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1 Introduction and summary

Recently there are many progresses in understanding the spacetime dynamics like the

chaotic behavior in black holes [1, 2] or making traversable wormholes [3–5]. The Sachdev-

Ye-Kitaev (SYK) model [6, 7] plays an important role to study these behaviors. The

SYK model is a UV complete model that shares the same low energy dynamics with the

Jackiw-Teitelboim gravity [8–10]. We can solve the SYK model analytically in the large N ,

low energy limit [11]. We can also study the large N Schwinger-Dyson equation directly

numerically [11] and further we can study the model numerically at finite N [12–14] by

exact diagonalization, which serves a complemental way to analyze the system.

Traversable wormholes are made by introducing a direct coupling between two asymp-

totic boundaries [3, 5]. After turning off the coupling between two sides, we can make a

two sided black holes [5, 15]. Therefore, traversable wormhole protocol also gives a way to

prepare the thermofield double states. We can consider the similar question for a single

sided system whether we can prepare a “thermofield double” state in a single copy of CFT

from some massive deformation. An analog of the thermofield double states for single sided

case is the boundary state [16, 17], which have a simple entanglement structure. In gravity

side, the dual spacetimes are black hole microstates [18–20], and by state dependent mass

deformation we can reveal the interior of these single sided black holes [21]. Employing the

proposal for holographic duals of boundary CFT (BCFT) [22, 23], these microstates are

modeled by geometry with end of the world (EOW) branes. Now the problem is whether

we can prepare the black hole microstates from massive deformations. In the field theory

side, the relation between boundary states and gapped ground states are discussed in the

literature. Boundary states and the time evolution of them are used to model so called

quantum quench [24, 25]. The quantum quench1 is the time dependent process where we

1Precisely speaking, here we consider the sudden quantum quench with a time dependent mass term,

which is a special case of quantum quenches.
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suddenly turn off the mass term and evolve the state by the Hamiltonian at critical points.

In this context, boundary states are used to approximate the initial gapped ground states.

This variational approximation is also used to study the massive deformations of conformal

field theory [26] and gives a qualitative picture of the phase diagram.

In the SYK model, an analog of boundary states and their gravity interpretation

are proposed in [27]. We can also reveal the interior by the mass deformation [27, 28].

Motivated by the above observations on the boundary states, gapped deformation of CFT

and their connection to black hole microstates, in this paper we study the ground state

of a mass deformed SYK model that also first appeared in [27] and its relation to the

SYK boundary state in detail. A merit to consider the SYK model is that we can analyze

directly the mass deformed theory itself. This enables us to compare the exact ground state

and the variational approximation and check the validity of the variational approximation,

which is usually difficult.

Another motivation to study this model is to gain an insight to the gravity counterpart

of the chaotic/integrable transition. The relevance of the quantum chaotic properties to

the black hole physics was pointed out in [29–31]. One way to characterize the quantum

chaos is the exponentially growing behavior of the out-of-time-ordered correlation functions

(OTOC) [32] in time which is quantified by the quantum Lyapunov exponent. The OTOC

was also studied in the SYK model [11] in the large N limit, where the quantum Lyapunov

exponent was found to saturate the bound proposed in [2] in the strong coupling limit.

This also supports the relation between black holes and the quantum chaos.

Recently the quantum chaotic property was also studied in a variety of deformations

of the SYK model [13, 14, 33–40]. Among these developments in [13] the authors consid-

ered a deformation of the SYK Hamiltonian by a random mass term and found that the

quantum Lyapunov exponent decreases as the mass parameter is increased. More interest-

ingly, the authors also found that the Lyapunov exponent vanishes at some finite value of

mass parameter, where the system exhibits the “chaotic/integrable transition” [13]. The

chaotic/integrable transition was also captured by another characterization of the quantum

chaos through the level statistics [41–44] as a sharp transition.

With the relation between quantum chaos and the black holes in one’s mind, it may be

natural to speculate the gravitational phenomenon dual to the chaotic/integrable transition

to be the Hawking-Page transition [45]. Note, however, that these two phenomena do not

necessarily happen at the same time. The Hawking-Page like transition can be captured

as a first order phase transition through the entropy, or equivalently, the free energy F =

− 1
β logZ(β) = − 1

β

∫
dE〈ρ(E)〉e−βE where ρ(E) is the number density of the states. On

the other hand, it is known that the level statistics diagnoses the chaoticity of a quantum

system correctly only after the energy spectrum of the system is unfolded [43, 44], which

essentially subtract the information of 〈ρ(E)〉 from the spectrum. Also, the connection

between chaos and the thermalization property of the system implies that one cannot

see whether the system is chaotic or not just by looking thermodinamic quantities such

as the free energy [46]. Nevertheless, there are some examples [14, 34] where we have

multiple evidences that they are indeed correlated. It would be interesting to ask what

kind of additional properties of a model can relate the chaotic/integrable transition and the

Hawking-Page like transition indirectly, which will define an interesting class of theories.

– 2 –
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1.1 Summary of the paper

We have studied various properties of the mass deformed Hamiltonian which is first pro-

posed in [27]. The model consists from N Majorana fermions ψi and the Hamiltonian is

given by

Hdef = HSYK +HM ,

HSYK = i
q
2

∑
i1<···<iq

Ji1···iqψi1 · · ·ψiq , HM = iµ

N
2∑

k=1

skψ2k−1ψ2k, (1.1)

with mean 〈Ji1···iq〉 = 0 and variance 〈J2
i1···iq〉 = J2

Nq−1 (q − 1)! = 1
q
J 2(q−1)!
(2N)q−1 . We give an

effective action in terms of the collective variables and derive the large N Schwinger-Dyson

equation for the mass deformed Hamiltonian. We study this Schwinger-Dyson equation nu-

merically. In the zero temperature case, we found the analytical solution for this Schwinger-

Dyson equation in the small mass parameter limit. The diagonal correlation function is

related to the SYK correlation function by the conformal transformation. The off diagonal

correlation function is also determined in the conformal limit. Using these Euclidean corre-

lation functions in the ground state, we study the several physical observables, which show

the non trivial scaling with respects to the mass parameter µ in (1.1) for small µ limit.

We have also used the SYK boundary state, which is also first proposed in [27] and

interpreted as a black hole microstate, as a variational approximation for the ground state

of the mass deformed Hamiltonian (1.1). We studied this variational approximation both

numerically and analytically. We compare the numerical results in exact ground state and

in variational approximation and two results show good agreement in the entire mass pa-

rameter regime. In the small µ limit, we compare the analytical results in exact ground

state and in variational approximation. We found that the scaling with respect to the

mass parameter coincide but the proportional constants are different. However the coeffi-

cients themselves are also very close. Therefore, the variational approximation is a good

approximation but is not a perfect approximation and has an order N difference even in

the conformal limit.

In section 3.3 we have also computed the large N free energy by solving the Schwinger-

Dyson equations at finite temperature numerically. In contrast to the results in the models

with a similar Hamiltonian [5, 33, 34], in our model we have not found a phase transition.

We have also studied our model for finite N in section 4. We have computed the overlap

between the boundary state and the true ground state, and have found these two states

are close to each other.2 This result supports the validity of the variational approximation

for the ground state in section 3.2. We have also diagnosed the quantum chaoticity of the

system by computing the adjacent gap ratio [47–50] (we explain more detail in section 4.2).

As a result we found that the system is chaotic for any value of the deformation parameter

and at all energy scale.

2While we treat the average over the random couplings by the annealed average in the large N analysis,

assuming that the annealed average is a good approximation to the original quenched average in the large

N limit, in section 4 we directly adopt the quenched average.
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In section 5 we have studied the mass deformed model in the large q limit where we

can analyze the mass deformed theory analytically beyond the conformal limit. The large q

results are consistent with the conformal limit results when the mass parameter µ is small.3

In the large q limit, the variational approximation actually coincides with the exact ground

state in all mass parameter regime. We checked this agreement from the calculation of the

ground state energy and the other observables also perfectly coincide. Furthermore, in the

large q limit we compute the overlap between exact ground state and the SYK boundary

state for the variational approximation. We found the saddle point solution that gives the

maximal overlap 1. Even at finite temperature, we can solve the system analytically. We

checked analytically that there are no phase transition in the model (1.1). At the order of

β ∼ q, the chaos exponents grows from 0 to 2π
β that is maximal [2].

Finally, we give a gravity interpretation of the mass deformed ground state. We studied

the time evolution of the mass deformed ground state under the SYK Hamiltonian. This

is a setup of quantum quench where we suddenly turn off the mass term. We solve this

quench problem analytically in the conformal limit, determined the time evolution of the

reparametrization mode and found that the system thermalizes. We interpret this dynamics

of the reparametrization mode in gravity. The original geometry is interpreted as the global

AdS2 with EOW brane which is static under the global time translation. The quench

corresponds to the black hole generation. Therefore, we interpret the mass deformation as

a protocol to obtain atypical black hole microstates that are similar to pure boundary state

black holes. This is a single sided analog of the preparation of the thermofield double from

the two coupling mass deformation [5, 51]. We have also applied our gravity interpretation

to the escaping interior protocol starting from the mass deformed ground state. The

insertion of the mass deformed Hamiltonian before the quench just delays the generation

of the black hole and shifts the position of the black hole horizon. As a special case, we

can apply the deformed Hamiltonian eternally and we can make the interior escapable

eternally. Actually, this is exactly the global AdS2 with EOW brane. This is a single sided

counterpart of the identification of eternal traversable wormholes and global AdS2. We also

point out that the mismatch of the sign of spins in the ground state and the mass term

leads to the excitation. Too much excitation leads to the huge excitation and we expect

that they finally lead to the black hole generation because the system shows the chaotic

behavior at high energy as we studied in this paper. Therefore, the escaping protocol is

successful only when we choose the mass term in a correct state dependent way.

The organization of this paper is as follows. In section 2, we review the mass deformed

SYK model and boundary states those are introduced in [27]. We also review their gravity

interpretation as black hole microstates and their time evolution. In section 3, we study the

mass deformed SYK model in the large N limit. We derive the large N Schwinger-Dyson

equation for the mass deformed SYK model and solve them both analytically and numer-

ically. In section 4, we study the overlap and the level statistics at finite N and compare

with the large N results. In section 5, we study the large q limit of the mass deformed

3This is a non-trivial statement as the two results agrees not only in the strict SYK limit µ = 0 but also

in the µ-dependent sub-leading corrections (see (3.29) and (5.11)).
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SYK model. We calculate various quantities analytically and checked the consistency with

the results in large N , finite q analysis. In section 6, we describe the gravity interpretation

of the mass deformed SYK model. In section 7, we discuss some implications of our results

and possible future works. In appendix A, we present the derivation of the large N effective

action for collective variables. In appendix B, we discuss the numerical method to solve

the large N equation of the mass deformed SYK model. In appendix C, we show the detail

of large q analysis. In appendix D, we discuss the detail of the large N , q = 4 case.

2 The model

The main purpose of this paper is to study the following Hamiltonian

Hdef = HSYK +HM ,

HSYK = i
q
2

N∑
i1<···<iq

Ji1···iqψi1 · · ·ψiq ,

HM = iµ

N
2∑

k=1

skψ2k−1ψ2k ≡ −
µ

2

N
2∑

k=1

skSk, (2.1)

with mean 〈Ji1···iq〉 = 0 and variance 〈J2
i1···iq〉 = J2

Nq−1 (q − 1)! = 1
q

2q−1J 2(q−1)!
Nq−1 . We also

defined Sk = −2iψ2k−1ψ2k. This Hamiltonian was first introduced in [27]. First we review

some properties of this Hamiltonian with its connection to particular pure states in the

SYK model. We also review their gravity interpretation of pure states and the evolution

under mass deformed Hamiltonian.

2.1 A review of the SYK model

The Sachdev-Ye-Kitaev (SYK) model [6, 7] is the system of N Majorana fermions ψi, which

obey the anti commutation relation {ψi, ψj} = δij , with the Hamiltonian

HSYK = i
q
2

N∑
i1<···<iq

Ji1···iqψi1 · · ·ψiq , (2.2)

with mean 〈Ji1···iq〉 = 0 and variance 〈J2
i1···iq〉 = J2

Nq−1 (q − 1)! = 1
q

2q−1J 2(q−1)!
Nq−1 . At large N ,

the correlation function G(τ1, τ2) = 1
N

∑N
i=1 〈ψi(τ1)ψi(τ2)〉 satisfies the following Schwinger-

Dyson equation

∂τ1G(τ1, τ2)−
∫
dτ3Σ(τ1, τ3)G(τ3, τ2) = δ(τ1 − τ2), Σ(τ1, τ2) =

J 2

q
(2G(τ1, τ2))q−1. (2.3)

This Schwinger-Dyson equation comes from the Euclidean action

− SE
N

= log Pf(∂τ − Σ)− 1

2

∫
dτ1

∫
dτ2

[
Σ(τ1, τ2)G(τ1, τ2)− J

2

2q
(2G(τ1, τ2))q

]
. (2.4)

– 5 –
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We can solve the equation (2.3) numerically. In the large q limit, we can solve the equa-

tion (2.3) analytically. It is also possible to solve at long time (1 � J τ12 � N) regime by

ignoring the derivative term ∂τ in (2.3) as

G(τ1, τ2) =
c∆

|J (τ1 − τ2)|2∆
sgn(τ1 − τ2), (2.5)

where the scaling dimension ∆ and the coefficient c∆ is given by

∆ =
1

q
, c∆ =

1

2

[(
1− 2∆

)tanπ∆

π∆

]∆

. (2.6)

When we ignore the term ∂τ , the equation of motion have a reparametriztion symmetry

G(τ1, τ2)→ [f ′(τ1)f ′(τ2)]∆G(f(τ1), f(τ2)) and Σ(τ1, τ2)→ [f ′(τ1)f ′(τ2)]1−∆Σ(f(τ1), f(τ2)).

In the low temperature (1� J β � N) and long time (1� J τ12), the thermal correlation

function is obtained from the ground state answer (2.5) with the reparametrization f(τ) =

tan π
β τ .

The low energy reparametriztion symmetry is actually broken by the UV effect. This

leading breaking term is given by the Schwarzian action [11]

S = −NαSJ

∫
dτ{f(τ), τ}, {f(τ), τ} =

f ′′′(τ)

f ′(τ)
− 3

2

(
f ′′(τ)

f ′(τ)

)2

. (2.7)

The constant αS can be determined numerically. For example, αS ≈ 0.00709 for q = 4,

αS ≈ 0.00403 for q = 6 and αS ≈ 0.00257 for q = 8 [11]. At large q, αS goes as αS ∼ 1
4q2 .

2.2 A review of pure states and mass deformation of the SYK model

In the SYK model we can also study the real time evolution of particular pure states. To

define such states, first we define a set of spin operators from Majorana fermion operators.

They are defined as

Sk = −2iψ2k−1ψ2k. (2.8)

They satisfy S2
k = 1, which means that the eigenvalues of Sk’s are ±1. Moreover, they

are mutually commuting with each others [Sk, Sk′ ] = 0. Therefore, we can consider the

simultaneous eigenstates of the spin operators Sk’s:

Sk |Bs〉 = sk |Bs〉 , (2.9)

where s = (s1, · · · , sN
2

) is a set of eigenvalues. These 2
N
2 states span the SYK Hilbert

spaces. This condition can also be written as

ψ2k−1 |Bs〉 = −iskψ2k |Bs〉 . (2.10)

We can produce lower energy states by including the Euclidean evolution |Bs(β)〉 =

e−
β
2
HSYK |Bs〉. We can interpret the (2.10) as a transparent boundary condition between

fermion field ψ2k−1 and ψ2k in the path integral language. Because the states |Bs〉 form a

– 6 –
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basis, the average of the correlators over all choices of sk reproduces the thermal ensemble

exactly: ∑
sk=±1

〈Bs(β)| O |Bs(β)〉 = Tr[e−βHSYKO]. (2.11)

This is a true statement for any operator O.

