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This paper is devoted to the study of the nonrelativistic limit of Amelino-Camelia doubly special relativity and 
the corresponding modified Klein-Gordon and Dirac equations. We show that these equations reduce to the 
Schrödinger equations for the particle and the antiparticle with different inertial masses, however, their rest 
masses are the same. M. Coraddu and S. Mignemi have studied the nonrelativistic limit of the Magueijo-Smolin 
doubly special relativity. We compare their results with our study and show that these two models are reciprocal 
to each other in the nonrelativistic limit. We find that particle and antiparticle masses can be different. These 
different masses lead to the CPT violation. Also, we will find an upper limit on the photon mass.
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1. Introduction

Doubly special relativity (DSR) theories have been proposed two 
decades ago for the nonlinear modification of special relativity. These 
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theories have two invariant scales, the speed of light 𝑐 and the Planck 
energy 𝐸𝑝 =

√
ℏ𝑐5∕𝐺 ≃ 1019 GeV. Magueijo-Smolin (MS) DSR [1] and 

Amelino-Camelia DSR [2,3] are the two main examples of these the-
ories. Although these models have similar structures, they belong to 
different realizations of kappa-Pioncare algebras [4].

According to the special relativity and relativistic quantum mechan-
ics, the Schrödinger equation is the nonrelativistic limit of the Klein-
Gordon and Dirac equations [5]. Also, we have the same mass for the 
particle and the antiparticle. This equality is the straightforward result 
of the dispersion relation 𝐸 = ±

√
𝑚2 + 𝑝2.

The dispersion relation has been modified in the DSR theories, which 
leads to the modified Klein-Gordon and Dirac equations. It will be in-
teresting to study the nonrelativistic limit of these modified equations. 
The nonlinearity of the dispersion relation and the fact that the disper-
sion relation is not invariant under space inversion and time reversal 
also imply the violation of CPT invariance.

M. Coraddu and S. Mignemi have studied the nonrelativistic lim-
its of the MS DSR and the corresponding modified Klein-Gordon and 
Dirac equations [6]. They illustrated that the particle and the antipar-
ticle rest masses are different, however their inertial masses are the 
same. Besides, they have showed that the modified Klein-Gordon and 
Dirac equations reproduce nonrelativistic quantum mechanics. To con-
tinue their proposal, we want to study the nonrelativistic limits of 
Amelino-Camelia doubly special relativity and the corresponding mod-
ified Klein-Gordon and Dirac equations.

We show that the corresponding modified Klein-Gordon and Dirac 
equations reduce to the Schrödinger equations for the particle and the 
antiparticle with different inertial masses. The difference between these 
two masses is proportional to 𝑚𝑐2∕𝐸𝑝 in the first order of approxima-
tion. However, their rest masses are the same, but the different inertial 
masses lead to the violation of CPT invariance.

We compare the nonrelativistic limit of MS and Amelino-Camelia 
DSR. Our results are reciprocal to the M. Coraddu and S. Mignemi 
results. We can interpret MS DSR as modifying rest mass and Amelino-
Camelia DSR as modifying momentum [7].

Dirac equation in the MS DSR has been studied previously [8,9]. 
They solved the modified Dirac equation in a special case and obtained 
a deformed Berry phase. Also, in the 𝜅-Poincare algebra the modifica-
tions of the Dirac equation have been studied [10]. A general formalism 
for finding the modified Klein-Gordon and Dirac equations in any given 
curved momentum space has been provided by S. A. Franchino-Vinas 
and J.J. Relancio [11]. For this purpose, we should obtain the modi-
fied Casimir invariant of the given curved momentum space. Note that 
these modified Klein-Gordon and Dirac equations are in the momentum 
space, and to find their corresponding in space-time, we should find 
their duals.

In the following section, we summarize some basics of Amelino-
Camelia DSR. In section 3, we study the nonrelativistic limit of modified 
dispersion relation in Amelinio-Camelia DSR and make some compar-
isons with the nonrelativistic limit of MS DSR. The nonrelativistic limits 
of ordinary and modified Klein-Gordon and Dirac equations are pre-
sented in section 4. Then, in section 5 we have some conclusions.

