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Abstract

We construct the Lax-pair, the classical monodromy matrix and the corresponding solution of the Yang–
Baxter equation, for a two-parameter deformation of the Principal chiral model for a simple group. This 
deformation includes as a one-parameter subset, a class of integrable gauged WZW-type theories interpo-
lating between the WZW model and the non-Abelian T-dual of the principal chiral model. We derive in 
full detail the Yangian algebra using two independent methods: by computing the algebra of the non-local 
charges and alternatively through an expansion of the Maillet brackets for the monodromy matrix. As a 
byproduct, we also provide a detailed general proof of the Serre relations for the Yangian symmetry.
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1. Introduction and motivation

A class of σ -models was recently constructed via a gauging procedure involving the WZW 
action and the general Principal Chiral model (PCM) action for a group G [1]. The end result is 
the action

Sk,λ(g) = SWZW,k(g) + k

π

∫
J a+

(
λ−1 − DT

)−1
ab

J b−, (1.1)

where SWZW,k(g) is the WZW action at level k of a group element g ∈ G and λ is a general 
dim(g) square real matrix. In addition, we have employed the standard definitions

J a+ = Tr
(
Ta∂+gg−1), J a− = Tr

(
Tag

−1∂−g
)
, Dab = Tr

(
TagTbg

−1), (1.2)

with Ta , a = 1, 2, . . . , dim(g) being the generators of the Lie algebra g satisfying the commuta-
tion rules, normalization and Killing form

[Ta,Tb] = fabcTc, Tr(TaTb) = δab, Ka
b = δa

b .

The key property of this action arises when λ is proportional to the identity, i.e. λab = λδab , since 
then it becomes integrable. This was shown in [1] by explicitly demonstrating that the current 
components I± = I a±Ta obey the standard integrability conditions

∂+I− + ∂−I+ = 0, ∂+I− − ∂−I+ + [I+, I−] = 0. (1.3)

The explicit realization in terms of the σ -model action variables is

H = 1

4e2

+∞∫
−∞

dσ
(
I a+I a+ + I a−I a−

)
,

I a+ = 2λ

1 + λ
(I− λD)−1

ab J b+, I a− = − 2λ

1 + λ

(
I− λDT

)−1
ab

J b−, (1.4)

where we have also included the expression for the Hamiltonian corresponding to (1.1). The 
general proof was done in [1] by explicitly demonstrating that certain integrability algebraic 
constraints provided in [2,3] were satisfied. A simpler way to prove the integrability of (1.1) has 
been given more recently in [4] by utilizing the fact that the construction involves, as mentioned, 
a gauging procedure reminiscent of the gauged WZW models.

As discussed in detail in [1] a motivation for studying this action relates to the global prop-
erties of the variables in σ -models arising via non-Abelian T-duality. The latter generalizes, in a 
certain sense, Abelian T-duality [5] and was initiated by [6–8]. It is easily seen that when the ele-
ments λab → 0 then (1.1) becomes the WZW SWZW,k(g). Also recall [1] that when λ approaches 
the identity matrix, k → ∞ and g ∈ G is appropriately expanded around the identity group ele-
ment, then (1.1) becomes the non-Abelian T-dual for the general PCM.1 Hence (1.1) interpolates 
between these two extreme cases and a way of thinking to the non-Abelian T-duality of the PCM 
is as a limiting case of (1.1). In the latter action the group element g ∈ G is parametrized by 
compact variables. Hence the non-compactness displayed by the variables in the non-Abelian 
model is attributed to the zooming-limiting procedure we mentioned.

1 For the isotropic case see the derivation in [9,10] and for the general anisotropic case in [11]. Recent developments 
in non-Abelian T-duality in the presence of RR flux fields initiated with the work in [12]. For relations to the AdS/CFT 
correspondence, a discussion of global issues and further developments and references see [13–15].
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The perturbation away from the WZW point is driven by the term λabJ
a+J b− which for generic 

λab preserves no isometries (enhanced to GL × GR when λab = λδab). Based on that, on the 
matching of global symmetries and on the result of the computation of the renormalization group 
flow equations for the matrix λ in [16,17], one concludes that (1.1) provides the effective action 
for the bosonized anisotropic non-Abelian Thirring model valid to all orders in λ and to leading 
order in the 1/k expansion. In the same papers the following remarkable symmetry was also 
noticed

S−k,λ−1

(
g−1) = Sk,λ(g), (1.5)

which in fact mathematically dictates the form of all the aforementioned properties.
In this paper we will further investigate the integrable structure of a two-parameter deforma-

tion of the PCM, which includes as a one-parameter subset (1.1) for the prototypical isotropic 
case λab = λδab . In particular, based on the underlying algebraic structure, we will show the 
existence of a Yangian algebra [18] (for reviews see [19–21]) of classically conserved non-local 
charges in the spirit of a similar computation for the (generalized) Gross–Neveu and the isotropic 
PCM in [22]. In the isotropic case, the Yangian algebra corresponds to the adjoint action on g, 
i.e. g �→ Λ−1

0 gΛ0, Λ0 ∈ G. In addition, we will provide the Lax pair and we will compute the 
Poisson brackets of its spatial part which take the Maillet form [23,24]. This will provide an 
array of coefficients which, as required for consistency, solve a classical modified Yang–Baxter 
equation. This allows for the derivation of the Maillet brackets of the monodromy matrix [23,24]. 
An expansion of these brackets will provide an alternative derivation of the Yangian algebra.

This work is organized as follows: In Section 2 we review the derivation of the Lax pair and the 
corresponding (classical) monodromy matrix for a general class of two-dimensional systems. In 
Section 3 we compute the Maillet brackets of the spatial part of the Lax pair. Using this, we derive 
a class of solutions of the modified classical Yang–Baxter equation and the Maillet brackets of 
the monodromy matrix. In Section 4 we explore the realization of the Yangian algebra through 
the charge algebra and through an expansion of the Maillet brackets of the monodromy matrix. 
Details of the derivation are given in Appendices B–D respectively. In Section 5 we conclude with 
a discussion on possible future directions. Besides Appendices B–D we also include Appendix A
where we revisit the proof of Drinfeld’s relations.

2. Lax pair and the classical monodromy matrix

The purview of this section is to construct the Lax pair and the monodromy matrix of a class of 
integrable σ -models which were constructed in [1] and reviewed in Section 1. We will provide 
a rather general discussion by assuming that the equations of motion and the flat connection 
identities are given by2

(1 + ρ)∂+I− + (1 − ρ)∂−I+ = 0, ∂+I− − ∂−I+ + [I+, I−] = 0, (2.1)

2 The world-sheet coordinates (σ+, σ−) and (τ, σ) are related by

σ± := τ ± σ, ∂0 := ∂τ = ∂+ + ∂−, ∂1 := ∂σ = ∂+ − ∂−,

so that 
dσ± = ±dσ± and 
dτ = dσ , 
dσ = dτ in Lorentzian signature.
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where I is a Lie algebra valued one-form

I = I aTa, I a = I a+dσ+ + I a−dσ−, (2.2)

which for ρ = 0 describe the integrable (isotropic) σ -models reviewed in Section 1, whereas for 
ρ �= 0 the form of the action is not known. We can rewrite (2.1) in a differential-form notation as

I := I − ρ 
 I, d(
I) = 0, dI + I ∧ I = 0, (2.3)

which makes manifest the classical integrability even when ρ �= 0. Note that, even though the 
redefinition (2.3) has made the parameter ρ disappear from the integrability conditions, it may 
very well be present in the Poisson brackets for Ia±.