In the large N limit, the model possesses an emergent O(N) symmetry. This O(N)

symmetry includes an element f1 that flips the sign of ψ2. Similarly, there are elements

fk that flips the sign of ψ2k. Each of fk’s also flips the sign of the spin operator Sk. This

flip element fk maps the |Bs〉 to other state |Bs′〉 where s′ is given by the flip of sk from

s. Therefore, the norms 〈Bs(β)|Bs(β)〉 have the same value in all |Bs〉 states because of

this emergent symmetry. On the other hand, we saw in (2.11) that the average over all

the |Bs〉 is equivalent to the thermal one. Therefore, the norms of |Bs(β)〉 is equal to the

thermal partition function in the leading of the 1/N expansion:

〈Bs(β)|Bs(β)〉 = 2−
N
2

∑
a1=±1

∑
a2=±1

· · ·
∑

aN
2

=±1

〈Bs(β)|(fa1
1 fa2

2 · · · f
aN

2
N
2

)(fa1
1 fa2

2 · · · f
aN

2
N
2

)|Bs(β)〉

= 2−
N
2 Tr(e−βHSYK). (2.12)

Similarly, the two point functions such as ψ1(τ)ψ1(τ ′) or ψ2(τ)ψ2(τ ′) are also individually

invariant under the flip groups. They are called diagonal corerlators [27]. They also become

the same with the thermal correaltors in the large N limit:

〈Bs(β)|ψi(τ)ψi(τ
′)|Bs(β)〉 = 2−

N
2 Tr(e−βHSYKψi(τ)ψi(τ

′)) (2.13)

For off diagonal correlators like 〈Bs(β)|ψ1(τ)ψ2(τ ′)|Bs(β)〉 we can do similar argument

by inserting Sk(τ) = −2iψ2k−1(τ)ψ2k(τ) at τ = −β
2 . Because

Sk

(
− β

2

)
|Bs(β)〉 = e−

β
2
HSYKSk |Bs〉 = ske

−β
2
HSYK |Bs〉 = sk |Bs(β)〉 , (2.14)

we obtain

〈Bs(β)|ψ1(τ)ψ2(τ ′)s1|Bs(β)〉 = −2i 〈Bs(β)|ψ1(τ)ψ2(τ ′)ψ1(−β/2)ψ2(−β/2)|Bs(β)〉 . (2.15)

Now, the off diagonal correlator times the boundary condition sk becomes a 4 point function

with 2 ψ1’s and 2 ψ2’s. Therefore, in the large N limit these are flip group invariant

correlation function. Then,

sk 〈Bs(β)|ψ2k−1(τ)ψ2k(τ
′)|Bs(β)〉

= 2−
N
2

∑
s

−2i 〈Bs(β)|ψ2k−1(τ)ψ2k(τ
′)ψ2k−1(−β/2)ψ2k(−β/2)|Bs(β)〉

= −2i× 2−
N
2 Tr[e−βHSYKψ2k−1(τ)ψ2k(τ

′)ψ2k−1(−β/2)ψ2k(−β/2)]. (2.16)

We also know that in the large N limit the normalization factor becomes 〈Bs(β)|Bs(β)〉 =

2−
N
2 Tr(e−βHSYK), and therefore the off diagonal correlator becomes

sk
〈Bs(β)|ψ2k−1(τ)ψ2k(τ

′)|Bs(β)〉
〈Bs(β)|Bs(β)〉

= −2i
Tr[e−βHSYKψ2k−1(τ)ψ2k(τ

′)ψ2k−1(−β/2)ψ2k(−β/2)]

Tr(e−βHSYK)
. (2.17)

– 7 –
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Further because we are taking the large N limit, four point function factorizes to the

product of 2 point functions and the off diagonal correlator becomes

Goff(τ, τ ′) ≡ sk
〈Bs(β)|ψ2k−1(τ)ψ2k(τ

′)|Bs(β)〉
〈Bs(β)|Bs(β)〉 = 2iGβ(τ + β/2)Gβ(τ ′ + β/2) +O(1/N).

(2.18)

Here we obtain another minus sign because we need to contract ψ2k’s and to do that we

need to exchange the order of ψ2k−1 and ψ2k.

We can think of the state |Bs(β)〉 as a state after projection measurement of thermofield

double state [52, 53]:

L 〈Bs|TFD(β)〉LR = |Bs(β)〉R . (2.19)

2.2.1 Conformal limit and the symmetry of correlation functions

In the conformal limit (βJ � 1, J |τ − τ ′| � 1, τ, τ ′ > −β
2 ), the correlation function

becomes

G(τ, τ ′) =
〈Bs(β)|ψi(τ)ψi(τ

′)|Bs(β)〉
〈Bs(β)|Bs(β)〉 = c∆

[
π

J β sin π|τ−τ ′|
β

]2∆

sgn(τ − τ ′). (2.20)

Goff(τ, τ ′) = sk
〈Bs(β)|ψ2k−1(τ)ψ2k(τ

′)|Bs(β)〉
〈Bs(β)|Bs(β)〉 = 2i(c∆)2

[
π2

(J β)2 cos πτβ cos πτ
′

β

]2∆

(2.21)

Especially, by analytically continuing to real time τ → it, we obtain

Goff(t, t′) = 2ic2
∆

[
π2

(J β)2 cosh πt
β cosh πt′

β

]2∆

. (2.22)

Therefore, for example the spin operator expectation value 〈Sk(t)〉 = −2iGoff(t, t) is

〈Sk(t)〉 = 4sk(c∆)2

[
π

J β cosh πt
β

]4∆

, (2.23)

which decays exponentially in time t. Under the reparametrization

τP =
π

βJ 2
tan

πτ

β
, (2.24)

the correlators become

G(τP , τ
′
P ) =

c∆

|J (τP − τ ′P )|2∆
sgn(τP − τ ′P ), (2.25)

Goff(τP , τ
′
P ) = 2i(c∆)2. (2.26)

In this coordinate, it is manifest that the translation τP → τP + c is a symmetry of both of

the diagonal correlator and the off diagonal correlator. This is the same symmetry of the

Poincare patch in AdS2. Later we consider the gravity setup with similar symmetry.
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2.2.2 Evolution under the mass deformed Hamiltonian

Now we consider the evolution under the mass deformed Hamiltonian:

Hdef = HSYK +HM = i
q
2

N∑
i1<···<iq

Ji1···iqψi1 · · ·ψiq + iµ

N
2∑

k=1

skψ2k−1ψ2k. (2.27)

In the low energy limit and small µ limit, we can treat this deformation as

〈e−i
∫
dtHM (t)〉 ∼

∫
DfeiS[f ]−i

∫
dt〈HM (f(t))〉. (2.28)

The Schwartzian action is

S[f ] = −NαSJ

∫
{f, t} = −NαSJ

∫ {
π

J 2β
tanh

πϕ(t)

β
, t

}
. (2.29)

The term 〈HM (t)〉 is evaluated as

1

µ

〈Bs(β)|HM (t)|Bs(β)〉
〈Bs(β)|Bs(β)〉 = i

N
2∑

k=1

sk
〈Bs(β)|ψ2k−1(t)ψ2k(t)|Bs(β)〉

〈Bs(β)|Bs(β)〉

= i
N

2
Goff(t, t) = − N(c∆)2[

J β
π cosh πt

β

]4∆
. (2.30)

Therefore, the coupling to the reparametrization mode becomes

HM (f(t))

µ
= − N(c∆)2ϕ′(t)2∆[

J β
π cosh πϕ(t)

β

]4∆
= −N(c∆)2(f ′)2∆. (2.31)

Then, we obtain a Lagrangian for f(t):

S = −NαSJ

∫
dt{f, t}+Nµ(c∆)2

∫
dt(f ′)2∆. (2.32)

We can write the Schwartzian term using a Lagrange multiplier λ(t) as

−NαSJ

∫
dt{f, t} =

NαS
2J

∫
dt
[
φ′(t)2 + J λ(t)(eφ(t) − f ′(t))

]
. (2.33)

When we integrate over λ(t), this impose the condition φ(t) = log f ′ and the action reduces

to the original one. By introducing η̂ = µ(c∆)2

JαS , the low energy action becomes

S =
NαS

2

∫
dt

[
1

J
(dφ
dt

)2
+ λ(t)(eφ − f ′) + 2J η̂e2∆φ

]
. (2.34)

On the other hand, the initial condition we consider is set by the Euclidean evolution with

the Euclidean action

S =
NαS

2

∫
dτ

[
1

J
(dφ
dτ

)2
− λ(τ)(eφ(τ) − f ′(τ))

]
. (2.35)
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Here we put η̂ = 0 because the Euclidean evolution is given by the Hamiltonian without

mass deformation. The solution we are interested in is

f(τ) =
π

J 2β
tan

πτ

β
. (2.36)

The equation of motion for λ(t) gives

eφ(τ) = f ′(τ) =
π2

J 2β2

1

cos2 πτ
β

. (2.37)

The EOM for f gives

λ′(τ) = 0. (2.38)

Therefore, λ(τ) should be constant. The equation of motion for φ(τ) gives

2

J
d2φ

dτ2
+ λeφ(τ) = 0. (2.39)

This determines λ = −4J .

Now we consider the time evolution with the initial condition φ′(0) = 0, eφ(t=0) = π2

J 2β2 .

Because the equation of motion for f implies that λ(t) is constant, we can set λ = −4J .

The Lagrangian is now

S =
NαS

2

∫
dt

[
1

J
(dφ
dt

)2
− 4J (eφ − f ′) + 2J η̂e2∆φ

]
. (2.40)

Therefore, the evolution is simply given by the motion of a particle with a potential

V (φ) = 4J eφ − 2J η̂e2∆φ. (2.41)

This potential crosses 0 at φ = φ× that is given by

e(1−2∆)φ× =
η̂

2
, (2.42)

for 0 < ∆ < 1
2 . The bottom of the potential is

V ′(φm) = 0 ↔ 4J (eφm − η̂∆e2∆φm) = 0, (2.43)

which gives

eφm = (η̂∆)
1

1−2∆ . (2.44)

The Lorentzian dynamics is simply described by the particle motion under this potential

with the initial condition

eφ(0) = eφ0 =
π2

(βJ )2
, φ′(0) = 0. (2.45)

A schematic form of the potential is described in figure 1. When the deformation parameter

η̂ satisfies φ0 < φ×, the motion of the particle is confined in a finite region. In the SYK

model, this especially means that the expectation value 〈Sk(t)〉 does not decay and the
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Figure 1. A schematic form of the potential for a particle φ(t).

system does not thermalize. Especially, when φ0 = φm, the particle sits on the bottom of

the potential and does not oscillate. In this case, using f ′ = eφ the expectation value of

the spin operator becomes

〈Sk(t)〉 = 4sk(c∆)2(f ′)2∆ = 4sk(c∆)2

(
π

βJ

)4∆

. (2.46)

Therefore, the time evolution keeps the expectation value of the spin operator and prevents

thermalization. φ0 = φm gives a relation between β and µ, which becomes(
π

β(µ)J

)2

= (η̂∆)
1

1−2∆ → 1

β(µ)J =
1

π

(
µ(c∆)2∆

JαS

) 1
2(1−2∆)

. (2.47)

2.2.3 The large q limit

For later purpose, we also consider the large q limit of the pure states |Bs(β)〉. The

correlators are approximated as

G(τ, τ ′) =
1

2
sgn(τ − τ ′)

(
1 +

1

q
g(τ, τ ′) + · · ·

)
,

Goff(τ, τ ′) =
i

2

(
1 +

1

q
goff(τ, τ ′) + · · ·

)
. (2.48)

The correlation functions in the large q limit become

eg(τ1,τ2) =
α̌2

J 2 sin2(α̌|τ1 − τ2|+ γ̌)
, (2.49)

egoff(τ1,τ2) =
α̌2

J 2 cos2(α̌τ1)

α̌2

J 2 cos2(α̌τ2)
, (2.50)

where α̌ = J sin γ̌, and α̌β2 + γ̌ = π
2 .4 This solution can also be written as

eg(τ1,τ2) =
ȟ′1(τ1)ȟ′2(τ2)

J 2(ȟ1(τ1)− ȟ2(τ2))2
, egoff(τ1,τ2) = f̌1(τ1)f̌(τ2), (2.52)

4In the notation of [11], we can write the correlation functions as

eg(τ1,τ2) =

[
cos πv

2

cos
(
πv

(
1
2
− |τ1−τ2|

β

))]2

, egoff(τ1,τ2) =

[
cos2 πv

2

cos
(
πv
β
τ1
)

cos
(
πv
β
τ2
)]2

, (2.51)

where v ∈ [0, 1] and v satisfies πv
cos πv

2
= J β. The relation with that in our paper is given by α̌ = πv

β
and

γ̌ = π
2
− πv

2
.
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where

ȟ1(τ) = tan

(
α̌τ +

γ̌

2

)
, ȟ2(τ) = tan

(
α̌τ − γ̌

2

)
,

f̌1(τ) = f̌2(τ) =
α̌2

J 2 cos2(α̌τ)
. (2.53)

2.3 Gravity interpretation of pure states

According to [27] here we consider the gravity configuration that have features in common

with the SYK setup. Currently we do not know the precise dual gravity theory of the

SYK model. However, the Nearly-AdS2 gravity has some features in common with the low

energy limit of the SYK model. Especially, they share the same low energy theory that is

described by the Schwarzian action [10, 11]. Therefore, we consider the gravity setup that

is similar to the SYK pure states.

In Euclidean signature, the diagonal correlator is the same with the thermal correlator.

This is interpreted as the Euclidean black hole or hyperbolic disc H2 and we imagine that

there is a boundary at some finite but very large circle [10]. The difference is the existence

of the special point P that corresponds to the insertion of projection operator |Bs〉 〈Bs|.
Imagining the existence of N bulk fields, this is interpreted as the boundary condition

that relates the bulk fields in pairs like ψ2k−1 = iskψ2k at the point P . Except P we

impose the same, standard boundary conditions with the thermal case. Other property is

the symmetry of the correlation function. We saw that both of diagonal and off diagonal

correlation function have the symmetry of Poincare patch in AdS2, where the metric is

ds2
E =

dτ2
P + dz2

z2
. (2.54)

In this coordinate, the special point is sent to infinity τP = ±∞ and z =∞. In summary,

the Euclidean gravity configuration is the Euclidean black hole with a special point P with

boundary conditions on the bulk fields on this point, see figure 2. In nearly AdS2 setup,

we interpret this as the special point at large z.

Next, we consider the Lorentzian continuation. The AdS2 metric in Poincare coordi-

nate is

ds2
L =

−dt2P + dz2

z2
=
−dx+dx−

4(x+ − x−)2
, (2.55)

where we defined x± = z ± tP . Because of the Poincare time translation symmetry of the

SYK correlation function, we are interested in the Lorentzian geometry with this symmetry.

Especially, the boundary condition at special point should be invariant under the Poincare

time translation. This is interpreted as the end of the world line at large z with the same

boundary condition with that on the special point P . We can think of this end of the world

(EOW) brane as a shock wave that is created by the projection measurement on the left

of the thermofield double state and falling to the bulk of AdS2 spacetime [54], see figure 3.

Though Poincare time translation is the symmetry of the diagonal and off diag-

onal correlation function, the physical time t is related to the Poincare time by the
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P	 P	

Euclidean Black hole 	
with special point P	

Lorentzian continuation	

ETW 	
brane	

Figure 2. The gravity interpretation of the SYK pure states. The left picture describes the

gravity interpretation of pure states in Euclidean signature. The right picture describes the gravity

interpretation in Lorentzian signature. The purple line is the UV cutoff surface in Nearly AdS2

gravity [10].

ETW 	
brane	

Projection 	
measurement	

Horizon	
P	 P	

Horizon	

Figure 3. The gravity interpretation of the thermofield double states and the projection on them.

