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We consider a minimal extension of the Standard Model in warped extra dimensions, with fields 
propagating in the bulk including a bulk SM-like Higgs doublet. We show that the Higgs can acquire a 
non-trivial oscillatory VEV, strongly localized towards the TeV brane, but such that its value at that brane 
could be highly suppressed due to its oscillatory behaviour. Within the minimal Randall-Sundrum metric 
background, this oscillatory VEV can alleviate the bounds coming from oblique precision electroweak 
parameters, such that the KK gluon mass can be around 3 TeV (instead of ∼ 8 TeV for the usual non-
oscillatory bulk Higgs). We also discuss the stability of the configuration as well as the naturalness of the 
model parameters.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The original motivation for warped extra dimensional models 
was to solve the weak-Planck scale hierarchy by allowing gravity 
to propagate in the bulk of the extra dimension [1,2], stabilized by 
a Goldberger-Wise type mechanism [3–8]. Furthermore, by allow-
ing the SM fermion fields to propagate into the bulk, it was found 
that the localization of fields along the extra dimension could pro-
vide an explanation for the observed masses and flavor mixing 
among quarks and leptons [9–14]. In these scenarios, while the 
electroweak symmetry breaking can still proceed through the stan-
dard Higgs mechanism, the AdS/CFT correspondence can also be 
used so that the Higgs appears as a composite pseudo-Goldstone 
boson of the strongly coupled theory [15,16]. In these models the 
Higgs boson field must be localized near the TeV boundary of the 
extra dimension in order to solve the hierarchy problem. How-
ever, it is also possible for the Higgs to leak into the bulk (bulk 
Higgs scenario). The benefit of this scenario is to alleviate some 
of the flavour bounds and precision electroweak tests plaguing 
the brane Higgs models [17–21]. Generally, in these models, the 
bounds from the precision flavour and electroweak processes push 
the mass scale of new particles to relatively large scales, no lower 
than ∼ 8 TeV, which is not accessible to experiments yet. Two dif-
ferent solutions have been proposed to satisfy these bounds, while 
allowing for light enough new physics within the reach of the LHC: 
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one is to extend the gauge group to include custodial symmetry 
[22,20], the other is to modify the warping of the space-time met-
ric away from the pure AdS spacetime [23–27].

In this letter, we point out that the parameter space of the 
usual bulk Higgs, with no gauge group extensions or modified 
metric backgrounds, has not been fully explored. We study here 
a remaining region of parameter space and show that the bounds 
from precision electroweak tests are much less constraining in that 
region. The metric background is unchanged and the gauge groups 
are the usual SM groups, however the nontrivial Higgs VEV that we 
consider can have a substantial suppression on the TeV boundary.

2. The odd Higgs

We consider a scenario with one extra space dimension and 
assume a (properly stabilized) static spacetime background as

ds2 = e−2σ (y)ημνdxμdxν − dy2 , (1)

where σ(y) is a warp factor responsible for the exponential sup-
pression of the mass scales from the UV brane, down to the IR 
brane, located at the two boundaries of the extra coordinate, y = 0
and y = y1, respectively [1,2]. We assume that the dynamics re-
sponsible for stabilizing the setup (i.e. giving mass to the radion) 
do not back-react strongly on the background metric so that we 
can use the simple Randall-Sundrum (RS) metric with the warp 
factor given by σ(y) = ky. The parameter k is assumed to be of 
the order of the fundamental scale MPlanck, so that ky1 � 34 and 
the hierarchy between the Planck and the electro-weak scale is 
achieved naturally, and we will refer to the warped-down scale 
�K K = ke−ky1 as the Kaluza Klein (KK) scale.
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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The matter content of this scenario corresponds to a minimal 
5D extension of the SM gauge group and with all fields propagat-
ing in the bulk [9,11,10], such that fermion field localizations along 
the extra dimension can address the flavor puzzle of the SM [19].