2. Amelino-Camelia DSR

The essence of Amelino-Camelia DSR is the modification of ordinary 
special relativistic boosts

K𝑎 = 𝑖𝑝𝑎
𝜕

𝜕𝐸
+ 𝑖𝐸

𝜕

𝜕𝑝𝑎
, (1)

to preserve the following nonlinear dispersion relation invariant [3], 
here 𝑎 is an index from 1 to 3. In this DSR, the modified dispersion 
relation is

𝐸 𝑚
2

2𝑘2[cosh(
𝑘
) − cosh(

𝑘
)] = p2𝑒𝐸∕𝑘, (2)
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in which 𝑘 is the Planck energy. G. Amelino-Camelia DSR proposed the 
modified boosts

B𝑎 = 𝑖𝑝𝑎
𝜕

𝜕𝐸
+ 𝑖( 1

2𝑘
p2 + 𝑘

1 − 𝑒−2𝐸∕𝑘

2
) 𝜕

𝜕𝑝𝑎
− 𝑖

𝑝𝑎
𝑘
(𝑝𝑏

𝜕

𝜕𝑝𝑏
), (3)

which leaves invariant the mentioned dispersion relation. Also, we can 
find new transformations for this doubly special relativity which is dif-
ferent from the Lorentz transformations [7].

The modified Klein-Gordon equation is obtained from equation (2)
by substituting differential operators for 𝐸 = 𝑖 𝜕

𝜕𝑡
and p = −𝑖∇⃗ in the 

standard fashion as in quantum mechanics[
∇2 − 2𝑘2 exp (−𝑖

𝑘

𝜕

𝜕𝑡
)
(
cosh(−𝑖

𝑘

𝜕

𝜕𝑡
) − cosh(𝑚

𝑘
)
)]

Ψ(�⃗�, 𝑡) = 0. (4)

Also, we can construct a deformed Dirac equation(
𝛾𝜇D𝜇 − 𝐼

)
Ψ(p) = 0, (5)

where D𝜇 is the modified Dirac operator

𝐷0 =
𝑒𝐸∕𝑘 − cosh(𝑚∕𝑘)

sinh(𝑚∕𝑘)
,

𝐷𝑎 =
𝑝𝑎
𝑝

(
2𝑒𝐸∕𝑘[cosh(𝐸∕𝑘) − cosh(𝑚∕𝑘)]

)1∕2
sinh(𝑚∕𝑘)

,

(6)

and 𝛾𝜇 are the familiar Dirac 𝛾 matrices [3].

3. Nonrelativistic limit

In ordinary special relativity, we go to the classical nonrelativistic 
limit for a free particle by expanding ordinary dispersion relation

𝐸2 − 𝑐2p2 =𝑚2𝑐4. (7)

In (p2𝑐2∕𝑚2𝑐4) ≪ 1 limit, we obtain

𝐸 = ±
√

p2𝑐2 +𝑚2𝑐4 ≃ ±(𝑚𝑐2 +
p2

2𝑚
+ ...) . (8)

The first term on the right-hand side is the rest mass, and the second 
term is the classical kinetic energy.

In the Amelino-Camelia DSR, we expand the modified dispersion 
relation (2) in 𝑂(𝐸3∕𝑘3) approximation and we obtain

𝐸2 − p2𝑐2 −
p2𝑐2

𝑘
𝐸 =𝑚2𝑐4. (9)

Solving this equation as a second-order equation for 𝐸, we have

𝐸 =
p2𝑐2∕𝑘±

√
p4𝑐4∕𝑘2 + 4(p2𝑐2 +𝑚2𝑐4)

2
. (10)

In the (p2𝑐2∕𝑚2𝑐4) ≪ 1 limit, we have

𝐸 ≃
p2𝑐2

2𝑘
±𝑚𝑐2(1 +

p2

2𝑚2𝑐2
). (11)

The positive sign corresponds to the classical nonrelativistic limit

𝐸 =𝑚𝑐2 +
p2

2𝑚+ , (12)

in which we have assumed

𝑚+ = 𝑚

1 + 𝑚𝑐2

𝑘

. (13)

Thus, we find that the particle’s inertial mass has been modified by the 
amount of 𝑚𝑐2∕𝑘, but the particle’s rest mass remains unmodified. By 
inertial mass, we mean the mass which appears in the denominator of 
p2∕2𝑚+. Also, by defining

𝑚− = 𝑚
(14)
1 − 𝑚𝑐2

𝑘
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we can interpret the negative sign solution as an antiparticle

𝐸 = −𝑚𝑐2 −
p2

2𝑚− , (15)

moving in the opposite direction of time with a modified inertial mass 
𝑚−.