Measurements create a shock wave which propagates along the red line.

reparametrization (2.24). This corresponds to the Rindler Patch. The coordinate trans-

formation tP = f(t) is extended to the bulk by x± = f(y±) where x± = z ± tP and

y± = X ± tR with the radial direction X in Rindler patch.

In summary, the Lorentzian configuration consists from the AdS2 geometry with the

end of spacetime at large z with the boundary conditions for bulk fields. The cutoff

boundary is located on the constant X. The Lorentzian configuration are drawn in figure 2.

We can also evolve the SYK model with the mass deformed Hamiltonian (2.1). In

this case, the location of physical boundary is oscillating around the constant z and the
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Adding mass term	

ETW 	
brane	

ETW 	
brane	

P	 P	

Figure 4. The gravity interpretation of evolution in different Hamiltonian. The left figure is the

case where we evolve the state by the SYK Hamiltonian. The motion of the UV cutoff particle

terminates at the finite Poincare time and correspondingly only the inside of the Rindler patch

is visible from the boundary. The right figure is the case where we evolve the state by the mass

deformed Hamiltonian. The motion of the UV cutoff particle extends to whole the Poincare time

and whole the spacetime within the EOW brane is visible.

coordinate covers whole the Poincare patch. Therefore, we can see behind the original

horizon in the evolution with deformed Hamiltonian as depicted in figure 4. In gravity

side, this interaction is interpreted as a change of boundary conditions on the bulk field on

AdS boundary. These are interpreted as quantum teleportation [3, 4, 52], where we measure

the left side of TFD state and then apply the measurement dependent time evolution.

The underlying physics of this teleportation protocol is that we try to put each black

hole microstate on a ground state of the deformed Hamiltonian to prevent the black hole

generation. This is the gravity interpretation of preventing thermalization in the SYK. This

essentially depends on how the ground state is close to the ground state of the deformed

Hamiltonian and its gap. This motivate us to study the property of the mass deformed

Hamiltonian. From next section, we study this Hamiltonian in various methods.

3 Large N , finite q analysis

In this section, we analyze the Hamiltonian

Hdef = HSYK +HM ,

HSYK = i
q
2

∑
i1<···<iq

Ji1···iqψi1 · · ·ψiq ,

HM = iµ

N
2∑

k=1

skψ2k−1ψ2k ≡ −
µ

2

N
2∑

k=1

skSk, (3.1)

in the large N limit.

Our starting point of the analysis is the Schwinger-Dyson equation for this model

with collective degrees of freedom G,Σ [6, 11]. According to [5], we also introduce these

collective variables for off diagonal component. We study them in Euclidean time. The
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effective action in the large N limit is

−SE =
N

2
log Pf

((
1 0

0 1

)
∂τ −

(
Σ Σoff

−ΣT
off Σ

))

− N

2

∫
dτ

∫
dτ ′

{
1

2
Tr

[(
Σ(τ, τ ′) Σoff(τ, τ ′)

−Σoff(τ ′, τ) Σ(τ, τ ′)

)(
G(τ, τ ′) −Goff(τ ′, τ)

Goff(τ, τ ′) G(τ, τ ′)

)]

− J2

q
G(τ, τ ′)q

}
− N

2
iµ

∫
dτGoff(τ, τ). (3.2)

The derivation is shown in the appendix A. The Schwinger-Dyson equation arises as the

equation of motion for this effective action. They become5

∂τG(τ, τ ′)−
∫
dτ ′′Σ(τ, τ ′′)G(τ ′′, τ ′) +

∫
dτ ′′Σoff(τ, τ ′′)Goff(τ ′′, τ ′) = δ(τ − τ ′), (3.3)

∂τGoff(τ, τ ′)−
∫
dτ ′′Σ(τ, τ ′′)Goff(τ ′′, τ ′)−

∫
dτ ′′Σoff(τ, τ ′′)G(τ ′′, τ ′) = 0, (3.4)

and

Σ(τ, τ ′) = J2G(τ, τ ′)q−1 =
J 2

q
(2G(τ, τ ′))q−1, (3.5)

Σoff(τ, τ ′) = −iµδ(τ − τ ′). (3.6)

By substituting Σoff(τ, τ ′) = −iµδ(τ − τ ′) into (3.3) and (3.4), we obtain

∂τG(τ, τ ′)−
∫
dτ ′′Σ(τ, τ ′′)G(τ ′′, τ ′)− iµGoff(τ, τ ′) = δ(τ − τ ′), (3.7)

∂τGoff(τ, τ ′)−
∫
dτ ′′Σ(τ, τ ′′)Goff(τ ′′, τ ′) + iµG(τ, τ ′) = 0, (3.8)

with Σ(τ, τ ′) = J2G(τ, τ ′)q−1. It is also useful to rewrite the Schwinger-Dyson equation in

the frequency space. In this representation, we can decouple Goff from the diagonal part

G,Σ. The equation becomes

G(ω) = − iω + Σ(ω)

(iω + Σ(ω))2 − µ2
,

Goff(ω) =
−iµ

(iω + Σ(ω))2 − µ2
. (3.9)

We can determine Goff(ω) after solving the equation for diagonal part G,Σ. In the finite

temperature, the frequency ω is quantized to the Matsubara frequency ωn = 2π
β

(
n+ 1

2

)
.

5Using the convolution, we can also write the equation more symbolically as

∂τG− Σ ∗G+ Σoff ∗Goff = δ,

∂τGoff − Σ ∗Goff − Σoff ∗G = 0.
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Once we solve the Schwinger-Dyson equation, the energy can be calculated from the

Green functions in the following way:

E

N
=
〈HSYK +HM 〉

N
=

1

q
∂τG(τ, 0)

∣∣∣
τ=0+

+ i
µ

2

(
1− 2

q

)
Goff(0, 0). (3.10)

This is derived from

N∂τG(τ, 0)
∣∣∣
τ=0+

=
∑
i

〈∂τψiψi〉 =
∑
i

〈[H,ψi]ψi〉 = 〈qHSYK + 2HM 〉 ,

N

2
Goff(0, 0) =

N
2∑

k=1

sk 〈ψ2k−1ψ2k〉 =
1

iµ
〈HM 〉 . (3.11)

This is the exact relation between the energy and correlation function for the deformed

SYK model even before the large N limit or the disorder average.

We can also rewrite the energy using the Schwinger-Dyson equation as

1

q
∂τG(τ, 0)|τ→0+ =

1

q

∫
dτ ′′Σ(0, τ ′′)G(τ ′′, 0) + i

µ

q
Goff(0, 0)

= −J
2

2q2

∫
dτ ′′(2G(τ ′′, 0))q + i

µ

q
Goff(0, 0). (3.12)

Here we used Σ(τ1, τ2) = −Σ(τ2, τ1). Therefore, in the large N limit the energy becomes

E

N
=

1

q
∂τG(τ, 0)

∣∣∣
τ=0+

+ i
µ

2

(
1− 2

q

)
Goff(0, 0)

= −J
2

2q2

∫
dτ(2G(τ, 0))q + i

µ

2
Goff(0, 0). (3.13)

This expression is useful when we compute the free energy numerically.

3.1 Solving the model in the conformal limit

In this section, we study the ground state of the Hamiltonian Hdef. We can study the

Schwinger-Dyson equation (3.8) numerically where the detail of the numerical calculation

is shown in the appendix B. From the numerical analysis for various parameter regions of

µ and q, we confirmed that the system has a mass gap above the ground state. We also

find that the numerical solution agrees well with the correlation function that is obtained

from the reparametrization f(τ) = tanh(ατ) of the SYK correlation function in the small

µ limit. This is expected since the long time behavior of the SYK model is controlled by

the reparametrization (or conformal symmetry) [5, 11] and the mass term affects the long

time behavior in small µ limit. Therefore, in this section we consider to solve the mass

deformed theory using the approximate conformal symmetry of the SYK model.
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The diagonal correlation function in the conformal limit is given by

Gc(τ − τ ′) = c∆

(
α

J sinhα|τ − τ ′|

)2∆

sgn(τ − τ ′)

= c∆

(
f ′(τ)f ′(τ ′)

J |f(τ)− f(τ ′)|2
)∆

sgn(τ − τ ′), f(τ) = tanh(ατ). (3.14)

Σc(τ − τ ′) =
J 2

q
(2c∆)q−1

(
f ′(τ)f ′(τ ′)

J (f(τ)− f(τ ′))2

)(1−∆)

sgn(τ − τ ′). (3.15)

α is a function of µ with α(µ = 0) = 0, which we will determine later. The Fourier

transformation of the conformal limit correlation function becomes

Gc(ω) = c∆22∆i
α2∆−1

J 2∆
Γ(1− 2∆)

cosπ∆

π
Γ

(
∆ + i

ω

2α

)
Γ

(
∆− i ω

2α

)
sinh

πω

2α
, (3.16)

and

Σc(ω) =
J 2

q
(2c∆)q−122(1−∆) α1−2∆

J 2(1−∆)
iΓ(2∆− 1)

cosπ(1−∆)

π

× Γ

(
1−∆ + i

ω

2α

)
Γ

(
1−∆− i ω

2α

)
sinh

πω

2α
. (3.17)

We can easily confirm that in the limit ω � α these reduce to the conformal limit of the

SYK ground state correlation function

GSYK
c (ω) = ic∆

1

J 2∆
21−2∆√π Γ(1−∆)

Γ
(

1
2 + ∆

) |ω|2∆−1sgn(ω), (3.18)

ΣSYK
c (ω) = i

J 2

q
(2c∆)q−1 1

J 2(1−∆)
22∆−1√π Γ(∆)

Γ
(

3
2 −∆

) |ω|1−2∆sgn(ω). (3.19)

This says that only the low frequency part ω � α is affected by the mass term, as we

expected. This also implies that the solution satisfies the Schwinger-Dyson equation (3.9)

in the regime α � ω � J where we can ignore the mass term µ and the UV term ∂τ .

Now, we solve the Schwinger-Dyson equation at ω � α. In this regime, the Gc(ω) and

Σc(ω) are linear in ω. However, the slope is very large and we can ignore the first term

ω in ω + Σ(ω) in (3.9). Therefore, we can approximate the Schwinger-Dyson equation for

diagonal part as

− Σ(ω) +
µ2

Σ(ω)
=

1

G(ω)
. (3.20)

Because Σ(ω) is small in ω � α, we can also ignore the first term Σ(ω). Then we solve

the Schwinger-Dyson equation in the leading of ω expansion by inserting the expression

for Gc(ω) and Σc(ω) (3.16) and (3.17). When we expand as Gc(ω) = gc(α)ω + · · · and

Σc(ω) = σc(α)ω + · · · , the Schwinger-Dyson equation gives

σc(α)

gc(α)
= µ2. (3.21)

– 17 –



J
H
E
P
0
8
(
2
0
2
0
)
0
8
1

Conformal limit

Exact, Numerics

0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

μ

E
ga
p

Figure 5. The plot of the mass gap Egap, which is defined as the exponential decay rate G(τ) ∼
e−Egapτ of the correlation functions, for q = 4, J = 1 case. In the conformal limit, the mass gap is

given by Egap = 2α∆. For small µ, the result in the conformal limit agrees with the numerics well.

This determines α as a function of µ as(
2α

J

)2(1−2∆)

=
Γ(2− 2∆)Γ(∆)2

Γ(2∆ + 1)Γ(1−∆)2

1

(2c∆)(q−2)

(
µ

J

)2

, (3.22)

or

α(µ) =
1

2
J
[

Γ(2− 2∆)Γ(∆)2

Γ(2∆ + 1)Γ(1−∆)2

1

(2c∆)(q−2)

] 1
2(1−2∆)( µ

J

) 1
1−2∆

. (3.23)

The power of µ is given by 1
1−2∆ , which is always larger than 1. Therefore, in the low

energy limit the physical mass gap is much smaller than the naive mass gap µ. This is in

contrast with the two coupled SYK model [5] where the physical mass gap is much greater

than the naive gap µ. We also compute the mass gap numerically and for small µ the

numerics agrees with the conformal limit result (3.23). See figure 5.

Once we determine the conformal limit of the diagonal correlation functions, we

can also determine the off diagonal correlation function. It is convenient to rewrite the

Schwinger-Dyson equation as

Goff(ω) =
iµG(ω)

iω + Σ(ω)
. (3.24)

In the conformal limit, we can ignore the ω in the denominator and approximate G,Σ by

the conformal limit Gc(ω),Σc(ω). Therefore, Goff(ω) becomes

Goff(ω) = iµ
Gc(ω)

Σc(ω)
= iµ−1 Γ(1−∆)2

Γ(∆)2

Γ
(
∆ + i ω2α

)
Γ
(
∆− i ω2α

)
Γ
(
1−∆ + i ω2α

)
Γ
(
1−∆− i ω2α

) (3.25)

The Euclidean time off diagonal correlator is obtained by the inverse Fourier transformation

of Goff(ω). This inverse Fourier transformation becomes

Goff(τ) = 2iα(µ)µ−1 Γ(1−∆)2

Γ(∆)2

Γ(2∆)

Γ(1− 2∆)
e−2α∆|τ |

2F1(2∆, 2∆; 1; e−2α|τ |). (3.26)
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Figure 6. The plot of the correlation functions for q = 8, β = 10000, J = 1 and µ = 0.005 mass

deformed SYK model. Left : the plot of the diagonal correlation functions. We plot the numerical

solution for the Schwinger-Dyson equation, the conformal limit and the conformal limit of the SYK

model. Right: the plot of the off diagonal correlation functions. We plot the numerical solution

and the conformal limit.

We compare the conformal limit and the exact numerical solution for the Schwinger-Dyson

equation in figure 6 and they show good agreements.

The τ = 0 value of the off diagonal correlator gives the expectation value of the spin

operator Sk = −2iψ2k−1ψ2k. In the conformal limit, this becomes6

〈Gs(µ)|Sk|Gs(µ)〉 = −2iskGoff(0) = 4skα(µ)µ−1 Γ(1−∆)2Γ(2∆)Γ(1− 4∆)

Γ(∆)2Γ(1− 2∆)3
. (3.27)

Using Goff(0), we can calculate the ground state energy:

1

N
µ
∂E0(µ)

∂µ
= µ

i

2
Goff(0) = −α(µ)

Γ(2∆)Γ(1−∆)2Γ(1− 4∆)

Γ(∆)2Γ(1− 2∆)3
. (3.28)

The first relation comes from the relation for the free energy 1
N
∂(βF )
∂µ = iβ

2 Goff(0) and

by specializing this relation to the ground state β → ∞. By integrating this differential

equation, we obtain the ground state energy as

E0(µ)

N
=
E0

N
− α(µ)(1− 2∆)

Γ(2∆)Γ(1−∆)2Γ(1− 4∆)

Γ(∆)2Γ(1− 2∆)3
, (3.29)

where E0 is the ground state energy of the SYK model. Using the relation Hdef = HSYK +

HM , we can also compute the expectation value of the SYK Hamiltonian under the ground

state of the deformed Hamiltonian as

1

N
〈Gs(µ)|HSYK|Gs(µ)〉 =

E0(µ)

N
− iµ

2
Goff(0)

=
E0

N
+ α(µ)

Γ(2∆ + 1)Γ(1−∆)2Γ(1− 4∆)

Γ(∆)2Γ(1− 2∆)3
. (3.30)

6The result (3.27) contains Γ(1 − 4∆), which is divergent when q = 4. This means that the spin

operator expectation value is not determined in the conformal limit but is regulated by the UV effect. As

a consequence, the scaling behavior with respect to µ is violated in q = 4 case. We treat this case in the

appendix D.
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The |Gs(µ)〉 has larger energy than the SYK ground state and the energy expectation value

of |Gs(µ)〉 does not depend on s. Therefore we can prepare 2
N
2 (=dimension of the SYK

Hilbert space) states from the mass deformation with the same energy expectation value.

3.2 Variational approximation for the ground state

To study how the SYK “black hole microstate” is close to the ground state of the de-

formed Hamiltonian, we apply the variational method for the deformed Hamiltonian by

the microstate |Bs(β)〉. This is an SYK analog of variational approximation by smeared

boundary states for mass deformations of (1 + 1)d CFT [26].