Electroweak symmetry breaking (EWSB) is induced by a single 
5D bulk Higgs doublet (H) appearing in the Lagrangian density as

L5 ⊃ √
g

(
− 1

4g2
5

W 2
MN − 1

g′
5

2
B2

MN − |D M H|2 − V (H)

)

− √
g

(
δ(y)λ0(H) + δ(y − y1)λ1(H)

)
, (2)

where the capital indices run through the 5 spacetime directions, 
M = (μ, 5), while the Greek indices, μ, ν, . . . , denote the usual 4D 
dimensions [28]. We first consider the simple case of a quadratic 
bulk Higgs potential with the addition of two brane localized po-
tentials, such that the one located at y = y1 triggers EWSB. We 
define the parameters in Eq. (2) as

V (H) = 1

2
μ2

B H2 , (3)

λ0(H) = 1

2
M0 H2 , (4)

λ1(H) = 1

2
M1 H2 + 1

2
γ1 H4 . (5)

The 5D Higgs doublet can be expanded around a nontrivial VEV 
profile vodd(y) in a similar way as in the SM

H = 1√
2

eig5	

(
0

v(y) + h(x, y)

)
. (6)

Within the simple RS metric, the static non-trivial Higgs VEV pro-
file, vodd(y), has to satisfy the bulk equation

v ′′ − 4kv ′ − μ2
B v = 0, (7)

and to obey the boundary conditions

v ′(0) = M0 v(0) , (8)

v ′(y1) = −M1 v(y1) − 2γ1 v(y1)
3 . (9)

There are two different types of nontrivial solutions1 to Eq. (7), 
depending on the size of the bulk mass parameter.2 We distinguish 
two cases:

• If (μ2
B ≥ −4k2) then the nontrivial solution is

vusual(y) = v0

(
eaky − M0/k − a

M0/k − 4 + a
e(4−a)ky

)
(10)

where we have introduced the real parameter a as ak = 2k +√
μ2

B + 4k2 and we have imposed the boundary condition at 
y = 0. The boundary condition at y = y1 yields and equation 
for the amplitude v0 in terms of the parameters k, M0, M1, γ1
and μ2

B . This solution is the usual nontrivial VEV solution used 
in the literature when considering a bulk Higgs mechanism.

• If (μ2
B ≤ −4k2) then the nontrivial solution is

vodd(y) = v0e2ky
(

sin (bky) + b

(M0/k − 2)
cos (bky)

)
(11)

1 The trivial solution v = 0 is always possible. This corresponds to the elec-
troweak symmetric background and, if it is unstable, it will trigger EWSB.

2 Note that the sign of the real parameter μ2
B can in principle be either positive 

or negative.
2

where the real parameter b is defined as bk =
√

−μ2
B − 4k2

and we have imposed the boundary condition at y = 0. The 
second boundary condition at y = y1 will constrain the am-
plitude v0 in terms of the parameters k, M0, M1, γ1 and μ2

B . 
This solution can yield a Dirichlet-like and more delocalized 
(but still solving the hierarchy problem) bulk Higgs, which we 
refer to subsequently as the “odd” Higgs.

Even though the last solution does not necessarily have odd parity 
under orbifold reflection (i.e. exact Dirichlet boundary conditions), 
it contains that possibility. The most interesting region in the pa-
rameter space of this novel VEV profile is where the first term 
dominates and hence, the solution is almost odd (or Dirichlet-
like). As we will see shortly, stability related bounds on the free 
parameter b (fixed by the bulk Higgs mass, μ2

B ), are such that 
b ≤ π/(ky1). It is therefore generally expected that b 
 (M0/k −2), 
and hence, Eq. (11) reduces to vodd(y) � v(−−)

odd (y), where we 
refer to the pure sine solution as the (−−) odd Higgs profile 
v(−−)

odd (y) = v0e2ky sin (bky). In the case where b � (M0/k − 2)

(possible whenever M0/k is really close to 2), the profile becomes 
vodd(y) � v(+−)

odd (y), where now we refer to the pure cosine solu-

tion as the (+−) odd Higgs solution, v(+−)

odd (y) = ṽ0e2ky cos (bky), 
where ṽ0 is the proportionality constant of this solution.

We must mention here that μ2
B < −4k2 violates the Breiten-

lohner-Freedman bound for the full AdS space [29]. However, for 
a slice of AdS, the boundary effects slightly modify the stability 
threshold [30], and therefore, it is possible for μ2

B to be slightly 
below −4k2. Stability considerations still impose strict constraints 
on μ2

B and in particular, on the VEV which should not have any 
nodes within the interval [31–34]. This implies that in order to 
obtain stable, oscillatory VEV solutions we must have3: −4k2 −
π2/y2

1 ≤ μ2
B ≤ −4k2. This condition is the origin of the bound, b ≤

π/(ky1) mentioned earlier, and since (ky1) � 34, we require: 0 ≤
b � 0.1. We will return to stability issues in Section 5.