Using the above and assuming fields vanish at spatial infinity, we can construct the first two 
conserved charges [25]

Q0 :=
+∞∫

−∞
dσI0(σ ),

Q̂ :=
+∞∫

−∞
dσI1(σ ) +

+∞∫
−∞

dσI0(σ )

σ∫
−∞

dσ ′I0
(
σ ′), (2.4)

and another (still conserved and, as we will see, particularly convenient) combination of them

Q1 := Q̂ − 1

2
Q2

0

=
+∞∫

−∞
dσ I1(σ ) + 1

2

+∞∫
−∞

dσ

σ∫
−∞

dσ ′ [I0(σ ),I0
(
σ ′)]. (2.5)

In the above formula, we have rewritten the second term – corresponding to Q2
0 – by splitting the 

double integral in the two domains σ > σ ′ and σ ′ > σ , and changed variables σ ↔ σ ′ in one of 
the pieces.

It is well known that the (infinite number) of conserved charges can be methodically con-
structed from the Lax pair

∂0L1 − ∂1L0 = [L0,L1] or dL = L ∧ L. (2.6)

Using the latter we can show that the monodromy matrix (see, for instance, [26])3

M(ν) := P exp

∞∫
−∞

dσL1(σ ;ν) (2.7)

is conserved for all values of the complex spectral parameter ν, namely ∂0M(ν) = 0.

3 The path ordered exponential reads

P exp

+∞∫
−∞

dσf (σ) := 1 +
+∞∫

−∞
dσf (σ) +

+∞∫
−∞

dσ

σ∫
−∞

dσ ′f (σ)f
(
σ ′) + · · · .
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In our case the Lax pair reads

L0(σ ;ν) = (I1 + ν̃I0)ν̃

1 − ν̃2
, L1(σ ;ν) = (I0 + ν̃I1)ν̃

1 − ν̃2
, ν̃ = ν + ρ

1 + νρ
, (2.8)

or, equivalently, L±(σ ; ν) = − ν̃
ν̃∓1I±. By expanding M in powers of ν′ := ν + ρ, we find an 

infinite set of classically conserved charges:

M
(
ν′) = 1 + ν′

1 − ρ2
Q0 + ν′2

(1 − ρ2)2
(Q̂ − ρQ0) +O

(
ν′ 3). (2.9)

One recognizes combinations of the charges (2.4) in the coefficients of the expansion.

3. The Maillet brackets and the Yang–Baxter equation

In this section we prove that when the above quantities are supplied by an appropriate alge-
braic structure, this allows to find explicit solutions to a modified classical Yang–Baxter equation. 
Consequently, the monodromy matrix obeys the associated Maillet brackets.

Following Sklyanin [27], we compute the Poisson brackets by first writing L1 = La
1Ta and 

then4

{
L

(1)
1 (σ1;μ),L

(2)
1 (σ2;ν)

} = {
La

1(σ1;μ),Lb
1(σ2;ν)

}
Ta ⊗ Tb. (3.1)

The Poisson brackets assume the Maillet-type form [24]([
r−μν,L

(1)
1 (σ1;μ)

] + [
r+μν,L

(2)
1 (σ1;ν)

])
δ12 + δ′

12(r−μν − r+μν), (3.2)

where r±μν (as a shorthand notation for r±(μ, ν)) are matrices in the basis Ta ⊗ Tb . This is 
guaranteed to give a consistent Poisson structure, provided the Jacobi identities for these brackets 
are obeyed. This enforces r±μν to satisfy the modified classical Yang–Baxter relation[

r
(13)
+ν1ν3

, r
(12)
−ν1ν2

] + [
r
(23)
+ν2ν3

, r
(12)
+ν1ν2

] + [
r
(23)
+ν2ν3

, r
(13)
+ν1ν3

] = 0. (3.3)

The non-vanishing coefficient of the δ′ term in (3.2) is responsible for the above modification 
of the classical Yang–Baxter relation. Using (3.2), one can derive the Poisson brackets for the 
(classical) monodromy matrix [23]{

M(1)(μ),M(2)(ν)
} = [

rμν,M(μ) ⊗ M(ν)
] − M(2)(ν)sμνM

(1)(μ)

+ M(1)(μ)sμνM
(2)(ν), (3.4)

which is consistent with the Jacobi identity, if we define the equal-point limits of the Poisson 
brackets through a generalized symmetric limit procedure [23].

Returning to the case at hand, it was pointed out in [28] that the Poisson structure of the 
isotropic PCM admits a one-parameter family of deformations (with parameter denoted by x). 

4 The superscript in parenthesis stands for the notation of tensor products of spaces

M(1) = M ⊗ I, M(2) = I⊗ M,

m(12) = mabTa ⊗ Tb ⊗ I, m(13) = mabTa ⊗ I⊗ Tb, m(23) = mabI⊗ Ta ⊗ Tb,

for an arbitrary matrix m = mabTa ⊗ Tb in the tensor product algebra.
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Subsequently, in [2] this deformation was further extended by introducing a second parameter ρ. 
In our conventions such two-parameter algebra reads5

{
Ia

0 ,Ib
0

} = −2e2fabc

(
1 + ρ2 + (

1 − ρ2)x)
Ic

0δσσ ′ − 8e2ρδabδ
′
σσ ′,{

Ia
1 ,Ib

1

} = 2e2fabc

(
4ρIc

1 + (
1 + ρ2 + x

(
ρ2 − 1

))
Ic

0

)
δσσ ′ − 8e2ρδabδ

′
σσ ′,{

Ia
0 ,Ib

1

} = {
Ia

1 ,Ib
0

}
= −2e2fabc

(
1 + ρ2 + (

1 − ρ2)x)
Ic

1δσσ ′ + 4e2(1 + ρ2)δabδ
′
σσ ′ . (3.5)

When ρ = 0, the action (1.1) provides a realization of this algebra for a general group G [1] with 
x = λ2+1

2λ
(for the SU(2) case this realization was found by a brute force computation in [2]). 

