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Abstract In this work we examine the recently proposed
phenomenological emergent dark energy (PEDE) model by
[1], using the latest observational data in both expansion
and perturbation levels. Applying the statistical Bayesian
evidence as well as the AIC and BIC information criteria,
we compare the PEDE model with the concordance �CDM
model in both flat and non-flat universes. We combine the
observational datasets as (i) expansion data (except CMB),
(ii) expansion data (including CMB) and (iii) expansion data
jointed to the growth rate dataset. Our statistical results show
that the flat- �CDM model is still the best model. In the case
of expansion data (including CMB), we observe that the flat-
PEDE model is well consistent with observations as well as
the concordance �CDM universe. While in the cases of (i)
and (iii), the PEDE models in both of the flat and non-flat
geometries are not favored. In particular, we see that in the
perturbation level the PEDE model can not fit the observa-
tions as equally as standard �CDM cosmology. As the ability
of the model, we show that the PEDE models can alleviate
the tension of Hubble constant value appearing between the
local observations and Planck inferred estimation in standard
cosmology.

1 Introduction

Since the discovery of cosmic accelerated expansion, a flat
Friedman–Roberson–Walker universe dominated by cold
dark matter (CDM) and cosmological constant (�) has been
introduced as the preferred model by cosmologists. This
model is successful to explain many of cosmic observations
including those of the cosmic microwave background (CMB)
[2,3], Type-Ia Supernovae (SnIa) [4,5], baryon acoustic
oscillations (BAO) [6–8] and H(z) observations [9]. How-
ever, the �CDM model suffers from some theoretical and
observational problems. Theoretical problems include the
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fine-tuning (i.e., the fact that the value of this cosmological
constant inferred from observations is extremely small com-
pared with the energy scales of high energy physics (Planck,
grand unified theory, strong and even electroweak scales) and
cosmic coincidence (why this kind of exotic matter starts
to dominate today) issues [10–13]. From the observational
point of view, the �CDM cosmology plagued with some
significant tensions in estimation of some key cosmologi-
cal parameters. In particular, there is a statistically signif-
icant disagreement between the value of Hubble constant
measured by the classical distance ladder and that of the
Planck CMB data [14]. Quantitatively speaking, we have
H0 = 74.03 ± 1.42 km/s/Mpc from the Cepheid-calibrated
SnIa [15], while the �CDM cosmology deduced from Planck
CMB data predicts H0 = 67.4±0.5 km/s/Mpc [16]. Also, the
Lyman-α forest measurement of the Baryon Acoustic Oscil-
lations obtained by BOSS in [17], prefers a smaller value
of the matter density parameter (�m) compared to the value
obtained by CMB data. Another tension concerns the dis-
crepancy between large scale structure formation data [18],
and too large value of σ8 predicted by the �CDM. The other
observational problem regarding to �CDM model is the high
tensions between cosmographic parameters of �CDM model
and those of obtained from low-redshift observations [19,20].

In order to overcome or at least alleviate the above prob-
lems, different kinds of dynamical dark energy (DE) mod-
els have been proposed. Many of review articles with com-
prehensive discussion on different aspects of various DE
models are there in literature. Quintessence [21], ghost
[22–24], holographic [25], k-essence [26], phantom [27],
tachyon [28], dilaton [29], quintom [30] and dynamical vac-
uum energy [31] are examples of such dynamical DE mod-
els. Moreover, many of these models have been compared
with various observational data obtained from different cos-
mic surveys. In this procedure some of DE models have
been ruled out and many of them achieve good consistency
with observations [see also 32–36]. Recently, a radical phe-
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nomenologically emergent DE model (PEDE) with symmet-
rical behavior around the current time has been proposed in
[1]. For this model at higher redshifts, DE has no effective
role, while it emerges at later times. The interesting feature
regarding PEDE is that, this model has no degree of freedom,
like the concordance�CDM model. In [1], authors by assum-
ing hard cut priors from local measurement of the Hubble
constant ,compared the model with combined sets of obser-
vations at both low and high redshifts, include SnIa data, BAO
data and CMB measurement. Their investigation showed that
the PEDE model statistically is better than the �CDM cos-
mology. They concluded that the PEDE model can signifi-
cantly reduce the tensions in estimation of the cosmological
parameters, although some level of tension remains, in par-
ticular in estimation of the matter density. It can be useful
to confront the PEDE model to other cosmological obser-
vations using different statistical methods. So, in this work
we focus on the PEDE model and confront it with combina-
tion of different observational data sets using the Bayesian
evidence method as a most useful statistical analysis in mod-
ern cosmology. We will compare the PEDE model with the
standard �CDM cosmology in the light of latest observa-
tional data. We organize the paper as follows. Firstly, we
briefly introduce the PEDE model in Sect. 2. In Sect. 3, we
present the cosmological data as well as the Bayesian evi-
dence analysis used in this work. In Sect. 4, we present the
main results of our work and provide the observational con-
straints on the model parameters. Finally, we conclude in
Sect. 5.