Next, we consider the physical Higgs perturbations h(x, y) =∑
n hn

x(x)hn(y) around the nontrivial VEV. The profiles hn(y) of the 
Higgs (KK) modes satisfy the equation

h′′
n − 4kh′

n − μ2
Bhn + m2

ne2kyhn = 0, (12)

with boundary conditions

h′
n(0) = M0 hn(0) , (13)

h′
n(y1) = −(M1 − 6γ1 v(y1)

2)hn(y1). (14)

It is apparent that with mn = 0, the bulk Higgs profile and the 
background VEV satisfy identical equations of motion but with 
different boundary conditions. (Although for our choice of brane 
potentials, the boundary conditions at y = 0 are the same.)

Assume that the mass m2
0 of the lowest mode (which will be 

identified as the SM Higgs) is small compared to the KK scale, so 
that the problem can be treated perturbatively. We have

h0(y) = α v(y) (1 +O(m2
0/�

2
K K )) , (15)

where the KK scale is as before �K K = ke−ky1 ∼O (TeV), and with 
α a proportionality factor to be fixed by the canonical normaliza-
tion of the Higgs mode. Then, the Higgs mass can be written as 
(see for example [25])

m2
0 = −

2v2(y1)e−4ky1

(
M1 + v ′(y1)

v(y1)

)
∫ y1

0 dye−2ky v2(y)

(
1 +O

(
m2

0

�2
K K

))
, (16)

3 Strictly speaking, this is the condition for the existence of stable, nontrivial so-
lutions with Dirichlet boundary conditions on both branes.
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which is valid for perturbations around any nontrivial VEV. In par-
ticular, perturbing around vusual(y) one finds

(m2
0)usual � −8(a − 1)

(
M1

2k
+ a

2

)
�2

K K , (17)

with a ≥ 2. This result shows the amount of tuning needed in the 
usual bulk Higgs setup, since, in order to satisfy Eq. (17) we must 
first require M1 to be negative (for the Higgs mass to be pos-
itive) and second, an O(1%–0.1%) cancellation between M1/(2k)

and a/2, which are, in principle, independent parameters, originat-
ing from the brane and bulk Higgs potentials respectively.

Moving on to the case of the “odd” Higgs, we take4 v(−−)

odd and 
obtain

(m2
0)odd � −8(1 + b2)F (b) �2

K K , (18)

where we have defined

F (b) = sin2 (bky1)(2 + M1
k + b cot (bky1))

1 + b2 − cos (2bky1) − b sin (2bky1)
. (19)

This expression is only valid for small m2
0, and in general it is pos-

sible to fix M1 such that F (b) is suppressed.
We can also see that suppression of sin (bky1) at the boundary 

(i.e., bky1 ∼ π ), will lead to a suppression of the Higgs mass and 
we find

(m2
0)odd � 8

sin (bky1)

b
�2

K K . (20)

Moreover, the sign of sin (bky1) indicates whether the Higgs mass 
is tachyonic or not. In particular, for bky1 = (π + ε), with ε small, 
the Higgs mass becomes tachyonic. When bky1 = π , the Higgs will 
be exactly massless. This result agrees with the stability criterion 
introduced earlier, since bky1 = π + ε means that the correspond-
ing VEV would have a node within the interval.

Next, we analyse how this odd VEV improves the precision elec-
troweak bounds on the model parameters.

3. Precision electroweak tests

We now consider the effects of integrating out the gauge KK 
modes on the precision electroweak parameters by calculating the 
corrections to the T and S parameters [17]. These can be easily 
computed with a set of surprisingly compact and simple integrals 
(see [25] for details), given by

αT = s2
W m2

Z y1

y1∫
0

dye2ky(1 − 
h(y))2 (21)

αS = 8s2
W c2

W m2
Z y1

y1∫
0

dye2ky
(

1 − y

y1

)
(1 − 
h(y)) (22)

with s(c)W being sin θW (cos θW ), and the function 
h(y) defined 
in terms of the light SM-like Higgs profile, h0(y), as:


h(y) =
∫ y

0 dy′e−2ky′
h2

0(y′)∫ y1
0 dy′e−2ky′h2

0(y′)
. (23)

Note that because the mass of h0 is small compared to the KK 
scale, its wave function is proportional to the nontrivial VEV 
vodd(y), i.e. h0(y) ∝ vodd(y). We consider the two different VEVs 

4 Here, for simplicity, we assumed b 
 (M0/k −2). This will not change any qual-
itative features as we will see later.
3

discussed in the previous section, namely the usual bulk Higgs VEV 
and the odd Higgs VEV,

vusual(y) � v0eaky (24)

vodd(y) � v0e2ky sin (bky) (25)

where, for simplicity, we have only kept the leading term in each 
case. Full formulations are easily obtained, and used only for later 
numerical computations, since they do not affect our discussion 
here.