There is no known action realizing the above algebra for ρ �= 0.6 Plugging (2.8) into (3.2) and 
using the algebra (3.5), we find that the matrix r±μν read

r±μν �→ r±μνΠ, Π :=
∑
a

T a ⊗ T a,

r+μν = 2e2 (1 + μ2 + x(1 − μ2))(μ + ρ)(ν + ρ)

(ν − μ)(1 − μ2)
,

r−μν = 2e2 (1 + ν2 + x(1 − ν2))(μ + ρ)(ν + ρ)

(ν − μ)(1 − ν2)
= −r+νμ,

and henceforth r±μν denotes the scalar. As for (3.3), it reduces to the single algebraic condition

r+ν2ν3r+ν1ν2 = r+ν1ν3r−ν1ν2 + r+ν2ν3r+ν1ν3, (3.6)

extracted from the coefficient in front of the combination fabcT
a ⊗ T b ⊗ T c . For completeness, 

we provide the values of rμν and sμν , obtained by rewriting r±μν = rμν ± sμν :

rμν = −2e2 (1 − μ2ν2 + x(1 − μ2)(1 − ν2))(μ + ρ)(ν + ρ)

(μ − ν)(1 − μ2)(1 − ν2)
,

sμν = −2e2 (μ + ν)(μ + ρ)(ν + ρ)

(1 − μ2)(1 − ν2)
, (3.7)

which are generically non-vanishing.

5 Alternatively, in light-cone coordinates the algebra reads

{
Ia±,Ib±

} = e2fabc

[
(1 ∓ ρ)2Ic∓ − (

(1 ∓ ρ)2 + 2x
(
1 − ρ2))

Ic±
]
δσσ ′ ± 2e2(1 ∓ ρ)2δabδ′

σσ ′ ,{
Ia±,Ib∓

} = −e2fabc

[
(1 − ρ)2Ic− + (1 + ρ)2Ic+

]
δσσ ′ .

6 The algebra for the PCM (pseudo-PCM) corresponds to choosing the parameters x = 1 (x = −1) and ρ = 0. The 
value x = 1 corresponds to taking the parameter λ in this paper to unity. The fact that then the action (1.1) does not 
become that for a PCM but rather for its non-Abelian T-dual is consistent since non-Abelian T-duality can be cast as a 
canonical transformation in phase space [9–11]. We also note that for ρ = 0 and e → 0, x → ∞, we obtain under an 
appropriate rescaling of the currents the algebra for the (generalized) Gross–Neveu model when e2x is finite, and for the 
conformal case when ex is finite.
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4. The realization of the Yangian algebra

The scope of this section is to explicitly realize the Yangian algebra by performing the mutual 
Poisson commutators between Qa

0 and Qa
1 and, alternatively, via an expansion of the Maillet 

brackets for the conserved monodromy matrix M .
The Yangian algebra YC(g) is an associative Hopf algebra generated by the elements Ja and 

Qa obeying [18]

[Ja, Jb] = FabcJc, [Ja,Qb] = [Qa,Jb] = FabcQc. (4.1)

In addition, the request that the co-product map (which we call f to avoid conflicts of notations) 
on Ja and Qa , namely

f (Ja) = Ja ⊗ I+ I⊗ Ja, f (Qa) = Qa ⊗ I+ I⊗ Qa + α

2
FabcJb ⊗ Jc, α ∈C,

(4.2)

acts as a homomorphism,7 implies the Serre relations – see Appendices A.1 and A.2 for details. 
The first Serre relation reads

[
Qa, [Qb,Jc]

] − [
Ja, [Qb,Qc]

] = α2

24
aabcdef J(dJeJf ),

aabcdef = FadkFbelFcf mFklm, (4.3)

where J(aJbJc) denotes the sum of all permutations of JaJbJc,8 which for (classical) commuting 
quantities simplifies to 6JaJbJc. The first Serre relation is trivially satisfied for the su(2) case, 
as it turns out that aabcdef = εabeεcf d − εdbeεcf a . Using the Jacobi identity on the second term 
of the l.h.s. of (4.3), and using the second of the relations (4.1), we easily find that (4.3) can be 
written as

Fdab[Qc,Qd ] + Fdca[Qb,Qd ] + Fdbc[Qa,Qd ] = α2

24
aabcdef J(dJeJf ), (4.4)

a form which is particularly convenient for our purposes. In addition, the second Serre relation 
reads

Fkcd

[[Qa,Qb],Qk

] + Fkab

[[Qc,Qd ],Qk

]
= α2

24
(aabkgef Fkcd + acdkgef Fkab)J(gJeQf ). (4.5)

7 A homomorphism is a structure-preserving map between two algebraic structures (such as groups)

f : A �→ B with f (a1 + a2) = f (a1) + f (a2), f (a1a2) = f (a1)f (a2), ∀a1, a2 ∈ A.

8 This sum explicitly expands as

J(aJbJc) = JaJbJc + JcJaJb + JbJcJa + JaJcJb + JbJaJc + JcJbJa.
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The first Serre implies the second one (for details see Appendix A.2), except for the su(2) case 
where it reads[[Qa,Qb], [Jc,Qd ]] + [[Qc,Qd ], [Ja,Qb]

]
= α2

24

(
εeab(δf cδgd − δf dδcg) + εecd(δf aδgb − δf bδag)

)
J(dJeQf ). (4.6)

Hence, for the su(2) case only this relation is non-trivial.

4.1. Yangian algebra through the algebra of charges

Next we work out the algebra of the classical charges Q0 and Q1 defined in (2.4) and (2.5). 
Their components read9

Qa
0 =

+∞∫
−∞

dσ Ia
0 (σ ),

Qa
1 =

+∞∫
−∞

dσ Ia
1 (σ ) + 1

4
fabc

+∞∫
−∞

+∞∫
−∞

d2σ12 ε12Ib
0 (σ1)Ic

0(σ2). (4.7)

A comment is in order regarding the form of the charges. This should be in agreement with 
the co-product (4.2) and realized as half-positive and half-negative axis splitting (see [22] for 
details), upon the identifications

Ja �→ Qa
0, Qa �→ Qa

1, Fabc �→ 1

α
fabc. (4.8)

Using (3.5) we compute the Poisson brackets for the zeroth level charges10

{
Qa

0,Qb
0

} = −2e2(1 + ρ2 + x
(
1 − ρ2))fabcQ

c
0. (4.9)

Using the Jacobi identity we find that

9 We use the definition

ε12 = ε(σ1 − σ2) =
{

1 if σ1 > σ2

−1 if σ1 < σ2
, and ε′(x) = 2δ(x).