2 Phenomenological emergent dark energy versus
�CDM

Here, we introduce the PEDE model in standard cosmology
and explain the difference between the behaviors of PEDE
with concordance �CDM model in both background and
cluster levels. In the context of standard gravity, adopting the
Friedmann–Lemaître–Robertson–Walker (FLRW) metric, a
general non-flat, isotropic and homogeneous universe can be
explained by:

H2 + K

a2 = 8πG

3
(ρr + ρm + ρd)

= 8πG

3

[
ρr0(1+z)4+ρm0(1+z)3+ρd0 f (z)

]
.

(1)

where subscript “0” indicates present values of parameters
and f (z) specifies the redshift evolution of ρd. Using the
dimensionless cosmological parameter �i = 8πGρi/3H2,
we can rewrite Eq. (1) in the following form:

Fig. 1 The evolution of d�d/da, the rate of changes of �d, as a func-
tion of the scale factor a. We set �m,0 = 0.3

H2(z)

H2
0

= �r0(1 + z)4 + �m0(1 + z)3 − �K0(1 + z)2

+�d0 f (z), (2)

where �K0 = K/H2
0 is the dimensionless curvature param-

eter. In the case of flat universe, Eq. (2) reduces to:

H2(z)

H2
0

) = �r0(1 + z)4 + �m0(1 + z)3 + (1 − �m0) f (z).

(3)

Setting f (z) = 1 in the Eqs. (2) and (3), respectively, leads
to non-flat and flat �CDM model. In PEDE cosmology, the
density of DE reads [1]:

�d(z) = �d0
[
1 − tanh(log(1 + z))

]
. (4)

By using Eq. (4), the Hubble expansion in the case of PEDE
model reads

H2(z)

H2
0

=
√

�r0(1+z)4+�m0(1+z)3−�K0(1+z)2+�d(z) .

(5)

Now, we compare the PEDE model with �CDM one from
the view point of coincidence problem. Based on the �CDM
cosmology, at the early times, DE is negligible in comparison
to other components, while at later times matter and radiation
are negligible. The transition from matter to DE domination
is very tight and sharp in �CDM. In the case of PEDE model,
as an alternative of �CDM, we can alleviate the coincidence
problem. To do this, we perform a comparison between the
derivative of �d from Eq. (4) and that of the standard �CDM
model. In Fig. 1, we plot the evolution of the derivative of
�d with respect to scale factor a (d�d/da) as a function of
log10 a. We see that the behavior of d�d/da for PEDE model
is completely different from that of the �CDM model. As
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Fig. 2 The redshift evolution of H(z)/(1 + z) for PEDE and �CDM
and related observational data points. We set �m,0 and H0 upon on their
best values in last columns of Tables 2 and 3, respectively, for PEDE
and �CDM cosmologies

we know, for both of the models, the energy density of DE at
early times is negligible, while at later times it is dominated.
In �CDM model, �d changes very slowly all over the time,
except at a brief epoch around present time, a ∼ 1. But in
PEDE model we observe a completely different behavior. �d

in PEDE model changes very faster than energy density of
cosmological constant at early times. It can also change in
a wide range of scale factor and therefore one can say that
PEDE model, at least, alleviates the coincidence problem.