Difference between 𝑚+ and 𝑚− in the first order of approximation is|𝑚+ −𝑚−|
𝑚+ ≃ 2𝑚

𝑘
. (16)

For the electron and positron this fraction will be

𝑚𝑒+ −𝑚𝑒−

𝑚𝑒−
≃

2𝑚𝑒−

𝑘
≈ 10−22. (17)

Particle Data Group [12] has found

𝑚𝑒+ −𝑚𝑒−

𝑚𝑒−
< 8 × 10−8, (18)

for this mass difference. The smallness of this number shows that quan-
tum gravity effects are very tiny.

From the mass difference between electron and positron Eq. (17), 
we can obtain a bound on the photon mass as

𝑚2
𝛾 =𝐷

𝛼

𝜋
Δ𝑚2 ⇒𝑚𝛾 = 2.5 × 10−18𝑒𝑉 , (19)

where 𝛼 is the fine structure constant and 𝐷 is a constant of the order 
of unity [13].

Also, by using of this difference Eq. (17) we can also put a lower 
bound [14] on the parameter k from Kaon physics

𝑘 > 1.1 × 1018 GeV. (20)

The value of this parameter should be equal to the Planck energy, but 
it can, in principle be different from this value.

We can calculate the nonrelativistic limit of the velocity of a particle. 
The group velocity is

v𝑔 =
𝜕𝐸

𝜕p
≃

p

𝑚+ , (21)

and the particle velocity is

v𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =
p𝑐2

𝐸
≃

p

𝑚
. (22)

In the ordinary special relativity we have the same value of p∕𝑚 for the 
group velocity v𝑔 and the particle velocity v𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. Here, we showed 
that the group velocity differ from the special relativistic value, but the 
particle velocity is the same as in the special relativity. In the nonrel-
ativistic limit of MS DSR, the situation for velocities is inverse to our 
case and we have v𝑔 ≃ p∕𝑚 and v𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ≃ p∕𝑚+ [6].

3.1. Comparison with the nonrelativistic limit of the MS DSR

We can compare the nonrelativistic limit of the Amelino-Camelia 
DSR with the nonrelativistic limit of the MS DSR. In MS DSR, the mod-
ified dispersion relation is

𝐸2 − p2𝑐2

1 −𝐸2∕𝑘2
=𝑚2𝑐4. (23)

M. Coraddu and S. Mignemi [6] have reached to the modified relation

𝐸 =𝑚+𝑐2 +
p2

2𝑚
, (24)

instead of Eq. (12) in which 𝑚+ has the same value with Eq. (13). In the 
MS DSR case, the particle’s rest mass is modified, and the inertial mass 
remains unmodified. Thus, we have an interesting result: the nonrela-
tivistic limit of Magueijo-Smolin DSR is reciprocal to the nonrelativistic 
3

limit of Amelino-Camelia DSR.
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We summarize the comparison of the nonrelativistic limit of 
Amelino-Camelia and MS doubly special relativity in the following ta-
ble.

Amelino-Camelia DSR Magueijo-Smolin DSR

𝐸 =𝑚𝑐2 + p2∕2𝑚+ 𝐸 =𝑚+𝑐2 + p2∕2𝑚
v𝑔 = p∕𝑚+ v𝑔 = p∕𝑚
v𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = p∕𝑚 v𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = p∕𝑚+

3.2. Amelino-Camelia and MS DSR theories in one DSR

A general DSR can contain the Amelino-Camelia and MS DSR theo-
ries in one DSR. This goal can be reachable at least in the first order of 
approximation of the Planck length. We have obtained a general finite 
boost for the DSR in the first order of the Planck length [15]. In this 
DSR, dispersion relation is