10 To avoid ambiguities arising from the non-utralocal terms, like

∫
dσ1dσ2∂1δ12 �=

∫
dσ2dσ1∂1δ12

we follow [25] and we define the Poisson bracket

{
Qa

0,1,Qb
0,1

} = lim
L2→∞ lim

L1→∞
{
Q

a,L1
0,1 ,Q

b,L2
0,1

}
,

where Qa,L are volume cutoff charges (the same as Qa , with range from −L to L).
0,1 0,1
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{
Qa

0,Qb
1

} = 2Δfabc

+∞∫
−∞

dσ Ic
1(σ )

+ Δ(fbef faed + fbdefaef )

+∞∫
−∞

dσ1 Id
0 (σ1)

σ1∫
−∞

dσ2 If

0 (σ2)

�⇒ {
Qa

0,Qb
1

} = −2e2(1 + ρ2 + x
(
1 − ρ2))fabcQ

c
1. (4.10)

For notational convenience we define

Δ := −e2(1 + ρ2 + x
(
1 − ρ2)). (4.11)

Finally, we can compute {Qa
1, Q

b
1} as follows:

Qa
1 := xa + ya,

{
Qa

1,Qb
1

} = {
xa, xb

} + {
xa, yb

} − {
xb, ya

} + {
ya, yb

}
,{

xa, xb
} + {

xa, yb
} − {

xb, ya
} = fabcQ

(1)c
2 ,

Q
(1)a
2 = 2e2(1 + ρ2 + x

(
ρ2 − 1

))
Qa

0 + 8e2ρ

∫
dσIa

1

+ Δfabc

∫
d2σ12ε12Ib

0 (σ1)Ic
1(σ2), (4.12)

where xa and ya correspond to the first and second term in the expression of Qa
1, respectively. 

Furthermore, we can show that

{
ya, yb

} = 2Δfacdfbrefdr� × 1

4
Ice�,

Ice� =
∫

d3σ123ε13ε32Ic
0(σ1)Ie

0(σ2)I�
0(σ3) = Iec�, (4.13)

which can be further simplified with the use of (B.8), proven in Appendix B and reported here 
for convenience:

facdfbrefdr�Ice� = −1

3
facdfbrefdr�Q

c
0Q

e
0Q

�
0 − 1

3
fabrfrcdfde�Ice�.

Putting all together, the Poisson brackets of two Qa
1’s read

{
Qa

1,Qb
1

} = fabc

(
Q

(1)c
2 + Q

(2)c
2

) − 2Δ × facdfbrefdr� × 1

12
Qc

0Q
e
0Q

�
0,

where Q
(2)a
2 = −Δ

6
facdfde�Ice�. (4.14)

By use of the Jacobi identity, we find the first Serre relation (4.4):

1

2
fd[ab

{
Q

c]
1 ,Qd

1

} = 2e2(1 + ρ2 + (
1 − ρ2)x) × 1

24
faipfbjqfckrfijkQ

(p

0 Q
q

0Q
r)
0 , (4.15)

where we have used the identity (C.1) proven in Appendix C

1

2
fd[abfc]pmfdnqfmnrQ

p

0 Q
q

0Qr
0 = 3faipfbjqfckrfijkQ

p

0 Q
q

0Qr
0. (4.16)
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In total, the charges (4.7) form a classical Yangian algebra in the sense of Poisson brackets, 
namely Eqs. (4.9), (4.10) and (4.15), under the correspondence (4.8) with

α = 1

2Δ
= − 1

2e2(1 + ρ2 + (1 − ρ2)x)
. (4.17)

The above is a generalization of a proof originally given in [22] for the isotropic PCM and for 
the (generalized) Gross–Neveu model, whose corresponding algebras for the Ia±’s are particular 
cases of (3.5) (see footnote 6).

The appearance of the classical Yangian algebra was guaranteed in the first place by the exis-
tence of the Yang–Baxter equation (3.3) and the realization of the co-product (4.2) by (4.7) and 
(4.8). The only additional step which needed to be made was to compute the value of α through 
the Poisson brackets of the level-zero charges (4.9).

4.1.1. The su(2) case
For the su(2) case, the first Serre relation is trivially satisfied, therefore we only have to study 

the second one (4.6). Using (4.10) we can rewrite the l.h.s. of (4.6) (once again understood in its 
classical version of Poisson brackets) as

2Δ
(
εcde

{{
Qa

1,Qb
1

}
,Qe

1

} + εabe

{{
Qc

1,Q
d
1

}
,Qe

1

})
. (4.18)

Next we note that (4.14) trivializes to{
Qa

1,Qb
1

} = εabcQc,

Qa = Q
(1)a
2 + Δ

4

(
Qa

0Qd
0Qd

0 + Idda

)
, (4.19)

where Q(1)a
2 is given in (4.12) with fabc replaced by εabc. Using these specialized expressions 

we find{{
Qa

1,Qb
1

}
,
{
Qc

0,Q
d
1

}} + {{
Qc

1,Q
d
1

}
,
{
Qa

0,Qb
1

}}
= 2e6(1 + ρ2 + (

1 − ρ2)x)3
Qe

0

(
εabeQ

[c
0 Q

d]
1 + εcdeQ

[a
0 Q

b]
1

)
, (4.20)

which is in agreement with (4.6), (4.8) and (4.17).

4.2. Yangian algebra through the Maillet brackets of the monodromy matrix

An alternative derivation of the Yangian algebra is obtained through the Maillet brackets (3.4)
and the expansion of the monodromy matrix M (2.9).

Rewriting (2.9) in terms of Q0,1 we find that

M
(
ν′) = 1 + ν′

1 − ρ2
Q0 + ν′2

(1 − ρ2)2

(
Q1 − ρQ0 + 1

2
Q2

0

)
+O

(
ν′ 3). (4.21)

Plugging (4.21) into (3.4), expanding first in ν′ and only afterwards in μ′, where μ′ := μ + ρ, 
and keeping all the terms up to the order O(ν′ 2μ′), produces, after a good deal of algebra (and 
writing Q = QaTa), (4.9) and (4.10), respectively{

Qa
0,Qb

0

} = −2e2(1 + ρ2 + (
1 − ρ2)x)

fabcQ
c
0,{

Qa,Qb
} = −2e2(1 + ρ2 + (

1 − ρ2)x)
fabcQ

c. (4.22)
0 1 1
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Next we consider the expansion of the Maillet brackets (3.4) up to O(ν′ 2μ′ 2). We will see that, in 
order to study this term, it is necessary to expand the monodromy matrix up to the order O(ν′ 3). 
By manipulating the O(ν′ 2μ′ 2) term in the brackets, after a rather tedious computation, we 
obtain the first Serre relation in (4.15). The related technical details are presented in Appendix D.

5. Conclusions and outlook

The purview of the present paper is the construction of the Lax pair L0,1 for isotropic coupling 
matrices λ of the action (1.1) and the corresponding symmetry algebra (3.5) with ρ = 0. Using 
its spatial part L1 we built the conserved classical monodromy matrix, derived the correspond-
ing Poisson (Maillet-type [24,23]) brackets and the emerging modified Yang–Baxter equation as 
the Jacobi identity on these Poisson brackets. Employing the classical monodromy matrix we 
constructed the first two conserved charges and obtained their Yangian algebra, both through the 
charge algebra and also from an expansion of the Poisson brackets for the monodromy matrix. In 
addition, the renormalizability of this action at one-loop in the 1/k expansion [16] ensures that 
the above construction remains applicable at this order.