In order to obtain the equation of state (EoS) parameter
for PEDE model, we start with the conservation equation of
DE as follows

ρ̇d + 3H(1 + wd)ρd = 0 , (6)

where over-dot indicates the derivative with respect to cosmic
time t . Combining Eqs. (1), (4) and (6), the EoS parameter
of PEDE model is obtained as follows:

wd(z) = −1 + 1 + z

3

d ln �d

dz
. (7)

By using Eq. (4), the above equation is written as:

wd(z) = −1 − 1

3 ln 10

[
1 + tanh(log10(1 + z))

]
. (8)

From Eq. (8), we can see that in PEDE model, the EoS of
DE evolves in phantom regime all over the time. It changes

from wd = −1 − 2

3 ln 10
at high redshifts to its upper value,

wd = −1 at z = −1 in the far future.
In order to study the evolution of PEDE model at back-

ground level, we have plotted the evolution of H(z)/(1 + z)
versus redshift in Fig. 2. Here we fix the free parameters
�m0 and h based on the best fit values in Tables 2 and 3 for
flat PEDE and �CDM models, respectively. We also show
some relevant observational data points including BAO mea-

Fig. 3 The redshift evolution of f σ8 for PEDE and �CDM and the
observational data points. We set the free parameters upon their best fit
values from the last columns of Tables 2 and 3

surements from BOSS DR12 [37], data point from BOSS
DR14 quasars [38] and BAO measurements from BOSS Ly-
α [39,40]. It is easy to see that the PEDE model and �CDM
cosmology have the same behavior in redshift evolution of
Hubble parameter.

In next step, we investigate the PEDE model in pertur-
bation level. DE not only accelerates the expansion of the
universe but also changes the growth rate of the large scale
structure formation in the universe. Hence, studying DE in
perturbation level can help us to distinguish different DE
models. For complete review and details, we refer the reader
to [33–35]. Here, in order to improve our knowledge about
PEDE model, we investigate the model in perturbation level.
In this way, we compute the growth rate function ( f σ8) as an
observable parameter for both of PEDE and �CDM models.
The equations for the evolution of growth rate function f σ8

can be fond in [32]. In Fig. 3, we plot the redshift evolu-
tion of f (z)σ8 for both flat PEDE and �CDM models. The
data showed in the figure are the latest observational f σ8

data reported in next section. Note that the free parameters
of models are fixed based on the best fit values reported in
Tables 2 and 3 for flat PEDE and �CDM models, respec-
tively. In overall, one can see that the PEDE model can not
fit the observational data in cluster scales as much as the stan-
dard �CDM model. Especially, the predicted f σ8 for PEDE
model deviates from �CDM scenario at higher redshifts. In
next section, using the statistical Bayesian evidence tool, we
compare the PEDE and �CDM models with observational
data and discuss which of them is in better agreement with
observations technically.
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3 Observational data and Bayesian inference

In contrast to the maximum likelihood estimator, Bayesian
inference not only determines the free parameters but also
provides a direct way to compare different models. In this
section, we briefly review basic formalism of Bayesian infer-
ence and after introducing our observational data, we com-
pute the Bayesian evidence in different scenarios which we
consider in this paper.

The Bayes theorem is given by a simple relation:

p(A | B) = p(B | A)p(A)

p(B)
, (9)

considering A as the free parameters (�) and B as data set
(D), we have

p(� | D,M) = p(D | �,M)p(� | M)

p(D | M)
, (10)

where the model M has been shown explicitly. This rela-
tion simply tells us having the likelihood (p(D | �)) and
prior (p(�)), we can compute the posterior distribution on
� (p(� | D)). The denominator in Eq. (10) is given by:

ε = p(D | M) =
∫

p(� | M)p(D | �,M)d�, (11)

and called the Bayesian evidence or marginal likelihood.
Although this might has an analytic solution for a low
dimensional cases, for a high denominational problem it is
intractable analytically and one has to use numerical meth-
ods to evaluate the integral. In this paper, we use the sequen-
tial Monte Carlo (SMC) algorithm to sample the posterior.
Notice that the Bayesian evidence is a by-product of the SMC
method.

The evidence is a crucial quantity for model selection in
Bayesian framework and in comparison between two models.
The model with higher evidence is favored over another one.
Moreover, the Bayesian evidence for model selection has
been widely used in cosmology [41–46]. In this paper, we use
the Jeffreys’ scale [47] to measure the significant difference
between two models. To do this, having two models M1 and
M2 the Jeffreys scale with respect of 
 ln ε = ln εM1 −ln εM2

is as the following: [48]:

• for 
 ln ε < 1.1 there is a weak evidence against model
M2.

• for 1.1 < 
 ln ε < 3 there is a definite evidence against
model M2.