For variational approximation, we need to evaluate the mass deformed Hamiltonian in

the microstate |Bs(β)〉. Here we use the same collection of spins s = {s1, · · · , sN
2
} with

the mass deformation HM = µ
2

∑
k skSk. Using the relation

N∂τG(τ, 0)|τ=0 =
∑
i

〈Bs(β)|∂τψiψi|Bs(β)〉
〈Bs(β)|Bs(β)〉 =

∑
i

〈Bs(β)|[HSYK, ψi]ψi|Bs(β)〉
〈Bs(β)|Bs(β)〉

= 〈qHSYK〉Bs , (3.31)

N

2
Goff(0, 0) =

N
2∑

k=1

〈Bs(β)|ψ2k−1ψ2k|Bs(β)〉
〈Bs(β)|Bs(β)〉 =

N
2∑

k=1

〈ψ2k−1ψ2k〉Bs
=

1

iµ
〈HM 〉Bs

, (3.32)

we can compute the expectation value of the mass deformed Hamiltonian 〈HSYK +HM 〉Bs

as
〈HSYK +HM 〉Bs

N
=

1

q
∂τG(τ, 0)|τ→0+ + i

µ

2
Goff(0, 0). (3.33)

Here correlation functions are evaluated in the state |Bs(β)〉. Using the equation (2.17)

and (2.18), we can represent this expectation value completely in terms of the SYK thermal

correlation function:

〈HSYK +HM 〉Bs

N
=

1

q
∂τGβ(τ)|τ→0+ − µGβ(β/2)2. (3.34)

The first term is the thermal energy in the SYK model [11]:

1

q
∂τGβ(τ)|τ→0+ = −J

2

2q2

∫ β

0
(2Gβ(τ))q = − ∂

∂β
logZ = E. (3.35)

As usual, we minimize the energy evaluated on the trial wavefunction (3.34), to achieve

the best approximation for ground state energy.

3.2.1 Variational approximation in conformal limit

In the low energy limit, the partition function have the expansion [11]

logZ = −βE0 + S0 +
c

2β
+ · · · . (3.36)
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Here c = 4π2αSN
J is the specific heat of the SYK model and E0, S0 are the ground state en-

ergy and the zero temperature entropy in the SYK model that is not calculated analytically.

Therefore the energy expectation value becomes

〈HSYK〉
N

= − ∂

∂β
logZ =

E0

N
+

c

2β2N
=
E0

N
+

2π2JαS
(βJ )2

. (3.37)

On the other hand, at low energy limit Gβ(β/2) = c∆

(
π
J β
)2∆

. Therefore, the expectation

value of the deformation term becomes

〈HM 〉
N

= −µGβ(β/2)2 = −µ(c∆)2

(
π

J β

)4∆

. (3.38)

Therefore, the total variational energy is

〈HSYK +HM 〉
N

− E0

N
=

2π2JαS
(βJ )2

− µ(c∆)2

(
π

J β

)4∆

= JαS(2eφ0 − η̂e2∆φ0) ≡ V (φ0). (3.39)

Here we put eφ0 = π2

J 2β2 and η̂ = µ(c∆)2

JαS . We should note that this potential is exactly

the same with (2.41). The derivative becomes β∂β = −2∂φ0 and the minimal value of the

variational energy is the minimal value of the potential V . This potential has a unique

minimal that is given by

V ′(φ0) = 2JαS(eφ0 − η̂∆e2∆φ0) = 0. (3.40)

Therefore, the relation between β and µ becomes

eφ0/2 =

(
π

J β(µ)

)
=

(
µ(c∆)2∆

JαS

) 1
2(1−2∆)

. (3.41)

The variational energy becomes

〈HSYK +HM 〉
N

=
E0

N
+ V (φ0) =

E0

N
− JαS

1− 2∆

∆

(
µ(c∆)2∆

JαS

) 1
(1−2∆)

. (3.42)

Using the variational wave function, we can compute several physical observables. For

example, we can compute the spin operator expectation value 〈Sk〉 = −2i 〈ψ2k−1ψ2k〉,
which is essentially the off diagonal correlation function at τ = 0. The half of the spin

operator expectation value becomes

1

2
〈Sk〉 = −iGoff(0) = 2sk(c∆)2

(
π

β(µ)J

)4∆

= 2sk(c∆)2

(
µ(c∆)2∆

JαS

) 2∆
(1−2∆)

. (3.43)

Another observable we can compute is the energy of the SYK Hamiltonian 〈HSYK〉
that gives the energy of the ground state of the deformed Hamiltonian as an excited state

of the SYK Hamiltonian. This becomes

〈HSYK〉
N

=
E0

N
+ 2JαS

(
π

β(µ)J

)2

=
E0

N
+ 2JαS

(
µ(c∆)2∆

JαS

) 1
(1−2∆)

. (3.44)

As a consistency check, we also solve the minimization condition for the trial en-

ergy (3.34) using the numerical solution for thermal SYK correlation functions. The com-

parison of numerics and the analytical results in conformal limit is shown in figure 7.
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Figure 7. Comparing the µ dependence T (µ) = β(µ)−1 from variational method for low energy

approximation and exact numerical calculation for q = 4 and q = 6 case. The conformal limit is

given by (3.41).
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Figure 8. The plot of observables both in the exact ground state |Gs(µ)〉 and the variational

approximation |Bs(β(µ))〉. Here we choose the parameter to be q = 6 and J = 1. As written in the

central picture, the solid lines represent the numerics and the dashed lines represent the conformal

limit answer. Left: the plot of the ground state E0 as a function of µ. Conformal limit results are

given in (3.29) and (3.42). Middle: the plot of the half of the absolute value of the spin operator

expectation value | 〈Sk〉 |, which is equal to the τ = 0 off diagonal correlation function −iGoff(0), as

a function of µ. Conformal limit results are given in (3.27) and (3.43). Right: the plot of the energy

in the SYK Hamiltonian 〈HSYK〉 as a function of µ. Conformal limit results are given in (3.30)

and (3.44).

3.2.2 Comparison of variational approximation and exact ground state

Even Beyond the conformal limit, we can study both of the variational approximation

and the ground state numerically. Especially, we can compare both results in the whole

parameter region. In figure 8, we show the numerical results for the spin operator expec-

tation value 〈Sk〉, ground state energy E0(µ) and energy in the SYK Hamiltonian 〈HSYK〉
for both of the exact ground state |Gs(µ)〉 and variational approximation |Bs(β(µ))〉. We

found that these observables in |Gs(µ)〉 and |Bs(β(µ))〉 are very close and |Bs(β)〉 is a good

approximation for the ground state. We also checked that the true ground state energy

never goes beyond that in the variational approximation, which is expected.

In the conformal limit, we have analytic expression both for the exact ground state and

the variational approximation. By comparing the results, we can find that the variational

approximation reproduce the correct scaling with respect to the mass parameter µ. On the

other hand, the coefficients are different. This means that the variational approximation
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is not perfect even in the small µ limit. This is in contrast with the two coupled SYK

model [5] where the observables in the exact ground state and the thermofield double state

perfectly agree in the small mass parameter limit.

However, in the large q limit, the observables in |Gs(µ)〉 perfectly agrees with those in

|Bs(β(µ))〉. Actually, we can study the large q limit analytically in the whole parameter

regime and we can confirm that the variational approximation is perfect in any µ as we

will see later.

3.3 Thermodynamics of the deformed SYK model

In this section we study the thermodynamic property of the deformed SYK model (2.1).

In the complex SYK model with a similar deformation, an interesting phase structure was

found [33, 34] through the analysis of the large N free energy F
N = − 1

Nβ logZ: the first

order phase transition in µ-T plane7 and the disappearance of the phase transition above

some critical values of µ and the temperature T . The similar phase structure was also

found in the two coupled real SYK model with equal random couplings [5]. It would be

natural to expect a similar phase structure also in our setup.

The large N free energy can be evaluated by solving the Schwinger-Dyson equa-

tions (3.5), (3.8) and then evaluating the partition function on that solution. As we are

interested in the phase structure at finite (µ, T ), we solve (3.5), (3.8) directly without any

further approximation and numerically by discretizing τ direction. See appendix B for

detail. The Schwinger-Dyson equations are discretized as (B.13) and the free energy is

evaluated through (B.15). Here we have chosen the discretization parameter as τ = βm
2Λ

(m = 1, 2, · · · , 2Λ) with Λ = 106. For each µ, we have first solved the Schwinger-Dyson

equation for T = 0.3 numerically by an iterative method ([11], appendix G) with initial

values for G and Σ = J2Gq−1 chosen as G̃n = i
ωn

(ωn = 2π
β (n+ 1

2)). Then we have decreased

the temperature slowly by solving the equation for the temperature T −∆T with the ini-

tial condition chosen as the solution obtained for the temperature T , with ∆T = 5× 10−5.

Once we reach a sufficiently small temperature, we solve the Schwinger-Dyson equation

again by slowly increasing the temperature in the similar way. This recursive technique is

similar to the technique employed in [5, 33, 34]. If we find two different free energy for the

increasing T and the decreasing T , crossing with each other at some temperature Tc, we

conclude that there is a first-order phase transition as T = Tc.

The results are summarized in figure 9. We find that the free energy for each µ

interpolates two extreme behaviors: F = const. (i.e., gapped) for low temperature and

F ≈ FSYK at high temperature, which is consistent with the structure of the deformed

Hamiltonian (2.1). From the observations [5, 33, 34] we suspected that the system exhibits

a first order phase transition in the intermediate temperature (for example, T ∼ 0.04 for

µ = 0.2). However, we have not observed the aformentioned hysteretic behavior which

would indicate the first order phase transition.

7The parameter in the complex SYK model playing the same role as µ in the Hamiltonian is the chemical

potential dual to the U(1) charge.
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Figure 9. The large N free energy F
N of the deformed SYK model (B.15) computed by solving

the Schwinger-Dyson equation numerically. Here the horizontal axis is the temperature T .
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Figure 10. The large N specific heat cT
N (3.45) of the deformed SYK model (2.1), here the

horizontal axis is the temperature T . Note that the universal increasing behavior at T ≈ 0 is a

numerical artifact due to the fact that the numerical UV cutoff |ωn| < 2πΛ
β is not large enough.

We further examine the presence of the second order phase transition by calculating

the large N specific heat

cT = −T ∂
2F

∂T 2
, (3.45)

which would diverge at the second order phase transition point. See figure 10. Though the

specific heat exhibits a peak at some temperature in the intermediate regime, we find that

the peak is finite and smooth.
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From these result we conclude that our model exhibits neither the first order phase

transition nor the second order phase transition.8 This result is rather surprising and we

discuss possible explanation in section 7.

4 Finite N analysis of the model

In this section, we study the mass deformed Hamiltonian (2.1) at finite N . We focus on

the case with q = 4 and J = 1 of this model.

Since the canonical anti-commutation relation of ψi, {ψi, ψj} = δij can be realized by

the Gamma matrices Γi as ψi = 1√
2
Γi, the Hamiltonian Hdef (2.1) for finite N is written

as the following 2N/2 × 2N/2 matrix

Hdef = HSYK +HM , HSYK =
1

4

∑
i<j<k<`

Jijk`ΓiΓjΓkΓ`, HM =
iµ

2

N/2∑
j=1

Γ2j−1Γ2j , (4.1)

with Jijk` random coupling chosen out of Gaussian distribution with the mean 〈Jijk`〉 = 0

and the variance 〈J2
ijk`〉 = 6

N3 .

Note that Hdef commutes with the following chirality (i.e. fermion number in ψi) matrix

Γc = i−
N
2 Γ1Γ2 · · ·ΓN (4.2)

whose eigenvalues are ±1. Hence with an appropriate choice of basis, Hdef takes a block

diagonal form

Hdef = H
(+)
def ⊕H

(−)
def (4.3)

with H
(±)
def = Hdef

1±Γc
2 , regardless of the choice of Jijk`.

In figure 11 we display the eigenvalue density of Hdef for N = 30 and various values of

µ. When µ is large, Hdef is dominated by HM where the energy levels are discrete Ep =

µ
(
−N

4 + p
) (
p = 0, 1, · · · , N2

)
with degeneracies dp =

(N
2
p

)
. Though these degeneracies are

resolved by HSYK, the levels at different Ep are not mixed for a sufficiently large µ, hence

we obtain a blob structure.

4.1 Overlap β〈B(↓,↓,··· ,↓)|0(+)〉
In section 5.2 we have realized that the spin ground state |B(↓,↓,··· ,↓)〉 is a good variational

ansatz to realize the true ground state energy of Hdef after the Euclidean evolution e−
β
2
HSYK ,

with β being the variational parameter. In this section we would like to examine the

agreement of these two states more directly, through the overlap of the states

|β〈B(↓,↓,··· ,↓)|0(+)〉|, (4.4)

8Strictly speaking, our analysis is not a proof of the absence of the phase transition. For example, it

is not ensured that our algorithm exhausts all the solutions to the Schwinger-Dyson equation which are

relevant in the limit of Λ →∞. Nevertheless in the large q limit we can explicitly prove that there are no

phase transition in this model. See section 5.3.1 for more detail.
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Figure 11. Eigenvalue density of the Hamiltonian Hdef with q = 4, J = 1 (4.1) and N = 30, with

a single realization of Jijk`. We observe that the shape of the eigenvalue density around the ground

state exhibits a transition around µ ≈ 0.1 from a hard edge to a smooth decay, which is consistent

with the behavior of Egap; for µ . 0.1 Egap ∼ µ2, which is significantly smaller than Egap ∼ µ.

where |0(+)〉 is the ground state of H(+) and |B(↓,↓,··· ,↓)〉β is defined as

|B(↓,↓,··· ,↓)〉β =
1

Z(β)
e−

βHSYK
2 |B(↓,↓,··· ,↓)〉, Z(β) = 〈B(↓,↓,··· ,↓)|e−βHSYK |B(↓,↓,··· ,↓)〉, (4.5)

with |Bs〉 defined in (2.9) and normalized as 〈Bs|Bs〉 = 1. Here β is chosen for each

realization of Jijk` such that the overlap (4.4) is maximized.

Note that |B(↓,↓,··· ,↓)〉β has a definite chirality Γc|B(↓,↓,··· ,↓)〉β = +|B(↓,↓,··· ,↓)〉β for any

values Jijk` and N . This follows from the fact Γ
(−)
i |B(↓,↓,··· ,↓)〉 = 0, where Γ

(±)
i = Γ2i±iΓ2i−1

2

the rising/lowering operator for Si, together with the following alternative expression of

Γc (4.2)

Γc =
(

1− 2Γ
(+)
1 Γ

(−)
1

)(
1− 2Γ

(+)
2 Γ

(−)
2

)
· · ·
(

1− 2Γ
(+)
N
2

Γ
(−)
N
2

)
, (4.6)

and the fact that HSYK commutes with Γc. On the other hand, the chirality of the true

ground state |0〉 of Hdef depends on the value of the random coupling Jijk`, and when

Γc|0〉 = −|0〉 the overlap with |B(↓,↓,··· ,↓)〉β is identically zero regardless of the value of

β. For this reason, in (4.4) we have used |0(+)〉 instead of |0〉 to make the comparison

meaningful for all realizations.9

The results are displayed in figure 12. For large µ, the Hamiltonian is dominated

by HM whose ground state is |B(↓,↓,··· ,↓)〉, hence the overlap trivially approaches to 1.

9If one is interested in the overlap between |B(↓,↓,··· ,↓)〉 and the true ground state |0〉, one has just to

multiply the “probability of |0〉 to have Γc = +1” to the results displayed in figure 12. Though we do not

have an analytic expression, we observe for any N that this probability is almost 1 for µ ≥ 0.5 and not

smaller than 0.5 also for the smaller values of µ. Especially the difference between |0〉 and |0(+)〉 does not

matter when we consider |β〈B(↓,↓,··· ,↓)|0(+)〉|
1
N (figure 13) in the large N limit.
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Figure 12. The maximized overlap averaged over the realizations of random coupling Jijk` as√〈
|β〈B(↓,↓,··· ,↓)|0(+)〉|2

〉
Jijk`

. Here the horizontal axis is µ.