It would be interesting to study generalizations of the construction we have provided for van-
ishing ρ and anisotropic coupling matrices λ, whose action was given in (1.1). These σ -models 
generically interpolate from the WZW to the non-Abelian T-dual of the anisotropic PCM, and 
so a good place to start this study are cases which possess an integrable anisotropic PCM end-
point, like the su(2) case [30–32]. Also note that the Yangian symmetries are preserved for the 
deformed WZW model on squashed spheres [33,34].

It is possible to replace the WZW term in (1.1) by a coset CFT with action realization in 
terms of a gauged WZW model. In these case the end point of the deformation corresponds 
to the non-Abelian T-dual of PCM for coset instead of group spaces [1]. In that respect, and 
for symmetric coset spaces, the deformation has been convincingly argued to correspond to a 
quantum deformation of the bosonic sector of the string theory, when the deformation parameter 
is a root of unity [4]. When instead it is real, achieved by analytic continuation, the models are 
those of [35–37], based on the construction of [38,39] and realized as σ -models in [40]. We 
believe that our treatment is generalizable to these cases as well.
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Appendix A. The Serre relations

The scope of this appendix is to provide an explicit proof of the Serre relations for pedagogical 
reasons.

A.1. The first Serre relation

The proof goes along the lines suggested in [20]. Let us define the co-products of Ja and Qa

as in (4.2), and the quantity

Zab := f
([Qa,Qb]

) − [Qa,Qb] ⊗ I− I⊗ [Qa,Qb], (A.1)

on which f acts as a homomorphism (see footnote 7). Next we introduce

uab := Fcdavcdb − Fcdbvcda, Fabcuab = 0, (A.2)

where vabc is totally antisymmetric. Contracting (A.1) with uab, using (4.1) and the Jacobi iden-
tity on the term proportional to α, we find that

uabZab = α

2
uabFabeFcde(Qc ⊗ Jd − Jc ⊗ Qd)

+ α2

4
uabFacdFbmnFcmr(Jr ⊗ JdJn + JdJn ⊗ Jr) (A.3)

with the first term vanishing due to (A.2). Substituting the value of uab we find

α2

4
(Fijavijb − Fijbvija)FacdFbmnFcmr(Jr ⊗ JdJn + JdJn ⊗ Jr)

= (A − B) × α2

4
(Jr ⊗ JdJn + JdJn ⊗ Jr), (A.4)

where

A = vijbFijaFacdFbmnFcmr = 2vijb(FajdFbmnFcmiFcar + FajdFbmnFcamFcir ),

B = vijaFijbFacdFbmnFcmr = 2vijb(FajnFbcdFmciFamr + FajnFbcdFmacFimr), (A.5)

and we employed the Jacobi identity twice for each term. We then rewrite A −B as

A − B = C + D,

C = 2vijb(FajdFbmnFcmiFcar − FajnFbcdFmciFamr),

D = 2vijb(FajdFbmnFcamFcir − FajnFbcdFmacFimr). (A.6)

Applying the Jacobi identity on C and relabelling the indices of D, we find

D = 4vijbFajdFbmnFcamFcir , C = −D

2
. (A.7)

Thus we proved that

uabFacdFbmnFcmr = 2vijbFajdFbmnFcamFcir . (A.8)
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Using (A.8), we can rewrite the r.h.s. of (A.3) as

−α2

2
vijaaijardn(Jr ⊗ JdJn + JdJn ⊗ Jr), aabcdef = FadkFbelFcf mFklm. (A.9)

Thus (A.3) reads

2vijaFijbZab = α2

2
vijaaijardn(Jr ⊗ JdJn + JdJn ⊗ Jr). (A.10)

Due to the contraction with a totally antisymmetric tensor we can rewrite (A.10) as

2vijaFb[ijZa]b = α2

2
vijaa[ija]rdn(Jr ⊗ JdJn + JdJn ⊗ Jr). (A.11)

Next, we note that

a[ija]rdn = aija(rdn),

aija(rdn)(Jr ⊗ JdJn + JdJn ⊗ Jr) = aijardn(J(r ⊗ JdJn) + J(dJn ⊗ Jr)), (A.12)

where (.) denotes the sum of all permutations (see footnote 8). Using (A.11) and (A.12) we find

vijaFb[ijZa]b = α2

4
vijaaijardn(J(r ⊗ JdJn) + J(dJn ⊗ Jr)). (A.13)

In addition, using (4.2) we can easily prove that

J(r ⊗ JdJn) + J(dJn ⊗ Jr) = 1

3

(
f (J(rJdJn)) − J(rJdJn) ⊗ I− I⊗ J(rJdJn)

)
. (A.14)

Using (A.13) and (A.14) we find that

vijaFb[ijZa]b = α2

12
vijaaijardn

(
f (J(rJdJn)) − J(rJdJn) ⊗ I− I⊗ J(rJdJn)

)
. (A.15)

Finally, we make use of the properties (A.12) to manipulate the r.h.s. of (A.15) into

vijaaijardnW(rdn) = vijaaija(rdn)Wrdn = vijaa[ija]rdnWrdn,

Wrdn = f (JrJdJn) − JrJdJn ⊗ I− I⊗ JrJdJn. (A.16)

Using (A.16) we can write (A.15) as

vijaFb[ijZa]b = vija × α2

12
a[ija]rdnWrdn. (A.17)

Since the latter holds for every antisymmetric tensor vija we conclude that

Fb[ijZa]b = α2

12
a[ija]rdnWrdn

�⇒ Fb[ij [Qa],Qb] = α2

12
a[ija]rdnJrJdJn = α2

12
aijardnJ(rJdJn). (A.18)

Expanding the antisymmetric part on the l.h.s. of (A.18) we find the first Serre relation (4.4), 
namely

Fmij [Qk,Qm] + Fmki[Qj,Qm] + Fmjk[Qi,Qm] = α2

24
aijkrdnJ(rJdJn), (A.19)

where we used that Fa[bc] = 2Fabc .
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A.2. The second Serre relation

Applying the Jacobi identity we can easily prove that[[Qc,Qd ],Qe

] = [[Qc,Qe],Qd

] − [[Qd,Qe],Qc

]
,

FcrkFrde − FdrkFrce = FcdrFrek. (A.20)

Using the first of (A.20) we can prove that

2(Lab|cd + Lbc|ad + Lca|bd)

= Fe[ab

[[Qc],Qe],Qd

] − Fe[ab

[[Qd],Qe],Qc

]
+ Fe[cd

[[Qa],Qe],Qb

] − Fe[cd
[[Qb],Qe],Qa

]
, (A.21)

where Lab|cd denotes the l.h.s. of (4.5). Using (4.4), the second relation in (4.1) and the second 
equation in (A.20), we can rewrite the r.h.s. of (A.21) as