One can find expressions for the T and S parameters in each 
case, by evaluating the integrals analytically. We ignore warped 
down terms, and also assume that vodd(y) is highly suppressed 
near the TeV brane. We find

αTusual = s2
W

m2
Z

�2
K K

(ky1)
(a − 1)2

a(2a − 1)
, (26)

αSusual = 8s2
W c2

W
m2

Z

�2
K K

a2 − 1

4a2
, (27)

and

αTodd = s2
W

m2
Z

�2
K K

(ky1)
17

648

(
1 +O(b2, εb)

)
, (28)

αSodd = 8s2
W c2

W
m2

Z

�2
K K

5

64

(
1 +O(b2, εb)

)
, (29)

where εb is defined as b = π/(ky1) − εb , and assumed to be small, 
so that the Higgs profile is almost Dirichlet on the y = y1 bound-
ary. Because μ2

B/k2 = −4 − b2, a very small value for εb means 
that the bulk Higgs mass parameter μ2

B is very close to the stabil-
ity limit of −4k2 − π2/(y1)

2.
We focus first on the T parameter as, due to the volume fac-

tor enhancement of (ky1) ∼ 34, it is the most constraining of the 
oblique parameters. The usual bulk Higgs result depends on the 
parameter a, and is such that the least constrained result is ob-
tained for a = 2 (i.e. a relatively delocalized Higgs VEV), where the 
numerical factor from the integral becomes 1/6. When a is very 
large (corresponding to a brane localized Higgs VEV), the factor 
becomes 1/2. Therefore the bound on the KK scale coming from 
the T parameter is 

√
3 times smaller for a delocalized bulk Higgs 

as compared to a brane Higgs. The same integral factor in the odd 
Higgs case is 17/648, meaning that the bound on the KK scale 
is 

√
648/17 × 6 ∼ 2.5 times better (i.e. weaker) for the odd Higgs 

case compared to the most delocalized usual Higgs case (a = 2).
For the less constraining S parameter, again, the odd Higgs 

corrections are more suppressed. However, here the S parameter 
correction is larger relative to the T parameter correction. Indeed 
comparing the two cases again

Tusual

Susual
= ky1

8c2
W

4a2(a − 1)2

(a2 − 1)a(2a − 1)
∼ 0.89

ky1

8c2
W

(a = 2) , (30)

and

Todd

Sodd
= ky1

8c2
W

136

405
∼ 0.34

ky1

8c2
W

. (31)

Thus for the odd Higgs case the S parameter is relatively more im-
portant. The effect is to push the overall electroweak corrections 
towards a more favourable direction in the S − T plane, allowing 
for lower KK scales than those allowed by only considering the T
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Fig. 1. Allowed region in the S − T parameter plane at the 95% and 68% CL [35], as 
well as the S and T predictions (from tree-level KK gauge boson exchange) for a 
bulk Higgs scenario in the three regimes of brane Higgs, bulk Higgs and odd Higgs. 
Each curve is obtained by varying the KK scale which we parametrize using the 
physical mass of the lightest KK gauge boson (MK K )1.

parameter.5 This is shown in Fig. 1, where the predicted values for 
S and T arising from integrating out the KK electroweak bosons 
are traced for different values of the bulk Higgs parameter, μ2

B , by 
varying the KK scale of the model, parametrized as the lightest KK 
gauge boson mass. As shown earlier, it is useful to parametrize this 
scale using the a and b parameters. When a is large (μ2

B large and 
positive) the Higgs sector corresponds to the brane Higgs limit and 
the bounds from the oblique parameters are the strongest. In this 
case the lightest KK gluon cannot be lighter than ∼ 14 TeV at 95%
CL. As the Higgs leaks out of the brane, by reducing a (or μ2

B ), 
the bounds improve. At a = 2 (μ2

B = −4k2) the usual limit of bulk 
Higgs delocalization is obtained and the bounds are such that the 
KK gluon mass should not be lower than ∼ 8 TeV. As discussed 
earlier, the bulk Higgs mass can be lowered beyond −4k2 as long 
it respects the stability bound −4k2 −π2/y2