For small µ, the Hamiltonian is dominated by HSYK. Since the Euclidean evolution with

β →∞ is equivalent to the projection onto the ground state of H
(+)
SYK, the overlap should

again approaches to 1. Note, however, that for N ≡ 4 mod 8 the spectrum of H(+) is

two-hold degenerate. The degeneracy is resolved by a small perturbation by HM , and at

the leading order in µ the ground state |0(+)〉 of Hdef is a certain linear combination of the

two ground state of HSYK which is not necessarily the same linear combination obtained

by the projection of |B(↓,↓,··· ,↓)〉. Hence we expect that the overlap is substantially smaller

than 1.10 The results in figure 12 are consistent with these expectations. On the other

hand, for intermediate values of µ we have found that the overlap is not close to 1 any

more even for N 6≡ 4 mod 8, and the lowest value around µ = 0.01 significantly decreases

as N increases.

Note, however, that as the dimension of the Hilbert space increases, the agreement of

two vectors |φ〉,|χ〉 in the sense of |〈φ|χ〉| ≈ 1 becomes less likely to occur. For example

the expectation value of the overlap of two randomly chosen unit vectors in d dimensional

space can be evaluated as follows√〈
|〈e1|e2〉|2

〉
|e1〉,|e2〉: random

=

√∫
U(d)

dU1dU2〈e|U †1U2|e′〉〈e′|U †2U1|e〉

=

√
1

d2

∫
U(d)

dU1dU2 TrU †1U2U
†
2U1

=

√
1

d
(4.7)

where in the second line we have realized the randomness of |e1〉,|e2〉 as |e1〉 = U1|e〉,
|e2〉 = U2|e′〉 with random unitary transformations U1, U2 and an arbitrary pair of fixed

unit vectors |e〉,|e′〉. In the third line, taking into account that the result is independent of

10Though we do not have a clear argument for this effect, we observe that the value of the overlap

approaches some finite value as N increases from N = 12 to N = 28.
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Figure 13. The maximized overlap viewed in
(√
〈|β〈B(↓,↓,··· ,↓)|0(+)〉|2〉Jijk`

) 1
N

, with the horizontal

axis µ.

variational ansatz (N=∞)

overlap (N=24)

overlap (N=26)

overlap (N=30)

0.001 0.010 0.100 1 10
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0.10

1
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100

1000

μ

β

Figure 14. The inverse temperature β maximizing the overlap (4.4), averaged over the ensemble

〈β〉Jijk` compared with the inverse temperature which minimizes the large N variational energy

(Blue; see figure 7 in section 3).

the choice of |e〉,|e′〉, we have further replaced |e〉〈e| and |e′〉〈e′| with 1
d

∑
e |e〉〈e| = 1

d and
1
d

∑
e′ |e′〉〈e′| = 1

d . In the current case, the dimension of the Hilbert space is d = 2
N
2
−1,

hence
√
〈|〈e1|e2〉|2〉 ≈ e−

log 2
4
N . The large N calculation of the overlap through the saddle

point approximation, which we explain and actually perform for the large q limit in sec-

tion 5.4, also suggest that the overlap should behave like |β〈B(↓,↓,··· ,↓)|0〉| ∼ e−N ·O(1). Hence

it would be more reasonable to see |〈β〈B(↓,↓,··· ,↓)|0(+)〉| 1
N instead of |〈β〈B(↓,↓,··· ,↓)|0(+)〉|. See

figure 13. The values are always substantially large compared with the case of random over-

lap 2−
1
4 = 0.841 (4.7), hence we conclude that |B(↓,↓,··· ,↓)〉β is indeed a good approximation

to |0(+)〉 for any values of µ once β(µ) is chosen appropriately.

Lastly, the β maximizing the overlap at each µ are obtained as figure 14. We found a

good agreement for large µ (µ > 0.2). On the other hand the two results are significantly

different (by factor ∼ 100) for the smaller µ. However, it is not necessary to have an agree-

ment in the first place since we have determined β(µ) through the two different quantities.

Indeed, though the variational ansatz reproduced the ground stat energy of the deformed
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Hamiltonian well, there was a discrepancy in another observable |〈Sk〉| (see figure 24; for

a possible explanation for the discrepancy, see appendix D). This implies that |B↓,↓,··· ,↓〉β
with β(µ) determined by minimizing the energy was actually not so a good approximation

to the ground state itself.

4.2 Chaotic property

In [14] the authors conjectured that the Hawking-Page like transition of the model [5]

is accompanied with the chaotic/integrable transition. Here we would like to test this

proposal also for the current setup. In section 3.3 we have found that our model does not

exhibits a phase transition in µ or in the temperature T . Hence, if the proposal is correct,

our model should not exhibit a chaotic/integrable transition.

As a diagnostics of the quantum chaoticity, in this paper we adopt the level statistics

which is relatively easy to study for finite N . It was conjectured that [42] if we quantize

a classically chaotic system the fluctuation property of the resulting energy spectrum ex-

hibits the same correlation among different levels as in the random matrix theory. Here

the ensemble of the random matrix is determined by the time reversal symmetry of the

Hamiltonian of the quantized system. Though a rigorous proof at fully quantum level is

still lacking, this conjecture have been verified in various systems [43, 44] and also proved

at semi-classical level [55, 56]. Hence one may use the presence of the RMT-like level

correlation conversely as a reasonable definition of the quantum chaos.

Among various ways to characterize the level correlations, here we adopt the following

quantity called the adjacent gap ratio [47–50]:

r̄ =
min(Ei+1 − Ei, Ei − Ei−1)

max(Ei+1 − Ei, Ei − Ei−1)
, (4.8)

where {Ei} is the energy spectrum (Ei ≤ Ei+1) and (· · · ) in the right-hand side stands

for the average over the spectrum. This quantity is evaluated for the random matrix

theories with various type of the ensemble [47] as well as for the Poisson distribution which

corresponds to the non-chaotic systems. By comparing the result obtained from the actual

energy spectrum with these known values, one can diagnose whether the systems is chaotic

or not.

As the Hamiltonian of our model is trivially separated (4.3) due to the conservation of

chirality, the adjacent gap ratio should also be defined separately for the spectrum of each

of H
(±)
def instead of the full spectrum of Hdef [44]

〈r(±)
i 〉Jijk` =

〈
min(E

(±)
i+1 − E

(±)
i , E

(±)
i − E(±)

i−1)

max(E
(±)
i+1 − E

(±)
i , E

(±)
i − E(±)

i−1)

〉
Jijk`

, (4.9)

where the spectrum {E(±)
i }2

N
2 −1

i=1 of H
(±)
def is sorted such that E

(±)
i ≤ E

(±)
i+1. The average is

taken over Jijk` for each fixed i. Here we do not take the average over the spectrum; in

this way we can diagnose the chaoticity of our model at each energy scale separately. The

results are displayed in figures figure 15 and figure 16.

– 29 –



J
H
E
P
0
8
(
2
0
2
0
)
0
8
1

Figure 15. Adjacent gap ratio 〈r(±)
n 〉Jijk` of H

(±)
def for N = 30. Here the horizontal axis is 〈E(±)

n 〉−
E0〉Jijk` with E0 = min(E

(+)
0 , E

(−)
0 ) the energy of the true ground state. Inset: enlarged view for

first 20 levels per each chirality sector, with dashed red line the peak temperature of the specific heat

in the large N limit (see figure 10) around which we would expect the chaotic/integrable transition

if it exists.

The time reversal symmetry of one dimensional fermion systems were studied in [57].

For N = 30, H
(±)
def has the same time reversal property for both µ = 0 and µ > 0 which

corresponds to the Gaussian unitary ensemble (GUE) [57, 58], hence we can safely compare

our results with the adjacent gap ratio of GUE rGUE = 2
√

3
π − 1

2 and that for the Poisson

distribution rPoisson = 2 log 2 − 1. In contrast to the result obtained in [14], here we find

that the adjacent gap ratio is close to rGOE over whole the spectrum, which implies that
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Figure 16. Adjacent gap ratio 〈r(±)
n 〉Jijk` of H

(±)
def for N = 30.

the system is chaotic for any values of µ and the energy scale (temperature); there are no

chaotic/integrable transition. This is consistent with the proposal in [14].

5 Large N , large q analysis

In the large q limit, we can study the mass deformed SYK model analytically beyond the

low energy approximation. In this section we study this limit to confirm the validity of the

low energy approximation and the observation by the numerical analysis of finite q model

in the region where we do not use the low energy approximation. In the large q limit, the
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G,Σ action reduces to the Liouville action:11

SE
N

=
1

16q2

∫
dτ1

∫
dτ2

(
∂τ1g(τ1, τ2)∂τ2g(τ1, τ2)− ∂τ1goff(τ1, τ2)∂τ2goff(τ1, τ2)

)
−J

2

4q2

∫
dτ1

∫
dτ2e

g(τ1,τ2) − µ̂

4q2

∫
dτgoff(τ, τ), (5.1)

with the large q expansion

G(τ) =
1

2
sgn(τ)

(
1 +

1

q
g(τ) + · · ·

)
,

Goff(τ) =
i

2

(
1 +

1

q
goff(τ) + · · ·

)
, (5.2)

and we also scale µ so that µ̂ = µq is kept finite in the large q limit. The derivation

is shown in the appendix A. At small temperature and the late time of order τ ∼ q, this

approximation is not valid because of the exponential decay of the correlation functions. In

this case, we also consider the solution in τ � q regime and impose the matching condition

between τ � q and τ � q solutions.

5.1 Large q limit at zero temperature

At large q limit we can write the correlators as

G(τ) =
1

2
sgn(τ)

(
1 +

1

q
g(τ) + · · ·

)
,

Goff(τ) =
i

2

(
1 +

1

q
goff(τ) + · · ·

)
. (5.3)

In the mass deformed theory, it is convenient to consider to scale the mass term µ = µ̂/q

and keep µ̂ when q → ∞. The Schwinger-Dyson equation reduces to the following two

equation:

∂2
τ g(τ) = 2J 2eg(τ), (for τ > 0)

∂2
τ goff(τ) = −2µ̂δ(τ), (5.4)

with the boundary conditions

g(0) = 0, ∂τgoff(0+) =− µ̂,
g(τ)− goff(τ)→ 0, as τ →∞. (5.5)

11Note that in the case of the undeformed SYK model, the Liouville action does not capture the infinite

number of modes in the OPE expansion with dimension hm = 2m + 1 + O(1/q) [11] which contribute in

the higher point functions even at the leading order in the large q limit [59, 60]. However, this fact does

not affect the two point function itself, and hence does not affect the leading part of the free energy in the

large N limit where the multi point functions factorize to the two point functions. We believe the situation

is the same also for the mass deformed SYK model.
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Figure 17. The plot of Green functions. For the numerical solution of the Schwinger-Dyson

equation, we put q = 96, J = 1 µ = 0.03 and β = 1000.

The general solutions of the equations (5.4) become

eg(τ) =
α2

J 2 sinh2(α|τ |+ γ)
,

egoff(τ) =
4α̃2

J 2
e−2γ̃e−2α̃|τ |, (5.6)

with constants of the integration α, α̃, γ, γ̃. Each boundary condition (5.5) fixes the con-

stants of integration in a following way

g(0) = 0 ⇒ α

J sinh γ
= 1,

∂τgoff(0+) =− µ̂ ⇒ 2α̃ = µ̂,

g(τ)− goff(τ)→ 0, as τ →∞ ⇒ γ̃ = γ, α = α̃.

(5.7)

This means

4J sinh γ = 2µ̂ → e−γ = − µ̂

2J +

√
µ̂2 + 4J 2

2J . (5.8)

This solution for τ1 − τ2 > 0 can be written as

eg(τ1,τ2) =
h′1(τ1)h′2(τ2)

J 2(h1(τ1)− h2(τ2))2
, egoff(τ1,τ2) = f1(τ1)f2(τ2), (5.9)

where

h1(τ) = tanh
(
ατ +

γ

2

)
, h2(τ) = tanh

(
ατ − γ

2

)
,

f1(τ) =
2α

J e−γe−2ατ , f2(τ) =
2α

J e−γe2ατ . (5.10)

We can compare the analytic results here and the numerical solution for the Schwinger-

Dyson equation for sufficiently large q, and they show good agreement, see figure 17.
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Using (3.10), we can compute the ground state energy of the deformed SYK model in

the large q limit as follows.

E

N
= − 1

2q2

µ̂

tanh γ
− µ̂

4q

(
1− 2

q
+

2

q
log(2e−γ sinh γ)

)
+O(q−3)

= −J
q2
e−γ − µ̂

4q

(
1 +

2

q
log(2e−γ sinh γ)

)
+O(q−3). (5.11)

In small µ̂ limit, we can approximate γ ∼ µ̂
2J � 1. In this limit, the ground state energy

becomes
E

N
= −J

q2
− µ̂

4q
+

µ̂

2q2

(
1− log

µ̂

J

)
. (5.12)

The first term is the ground state energy of the SYK model at large q limit. As a con-

sistency check, this result agrees with the ground state energy obtained in the conformal

approximation (3.29) expanded at q � 1 with J , µ̂ kept fixed.

Given the ground state correlation function, we can compute the several physical ob-

servables again. The spin operator expectation value becomes

1

2
〈Gs(µ)|Sk|Gs(µ)〉 =

1

2
sk

(
1 +

1

q
goff(0)

)
=

1

2
sk

(
1 +

2

q
log(2e−γ sinh γ)

)
. (5.13)

The SYK energy evaluated on the ground state of the deformed Hamiltonian is

〈Gs(µ)|HSYK|Gs(µ)〉 = − 1

2q2

µ̂

tanh γ
+

µ̂

2q2
. (5.14)

In µ̂ → 0 limit, using γ ∼ µ̂
2J the first term becomes the SYK ground state energy.

Therefore |Gs(µ)〉 serves an excited state of the SYK model with energy higher than the

ground state by µ̂
2q2 . In µ̂→∞ limit, γ becomes ∞ and the |Gs(µ)〉 have the 0 energy in

the SYK Hamiltonian, which is expected to the state |Bs〉 [27].

5.2 Variational approximation in the large q limit

We can also study the variational approximation of the ground state of the deformed

Hamiltonian by the SYK black hole microstate analytically even beyond the low energy

approximation. In large q limit, the trial energy (3.33) becomes

〈HSYK +HM 〉Bs

N
= − 1

q2

α̌

tan γ̌
− µ̂

4q

(
1 +

4

q
log

α̌

J

)
. (5.15)

Using α̌ = J sin γ̌, this can be rewritten as

〈Hdef 〉
N

= −J
q2

cos γ̌ − µ̂

4q

(
1 +

4

q
log sin γ̌

)
. (5.16)

Because we are considering the variational method, we minimize the trial energy as a

function of γ̌ with fixing µ̂:

∂

∂γ̌

〈Hdef 〉
N

= −J
q2

sin γ̌ +
µ̂

q2

1

tan γ̌
= 0. (5.17)
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This becomes
µ̂

J =
sin2 γ̌

cos γ̌
. (5.18)

The R.H.S is monotonic on γ̌ ∈ [0, π2 ] that runs from 0 to ∞ and this have the unique

solution. This is solved as

cos γ̌ = − µ̂

2J +

√
µ̂2 + 4J 2

2J . (5.19)

Together with the relation with γ and µ̂ (5.8), we can also write the matching condition as

e−γ = cos γ̌. (5.20)

The inverse temperature is given by

J β(µ̂) =
π − 2γ̌

sin γ̌
. (5.21)

For small γ̂, µ̂
J ≈ γ̂2 and the temperature β(µ̂) is approximately

J β(µ̂) ≈ π
√
J
µ̂
. (5.22)

On the other hand, for large µ̂, we can approximate µ̂
J ≈ 1

π
2
−γ̂ and the temperature is

approximated as

J β(µ̂) ≈ 2J
µ̂
. (5.23)

Note that in the large β limit, using c∆ ≈ 1
2 , αS ≈ 1

4q2 and ∆ = 1
q the low energy ap-

proximation the low energy approximation for the relation 1
β(µ)J = 1

π

(
µ(c∆)2∆
JαS

) 1
2(1−2∆)

reduces to
1

β(µ)J ≈
1

π

√
µ̂

J , (5.24)

which completely agrees with the small µ̂ limit of the large q answer.