Rab|cd + Rbc|ad + Rca|bd , (A.22)

where Rab|cd denotes the r.h.s. of (4.5). Combining (A.21) and (A.22) we find

Lab|cd + Lbc|ad + Lca|bd = Rab|cd + Rbc|ad + Rca|bd . (A.23)

The solution to this equation is the second Serre relation (4.5). In fact, we may suppose it is not, 
by assuming that there exists another choice of Xab|cd such that

Lab|cd = Rab|cd + Xab|cd , (A.24)

where Xab|cd is such that

Xab|cd = −Xba|cd = −Xab|dc = Xcd|ab (A.25)

and

X[ab|c]d = 0, Xa[b|cd] = 0. (A.26)

Applying the Jacobi identity on (A.24) and using (A.25) we find

Fb[mnXq]b|[rdFst]d = 0 �⇒ Xab|cd = FabeYe|cd + FcdeYe|ab,

Ya|bc = −Ya|cb, (A.27)

where d is excluded from the anti-symmetrization. Using these relations and (A.26), we find

Ya|bc ∼ Fabc �⇒ Xab|cd = εFabeFcde, (A.28)

where ε is an arbitrary constant. Thus (A.24) reads

Lab|cd = Rab|cd + εFabeFcde. (A.29)

Contracting the latter with Fab�Fcd� and using the Jacobi identity on commutators, we find

0 = 0 + εc2
G dim(g) �⇒ ε = 0, (A.30)

where FacdFbcd = cgδab , a = 1, 2, . . . , dim(g). This completes the proof of the redundancy of 
the second Serre relation (4.5).
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Appendix B. The triple integral

The scope of this appendix is to simplify (4.13). Let us first define the triple integral as

Ice� = Iec� =
∫

d3σ123ε13ε32Ic
0(σ1)Ie

0(σ2)I�
0(σ3), (B.1)

where d3σ123 stands for dσ1dσ2dσ3. This can be rewritten as follows11:

Ice� = −1

2

∫
d3σ123dwε31Ic

0(σ1)ε32Ie
0(σ2)∂σ3

(
ε3wI�

0(w)
)
. (B.2)

Integrating by parts we can easily prove that

Ice� + I�ce + Ie�c = −Qc
0Q

e
0Q

�
0

�⇒ (facdfbrefdr� + fa�dfbrcfdre + faedfbr�fdrc)Ice�

= −facdfbrefdr�Q
c
0Q

e
0Q

�
0. (B.3)

This formula could equivalently be found through the identity

ε13ε32 + ε21ε13 + ε32ε21 = −1. (B.4)

Using the Jacobi identity we can prove that

fa�dfdrefbrc = facdfbrefdr� + faedfbrcfdr� − facdfbr�fdre − fabrfrcdfd�e,

faedfbr�fdrc = facdfbrefdr� + faedfbrcfdr� − fa�dfbrefdrc − fabrfredfd�c. (B.5)

Using the latter we can rewrite (B.3) as(
3facdfbrefdr� + 2faedfbrcfdr� − facdfbr�fdre − fa�dfbrefdrc

+ fabr (fdrcfde� − fdrefd�c)
)
Ice� = −facdfbrefdr�Q

c
0Q

e
0Q

�
0. (B.6)

Using (B.4) we can prove that

(2faedfbrcfdr� − facdfbr�fdre − fa�dfbrefdrc)Ice�

= facdfbrefdr�

(
3Ice� + Qc

0Q
e
0Q

�
0

)
. (B.7)

Combining (B.6) and (B.7) we find

facdfbrefdr�Ice� = −1

3
facdfbrefdr�Q

c
0Q

e
0Q

�
0 − 1

3
fabrfrcdfde�Ice�. (B.8)

Appendix C. Serre structure constants

In this appendix we prove (4.16). In order to do so, we use the equivalent rewriting

1

2
fd[abf

3
c]d = 3faifbj fckfijk, fij := fijkQ

k
0. (C.1)

We start from the r.h.s. and use the Jacobi identity to rewrite fckfijk as

fckfijk = −fcikfjk − fjckfik. (C.2)

11 For manipulations of similar integrals, see [29].
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Then we make use again of the Jacobi identity to deduce the following rewritings:

faifcik = fcaifik − fiakfci, fbjfjck = fbcjfjk + fjbkfcj . (C.3)

Using (C.2) and (C.3), we can rewrite the r.h.s. of (C.1) as

faifbjfckfijk = f 3
aj fbcj + f 3

bj fcaj + f 2
bj fcifiaj − f 2

aj fcifibj , (C.4)

or, equivalently, as

faifbjfckfijk = f 3
bj fcaj + f 3

cj fabj + f 2
cj faifibj − f 2

bj faificj , (C.5)

faifbjfckfijk = f 3
cj fabj + f 3

aj fbcj + f 2
aj fbificj − f 2

cj fbifiaj . (C.6)

Adding (C.4), (C.5) and (C.6) together we find

3faifbjfckfijk = fd[abf
3
c]d − f 2

aj (fcifibj − fbificj ) − f 2
bj (faificj − fcifiaj )

− f 2
cj (fbifiaj − faifibj ). (C.7)

Using the Jacobi identity we can rewrite the terms in parentheses as

fcifibj − fbificj = fjdfdbc, faificj − fcifiaj = fjdfdca,

fbifiaj − faifibj = fjdfdab. (C.8)

Using (C.8), we can rewrite (C.7) as

3faifbjfckfijk = fd[abf
3
c]d − 1

2
fd[abf

3
c]d = 1

2
fd[abf

3
c]d, (C.9)

which completes the proof of (C.1) or equivalently (4.16).

Appendix D. Maillet brackets and the first Serre relation

Let us first consider the l.h.s. of (3.4) at the order O(ν′ 2μ′ 2) of the expansion of the mon-
odromy matrix (4.21). Specifically, if we define

g1 := ν′

1 − ρ2
, g2 := μ′

1 − ρ2
, q = Q0

2
, q̂ = Q1

2
, (D.1)

we get

4g2
1g2

2

{(
q̂ − ρq + q2), (q̂ − ρq + q2)}. (D.2)

Expanding the Poisson brackets and using (4.22) written in terms of q, ̂q, i.e.