• and finally for 3 < 
 ln ε there is a strong evidence
against model M2.

In addition to the evidence, there are also other measure-
ments to compare models. Among these quantities, we com-
pute the Akaike information (AIC) [49] and Bayesian infor-

Table 1 The ranges of the model parameters which we consider in this
work as the prior. We note that we assumed uniform priors for all of
the model parameters. Notice that �dm0 and �bm0 represent the present
values of energy densities for dark matter and baryons, respectively.
The energy density of total non-relativistic matter is sum of dark matter
and baryons as �m = �dm + �bm

Parameter Prior

�dm0 0.15–0.35

�bm0 0.03–0.06

�d0 0.05–1.20 (In the case of non-flat universe)

h 0.6–0.8

σ8 0.6–1.2

mation criterion (BIC) [50]. These measurements are given
by:

AIC = χ2
min + 2k, (12)

BIC = χ2
min + k ln N . (13)

where k (N ) is the number of fitting parameters( number of
data points).

Since to compute the Bayesian evidence the prior is rele-
vant, we show the prior for each of model parameter in Table
1 for both flat and non-flat universes. Notice that �m0 and
�d0 in Table 1 represent the current values of non-relativistic
matter and DE, respectively. In a general non-flat universe
�d = 1 − �m − �K and in a flat universe, it reduces to
�d = 1 − �m.

Before going through the details of our analysis, in the
following, we first introduce our observational data set. We
use the following background and perturbation cosmological
data.

• CMB distance prior from final Planck 2018 release [51].
• Latest measurements from cosmic chronometers for

H(z) from [52].
• The SnIa sample from the Pantheon sample [53].
• 5 measurements of DV (z) from WiggleZ [54] (three data)

,6df Galaxy [55] and MGS [56].
• BAO signal measurements with their full covariance

matrix from BOSS DR12 [37].
• Radial and transverse BAO measurements from Lyα-

Forests SDSS DR12 [39].
• radial and transverse BAO measurements from quasar

sample from BOSS DR14 [57].
• Measurement of the angular diameter distance from DES

Collaboration [58].
• Local Measurement of the Hubble constant H0 [15].
• Measurements on the baryons from Big Bang nucleosyn-

thesis (BBN) as 100�bm0h2 = 2.235 [59].
• The f σ8 data extracted from RSD data including: a data

point from 2dFGRS [60], four data points from Wig-
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Table 2 The best fit value of
free parameters and 1σ

uncertainties using different data
sets for PEDE model in flat
universe

Parameter 68% limits

Without CMB With CMB With f σ8

�m0 0.2909 ± 0.0086 0.2860 ± 0.0050 0.2872 ± 0.0051

h 0.7087 ± 0.0065 0.7137 ± 0.0045 0.7126 ± 0.0045

σ8 – – 0.867 ± 0.030

gleZ [61], one data point from 6dFGRS [62], one data
point from SDSS Main galaxy sample [63], one data point
from 2MTF [64], two data points from BOSS DR12 [65],
one data point from FastSound [66] and finally two data
points from eBOSS DR14 [67].

We note that some data points of the H(z) measurements
reported in [52] are obtained from the same BAO obser-
vations. Notice that, because of their overlap to BAO data
points, we can not use them beside BAO data. Thus we
remove these H(z) data points from our data samples. Hav-
ing the mentioned statistical tools, we consider three different
steps. First we use all of background datasets except CMB
data and find the posterior distribution of parameters through
the SMC algorithm. Then, we add the CMB data to inves-
tigate the effect of high redshift data and finally we use all
background data jointed to the growth rate data. Concerning
the growth rate data, we should note that the cosmic surveys
do not measure distances to galaxies directly. Hence, one
should assume a specific cosmological model. The observa-
tional growth rate datapoints are reported in the context of
flat �CDM cosmology. To resolve this model dependence,
we should use a correction before applying these data points
in our analysis (see [18,68–70], for more details). The cor-
rection factor can be obtained by calculating the ratio of
H(z)DA(z) of the cosmology used to that of the standard
flat �CDM cosmology [18]. Although this correction itself
is quite small, we implement it as follows. First, we obtain
the correction factor (CF) as the ratio of the product of the
H(z) and the angular diameter distance dA(z) for the model
at hand to that of the fiducial cosmology:

CF(z) = H(z)dA(z)

H f id(z)d f id
A (z)

. (14)

where the values of the fiducial cosmology can be found in
data point references. Now, using correction factor CF and
multiplying it on the theoretical prediction of f (z)σ8(z), we
can be sure about the independency of our datapoints from
the cosmological models. We run our code several times with
different initial sample points to check the stability of both
our results and evidences in each case. In the next section,
we will present the results of our analysis.