𝐸2 − p2 − 2𝛼
𝑘
𝐸3 + 2𝛽

𝑘
𝐸p2 =𝑚2, (25)

in which 𝛼 and 𝛽 are free parameters, and in general are different.
The nonrelativistic limit of this dispersion relation for the particle 

will be

𝐸 =𝑚+
𝑟𝑒𝑠𝑡𝑐

2 +
p2

2𝑚+
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

, (26)

and the rest and inertial masses 𝑚+
𝑟𝑒𝑠𝑡 and 𝑚+

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
are depended to the 

𝛼 and 𝛽 parameters. In this DSR, the two rest and inertial masses have 
been modified.

3.3. CPT violation and mass splitting between particle and antiparticle

Different inertial masses 𝑚+ and 𝑚− in the equations (13) and (14)
leads to the violation of the CPT invariance. Experimental tests of the 
CPT usually measure the mass differences of particles and antiparticles. 
However, interpreting the inertial mass as the mass of an elementary 
particle may have some difficulties, in principle, modification of mass-
shell relation in Eq. (9) can be interpreted as CPT violation.

CPT violation is a necessary but not sufficient condition for the 
particle-antiparticle mass splitting. In a Lorentz invariant quantum field 
theory, CPT-violating interaction alone does not split the masses of a 
particle and antiparticle but breaks only the equality of lifetimes, mag-
netic moments, and cross sections [16].

Two necessary conditions to break the CPT theorem are [17]:
1. Non-local theory,
2. Lorentz symmetry breaking
The DSR theories are in some sense non-local theories, and we ex-

pect CPT violation in these theories. For clarifying effects of the discrete 
transformations of parity, charge conjugation and time reversal in the 
DSR theories we take for example a composition of two four-momenta 
as

(𝑝⊕ 𝑞)𝑖 = 𝑓𝑝𝑖 + 𝑔𝑞𝑖 + ℎ𝜖𝑖𝑗𝑘𝑝𝑗𝑞𝑘 (27)

where 𝑓 , 𝑔, ℎ are functions depending on the four moment and the 
Planck energy [18]. The parity symmetry is lost if h is nonzero, and the 
CPT invariance will be dependent on the 𝑓 , 𝑔, ℎ functions. Thus, the 
DSR theories involves a violation of CPT.

For investigating discrete and continuous aspects of the groups and 
their effects on the CPT violation we should re-analyse all of our discus-
sions. However, we know that the Lorentz group is a continuous group, 
we can construct a discrete Lorentz group for which CPT symmetry can 

be broken differently [19].
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4. Nonrelativistic limits of the modified Klein-Gordon and Dirac 
equations

We now consider the nonrelativistic limit of modified Klein-Gordon 
and Dirac equations. The nonrelativistic limit of the ordinary Klein-
Gordon and Dirac equations is given in many relativistic quantum me-
chanics and quantum field theory books [5].

4.1. Ordinary Klein-Gordon equation

The ordinary Klein-Gordon equation reads

( 1
𝑐2

𝜕2

𝜕𝑡2
− ∇⃗2 +𝑚2𝑐2)Ψ(�⃗�, 𝑡) = 0. (28)

We define new operator 𝑀 =
√

𝑚2𝑐4 − 𝑐2∇⃗2 and rewrite the Klein-
Gordon equation as

− 𝜕2

𝜕𝑡2
Ψ =𝑀2Ψ. (29)

By introducing new fields

𝜙± = Ψ± 𝑖𝑀−1 𝜕Ψ
𝜕𝑡

, (30)

we can convert the Klein-Gordon equation to the first-order equations

𝑖
𝜕𝜙±

𝜕𝑡
= ±𝑀𝜙±. (31)

In the non-relativistic limit (p2𝑐2∕𝑚2𝑐4) ≪ 1 or large 𝑐 we have

𝑀 ≃𝑚𝑐2 − 1
2𝑚

∇⃗2. (32)

For subtracting the rest of the mass-energy, we transform to the fields 
�̃�± = exp (±𝑖𝑚𝑐2𝑡)𝜙± and we reach to the Schrödinger equations

𝑖
𝜕�̃�±

𝜕𝑡
= ∓ 1

2𝑚
∇⃗2�̃�±. (33)

The positive sign in the �̃�± corresponds to the particle solution and the 
negative sign to the antiparticle case [6].