1 ≤ μ2
B . The parameters 

S and T are evaluated numerically and show a striking improve-
ment in their bounds, as the parameter εb is reduced, (i.e., as the 
Higgs is more and more Dirichlet-like). There are, however, limit-
ing values for each (cf. Eqs. (28) and (29), so that once εb is small 
enough, no further improvement can be obtained. Within the odd 
Higgs regime, the lowest mass of the KK gluon, consistent with the 
S − T bounds is about 2.8 TeV. This represents the least constrain-
ing (calculable) limit on RS models without custodial symmetry or 
large metric back-reaction [25,36–38,26,39].

In Fig. 2, we consider again the tree level corrections to S and T
from KK gauge bosons, but in this case we show the lowest possi-
ble KK gluon mass as a function of the bulk Higgs mass, μ2

B , near 
the μ2

B = −4k2 region. As expected, the bounds improve slightly 
as the Higgs mass approaches −4k2 from above. Once the mass 
decreases beyond that point, the bounds improve dramatically un-
til reaching the stability limit. Note that, as mentioned earlier, the 
stability limit differs depending on the UV boundary conditions on 
the odd Higgs VEV. When the UV brane mass parameter, M0, is 
large enough, the Higgs acquires the (−−) nontrivial VEV, while if 
there is a strong cancelation (M0/k − 2) 
 1 the VEV becomes the 

5 Note that this effect is already present for the usual bulk Higgs, since the ratio 
T /S is about two times larger for a brane Higgs (a large) compared to a delocal-
ized Higgs (a = 2). Therefore the bounds for a = 0 shift towards a more favourable
direction in the S − T plane and are thus improved further compared to the most 
constraining brane Higgs.
4

Fig. 2. 95% CL lower bound from S and T parameters constraints on the mass of 
the first KK gauge boson as a function of the (negative) bulk Higgs mass coefficient, 
μ2

B . The grey region at the left side represents the region (in μ2
B/k2) where the bulk 

Higgs mass parameter is smaller than the lower bound set by stability requirements 
and is thus ruled out. The parameter εb denotes the mass difference (in units of 
k2) between μ2

B and the stability limit. When μ2
B ≥ −4k2, the scenario enters the 

usual bulk Higgs regime and is commonly parametrized by the Higgs wave function 
coefficient a ≥ 2.

Fig. 3. Profiles of the “physical” wave-functions, f̂ (y) = e−ky vodd(y), of the lightest 
Higgs mode in the bulk Higgs regime with a = 2 (solid, dark brown) and in the 
odd Higgs regime with εb = 10−4 (dashed, blue), εb = 10−3 (dotted, light green) 
and εb = 10−2 (light orange). Also shown is the wave-function of the first heavy KK 
gauge mode (grey, thick dashed). The overlap between Higgs and KK gauge bosons is 
clearly suppressed as the Higgs wave function becomes diminished near the brane. 
This leads to a suppressed contribution to the T parameter.

(+−) VEV. In this case, the condition for the VEV to have no nodes 
within the interval is b ≤ π/(2ky1), which yields a slightly differ-
ent bound for μ2

B . This appears in the figure as a vertical line for 
the (+−) case, appearing at a different value of μ2

B than the verti-
cal asymptote for the (−−) case. Note that the best bound on the 
KK scale is the same in both situations, and when the odd Higgs 
VEV has an expression containing both sin (bky) and cos (bky), the 
stability limit of μ2

B will lie between the limits of the (−−) and 
the (+−) case. In the figure we show the region set by the (−−)

solution as the grey region marked as unstable.
Finally, in Fig. 3, we show the Higgs profiles (and therefore 

VEVs) for different values of the bulk Higgs mass, μ2 . The profile 
B
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of the lightest KK gauge mode (same in all regimes) is also plotted 
for comparison. We observe that, as the Higgs mode becomes more 
and more Dirichlet-like, it leaks out of the boundary (cf. [38,26]), 
which will lead to weaker couplings with the KK gauge bosons and 
thus suppressed contributions to the S and T parameters.