4 Results and discussion

In the case of flat- PEDE model, we show the best values of
free parameters alongside their 1σ uncertainties in Table 2.
Here, we have used three different combinations of observa-
tional data sets. In the first column, we combine SnIa, BAO,
H(z), BBN, and local H0 data points (background data with-
out CMB), while in the second column we add CMB data to
the previous ones (background data with CMB). Finally in
the third column, we joint the growth rate data to all back-
ground data. In the same way, we repeat our analysis for flat-
�CDM model and report the results in Table 3.

We can see from Tables 2 and 3, different combinations
of datasets yield different values of best fit parameters. How-
ever, the differences are up to about 1σ uncertainty of the best
fit parameters. From the second rows of tables, we observe
that the best fit value of H0 = 100h reported for PEDE
model is higher than that of the concordance model in the
light of alleviating the tension between the Planck inferred
value H0 = 67.4 ± 0.5 km/s/Mpc [16] and the local mea-
surement value H0 = 74.03 ± 1.42 km/s/Mpc by Riess et al.
[15]. Quantitatively speaking, our results for flat- PEDE uni-
verse show roughly 2–3σ decrement of tension for different
combinations of datasets in Table 2. Notice that the tension
between flat- �CDM model and the local measurement from
Riess et al. [15] is approximately 4σ for all combinations of
datasets in Table 3.

Now we present the results of our analysis for non-flat
PEDE and �CDM model models, respectively, in Tables 4
and 5. Same as the flat geometry, in the case of non-flat PEDE
model, we obtain the larger value of H0 compared to non-flat
�CDM model. Hence the tension of H0 for non-flat PEDE
model is lower than the non-flat �CDM universe. Notice that
our results for σ8 quantity indicate that the present value of σ8

for both flat and non-flat PEDE model is roughly 1.1σ larger
than that of the �CDM model. Hence comparing the results
of low-redshift observations with Planck inferred value of
σ8, one can say the concordance �CDM model is in better
situation than the PEDE models [for more details, see Tables
2, 3, 4, 5].

Concerning the curvature parameter of the universe, �k0,
for the models under study we get �k0 = 0.0024+0.0015

−0.0015
for non-flat �CDM obtained from the analysis based on
all datasets. For non-flat PEDE model we have �k0 =
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Table 3 The best fit value of
free parameters and 1σ

uncertainties using different data
sets for �CDM model in flat
universe

Parameter 68% limits

Without CMB With CMB With f σ8

�m0 0.2883 ± 0.0088 0.3019 ± 0.0051 0.3025 ± 0.0052

h 0.6875 ± 0.0063 0.6851 ± 0.0040 0.6846 ± 0.0040

σ8 – – 0.823 ± 0.028

Table 4 The best fit values of
free parameters and 1σ

uncertainties using different data
sets for PEDE model in non-flat
universe

Parameter 68% limits

Without CMB With CMB With f σ8

�m0 0.2864 ± 0.0097 0.2874 ± 0.0052 0.2890 ± 0.0051

�d0 0.680 ± 0.028 0.7149 ± 0.0050 0.7133 ± 0.0050

h 0.700 ± 0.010 0.7082 ± 0.0057 0.7069 ± 0.0056

σ8 – – 0.865 ± 0.030

Table 5 The best fit values of
free parameters and 1σ

uncertainties using different data
sets for �CDM model in
non-flat universe

Parameter 68% limits

Without CMB With CMB With f σ8

�m0 0.2981 ± 0.0098 0.2997 ± 0.0053 0.3004 ± 0.0052

�d0 0.788 ± 0.032 0.6978 ± 0.0052 0.6972 ± 0.0051

h 0.707 ± 0.010 0.6910 ± 0.0054 0.6902 ± 0.0054

σ8 – – 0.825 ± 0.028

−0.0023+0.0014
−0.0014. While a spatially flat universe is strongly

supported by different cosmological probes, we can see that
the non-flat PEDE model meets �k0 = 0 at 1.6σ . In the case
of non-flat �CDM, we obtain approximately the same value
of tension with flat universe. In this case we have �k0 = 0
at ∼ 1.6σ .