{qa, qb} = Δfabcqc, {qa, q̂b} = Δfabcq̂c, Δ = −e2(ρ2 + 1 + x
(
1 − ρ2)), (D.3)

we obtain

4g2
1g2

2

[{̂qa, q̂b}Ta ⊗ Tb + 2ρΔfbacq̂cTa ⊗ Tb − Δfbad q̂dqcTa ⊗ {Tb,Tc}
+ ρ2ΔfabcqcTa ⊗ Tb − ρΔfabdqdqcTa ⊗ {Tb,Tc} + Δfacd q̂dqb{Ta,Tb} ⊗ Tc

− ρΔfbcdqaqd{Ta,Tb} ⊗ Tc + Δfbceqaqeqd{Ta,Tb} ⊗ {Tc, Td}], (D.4)

where {Ta, Tb} := TaTb + TbTa .
We now need to consider the r.h.s. of (3.4) at the same order. Let us define

q1 := q ⊗ I, q2 := I⊗ q, (D.5)

as in footnote 4. There are several contributions, which we list here below:
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• both r(ν′, μ′) and s(ν′, μ′) are taken at the order O(ν′μ′), which means that both M(ν′) and 
M(μ′) are taken at the linear order. This term contributes

16e2ρg2
1g2

2

(−[Π,q1q2] + q1Πq2 − q2Πq1
); (D.6)

• r(ν′, μ′) is taken at the order O(ν′μ′ 0), which means that M(ν′) is taken at the linear and 
M(μ′) at the quadratic order. No s(ν′, μ′) contribution is present at this order. We get

−8Δg2
1g2

2

[
Π,q1

(
q̂2 − ρq2 + q2

2

)]; (D.7)

• r−(ν′, μ′) is taken at the order O(ν′μ′ 2), which means that M(ν′) is taken at the linear and 
M(μ′) at the zeroth order (making r+ immaterial). We get

8e2(1 + 3ρ2)g2
1g2

2[Π,q1]; (D.8)

• r+(ν′, μ′) is taken at the order O(ν′ 2μ′ 0), which means that M(ν′) is taken at the zeroth 
and M(μ′) at the quadratic order (making r− irrelevant). We get

−16e2ρg2
1g2

2

[
Π,

(
q̂2 − ρq2 + q2

2

)]; (D.9)

• r+(ν′, μ′) is taken at the order O(ν′ 2μ′), which means that M(ν′) is taken at the zeroth and 
M(μ′) at the linear order. We will show that this term does not contribute to the final result, 
upon applying the procedure (D.12) we will introduce shortly.

• r+(ν′, μ′) is taken at the order O(ν′ 2μ′ −1), which means that M(ν′) is taken at the zeroth 
and M(μ′) at the cubic order. The presence of this negative power in the expansion of r+
forces us to go to the third order in the expansion of the monodromy matrix, which we will 
perform later on – see the discussion around (D.12).
Putting all the terms together and performing a few manipulations, we get for the r.h.s. of the 
Poisson relations

16e2ρg2
1g2

2qaqb

(
facdfbceTd ⊗ Te + Δ

2e2
fcbdTaTc ⊗ Td − fcbeTc ⊗ TaTe

+
[

Δ

2e2
− 1

]
facdTc ⊗ TdTb

)
− 8Δg2

1g2
2qaq̂b(fcbdTaTc ⊗ Td

+ fcadTd ⊗ TcTb) − 8Δg2
1g2

2qaqbqd(fcbeTcTa ⊗ TeTd + fcdeTcTa ⊗ TbTe

+ faceTe ⊗ TbTdTc) − 16e2ρg2
1g2

2 q̂bfcbaTc ⊗ Ta

+ 8e2(1 + 3ρ2)g2
1g2

2qa

[
fabcTb ⊗ Tc − 2ρ2

(1 + 3ρ2)
fabcTb ⊗ Tc

]
. (D.10)

The strategy we will now follow is to bring everything on one side of the equation, namely to 
calculate

l.h.s.–r.h.s.

g2
1g2

2

, (D.11)

and to act upon it with the following operation:

Δ
fδ[αβ tr(Tγ ] ⊗ Tδ◦), (D.12)
2
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where the three indices α, β and γ are totally antisymmetrized (without the 1
6 factor). Upon 

performing the operation (D.12), and by using the Jacobi identity, the very first term of the l.h.s. 
as contributing to (D.11), namely 4{q̂a, ̂qb}Ta ⊗ Tb , can be seen to coincide with

4
{
q̂α, {̂qβ, qγ }} − 4

{
qα, {̂qβ, q̂γ }}, (D.13)

which is the desired combination appearing in the Serre relations. It is therefore a matter of 
analyzing all the other terms after this operation is performed. One thing to notice is that anything 
looking like

fγ δbΩ
b (D.14)

will vanish upon this operation, as can be seen by using the Jacobi identity. This is the reason why 
the contribution of r+(ν′, μ′) taken at the order O(ν′ 2μ′) is absent, as we commented earlier, 
since it is precisely of the form (D.14). Disregarding this type of terms as irrelevant to the final 
result, we combine the remaining terms in (D.11) and perform quite extensive manipulations and 
simplifications. Performing then the operation (D.12) on the result of this simplification produces 
some terms that we will call unwanted, since they do not look like the standard terms appearing 
in the Serre relations, and some that we call wanted, since they have the desired form.

D.1. Unwanted terms

Let us begin with the unwanted terms. They come in two fashions:

• We get a quadratic contribution with level zero charges, specifically

−8Δρqaqbfγ ebtr
(
Tδ{Te, Ta}

) + contrib. r+
(
ν′,μ′) at O

(
ν′ 2μ′ −1); (D.15)

• We get a quadratic term with level zero and one charges, specifically

4Δqaq̂b

[−feγ btr
(
Tδ{Te, Ta}

) − feγ a tr
(
Tδ{Te, Tb}

)]
+ contrib. from r+

(
ν′,μ′) at O

(
ν′ 2μ′ −1). (D.16)

The respective first terms in (D.15) and (D.16) vanish upon the operation (D.12). In order to 
see this, one needs to proceed in steps. Let us consider the first unwanted term. The first step 
consists of repeatedly using

fabc = tr
(
Ta[Tb,Tc]

)
, (D.17)

to re-write the first term in (D.15), after the action of (D.12), as (indicating only the matrix part)

−1

2
fδ[αβfγ ]ebtr

(
Tδ{Te, Ta}

) = tr
({Te, Ta}[Tα,Tβ ])tr

(
Te[Tγ ,Tb]

) + “2”, (D.18)

where “2” means that we have to add the other two cyclic permutations βγα and γ αβ of the same 
structure on the l.h.s. of (D.18). At this point, it is convenient to open up the anti-commutator, 
involving the generator Te, and move Te close to the other trace by using cyclicity of the trace. 
When this is done, it produces two terms, in each of which one recognizes a structure of the type

tr(xTe) tr(Tey), y ∈ Lie algebra. (D.19)

The fact that y is Lie-algebra valued makes it possible to fuse the traces producing tr(xy). For 
the matrix part of the first unwanted term, we are therefore left with
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tr
(
Ta[Tα,Tβ ][Tγ ,Tb]

) + tr
([Tα,Tβ ]Ta[Tγ ,Tb]

) + “2”. (D.20)

Adding the “2” explicitly to this term, symmetrizing a ↔ b given the qaqb in front of the first 
term in (D.15) and eventually expanding all the (anti-)commutators explicitly, one sees that 
all terms cancel and the total contribution vanishes. We will calculate the contribution from 
r+(ν′, μ′) at O(ν′ 2μ′ −1) later on.