4. Fermion masses and Yukawa couplings

Consider the following 5D up-quark sector Yukawa Lagrangian 
density

LY = √
g

(
Y bulk

u√
k

H Q U

)
+ h.c. , (32)

where the 3 × 3 Yukawa coupling matrix Y bulk
u is composed of 

O(1) dimensionless coefficients. From these 5D interactions one 
can extract the 4D Yukawa couplings (and the 4D mass terms) of 
the up-type quark zero modes (similarly for the down-type quark 
and the lepton sector of the theory). The 4D effective Yukawa 
couplings between the zero mode Higgs and quarks are obtained 
from the overlap integrals of the quarks and Higgs wave func-
tions along the extra dimension. The normalized wave functions 
for the left-handed doublet and the right-handed singlet quarks 
are q(y) = √

kNqe(2−cq)ky and u(y) = √
kNue(2+cu)ky , respectively, 

where Nq =
√

(2cq−1)

1−e(1−2cq)ky1) and Nu =
√

(2cu+1)

−1+e(1+2cu )ky1) are canonical 

normalization factors.6 The Yukawa couplings then are

L4D
Y = Y bulk

u

√
kNq Nu

y1∫
0

dyh0(y)e−�cky + h.c., (33)

where �c = cq − cu . The canonically normalized Higgs profiles are 
given by:

h0usual(y) =
√

2(a − 1)k

(e2(a−1)ky1 − 1)
eaky , (34)

and

h0odd(y) = √
k

2ky1

π
e−ky1 e2ky sin (bky) (1 +O(b2)) , (35)

where in the case of the odd Higgs we have neglected terms of 
order b2 � 10−2 (but we keep all terms for numerical calcula-
tions). We can now calculate the 4D Yukawa couplings in each 
Higgs regime:

yusual
u =

√
2

(2 − �c)
Y bulk

u Nq Nue(1−�c)ky1 (36)

and

yodd
u = 2

(2 − �c)2
Y bulk

u Nq Nue(1−�c)ky1 . (37)

The two results are surprisingly similar, that is, both have the same 
exponential dependence on �c = cq − cu . The ratio of these ex-

pressions is given by 
√

2
2−�c , which is essentially O(1), within the 

usual range of the c-values,7 and thus the odd Higgs regime ad-
dresses the flavour puzzle of the SM in the same way as the usual 
bulk Higgs does, i.e., through small masses and hierarchical mixing 
angles which are a reflection of the geographical location of the 
fermion wave functions along the fifth dimension.

6 Note that, to simplify the notation, we omitted the flavour indices.
7 This usual range is such that if the quark flavour structure is explained by the 

exponential factors in �c, typical values are roughly found between �c ∼ 1.2 (light-
est quarks) and �c ∼ 0 (top quark).
5

5. Existence, stability and naturalness

We first consider the stability conditions for the trivial Higgs 
VEV, i.e. v = 0. In this case there is no EWSB, but we can still study 
the spectrum of Higgs perturbations around the v = 0 vacuum. 
The Higgs KK modes in the unbroken phase still satisfy the same 
equation as Eq. (12) but now the boundary condition, Eq. (14), is 
modified:

h′
n(y1) = −M1hn(y1) . (38)

We would like to know what is the most negative value for μ2
B , be-

fore the lightest Higgs mode, h0, becomes tachyonic. The threshold 
condition will be reached when the lowest mode h0 is massless, 
i.e. m2

0 = 0. Moreover, it is known that the largest eigenvalue of 
the Sturm-Liouville boundary value problem is the eigenvalue as-
sociated to the Dirichlet problem, which in this case is obtained 
in the limit of very large M0 and M1. Therefore, the absolute sta-
bility bound will be obtained for the value of μ2

B that generates a 
massless zero-mode (m2

0 = 0) in the Dirichlet boundary value prob-
lem associated with Eq. (12). The massless mode profile solution 
with Dirichlet boundary conditions is h0trivial(y) = Nhe2ky sin bky, 
with the parameter b fixed by the Dirichlet boundary condition 
as b = π/(ky1). But the parameter b depends on the bulk Higgs 
mass, b2k2 = −μ2

B − 4k2, and therefore the threshold value of 
the bulk mass parameter is (μ2

B)min = −4k2(1 + π2/(2ky1)
2). Be-

low this value, the Dirichlet Higgs perturbations around the triv-
ial background are unstable. This value represents the generalized 
Breitenlohner-Freedman bound [29] for a scalar field theory de-
fined on a slice of AdS5 [30] and is exactly the same as the stabil-
ity bound for Higgs perturbations around the non-trivial odd Higgs 
VEV, mentioned earlier. Before returning to the EWSB phase, we 
discuss the more general case in which the boundary conditions 
are not Dirichlet. The (perturbative) expression for the mass of the 
lowest Higgs KK perturbation around the trivial vacuum, v = 0, 
has the same form as the mass of the lightest Higgs mode with 
the non-trivial VEV. The only difference is that it has opposite sign 
and is divided by a factor of 2, i.e.