Finally, we compare different models in each geometry
studied in our analysis. Notice that both of PEDE and �CDM
models have the same number of free parameters in the same
geometry and therefore for comparisons between models
assuming the χ2

min values is sufficient. However, when we
compare the flat and non-flat cosmologies, because of dif-
ferent numbers of free parameters, we should compute the
information criteria (AIC and BIC) beside the Baysian evi-
dence parameter. The results of our analysis are showed in
Table 6. Using the value of AIC criteria, we can select the
best model-data fit as follows. For the combination of back-
ground datasets without CMB, the flat-�CDM has the min-
imum value of AIC number. In this case we can find con-
sistency between flat and non-flat �CDM models because
of 
AIC < 2. While for PEDE model in both of flat and
non-flat universes, 
AIC > 4 indicating a positive evidence
against these models. Adding the CMB data to previous back-
ground datasets, leads to better results for PEDE model. In
this step, the value of 
AIC for both flat-PEDE and non-
flat �CDM models are smaller than 2. Thus we can say that

the flat- PEDE and concordance flat-� CDM and non-flat
�CDM scenarios are consistent with each other. On the other
hand, we have 
AIC > 2 for non-flat PEDE model, repre-
senting no significant support for this model. Finally in the
case of combinations of all background and growth data, we
get essentially no support (
AIC > 10) for both of flat
and non-flat PEDE models, while we have significant sup-
port to the non-flat �CDM because in this case we obtain

AIC = 0.44.

Using the value of BIC criteria, we present our results
as follows. In the case of the combinations of background
datasets without CMB, we conclude that the flat- �CDM
model is the best model. There is a positive evidence against
non-flat �CDM models and strong evidence (6 < 
BIC <

10) against both flat-PEDE non-flat PEDE cosmology. In the
case of combined background datasets with CMB data, the
results get better for PEDE cosmology. We see that in the
case of flat-PEDE model 
BIC < 2 meaning that there is a
weak evidence against this model. We also observe a positive
evidence against both the �CDM and PEDE models in non-
flat geometry. Eventually in the case of combined background
datasets with growth rate data, there is a positive and very
strong evidence against non-flat �CDM as well as both flat
and non-flat PEDE scenarios.

Finally, we report the result of Bayesian evidence analy-
sis. In the case of background datasets without CMB, we
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Table 6 The statistical results of the analysis for different cosmologies considered in this work using different data sets

Data Curvature Model χ2
min AIC 
AIC BIC 
BIC ln ε 
 ln ε =

ln ε f lat−�CDM
− ln εModel

Without CMB Flat �CDM 94.02 98.02 0.0 103.0 0.0 −52.48 0.0

PEDE 100.48 104.48 6.46 109.46 6.46 −54.40 1.92

Non-flat �CDM 92.40 98.40 0.38 105.86 2.87 −54.21 1.73

PEDE 98.44 104.44 6.42 111.90 8.91 −56.83 4.35

With CMB Flat �CDM 100.86 104.86 0.0 109.90 0.0 −59.31 0.0

PEDE 102.55 106.55 1.69 111.59 1.69 −59.63 0.32

Non-flat �CDM 99.55 105.55 0.69 113.11 3.21 −65.27 5.96

PEDE 100.93 106.93 2.07 114.49 4.59 −66.27 6.97

With f σ8 Flat �CDM 111.84 117.84 0.0 125.86 0.0 −65.58 0.0

PEDE 123.85 129.85 12.01 137.87 12.01 −71.25 5.66

Non-flat �CDM 110.28 118.28 0.44 128.97 3.11 −71.19 5.61

PEDE 122.33 130.33 12.49 141.02 15.16 −77.17 11.58

have 1.1 < 
 ln ε < 3.0 meaning the definite evidence
against flat- PEDE and non-flat �CDM models. In the case
of non-flat PEDE model, we get 
 ln ε > 3.0 meaning
the strong evidence against the model. In the case of com-
bined background datasets with CMB data, we conclude that
the flat-PEDE model is well consistent with flat �CDM
model (
 ln ε < 1.1). While we obtain the strong evi-
dence against both of the non-flat PEDE and �CDM cos-
mologies. Finally in the case of combined all background
data with growth rate one, we observe the strong evidence
against both flat and non-flat PEDE and also non-flat �CDM
models.