With regards to the first term in (D.16), let us re-write it as

4Δ(qaq̂b + qbq̂a)fγ ebtr
(
Tδ{Te, Ta}

)
. (D.21)

From this we see that, due to the a ↔ b symmetry of the pre-factor, perfectly analogous con-
siderations apply as for the term we have just shown to vanish. Once again, we will study the 
contribution from r+(ν′, μ′) at O(ν′ 2μ′ −1) later on.

D.2. Third order of the monodromy

We have seen that, to be able to calculate the two unwanted terms left-over from (D.15) and 
(D.16), and also the related contribution to the wanted terms, we need the monodromy matrix 
up to the third order in the spectral parameter. We will derive this term in the expansion in this 
section.

From Section 2 we have learned that the monodromy matrix M admits an expansion (adapted 
to the parameter g used in this section)

M(g) = P expg

∫ I0 − sgI1

(1 + ρg)2 − g2
, (D.22)

where we note that both I0 and I1 appear and

s = ρ2 − 1. (D.23)

We need to isolate the third order term in g. If we recall the density (2.4) of the level-zero charge

2j (σ ) = I0(σ ), (D.24)

we see that the third-order term we are after reads, in compact notation,

2g3(4ρ2 − s
)∫

j + 2ρsg3
∫

I1 − 16ρg3
∫ σ∫

j (σ )j
(
σ ′)

−2sg3
∫ σ∫ [

j (σ )I1
(
σ ′) + I1(σ )j

(
σ ′)] + 8g3

∫ σ∫ σ ′∫
j (σ )j

(
σ ′)j(

σ ′′) := M3. (D.25)

We have to put this term into a form which is ready to be used for the Serre relations, therefore 
we parameterize

M3

g3
= AQ3

0 + B

2
Q0Q̂ + C

2
Q̂Q0 + DQ2

0 + E

2
Q̂ + FQ0 + “Lie”, (D.26)

where we recall that (in the notation of this section) Q̂ reads

Q̂ =
∫

(−2ρj − sI1) + 4
∫ σ∫

j (σ )j
(
σ ′). (D.27)
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“Lie” carries such a name because it is something which is not easily expressed in terms of Q or 
Q̂, nevertheless it is Lie-algebra valued, hence it will drop after operation (D.12). In particular, 
we choose

“Lie” = H

∫ σ∫ [
j (σ ), j

(
σ ′)] + V

2

∫ σ∫ [
j (σ ), I1

(
σ ′)] + U

2

∫ σ∫ [
I1(σ ), j

(
σ ′)]

+ N

∫ σ∫ σ ′∫ [
j (σ ),

[
j
(
σ ′), j(

σ ′′)]] + P

∫ ∫
σ

σ∫ [
j (σ ),

[
j
(
σ ′), j(

σ ′′)]]

+ R

∫ ∫
σ

σ ′∫
σ

[
j (σ ),

[
j
(
σ ′), j(

σ ′′)]]. (D.28)

By appropriately splitting the integration domains and taking into account the ordering of the 
generators, one can show that the terms we use in our parametrization of M3 are enough to 
reconstruct the most general integral appearing at this order. In fact, we find in this way that they 
are more than sufficient, as we find a family of solutions when we try and match with (D.25):

A = −8

3
, F = ρE + 2

(
4ρ2 − s

)
, G = s(E + 4ρ) V = s(B − 4),

U = −sB, C = 4 − B, R = N − 8

3
, P = 16

3
− 2B − N,

H = −E − 8ρ, D = −E − 4ρ, (D.29)

from which we see that we can set

B = E = N = 0 (D.30)

as a convenient choice.
The only contribution from the third order of the monodromy that can survive the operation 

(D.12) is then

g3
[

4

3
q3 + 4q̂q − 4ρq2

]
. (D.31)

• The q2 term in (D.31) represents the contribution to the unwanted term (D.15) from the third 
order expansion in the monodromy. After acting with (D.12) and performing a few manip-
ulations on the indexes, one can see that this contribution reproduces the same structure as 
the first addendum in (D.15), hence it vanishes for the same reasons.

• The ̂qq term in (D.31) combines with the order O(ν ′ 2μ′ −1) of r+(ν′, μ′) to give

−2Δg2
1g2

2 q̂bqd [fcbeTc ⊗ TeTd + fcdeTc ⊗ TbTe]. (D.32)

After acting with (D.12), one can see that this term as well reduces the same structure as the 
first addendum in (D.16), hence vanishing by the same token.

D.3. Wanted terms

We now need to calculate the contribution we do expect to appear in the first Serre rela-
tion, namely we evaluate the cubic term in the level-zero charges in the expression (D.11). This 
amounts to the following – after acting with (D.12):
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2Δ2qaqbqdfδ[αβ

[
4tr(Tγ ]TaTe)tr(TδTcTd)fecb + 2fγ ]eafecbtr(TδTcTd)

+ 2tr(Tγ ]TaTe)fecbfdcδ + fγ ]eafecbfdcδ + 2tr(Tγ ]TcTa)tr(TδTeTd)fcbe

+ 2tr(Tγ ]TcTa)tr(TδTbTe)fcde − 2fγ ]actr(TδTbTdTc)
]

+ contribution from r+
(
ν′,μ′) at O

(
ν′ 2μ′ −1). (D.33)

Let us start with the part in (D.33) which is not coming from r+(ν′, μ′) at O(ν′ 2μ′ −1). Exploit-
ing the total symmetry of the pre-factor qaqbqc, after repeated use of the Jacobi identity, and by 
use of reconstructing commutators inside the traces to reduce the length of the traces as much as 
possible, we can recast that contribution into

−4Δ2qaqbqcfδ[αβfγ ]betr(TδTaTeTc) + 2Δ2qaqbqcfδ[αβfγ ]brfrcefaeδ. (D.34)

Before proceeding with the calculation, let us compare with the contribution from r+(ν′, μ′)
at O(ν′ 2μ′ −1) and see whether the difficult-to-handle length-four trace cancels. It does indeed, 
since, by performing similar manipulations, the contribution from r+(ν′, μ′) at O(ν′ 2μ′ −1) term 
results into

4Δ2qaqbqcfδ[αβfγ ]betr(TδTaTeTc) − 4

3
Δ2qaqbqcfδ[αβfγ ]brfrcefaeδ. (D.35)

We are then left with the two purely structure-constant contribution, which, by repeated use 
of the Jacobi identity, can be combined and manipulated into

−4Δ2qaqbqcfαaefβbdfγ crfedr . (D.36)

We now recall that this contributes to “l.h.s.–r.h.s.” of the Poisson brackets, hence it changes sign 
when brought back to the r.h.s., giving

{
q̂α, {̂qβ, qγ }} − {

qα, {̂qβ, q̂γ }} = 1

6
Δ2q(aqbqc)fαaefβbdfγ crfedr . (D.37)

Using the Jacobi identity, Eqs. (D.1), (D.3) and the definition of Δ (4.11), we ultimately re-obtain 
the first Serre relation (4.15).
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