m2
0trivial = −1

2
m2

0non−trivial , (39)

where the expressions for m2
0non−trivial were given in Eqs. (17) and 

(18), depending on the regime of the nontrivial VEV. This means 
that whenever the unbroken phase is unstable, the broken phase 
will be stable and vice versa.

We now return to the case where the Higgs acquires a non-
trivial VEV. In [34] it was shown that for any bulk scalar potential 
defined on a slice of AdS5, with the scalar field respecting Dirich-
let boundary conditions, any non-trivial scalar VEV solution with 
nodes in the interval would be unstable. In the case of the sim-
ple potential used in this paper, this result can be obtained easily, 
since the equation for the perturbations around a nontrivial VEV is 
the same as the one for the trivial vacuum. Indeed, one finds that 
the threshold at which a massless mode appears is precisely the 
point where the VEV has a node at the boundaries (it is Dirichlet-
like). When the boundary node moves slightly into the bulk, the 
eigenvalue becomes slightly negative. For the case of a more gen-
eral bulk Higgs potential, this no-node criterion continues to be 
useful in the determination of the absolute stability bound associ-
ated with the Higgs sector.

A related topic is the size of the Higgs potential parameters, 
namely the bulk mass coefficient, μ2

B , the brane quadratic coeffi-
cients, M0 and M1, and the brane quartic coefficient, γ1. As previ-
ously discussed, the parameter M0 can remain to be O(1) (in units 
of k) without changing any properties of the odd Higgs VEV solu-
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tion, Eq. (25). In the case of the bulk mass parameter, it is bound 
to be μ2

B > −4k2 − π2/(ky1)
2k2 and so it can easily remain O(1)

in units of k2.
Moreover, as we have seen earlier, in order to have a light Higgs 

the bulk mass parameter must be very close to the stability limit, 
i.e. close to −4k2. This implies some degree of parameter tuning 
because one needs to require the function F (b) to be small enough 
to generate the light Higgs mass (see Eq. (18)). If we define

εb = μ2
B + 4k2 + π2/y2

1, (40)

assuming small εb , the approximate expression for F (b) (including 
the dependence on M1) becomes

F (b) � εbky1

b

(
(4 + M1/k)

εbky1

b
− 1

)
, (41)

from which we can easily identify two contributions to the overall 
coefficient. Since (ky1) ∼ 34 and b ∼ 10−1, one needs at least εb ∼
10−3 so that: 

(
εbky1

b

)
∼ 10−1. This requirement on εb represents 

roughly a 0.1% tuning on the parameter μ2
B and we still need a 

further 10−1 factor from the term containing M1 in order to obtain 
the overall 10−2 suppression for F (b). We see that, while in the 
normal bulk Higgs case (Eq. (17)), M1 has to be negative, in this 
scenario it can be positive or negative. In fact, with our previous 
choice, we see that a positive value of M1/k lying between 4 and 
5 can achieve the overall suppression of F (b) without really much 
tuning of M1. We conclude that in this regime, the required tuning 
to obtain a light Higgs is around 0.1% and the tuned parameter is 
(μ2

B).8

The brane quartic coefficient γ1 is fixed by the requirement 
of obtaining a light enough electroweak scale, i.e. generating the 
appropriate Z and W boson masses. The W mass can be approxi-
mated as

m2
W = g2

5

4y1

y1∫
0

dyv2(y)e−2ky (42)

where v(y) is the nontrivial Higgs VEV, which depending on the 
sign of (4k2 + μ2), can take either the usual form of Eq. (10) or 
the new oscillatory solution vodd(y) of Eq. (11).

