spinning flat space limits

Now, we try to generalize (C1) to the vector case. In the previous sections, we have already seen the similarity between
the gluon amplitude and the flat-space counterpart. In particular, we conjecture the dictionaries between them. So, it is
natural to expect that in the flat-space limit Mellin amplitudes reduce to the flat-space amplitudes.

First, for the three-point gluon amplitude (3.2), we have the relation,

h 3
MMM % (H Q)M,-A,) / dpplrtrtr=d=leB A o oo (ik; — 24/ BP)). (C7)
i=1 0

For the four-point gluon amplitude of the contact diagram, the Mellin amplitude (3.18b) can also be expressed as

ﬂ'h 4 ©0 1 4 _)—
Mg;g12M3M4 = ? (H gMiAi A dﬂﬂi(Zi:O Ad) 1e_ﬂ-Acontact,A1A2A3A4' (C8)
i=1

Now we look at the s-channel of the vector four-point Mellin amplitude (3.13). In the limit of y;, — oo, it becomes

M MyM3M,, 2”h ayayb fayash : wa | N (I'(d - —n),)’
Mg, R g A H@ o Z {X12} - {Xa4}. (€9)

i—1 =0 4n'l'(4 +”)712

The sum over n can be implemented by using (C5) with A =d — 1. So,

X d-1E-n),] & 1 9" [ oy A

P At D [ anpiend
n'T'(§+ n) 'T'(d/2 + n) \ot} Jo

=on
ot [ d_
(i)
2J0

=1

_ / " A1, (C10)
0

=1

Therefore,
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h 4
Mgig}{fMBM4 ~ _92 %f”'azhfu3a4b (H @M,'A,) / dﬁﬂw 41 e P IA4A2A%A4
=1 0 Y12

ﬂ'h 4 A, 3d—4_1 _ i 1
:7<ﬂ®MIA’>A dpp T e A channel 4, apasa, (k T 2,5}’12 , ik; —’2\/713) (C11)

Combining (C7), (C8), and (C11), we can summarize the flat-space limit for gluon Mellin amplitudes as follows.
Namely, as y;; — oo,

My, L A 00 Z:’:Z] A,»—d_ ] 1 .
Mn ~ 7 <H @MA > /O dﬂﬁ— AnA 1Ay-A <(Z k. ) 4ﬂZi<j}/ij ’ lki - 2\/BPZ> . (Clz)

i=1

Now we show a partial proof of (C12) for the case where the (n + 1)-point amplitude can be factorized into an n-point
amplitude and a three-point amplitude, as in (4.1) (also see Fig. 4). First, if the n-point amplitude satisfies (C12) in the
flat-space limit, we can write

n—l)d—n
Mn,A,Af»-A,,(P]vPZ’ ---aPn—l’Yij) z/) dﬁﬂ AnA Ay

. .
(g m2) €

By plugging it in (4.7), we get

./\/lMl]1‘/12.”1‘/1"+1 R Zh (ﬁ gM,-A,-) igfanamb{XM % z‘x’: VIBn’O’O
n+ 2 \1- n(n+1) o 4F(c§i ) 1)

ZIZ 1:[5 n,,A dﬁnldnl_ﬂ
s M=

; 1
At < i ik =2 P,»>- Cl4
AjAy A M (Ziki)z 4ﬁzi<j(7ij + nij) \/B ( )

For the sum over n;;, we can repeatedly use

ij»
Z H (yij)nij 1 . (Zi<j7/ij)zi<jn” 1
o ong oy ) Qoicimi))t Doici(rij +mij)

Z, n;; fixed 1</
i<j

(Zi<jyij)2[<fn[j 1 (X ijvij — I)Z,-<,-nu 1

Qicjnip)t Doici(rij +mij) =1 B (D icjnij)! Doicjtij— 1
(Zi<jyij - 1)2 s 1

~ = , (C15)
(X icjnij)! D i<l

for each propagator term in (C14). Therefore, with totally number of propagators N, we have

Yrv)n,‘ ~ ( I;zs yrs -
Z H H zl<j(yl] + nl]) H ZKﬂ/U (C16)

ZK‘ n=m <8 Mrs ! propagators propagators

Here, the sum of y,, can be evaluated at the pole,
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n—1 -1
n—2)(d-1)=>"16
Z%‘j = ( ( ) it —-m (C17)
i<j
Thus, (C14) becomes
MMIIIWZ---M,,H ~ ﬂ’j "ﬁ gM,-AI- l.gfa"a"“h{XM } 1 i 1
n+ ) 11 n(n+1) 4}’n(n+1) o m[r‘(g + m)
o" /00 d_q " [ (n=)d=n_,
X dp,pi2e P ) <—/ d 2 e
( o Jy BN )| (G ), e
i ; (n—Z)(d—l)—Z;';I] 5 v
AG1 G < - ik = 24/ p P,->t 2 e ) C18
A M (> ik:)? 4ﬁzzi<j7ij g : =1 (C18)

Rescaling f, = f,/t1, p» = P>/t in (C18) and using (C5) with A = d — 1, we finally arrive at the formula (C12) for the
(n + 1)-point Mellin amplitude M, ;.
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