4.2. Modified Klein-Gordon equation

Modified Klein-Gordon equation (4) in O(𝐸3∕𝑘3) approximation is

− 1
𝑐2

𝜕2

𝜕𝑡2
Φ + 𝑖

𝑘

𝜕

𝜕𝑡
∇⃗2Φ − (𝑚2𝑐2 − ∇⃗2)Φ = 0. (34)

We can rewrite this equation as

− 𝜕2

𝜕𝑡2
Φ =

[
𝑚2𝑐4 −

(
1 + 𝑖

𝑘

𝜕

𝜕𝑡

)
∇⃗2

]
Φ. (35)

By defining a new operator

�̃� =
√

𝑚2𝑐4 − 𝑐2
(
1 + 𝑖

𝑘

𝜕

𝜕𝑡

)
∇⃗2, (36)

and introducing new fields

𝜓± = Φ± 𝑖�̃�−1 𝜕Φ
𝜕𝑡

, (37)

we can convert the modified Klein-Gordon equation to the first-order 
equations

𝑖
𝜕𝜓±

𝜕𝑡
= ±�̃�𝜓±. (38)

In the non-relativistic limit (p2𝑐2∕𝑚2𝑐4) ≪ 1 or large 𝑐 we have

�̃� ≃𝑚𝑐2 − 1
2𝑚

(
1 + 𝑖

𝑘

𝜕

𝜕𝑡

)
∇⃗2. (39)

By transforming to the fields �̃�± = 𝑒±𝑖𝑚𝑐
2𝑡𝜓±, we reach to the 
4

Schrödinger equations
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𝑖
𝜕�̃�±

𝜕𝑡
= ∓ 1

2𝑚± ∇⃗
2�̃�±. (40)

As expected, the particle and the antiparticle states are satisfied in the 
Schrödinger equations with the modified inertial masses 𝑚+ and 𝑚−.

4.3. Dirac equation

Ordinary Dirac Equation is

(𝑖𝛾𝜇 𝜕

𝜕𝑥𝜇
−𝑚)𝜓 = 0. (41)

Defining two-component form as

𝜓(�⃗�, 𝑡) =
(
𝜒

𝜂

)
, (42)

and using the standard form of 𝛾 matrices

𝛾0 =
(
1 0
0 −1

)
, 𝛾𝑖 =

(
0 𝜎𝑖
−𝜎𝑖 0

)
, (43)

we reach to the coupled equations{
(𝐸 −𝑚)𝜒 = �⃗�.𝑝 𝜂

(𝐸 +𝑚)𝜂 = �⃗�.𝑝𝜒
(44)

Note that 𝑝𝜇 = (𝐸, p), 𝑝𝜇 = (𝐸, −p) and 𝜂𝜇𝜈 = diag(1, −1, −1, −1).
In the nonrelativistic limit for the particle solution, we take 𝐸 ≃ 𝑚

and (p2𝑐2∕𝑚2𝑐4) ≪ 1 which leads to 𝜂 ≃ (�⃗�.𝑝∕2𝑚)𝜒 . Substituting this 
in Eq. (44) and introducing 𝜒 ′ = 𝑒+𝑖𝑚𝑡𝜒 , we reach to the following 
Schrödinger equation

𝑖
𝜕𝜒 ′

𝜕𝑡
≃ − 1

2𝑚
∇⃗,2𝜒 ′. (45)

For the antiparticle solution in the nonrelativistic limit we take 𝐸 ≃ −𝑚. 
Doing as in particle case and introducing 𝜂′ = 𝑒−𝑖𝑚𝑡𝜂, we can also show 
that 𝜂′ satisfies in a similar Schrödinger equation

𝑖
𝜕𝜂′

𝜕𝑡
≃ + 1

2𝑚
∇⃗2𝜂′. (46)