Using the matching condition (5.20), we find that the exact ground state energy (5.11)

and the variational energy (5.16) actually exactly agree up to the order of q−2. This means

that in large q limit the black hole microstate |Bs(β)〉 is the same state with the ground

state of the deformed Hamiltonian! Later we will confirm this fact by computing the

overlap between |Bs(β)〉 and |Gs(µ)〉 at large q limit using the Liouville action.

5.3 Large q limit at finite temperature

In this section we consider the large q limit at finite temperature. One motivation is to

confirm the absence of the Hawking-Page type phase transition in the mass deformation in

this paper at large q limit. In large q limit, Σ varies over a relatively short time, which is

of order one. Moreover, (3.6) shows that Σoff is proportional to the delta function. On the

other hand, G and Goff vary with the time scale of order q. Using these separation of the
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time scales, we can approximate the convolution (3.4) as follows. Σ(τ) is an odd function

of τ , and we can approximate Σ(τ) ∼ δ′(τ). Therefore, we can approximate the integral∫
dτ ′′Σ(τ, τ ′′)G(τ ′′, τ ′) ∝ ∂τG(τ, τ ′),∫

dτ ′′Σ(τ, τ ′′)Goff(τ ′′, τ ′) ∝ ∂τGoff(τ, τ ′). (5.25)

However since Σ(τ, τ ′′) contains the factor 1/q and the equations already contain ∂τG and

∂τGoff, we can ignore the term that contains Σ. Because we are considering the large τ

regime, we can also ignore the term δ(τ −τ ′) in the right hand side of the Schwinger-Dyson

equation (3.6). Therefore, we obtain the equation

∂τG(τ, τ ′)− iµGoff(τ, τ ′) = 0,

∂τGoff(τ, τ ′) + iµG(τ, τ ′) = 0. (5.26)

The finite temperature solution is

G(τ) = A cosh[µ(β/2− τ)], Goff(τ) = iA sinh[µ(β/2− τ)]. (5.27)

When we expand them in τ , we obtain

G(τ) = A cosh
βµ

2
− µτA sinh

βµ

2
+ · · · ,

−iGoff(τ) = A sinh
βµ

2
− µτA cosh

βµ

2
+ · · · . (5.28)

In the following, we study the thermodynamical properties of the Hamiltonian Hdef

in the large q limit. We study the inverse temperature regime of order q log q, q,
√
q and 1.

The derivations are skipped here and shown in appendix C.

5.3.1 Inverse temperature of order β = q log q

In this regime, it is convenient to use the parameter σ = qe−βµ, which is of order one

quantity in this temperature regime. In this temperature regime, we can still use the large

q expansion G(τ) = 1
2(1 + 1

q g(τ) · · · ) and Goff(τ) = i
2(1 + 1

q goff(τ) · · · ) at early time. The

solution for τ � q becomes

eg(τ) =
α2

J 2 sinh2(α|τ |+ γ)
, egoff(τ) =

α̃2

J 2 sinh2(α̃|τ |+ γ̃)
, (5.29)

with

α̃ = α, γ̃ = γ + σ, µ̂ = 2α̃, α = J sinh γ, (5.30)

and for τ � q

G(τ) =
1

2
cosh

[
µ

(
β

2
− τ
)]
, Goff(τ) =

i

2
sinh

[
µ

(
β

2
− τ
)]
. (5.31)
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The thermal energy, thermal free energy and the thermal entropy are

E

N
= − 1

2q2

µ̂

tanh γ
− µ̂

4q
− µ̂

4q

(
1− 2

q
+

2

q
log(sinh γe−γ̃)

)
,

−βF
N

=
βµ̂

2q2

(
q

2
− 1 +

1

tanh γ
+ log(2 sinh γe−γ̃) + σ

)
+
σ

2q
,

S

N
=

1

2

σ

q

(
1 +

q

σ

)
=

1

2
e−βµ(1 + βµ). (5.32)

We can also rewrite the free energy as

− βF

N
=
βµ

4
+
e−βµ

2
+
βµ

4q

[
log(2 sinh γ) +

1

tanh γ
− γ − 1

]
. (5.33)

where µ̂ = 2J sinh γ is a function of only µ. In this expression, it is clear that the free

energy is a monotonic, smooth function of β in this temperature regime. This means that

there are no phase transition in the large q limit. We observe the absence of the phase

transition numerically in large N finite q case in section 3.3, and the large q analysis here

is consistent with this observation. This is in contrast with the two coupled SYK model [5]

where that model have a phase transition in the same temperature regime. The main

difference from that model is that here the temperature is a monotonic function of σ.

Because of this, we always have one solution for a given temperature and we do not have

phase transition.

5.3.2 Inverse temperature of order β = q

In this order, the off diagonal correlator |Goff(τ)| is smaller than 1/2 everywhere and we

cannot use the same large q expansion for the off diagonal correlator as we did in the last

subsection. We can still assume the large q expansion G(τ) = 1
2

(
1 + 1

q g(τ) + · · ·
)

for the

diagonal correlation function. The correlation function for τ � q becomes

eg(τ) =
α2

J 2 sinh2(α|τ |+ γ)
, (5.34)

with

α =
µ̂

2
tanh

βµ

2
, α = J sinh γ, (5.35)

and for τ � q,

G(τ) =
1

2

cosh
[
µ
(
β
2 − τ

) ]
cosh βµ

2

, Goff(τ) =
i

2

sinh
[
µ
(
β
2 − τ

) ]
cosh βµ

2

. (5.36)

The free energy becomes

− βF

N
=

1

2
log

(
2 cosh

βµ

2

)
+
βµ

2q
tanh

βµ

2

[
log(2 sinh γ) +

1

tanh γ
− γ − 1

]
. (5.37)
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Figure 18. Plot of free energy. The numerical calculation is done for q = 96, J = 1 and µ = 0.1.

The red and orange lines are analytical results (5.33) and (5.37) for the large q limit.

The first term, which is of order one, is the same with the free energy of the free fermionic

oscillator. In the small β limit, this becomes 1
2 log 2 which is the leading of the thermal en-

tropy of the SYK model at large q limit. Therefore, in this regime the entropy is increasing

from low entropy regime of order β = q log q. In the large β limit, this can be expanded as

− βF

N
∼ βµ

4
+

1

2
e−βµ +

βµ

2q

[
log(2 sinh γ) +

1

tanh γ
− γ − 1

]
, (5.38)

which reproduces the free energy (5.33) in the order of β = q log q. In the high temperature

limit, we can expand γ and F as

γ ∼ q(βµ)2

4βJ , −βF
N
∼ 1

2
log 2 +

(βµ)2

16
+
βJ
q2

+
(βµ)2

4q
log

q(βµ)2

4βJ + · · · . (5.39)

As a check, we compare the large q results (5.33) and (5.37) for free energy with the

free energy calculated from the numerical solution for the Schwinger-Dyson equation in

figure 18, which shows good agreement.

At this order, we obtain the same results with [5]. Actually, we found that both models

have the same Schwinger-Dyson equation at this order. If the temperature is higher than

O(q−1) we still have the same equation of motion and we only reproduce the former results

in [5], but to make this paper to be self contained, we still continue the finite temperature

analysis.

5.3.3 Inverse temperature of order β =
√
q

In this regime, we can approximate the off diagonal correlation function Goff as

Goff(τ) =
i

2
µ

(
β

2
− τ
)
, (5.40)

which is of order 1√
q . The diagonal correlation function G is approximated as G(τ) =

1
2(1 + g(τ) + · · · ) everywhere in τ ∈ [0, β] and the equation of motion for g becomes

∂2
τ g(τ)− 2J 2eg(τ) − µ̂2

q
= 0. (5.41)
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Figure 19. Plot of Lyapunov exponent as a function of
√
qβµ =

√
2k with exact, small k and large

k expansion.

The same equation has also appeared in a different mass deformation of the SYK model [13].

The last term is of order 1/q, which seems to be ignorable. But at the time of order
√
q,

the other terms are also of the same order. This can be seen clearly after rescaling as

x =
τ − β

2

β
, eĝ = (βJ )2eg. (5.42)

Then, the equation of motion becomes

∂2
xĝ − 2eĝ − 2k = 0, k =

q(µβ)2

2
. (5.43)

The detailed analysis are in appendix C.

The partition function becomes

− βF

N
=

1

2
log 2 +

(βµ)2

16
+
βJ
q2
− (βµ)2

4q
log(βJ ) +

h(qβ2µ2)

q2
, (5.44)

where h(k) is a function that we have not determined.

In this regime, the chaos exponent increases from 0 to the maximal value 2π
β . When k

is large, the chaos exponent λ becomes

λβ

2π
≈ 1√

π
k

3
2 e−

1
4
k, (5.45)

and for small k the chaos exponent becomes

λβ

2π
≈ 1− k

2π2
. (5.46)

For finite k, we can numerically study the chaos exponent. The plot is shown in figure 19

and the details are shown in the appendix C.

5.3.4 Temperature of order β = 1

In this limit we can ignore the mass term and we obtain the same physics with the large q

SYK model [11]. The free energy becomes

− βF

N
= −βFSYK

N
+

(βµ)2

16
, (5.47)
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Figure 20. Left: the illustration of the Euclidean path integral for the computation of the

overlap. Right: the Euclidean path integral for two time variable. We divide the region to three

parts depending on which Hamiltonian is used in the Euclidean time evolution.

where FSYK is the free energy of the SYK model. The chaos exponents are maximal when

1� β � √q and then decrease to 2J in the high temperature regime β � 1.

5.4 Computing the overlap at large q limit

In the large q limit, we can compute the overlap using the Liouville on shell action. The

strategy is to construct an analog of “Janus” solution [61] in the large q limit, where a

similar holographic computation of the overlap is done in [62]. The overlap is represented as

〈Bs(β)|Gs(µ)〉 = lim
τ→∞

〈Bs|e−
β
2
HSYKe−τHdef |0〉√

〈Bs|e−βHSYK |Bs〉
√
〈0|e−2τHdef |0〉

, (5.48)

with an initial condition |0〉, which only changes the normalization constant that should

cancel between the numerator and the denominator. We can treat the Euclidean path

integral for the overlap as a Euclidean time dependent coupling where τ runs in the range

τ ∈ [−β
2 ,∞] and the time dependent coupling µθ(τ) as depicted in figure 20. After the

disorder average, we can again obtain an effective action for G(τ1, τ2),Σ(τ1, τ2) variables

with τ1, τ2 ∈ [−β
2 ,∞] and the time dependent mass term −iµ

∫∞
−β

2
dτθ(τ)Goff(τ, τ). Because

this mass term explicitly depend on the Euclidean time τ , we do not have time translation

symmetry and the solution depend on two times τ1, τ2. At τ = −β
2 , the state |Bs〉 impose

the boundary condition ψ2k−1 |Bs〉 = iskψ2k |Bs〉, which leads to the boundary condition

G

(
τ1,−

β

2

)
= iGoff

(
τ1,−

β

2

)
. (5.49)

We also require that the solution approaches to the ground state solution of the deformed

Hamiltonian at τ1, τ2 →∞.

In the large q limit, the effective action reduces to the Liouville action. The difference

with the ground state or thermal case is that we do not have time translation symmetry
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and the Green’s functions depend on the two time variables as

G(τ1, τ2) =
1

2
sgn(τ1 − τ2)

(
1 +

1

q
g(τ1, τ2)

)
,

Goff(τ1, τ2) =
i

2

(
1 +

1

q
goff(τ1, τ2)

)
. (5.50)

The field g satisfies the Liouville equation and goff satisfies the free field equation

∂2g(τ1, τ2)

∂τ1∂τ2
= −2J 2eg(τ1,τ2),

∂2goff(τ1, τ2)

∂τ1∂τ2
= 0, τ1, τ2 ∈ [−β/2,∞]. (5.51)

These equation of motion should be satisfied except for the line τ1 = τ2 where we impose

g(τ, τ) = 0, (∂τ1 − ∂τ2)goff(τ1, τ2)|τ2→τ1 = −2µ̂θ(τ1). (5.52)

The two time solutions are locally given by

eg(τ1,τ2) =
h′1(τ1)h′2(τ2)

J 2(h1(τ1)− h2(τ2))2
, egoff(τ1,τ2) = f1(τ1)f2(τ2). (5.53)

The matching condition from the variational method is

e−γ = cos γ̌. (5.54)

This also gives the relation

tanh
γ

2
= tan2 γ̌

2
, 2e−γ sinh γ = sin2 γ̌. (5.55)

Actually we can find the two time solution for maximal overlap. The solution is

I :


eg(τ1,τ2) =

α̌2

J 2 sin2(α̌|τ1 − τ2|+ γ̌)

egoff(τ1,τ2) =
α̌2

J 2 cos2(α̌τ1)

α̌2

J 2 cos2(α̌τ2)
for − β

2
≤ τ1, τ2 ≤ 0,

(5.56)

II :


eg(τ1,τ2) =

α2

J 2 sinh2(α|τ1 − τ2|+ γ)

egoff(τ1,τ2) =
4α2

J 2
e−2γe−2α|τ1−τ2| for 0 ≤ τ1, τ2 ≤ ∞,

III :


eg(τ1,τ2) =

αα̌

J 2

tan γ̌
2

cosh2
(
ατ1+ γ

2

)
cos2

(
α̌τ2− γ̌

2

) 1(
tanh

(
ατ1+ γ

2

)
−tan γ̌

2 tan
(
α̌τ2− γ̌

2

))2

egoff(τ1,τ2) =
2α

J e−γe−2ατ1 α̌2

J 2 cos2(α̌τ2)
for 0 ≤ τ1 ≤ ∞,−

β

2
≤ τ2 ≤ 0.

In figure 21 we have plotted these functions. More compactly, we can write the solution as

eg(τ1,τ2) =
h′1(τ1)h′2(τ2)

J 2(h1(τ1)− h2(τ2))2
, egoff(τ1,τ2) = f1(τ1)f2(τ2), (5.57)
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Figure 21. The contour plot of the two time solutions for the overlap. In both side we plot eg(τ1,τ2)

and egoff(τ1,τ2) as a function of τ1, τ2. The parameters are taken to be γ̌ = 0.9 and J = 1, and the

others are determined from α̌ = J sin γ̌, α = J sinh γ and the matching condition e−γ = cos γ̌.

with the region dependent functions

h1(τ)=

tan γ̌
2 tan

(
α̌τ + 1

2 γ̌
)
τ ∈

[
− β

2 , 0
]

tanh
(
ατ + 1

2γ
)

τ > 0
, h2(τ)=

tan γ̌
2 tan

(
α̌τ − 1

2 γ̌
)
τ ∈

[
− β

2 , 0
]

tanh
(
ατ − 1

2γ
)

τ > 0
,

(5.58)

f1(τ)=


α̌2

J 2 cos2(α̌τ)
τ ∈

[
− β

2 , 0
]

2α
J e
−γe−2ατ τ > 0

, f2(τ)=


α̌2

J 2 cos2(α̌τ)
τ ∈

[
− β

2 , 0
]

2α
J e
−γe2ατ τ > 0

.

(5.59)

Now we can compute the overlap in the order of 1
q2 using the Liouville on shell action.

We denote the on shell action of the Liouville fields for overlap solution as S, and use SBs

for the on shell action for the state |Bs(β)〉 and SGs for the ground state |Gs(µ)〉. To com-

pute the overlap, it is convenient to rewrite the Liouville action (5.1) using dimensionless

coupling βJ and βµ.