5 Conclusion

In this work, we studied the recent phenomenological emer-
gent dark energy (PEDE) model by [1] using the latest obser-
vational data based on the Bayesian inference analysis. The
datasets that we used in this work are included from back-
ground datasets and growth rate of perturbations from RSD
observations. The background datasets used here are: the
CMB distance prior from final Planck 2018 [51]; SnIa data
from Pantheon sample [53]; some of the latest measurements
from cosmic chronometers for H(z) [52]; measurements of
DV (z) from WiggleZ [54], 6df Galaxy [55], MGS [56]; BAO
measurements from BOSS DR12 [37]; Radial and trans-
verse BAO measurements from Lyα-Forests SDSS DR12
[39]; Radial and transverse BAO measurements from quasar
sample of BOSS DR14 [57]; measurements of the angular
diameter distance from DES collaboration [58]; baryon den-
sity measurements derived from BBN [59]; local measure-
ments on the Hubble constant H0 [15]. The growth rate data

used in our analysis are the f σ8 data extracted from RSD
data from 2dFGRS [60], WiggleZ [61], 6dFGRS [62], SDSS
Main galaxy sample [63], 2MTF [64], BOSS DR12 [65], Fast
Sound [66] and finally eBOSS DR14 observations [67].

One of the important note in the modern cosmology is
determining the spatial curvature of the universe using obser-
vations. As a part of our analysis, we examined the presence
of cosmic curvature and studied the effect of curvature param-
eter on the fitting data. To do this, we assumed the non-flat
universe (by adding a new free parameter) for both of the
models under study. In addition to Bayesian evidence, we
applied the relevant AIC and BIC criteria to compare the
flat and non-flat cosmologies. Although a spatially flat cos-
mology is strongly favored by different cosmological obser-
vations, but some of studies have shown that fitting cosmo-
logical observations to dynamical DE models can satisfy a
non-flat universe [71,72]. So in this work we analyzed the
following cosmological models: (i) The flat-�CDM model,
(ii) Non-flat �CDM model, (iii) The flat-PEDE model, and
(iv) Non-flat PEDE model.
We assumed three different combinations of datasets in our
analysis. Firstly, we used all of background datasets except
CMB one. Secondly, we added the CMB data to investigate
its effect on our results and thirdly we used all background
data combined with the growth rate observations. Our main
conclusions in this work are as follows.

• Tensions of H0 − σ8: our results showed that the PEDE
models can decrease 2 ∼ 3σ of the tension of H0 appear-
ing in concordance �CDM model. However, the PEDE
models can not alleviate the tension of σ8 between low-
redshift observations and Planck inferred value. Concern-
ing the H0 tension, our results obtained based on the dif-
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ferent combinations of datasets are in agreement with
those of [73]. In fact one of the interesting properties of
the PEDE model is that it can alleviate the H0 tension,
without adding any degree of freedom.

• Non-flatness of the universe: The constraint results
showed that a positive �k0 is preferred by non-flat
�CDM model. In this case, because of the large vari-
ance, the flat �CDM is not ruled out to more than 1.6σ

region. For the non-flat PEDE model, our analysis leads
to a negative value for �k0 which can meet �k0 = 0 at
∼ 1.6σ confidence level.

• Model selection: (i). For the combination of background
datasets without CMB, all AIC, BIC and Bayesian evi-
dence analysis showed that the flat-�CDM model is the
best model, positive evidence against flat- PEDE and non-
flat �CDM model and eventually strong evidence against
non-flat PEDE model. (ii). For the combination of all
background datasets (including CMB), all of the three
analysis show that the flat-PEDE model is well consis-
tent with observations as much as the best model. While
we observed the positive and strong evidence against both
of non-flat PEDE and standard models. This result is in
agreement with the results of Planck 2018 [16] which
indicates that the spatial curvature of our universe is con-
sistent with a flat geometry. (iii). Finally for the combina-
tions of all background data with the growth rate dataset,
our analysis showed that there is a positive evidence
against the non-flat �CDM scenario and very strong evi-
dence against both of the flat and non-flat PEDE cosmolo-
gies. So we can conclude that the PEDE models cannot fit
the observations in cluster scales as equally as standard
�CDM model.
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