4.4. Modified Dirac equation

Modified Dirac equation Eq. (5) in the O(𝐸2∕𝑘2) approximation is[
𝑖𝛾0

1
𝑐

𝜕

𝜕𝑡
+ 𝑖𝛾𝑖

𝜕

𝜕𝑥𝑖

(
1 + 𝑖

2𝑘
𝜕

𝜕𝑡

)
−𝑚

]
�̃� = 0. (47)

In this case, we obtain the two-component by introducing

�̃�(�⃗�, 𝑡) =
(
𝜒

�̃�

)
. (48)

Doing as in the unmodified case, we reach the following coupled equa-
tions{

[𝐸 −𝑚] 𝜒 = (1 + 𝐸

2𝑘 )�⃗�.𝑝 �̃�,

[𝐸 +𝑚] �̃� = (1 + 𝐸

2𝑘 )�⃗�.𝑝𝜒.
(49)

In the nonrelativistic limit (p2𝑐2∕𝑚2𝑐4) ≪ 1, we take 𝐸 ≃ 𝑚 for the 
particle solution, and we have

�̃� ≃ (1 + 𝐸

2𝑘
) �⃗�.𝑝
2𝑚

𝜒. (50)

By introducing 𝜒 ′ = exp (+𝑖𝑚𝑐2𝑡)𝜒 , we reach to the following Schrödinger
equation

𝑖
𝜕𝜒 ′

𝜕𝑡
≃ − 1

2𝑚+ ∇⃗
2𝜒 ′. (51)

We note that 𝜒 ′ satisfies in the Schrödinger equation with the modified 
inertial mass 𝑚+. Also, for the antiparticle we take 𝐸 ≃ −𝑚 and we have

𝐸 �⃗�.𝑝

𝜒 ≃ −(1 +

2𝑘
)
2𝑚

�̃�. (52)
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If we define 𝜂′ = exp(−𝑖𝑚𝑐2𝑡)�̃� we can show that 𝜂′ satisfies in a similar 
Schrödinger equation

𝑖
𝜕𝜂′

𝜕𝑡
≃ + 1

2𝑚− ∇⃗
2𝜂′, (53)

in which the modified mass 𝑚− is given by Eq. (14).

5. Conclusion and some remarks

In this paper, we showed that the nonrelativistic limit of Amelino-
Camelia DSR leads to the particle and the antiparticle with different 
inertial masses 𝑚+ and 𝑚− but the same rest mass. We interpreted this 
difference as a sign of the CPT violation. Also, we studied the corre-
sponding modified Klein-Gordon and Dirac equations, which reproduce 
the Schrödinger equations in the nonrelativistic limit with these modi-
fied masses for the particle and the antiparticle.

The ratio |𝑚+ − 𝑚−|∕𝑚 is equal to 2𝑚𝑐2∕𝑘. We used this ratio to 
find an upper limit on the photon mass. Also, we have obtained a lower 
bound on the amount of 𝑘. In DSR theories 𝑘 is a fundamental constant 
with dimension of energy and can be different form the Planck energy 
𝐸𝑝 =

√
ℏ𝑐5∕𝐺 ≃ 1019.

We compared the nonrelativistic limit of Amelino-Camelia and 
Magueijo-Smolin DSRs. In this limit, we reached the 𝐸 =𝑚𝑐2 +p2∕2𝑚+

for Amelino-Camelia DSR, also we have 𝐸 =𝑚+𝑐2 + p2∕2𝑚 for MS DSR 
[6]. These findings are natural results of the dispersion relations. We 
put the O(𝐸3∕𝑘3) approximation of Amelino-Camelia dispersion rela-
tion Eq. (2) and the MS dispersion relation [6] together:⎧⎪⎨⎪⎩
𝐸2 = p2𝑐2 +𝑚2𝑐4(1 −𝐸∕𝑘)2 Magueijo-Smolin

𝐸2 ≃ p2𝑐2(1 +𝐸∕𝑘) +𝑚2𝑐4 Amelino-Camelia
(54)

Then, observing their similarities and differences is easy, and interpret-
ing the nonrelativistic limit of MS DSR as modifying rest mass and 
Amelino-Camelia DSR as modifying momentum is not difficult. Thus, 
in the nonrelativistic limit, the MS and Amelino-Camelia DRS theories 
seem to be complementary to each other.
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