The constant coefficient v0 can be removed in favour of m2
W , 

and using the IR boundary condition for the VEV, Eq. (9), we can 
solve for the quartic coefficient, γ1, as

γ1 = g2
4

16

m2
h

m2
W

⎛
⎝ y1∫

0

dy
e−2ky v(y)2

e−2ky1 v(y1)2

⎞
⎠

2

. (43)

When v(y) = vusual(y), one obtains γ1 = g2
4

16k2
m2

h

m2
W

1
(2a−2)2 which is 

naturally of O(1/k2). However when v(y) = vodd(y) the coefficient 
γ1 diverges if vodd vanishes at the IR brane (i.e. when it becomes 
exactly Dirichlet-like). This is not surprising since Dirichlet bound-
ary conditions require an infinite brane potential. However, vodd(y)

does not exactly vanish at the IR brane as the Higgs mass should 
not be zero. The parameter εb as defined in Eq. (40) represents 
the deviation from the stability threshold (i.e., a massless Higgs) 

8 Note that, as we mentioned before, (cf. Eq. (17) and the discussion below it), 
in the usual bulk Higgs scenario there is also a tuning, (M1 + 2k +

√
μ2

B + 4k2) ∼
O(1%). This tuning is initially slightly less ‘fine’ than in the odd Higgs case for 
a given KK scale. However, since the odd Higgs allows for a lower KK scale, the 
tuning ends up becoming of similar order if one considers a bulk Higgs scenario 
with heavier KK modes with masses closer to 10 TeV.
6

and γ1 can be easily obtained for different values of εb . For exam-
ple, for a fixed volume factor ky1 = 34 and εb = 10−3 we obtain 
γ1 �

(
0.86
k2

)
, while for εb = 5 × 10−4 we get γ1 �

(
7.1
k2

)
and for 

εb = 10−4, γ1 �
(

2.5×103

k2

)
. This behaviour reflects again that in or-

der to suppress scalar field values at the boundary, one requires a 
large scalar brane potential. Moreover, we also see that the value 
of the quartic potential acquires very large values close to the re-
gion where the oblique parameters are most strongly suppressed. 
However if one insists in keeping γ1 at most O(1/k2) one can still 
have a suppressed T parameter for εb ∼ 10−3 (see Figs. 1 and 2).

Finally we turn to the interplay between the Higgs background 
and the gravitational background of this scenario. So far we have 
assumed a static RS background, but it is known that since the 
background contains a massless graviscalar mode, the radion, it 
must be stabilized. The natural question is whether the back-
reaction of the nontrivial Higgs VEV (which we neglected, as-
suming it to be small) will stabilize the gravitational background, 
namely if the radion will acquire a positive mass squared. Un-
fortunately, it was shown in [40] that when one considers static 
solutions for both the warp factor and a single scalar field (here, 
the Higgs), the radion will be tachyonic whenever the derivative of 
the scalar VEV vanishes inside the interval. Since this is precisely 
what happens with the odd Higgs VEV, the setup as is will not be 
gravitationally stable. However, RS type scenarios always require a 
mechanism to lift the massless radion. The simplest procedure is 
to add a new scalar singlet which would acquire a VEV and will 
back-react on the metric background generating a stabilizing po-
tential for the radion [3–8]. This is the solution for our scenario as 
well, except that in our case the stabilizing scalar should lift the ra-
dion tachyonic mass generated by the Higgs nontrivial VEV. Since 
the Higgs VEV determines the electroweak scale (which is much 
smaller than the KK scale), one expects the scale of the radion 
tachyonic mass to also be small, and thus raising the radion mass 
should proceed in a fashion similar to that of the usual warped 
scenarios.

6. Conclusions

We considered the simplest RS warped scenario in which mat-
ter particles and the Higgs field propagate in the bulk and where 
the flavour structure of the SM is generated by the localization 
of the fermion fields along the extra space dimension. We found 
that a small region of parameter space within this setup, where 
the bulk Higgs mass is pushed beyond the naive −4k2 thresh-
old, has not been explored yet. Moreover, within that region the 
bounds from precision electroweak constraints are much milder 
than in the usual bulk Higgs regimes. In this region, we carefully 
addressed stability concerns associated to the extension of the pa-
rameter space.

Even though the regime considered here requires slightly more 
tuning than the usual bulk Higgs regime, and also can require a 
somewhat larger brane scalar potential, this scenario is very inter-
esting thanks to its simplicity and its success in reducing the T
parameter. Even if a small hierarchy problem is present with the 
setup, the oscillatory Higgs VEV can be exploited within different 
scenarios, either with custodial symmetry or with heavily modified 
metric backgrounds. Thus, while still addressing the hierarchy and 
the flavour problem of the Standard Model, the bounds and mass 
limits of the model are improved, making it possible to allow for 
lighter KK modes, which would be accessible at the LHC.
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