S

N
=

1

8q2

∫ ∞
−π

dθ1

∫ ∞
θ1

dθ2

[
(∂θ1g(θ1, θ2)∂θ2g(θ1, θ2)− ∂θ1goff(θ1, θ2)∂θ2goff(θ1, θ2))

−(βJ )2

π2
eg(θ1,θ2)

]
− βµ̂

4πq2

∫ ∞
0

dθgoff(θ, θ), (5.60)

with θi = 2πτi
β for i = 1, 2. We take the derivative of the action S over J with µ̂ fixed and
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the matching condition β = β(J , µ̂). Then, we obtain

1

N

∂S

∂J

∣∣∣∣∣
µ̂

= − 1

8π2q2

∂(βJ )2

∂J

∫ ∞
−π

dθ1

∫ ∞
θ1

dθ2e
g(θ1,θ2) − 1

4πq2

∂(βµ̂)

∂J

∫ ∞
0

dθgoff(θ, θ)

=
1

2βJ q2

∂(βJ )

∂J

∫ ∞
−β

2

dτ1

∫ ∞
τ1

dτ2∂τ1∂τ2(g(τ1, τ2)− goff(τ1, τ2))

− 1

2βq2

∂(βµ̂)

∂J

∫ ∞
0

dτgoff(τ, τ).

(5.61)

Here we again used the fact that we can ignore the contribution from the variation of the

field g, goff because of the equation of motion. In the third line, we use θi = 2πτi
β and the

equation of motion for g, goff. Now, using the property of the two time solution

lim
τ2→∞

∂τ1(g(τ1, τ2)− goff(τ1, τ2)) = 0, (5.62)

we can integrate over τ2 in the first term and we obtain

1

N

∂S

∂J

∣∣∣∣∣
µ̂

= − 1

2βJ q2

∂(βJ )

∂J

∫ ∞
−β

2

dτ1 lim
τ2→τ1+0

∂τ1(g(τ1, τ2)− goff(τ1, τ2))

− 1

2βq2

∂(βµ̂)

∂J

∫ ∞
0

dτgoff(τ, τ). (5.63)

This means that the derivative of the on shell action only depends on the correlation

function on τ1 = τ2 line, and especially that does not depend on the region III. Since this

two time solution is equal to that of the boundary state |Bs(β)〉 in region I and identical

to that of the ground state of the deformed Hamiltonian in region II, we obtain

∂

∂J log

[
| 〈Bs(β)|Gs(µ)〉 |√

〈Bs(β)|Bs(β)〉 〈Gs(µ)|Gs(µ)〉

]
=

∂

∂J

[
− S +

1

2
(SBs + SGs)

]
= 0. (5.64)

Since we can explicitly check that the overlap becomes 1 at J = 0, by integrating the

above equation we obtain | 〈Bs(β)|Gs(µ)〉 | = 1 for general J and µ̂. Since the Liouville

action capture up to 1
q2 terms in the 1

q expansion, this overlap computation shows that the

overlap behaves as e
− N
q3 in large q expansion. In fact, we observed from the variational

approximation that there is a finite difference between |Gs(µ)〉 and |Bs(β(µ))〉 even in

small µ regime.

6 Gravity interpretation

In this section, we consider the gravity interpretation of the mass deformed SYK model.

Though we do not know the exact dual gravity of the SYK model, we can consider the

similar gravity setup as we did for the microstate |Bs(β)〉 [27]. Here we take the same

approach with [27] where we consider the gravity configuration with the same symmetry

with our SYK setup. First we consider the ground state |Gs(µ)〉 and its time evolution

under the SYK Hamiltonian, and then consider the gravity interpretation.
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6.1 Time evolution under the SYK Hamiltonian

In this section, we consider the time evolution of the ground state |Gs(µ)〉 under the SYK

Hamiltonian HSYK. We can formulate this time evolution as time dependent mass term

Hdef(u) = HSYK +θ(−u)HM where u is the Lorentzian time. This type of time evolution is

called as quantum quench. A different type of quantum quench and black hole formation

was studied in [5, 15, 63, 64]. The quantum quench with time dependent mass terms are

also studied in quantum field theories [65, 66].

We saw that the ground state |Gs(µ)〉 has bigger energy expectation value than the

ground state and is an excited state of the SYK model. Because of the similarity with

the state |Bs(β(µ))〉, we also expect the similar thermalization for the state |Gs(µ)〉. We

solve this time evolution in the low energy limit where the SYK dynamics is governed by

the Schwarzian action. For u < 0 with the Lorentzian time u, the reparametrization is

given by f(u) = tan(α(µ)u), which is the Lorentzian version of the reparametrization to

obtain the ground state correlation function. Then, we couple the reparametrization mode

f(u) = tan(α(µ)t(u)) where t(u) is the reparametrization. For u > 0, because of the energy

conservation, we impose

E0 −
NαS
J {f(u), u} = 〈Gs(µ)|HSYK|Gs(µ)〉 , (6.1)

where E0 is the ground state energy and −NαS
J {f(u), u} gives the energy increase from

the ground state [67]. We have already evaluated the right hand side 〈Gs(µ)|HSYK|Gs(µ)〉
in (3.30) and the above equation is solved as

f(u) =
a tanh

(
π
βu
)

+ b

c tanh
(
π
βu
)

+ d
,

2π2αSJ
(βJ )2

= α(µ)
Γ(2∆ + 1)Γ(1−∆)2Γ(1− 4∆)

Γ(∆)2Γ(1− 2∆)3
, (6.2)

with

(
a b
c d

)
∈ SL(2,R). The second equation determines the inverse temperature β in

terms of µ.12 We can also rewrite f(u) = A tanh(πβu+B) +C with three parameters A,B

and C. These parameters are fixed by imposing the continuity for f(u) at u = 0 up to the

second derivative, which becomes f(0) = 0, f ′(0) = α(µ) and f ′′(0) = 0. This condition

fixes the reparametrization to be

f(u) =
2αS
ε(∆)

π

βJ tanh
(π
β
u
)
, t(u) =

1

α(µ)
arctan

[
2αS
ε(∆)

π

βJ tanh
(π
β
u
)]
. (6.3)

Here we defined ε(∆) = Γ(2∆+1)Γ(1−∆)2Γ(1−4∆)
Γ(∆)2Γ(1−2∆)3 . Using the reparametrization (6.3),

we can study the time evolution G>(u1, u2) = 〈Gs(µ)|ψi(u1)ψj(u2)|Gs(µ)〉 using the

reparametrization where ψi(u) = eiHSYKuψie
−iHSYKu. The diagonal correlation function

12This relation between β and µ is different from the relation in (3.41) though the scaling of β with

respect to µ is the same. This is because here we match the energy in the SYK Hamiltonian 〈HSYK〉. In

the large q limit, the relation here and that in (3.41) agree.
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becomes

G>(u1, u2) = e−iπ∆

(
α(µ)2t′(u1)t′(u2)

J 2 sin2[α(µ)(t(u1)− t(u2)− iε)]

)∆

= e−iπ∆

(
π

βJ sinh
[
π
β (u1 − u2 − iε)

])2∆

. (6.4)

This is exactly the thermal correlation function in Lorentzian time. The time evolution

of the spin expectation value can be studied from the off diagonal correlation function as

〈Sk(u)〉 = −2isk(t
′(u))2∆Goff(t(u), t(u)), which becomes

〈Sk(u)〉 = 4skα(µ)µ−1 Γ(1−∆)2Γ(2∆)Γ(1− 4∆)

Γ(∆)2Γ(1− 2∆)3
(t′(u))2∆

= 〈Sk(0)〉
(

1

1 +
(

2αS
ε(∆)

π
βJ

)2
tanh2

(
π
βu
))2∆(

1

cosh π
βu

)4∆

. (6.5)

The spin operator expectation value decays exponentially at late time. Therefore, the

system loses the initial simple correlation pattern under the SYK time evolution and ther-

malizes. The term 1

1+
(

2αS
ε(∆)

π
βJ

)2
tanh2

(
π
β
u
) is close to one because π

βJ is very small when

µ � J . Therefore, the time evolution is very close to that in |Bs(β)〉, which is given

in (2.23).13

6.2 Gravity interpretation

As it is done in [27], we can consider the similar gravity configuration of our analysis. The

ground state |Gs(µ)〉 is invariant under the evolution e−iHdeft because it is the ground state

of the deformed Hamiltonian Hdef. Because f(τ) = tanh(ατ) is the transformation from

Poincare coordinate to the global coordinate [5], we expect the time translation symmetry

in gravity side where the metric in this coordinate is given by

ds2
E =

dτ2
g + dσ2

cos2 σ
, ds2

L =
−dt2g + dσ2

cos2 σ
, σ ∈ [−π/2, π/2]. (6.6)

Since the system is gapped, we also expect the confined geometry where the emergent

direction is capped off at some scale. Here we simply use the end of the world (EOW)

brane picture on which the geometry terminates [68–71]. Because of the time translation

symmetry the position of EOW branes should be static under the time translation along

global time. We imagine that we have N bulk fields and at EOW branes we impose the

boundary condition ψ2k−1 = iskψ2k for the bulk fields as we did in the case of |Bs(β)〉 states.

When we evolve the ground state |Gs(µ)〉 by the SYK Hamiltonian, the system ther-

malizes. The evolution under the SYK Hamiltonian is given by the reparametrization (6.3).

13In the two coupled SYK model, similar spin operator is constructed from left and right fermion as Si =

−2iψLi ψ
R
i . Under the decoupled Hamiltonian evolution, this behaves as 〈Si(u)〉 = 〈Si(0)〉 (cosh 2π

β
u)−2∆.

Though this shows the same exponential decay, the early time behavior is different from (2.23) and (6.5).
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Figure 22. A cartoon of the gravity configuration. The left is the bulk interpretation of the |Bs(β)〉
and the right is that of the |Gs(µ)〉. In the middle picture, we compare two geometries matching

the Rindler patch of both geometries. From the Rindler observer, the EOW brane is falling. The

Rindler observer feels the similar falling pattern for the EOW brane.

In gravity picture, this reparametrization gives the transformation from the global coor-

dinate to the Rindler coordinate, which only covers a portion of global AdS2 and has a

horizon. Therefore we obtain the single sided black hole geometry with EOW brane from

the ground state of the mass deformed Hamiltonian.

We can also interpret the similarity between |Gs(µ)〉 and |Bs(β)〉 in gravity. The

symmetry of |Gs(µ)〉 is that in global time whereas the symmetry of |Bs(β)〉 is that in

Poincare time and EOW branes are static under each symmetry. We can still match

the Rindler patch in both geometries. Then, the EOW branes are falling from Rindler

observer in a similar way, as depicted in figure 22. In this sense, two geometries are

similar. Especially, we expect that the state |Gs(µ)〉 contains region behind the horizon.

It is also interesting to consider the protocol to escape the black hole interior [21, 27]

of single sided black holes with the black hole microstate |Gs(µ)〉 instead of |Bs(β)〉. When

we evolve the system by the SYK Hamiltonian, these correspond to single sided black

holes. The escaping protocol [21] corresponds to evolving the ground state by the deformed

Hamiltonian Hdef. We can apply the escaping protocol for finite time T and then turn off

the mass term. This corresponds to insert the time evolution by Hdef before applying

the SYK evolution as e−iHSYKte−iHdefT |Gs(µ)〉. Therefore we just delay the black hole

formation by inserting global AdS2 region, as depicted in figure 23.

When we apply the escaping protocol eternally, we shift the horizon infinitely and

finally we obtain the geometry without horizon. This corresponds to the evolution

e−iHdeft |Gs(µ)〉 and as we observed this corresponds to the global AdS2 patch. There-

fore, in this case after eternally escaping the interiors we obtain the global AdS2 with the
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ETW 	
brane	

Escaping black hole interiors	

ETW 	
brane	

   Gapped ground state	
= Eternally Escaping black hole interiors	

ETW 	
brane	

Single sided Black holes	

T

e�iHdeft |Gs(µ)ie�iHSY Kt |Gs(µ)i e�iHSY Kte�iHdefT |Gs(µ)i

Figure 23. A gravity interpretation of the escaping interior protocol on the mass deformed ground

state. Left: the SYK evolution, which is interpreted as the evolution without any double trace

deformation, makes the black hole with EOW branes. We also evolve in backward by the SYK

Hamiltonian. Middle: we apply the escaping interior protocol for finite amount of time T and then

evolve by the SYK Hamiltonian. This is equivalent to shifting the horizon by insert the global AdS2

patch. Right: we apply the escaping interior protocol for eternally. As a consequence, the horizons

are shifted infinitely away from the original horizon. Finally we recover the global AdS2 with the

EOW brane.

EOW brane. The matching of spins s in the state |Gs(µ)〉 and those in the escaping proto-

col e−iHdefT is important because the mismatch of the spins gives excited states of the Hdef.

As we saw in the finite temperature analysis of the Hdef, high energy behavior is similar to

that of the SYK model and chaotic. Therefore, when we have mismatch for order N spins,

we expect that this mismatch leads to the black hole formation and failure of the escaping

protocol. Therefore the state dependent deformation is important14 to avoid the black hole

generation. In this way, we can clearly understand the escaping protocol starting from the

special microstates |Gs(µ)〉.

7 Discussion

7.1 Similarities and differences compared with Maldacena-Qi model

Because the model is similar to that of the eternal traversable model [5], it is good to

compare with that. The Hamiltonian of the eternal traversable model is given by

HETW = i
q
2

∑
i1<···<iq

JLi1···iqψ
L
i1 · · ·ψLiq + (−i) q2

∑
i1<···<iq

JRi1···iqψ
R
i1 · · ·ψRiq + iµ

N∑
i=1

ψLi ψ
R
i , (7.1)

with JLi1i2···iq = JRi1i2···iq . Here we introduce two copies of Majorana fermions ψLi and ψRi
which satisfy the canonical commutation relation.

14It is also important to choose the correct pair of fermions to make a spin operator.
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The similar thing is that both systems are gapped systems. This is natural because in

both models we explicitly introduce the mass term in the Lagrangian. Both systems can

be analyzed using conformal symmetry and the ground state has the same time translation

symmetry that corresponds to the global time in AdS2. In the large q limit, the finite

temperature behavior beyond the order of β ∼ q is the same with that of Maldacena-Qi

two coupled model because we obtain the same equations.

When we consider the gravity interpretation, it is more surprising. In the traversable

wormhole case the two side are connected in the deep interior. On the other hand, in our

case the geometry is lost at the mass gap scale, which should happen in duals of confining

phase [68–71]. This suggests that we may be able to understand the spacetime connectivity

in a similar way to understand the confined geometry.

There are differences even in qualitative levels. The first big difference is the absence

of the Hawking-Page like transition. There are many examples of mass deformation of

the SYK model, tensor models or matrix models that show the Hawking-Page like tran-

sition [5, 33, 34] in the large N limit and it is surprising that we have not Hawking-Page

like transition even at small mass range. We expect that this is reminiscent of the higher

spin like nature of the SYK model, which suppress the order of transition.

Another difference is the size of the mass gap in the theory at low energy. In the two

coupled SYK model, the physical mass gap is much larger than the parameter µ in the

Lagrangian in small µ limit. Therefore the chaos helps to open a gap [51]. On the other

hand, in our case the mass gap is much smaller than the naive gap µ. In our model the

chaos suppress the mass gap, which seems to be more natural. We expect this is related

to the absence of the Hawking-Page like transition. We will revisit this problem in the

future [72].

7.2 Comparison with the complex SYK model

It is also good to compare with the complex SYK model [73–75] because this model also

takes the similar form of Hamiltonian. In the complex SYK model, the Hamiltonian is

written in terms of the Dirac fermions ci, i = 1, · · · , N as

HcSYK =
∑

j1<···<jq/2, k1<···<kq/2

Jj1···jq/2;k1···kq/2A
{
c†j1 · · · c

†
jq/2

ck1 · · · ckq/2
}
− µ

N∑
i=1

c†ici. (7.2)

Here A{· · · } is the antisymmetrization and the couplings Jj1···jq/2;k1···kq/2 are independent

complex variables with zero mean and the variance 〈|Jj1···jq/2;k1···kq/2 |2〉 = J2 (q/2)!((q/2)−1)!
Nq−1 .

The last term comes from the chemical potential µ for the generator of the global U(1)

symmetry Q̂ =
∑

i c
†
ici − N/2. When we rewrite the Dirac fermion by two Majorana

fermions as ci = 1√
2
(ψ2i−1 − iψ2i), the chemical potential term takes the same form with

the mass term in the mass deformed SYK (2.1) with sk = 1 for all k [76].

The main difference is the existence of the U(1) symmetry. The complex SYK model

have a soft mode that is associated to the U(1) symmetry whereas the SYK model do

not have such a mode. The mass deformed SYK model has always a mass gap at zero
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temperature but the complex SYK model has a gapless excitation.15 The chaos exponents

are also studied in the complex model in the large q limit [76] and the µ dependence of the

chaos exponent is different from the mass deformed SYK model in figure 19.

One similarity is the specific charge Q = 〈Q〉 /N in the complex SYK model and

the spin operator expectation value. In the complex SYK model, a natural correlation

function is

GcSYK(τ1, τ2) = − 1

N

N∑
i=1

〈ci(τ1)c†i (τ2)〉 . (7.3)

The specific charge is encoded in the correlation function as limτ→0+ G(τ, 0) = −1
2 +Q. By

decomposing the Dirac fermion ci = 1√
2
(ψ2i−1 − iψ2i), in terms of the Majorana fermion

correlation function G(τ1, τ2) = 〈ψi(τ1)ψi(τ2)〉 and Goff(τ1, τ2) = 〈ψ2k−1(τ1)ψ2k(τ2)〉 the

correlation function becomes GcSYK(τ1, τ2) = −G(τ1, τ2)− iGoff(τ1, τ2). Therefore, we can

think of the specific charge Q as a counterpart of the spin operator expectation value

〈Sk〉 = −iGoff(0) in the mass deformed SYK model. A quantitative difference is that the

specific charge in the complex SYK is not fixed in the IR [75], whereas the spin operator

expectation value in the mass deformed SYK is determined by the IR conformal field theory

data as (3.27) in small µ limit.

7.3 Possible microstates from the mass deformation

We show that we can prepare the 2
N
2 states of the form |Gs(µ)〉 from the mass deformation

Hdef. In this paper we focus on the spin operator Sk = −2iψ2k−1ψ2k that is constructed

from an even index fermion and the odd index fermion. The way to construct the spin

operator is not restricted to this form. For example, we can shuffle the index of even

fermion as 2k → 2σ(k) where σ ∈ S k
2

is the element of the permutation group S k
2
, and

then construct the spin operator S′k = −2iψ2k−1ψ2σ(k). The mass deformation with S′k
gives a different set of states where the states have a spin operator expectation value in

different directions. We can also construct with a pair of even index fermions. In this way,

we can prepare many set of states as ground states of the mass deformed SYK in this paper.

7.4 Future problems

There are several future problems.

In this work we study the chaos exponent only at large q limit. It is interesting to do

this at finite q numerically. We study the quantum quench problem in the small µ limit.

At infinite µ, the ground state reduces to the infinite temperature boundary state |Bs〉 and

in this regime real time evolutions are studied in [27, 77] at finite N . It is also interesting

future problem to study the real time evolution in finite µ both in large N and finite N .

In this paper we mainly study the SYK model side. Recently Jackiw Teitelboim (JT)

gravity with EOW brane is studied [78]. It is a good problem to analyze the Jackiw

Teitelboim gravity + matter theory with EOW brane and introduce the double trace de-

formation. When the brane is tensionless, JT + matter with EOW brane system just

reduces to the orbifold of the traversable wormholes [5]. The analysis with the non zero

15However, there is also an observation that the complex SYK model also have a gapped phase [35].
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tension EOW brane may lead to the bulk understanding of (the absence of) the Hawking

Page like transition.

We did not find any energy/µ-dependence of the adjacent gap ratio for our model (1.1);

there are no chaotic/integrable transition. This result is in contrast to the observation

in [14] for the two coupled SYK model [5]. Indeed in the two coupled SYK model (7.1) the

level correlation is qualitatively different in the two extreme regime µ → 0 and µ → ∞.

In the limit µ→ 0 the energy spectrum becomes a direct product of the energy spectrum

of two SYK models {Em + En}m,n≥0. When the spectrum enjoys such direct product

structure and there are no hierarchy between the level spacings of the two system (which

is true in the current case), the two spectrums are completely mixed up. Hence there are

no level repulsion between the adjacent levels even if each system has the RMT-like level

correlations. In the limit of µ→∞ the Hilbert space effectively splits into the eigenspaces

of S. Within each eigenspace the direct product structure of the Hamiltonian is lost,

and the levels have the RMT-like correlation. Hence one can expect the transition as µ

increases. In our model (1.1), on the other hand, the picture at µ→∞ is same as the two

coupled SYK model while in the limit µ → 0 the system reduces to a single SYK model

which is again chaotic.

To gain more insight on the mechanism of the Hawking-Page like transition and the

chaotic/integrable transition (or their absence) and on how these two phenomena can be

correlated, it would be very useful to repeat the same analysis for a generalization of the

two coupled SYK model [5] such that the left coupling JLijk` and the right coupling JRijk`
are chosen independently to each other. From the viewpoint of our model, this model is

obtained by stating from the Hamiltonian (1.1) and then omitting all terms in HSYK which

mix ψ2i−1’s and ψ2i’s. This model share the same features of both of the two coupled SYK

model and our model. By rewriting the partition function in the large N limit by using the

bi-local fields, one finds that the large N partition function is completely identical to the

partition function of our model. On the other hand, the Hamiltonian of this model has the

structure of direct product in the limit µ→ 0 similar to the two-coupled SYK model, which

strongly suppress the RMT-like level correlation in the small µ regime. It is worthwhile to

test whether this model actually exhibits a chaotic/integrable transition at some finite µ

or not. One can further consider an interpolation of the two coupled SYK model and this

model by tuning the independentness of JLijk` and JRijk` continuously, where we observed

that the Hawking-Page like transition disappears at some intermediate point before the

two couplings become completely independent with each other. It would be interesting to

clarify how the chaotic property as well as the other thermodynamic quantities behaves

around this point. We would like to report these results in [72].

Note that it is subtle whether we should really classify a model which is almost the

tensor product of two chaotic system as “integrable” although the nearest-neighbor level

repulsions are highly suppressed. To clarify this point, it is worth to study other diagnoses

of the quantum chaos such as the spectral rigidity or the spectral form factor (i.e. the

long range correlation of the level fluctuations) and the OTOCs. Especially, while in the

analysis of the level statistics one always has to take into account the finite N artifact, the

OTOCs allow a direct large N evaluation [11] which would be more appropriate for the

purpose of comparing the chaotic property with the large N Hawking-Page like transition.
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A A derivation of the large N equations

In this appendix, we give a derivation of the large N effective action and the Schwinger-

Dyson equation of mass deformed SYK model. The deformed Hamiltonian is

Hdef = i
q
2

∑
i1<···<iq

Ji1···iqψi1 · · ·ψiq + iµ

N
2∑

k=1

skψ2k−1ψ2k, (A.1)

with mean 〈Ji1···iq〉 = 0 and variance 〈J2
i1···iq〉 = J2

Nq−1 (q − 1)! = 1
q
J 2(q−1)!
(2N)q−1 . By shifting the

sign of ψi and Ji1··· ,iq , we can set sk = 1 for any k = 1, · · ·N/2 in the following derivation.

The partition function becomes

Z =

∫ ∏
i1<···<iq

dJi1···iq
∏
i,τ

Dψi(τ) exp

[
− N q−1

2J2(q − 1)!

∑
i1<···<iq

J2
i1···iq −

∫
dτ

1

2

N∑
i=1

ψi(τ)∂τψi(τ)

−i q2
∑

i1<···<iq

Ji1···iq

∫
dτψi1(τ) · · ·ψiq(τ)− iµ

∫
dτ

N
2∑

k=1

ψ2k−1(τ)ψ2k(τ)

]
. (A.2)

The integral over Ji1···iq is∫ ∏
i1<···<iq

dJi1···iq exp

[
− N q−1

2J2(q − 1)!

∑
i1<···<iq

J2
i1···iq − i

q
2

∑
i1<···<iq

Ji1···iq

∫
dτψi1(τ) · · ·ψiq(τ)

= exp

[
J2(q − 1)!

2N q−1
(−1)

q
2

∑
i1<···<iq

∫
dτψi1(τ) · · ·ψiq(τ)

∫
dτ ′ψi1(τ ′) · · ·ψiq(τ ′)

]

= exp

[
J2(q − 1)!

2N q−1
(−1)

q
2

1

q!

∑
1≤i1,··· ,iq≤N

∫
dτψi1(τ) · · ·ψiq(τ)

∫
dτ ′ψi1(τ ′) · · ·ψiq(τ ′)

]

= exp

[
J2

2qN q−1
(−1)

q
2 (−1)

∑q
l=1(q−l)

∑
1≤i1,··· ,iq≤N

∫
dτ

∫
dτ ′
(
ψi1(τ)ψi1(τ ′)

)
· · ·
(
ψiq(τ)ψiq(τ

′)
)]

= exp

[
J2

2qN q−1

∫
dτ

∫
dτ ′
( N∑
i=1

ψi(τ)ψi(τ
′)

)q]
. (A.3)

In the second line, the phase factor (−1)q appears from ((i)
q
2 )2. In the third line, we

extend the sum from
∑

i1<···<iqto
∑

1≤i1,··· ,iq≤N . Because ψi(τ) is a Grassmann number,
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ψi(τ)2 = 0 and the sum
∑

1≤i1,··· ,iq≤N survives when all of i1, · · · , iq are different. There

are q! same contributions, we divide by q! and then the sum reduces to the sum in the

second line. In the fourth line, we reorder the fermions and we get the sign (−1)
∑q
l=1(q−l),

which becomes (−1)
q(q−1)

2 . The phase (−1)
q
2 (−1)

q(q−1)
2 = (−1)

q2

2 becomes 1 because q is

an even number. The partition function now becomes

Z =

∫ ∏
i,τ

Dψi(τ) exp

[
−
∫
dτ

1

2

N∑
i=1

ψi(τ)∂τψi(τ)

+
J2

2qN q−1

∫
dτ

∫
dτ ′
( N∑
i=1

ψi(τ)ψi(τ
′)

)q
− iµ

∫
dτ

N
2∑

k=1

ψ2k−1(τ)ψ2k(τ)

]
. (A.4)

Next, we further rewrite the partition function in terms of the correlation function

G(τ, τ ′) and the self energy Σ(τ, τ ′). First we insert the delta functional∫ ∏
τ>τ ′

DG(τ, τ ′)
∏
τ>τ ′

δ

( N∑
i=1

ψi(τ)ψi(τ
′)−NG(τ, τ ′)

)
= 1, (A.5)

to (A.4):

Z =

∫ ∏
i,τ

Dψi(τ)
∏
τ>τ ′

DG(τ, τ ′)
∏
τ>τ ′

δ

( N∑
i=1

ψi(τ)ψi(τ
′)−NG(τ, τ ′)

)

× exp

[
−
∫
dτ

1

2

N∑
i=1

ψi(τ)∂τψi(τ) +
J2

2qN q−1

∫
dτ

∫
dτ ′
( N∑
i=1

ψi(τ)ψi(τ
′)

)q

−iµ
∫
dτ

N
2∑

k=1

ψ2k−1(τ)ψ2k(τ)

]

=

∫ ∏
i,τ

Dψi(τ)
∏
τ>τ ′

DG(τ, τ ′)
∏
τ>τ ′

δ

( N∑
i=1

ψi(τ)ψi(τ
′)−NG(τ, τ ′)

)

× exp

[
−
∫
dτ

1

2

N∑
i=1

ψi(τ)∂τψi(τ) +
J2N

2q

∫
dτ

∫
dτ ′G(τ, τ ′)q

−iµ
∫
dτ

N
2∑

k=1

ψ2k−1(τ)ψ2k(τ)

]
. (A.6)

In the 2nd line, we replace the factor
(∑N

i=1 ψi(τ)ψi(τ
′)
)q

by N qG(τ, τ ′)q because we have

the delta functional that relates them. Next, we represent the delta functional as the

following integral:16

∏
τ>τ ′

δ
( N∑
i=1

ψi(τ)ψi(τ
′)−NG(τ, τ ′)

)
=

∫ ∏
τ>τ ′

DΣ(τ, τ ′) exp

[
1

2

∫
dτ

∫
dτ ′Σ(τ, τ ′)

( N∑
i=1

ψi(τ)ψi(τ
′)−NG(τ, τ

′)

)]
. (A.7)

16Strictly speaking, we need to take the correct contour to make the integral convergent.
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Using this expression for the delta functional, we obtain

Z =

∫ ∏
i,τ

Dψi(τ)
∏
τ>τ ′

DG(τ, τ ′)
∏
τ>τ ′

DΣ(τ, τ ′)

× exp

[
−
∫
dτ

1

2

N∑
i=1

ψi(τ)∂τψi(τ) +
1

2

∫
dτ

∫
dτ ′Σ(τ, τ ′)

N∑
i=1

ψi(τ)ψi(τ
′)

− N

2

∫
dτ

∫
dτ ′Σ(τ, τ ′)G(τ, τ ′) +

J2N

2q

∫
dτ

∫
dτ ′G(τ, τ ′)q

− iµ
∫
dτ

N
2∑

k=1

ψ2k−1(τ)ψ2k(τ)

]
. (A.8)

Until now we do exactly the same transformation with that of the ordinary SYK model.

From now, we further introduce the additional delta functional

∫ ∏
τ,τ ′

DGoff(τ, τ ′)
∏
τ,τ ′

δ

( N
2∑

k=1

ψ2k−1(τ)ψ2k(τ
′)− N

2
Goff(τ, τ ′)

)
= 1. (A.9)

With this delta functional, we can replace the fermions in the mass term by Goff(τ, τ ′):

Z =

∫ ∏
i,τ

Dψi(τ)
∏
τ>τ ′

DG(τ, τ ′)
∏
τ>τ ′

DΣ(τ, τ ′)
∏
τ,τ ′

DGoff(τ, τ ′)

∏
τ,τ ′

δ

( N
2∑

k=1

ψ2k−1(τ)ψ2k(τ
′)− N

2
Goff(τ, τ ′)

)

× exp

[
−
∫
dτ

1

2

N∑
i=1

ψi(τ)∂τψi(τ) +
1

2

∫
dτ

∫
dτ ′Σ(τ, τ ′)

N∑
i=1

ψi(τ)ψi(τ
′)

− N

2

∫
dτ

∫
dτ ′Σ(τ, τ ′)G(τ, τ ′) +

J2N

2q

∫
dτ

∫
dτ ′G(τ, τ ′)q − iµN

2

∫
dτGoff(τ, τ)

]
.

(A.10)

Next, we represent the delta functional as

∏
τ,τ ′

δ

( N
2∑

k=1

ψ2k−1(τ)ψ2k(τ
′)− N

2
Goff(τ, τ ′)

)

=

∫ ∏
τ,τ ′

DΣoff(τ, τ ′) exp

[ ∫
dτ

∫
dτ ′Σoff(τ, τ ′)

( N
2∑

k=1

ψ2k−1(τ)ψ2k(τ
′)− N

2
Goff(τ, τ ′)

)]
.

(A.11)
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Using this expression for the delta functional, we get

Z =

∫ ∏
i,τ

Dψi(τ)
∏
τ>τ ′

DG(τ, τ ′)
∏
τ>τ ′

DΣ(τ, τ ′)
∏
τ,τ ′

DGoff(τ, τ ′)
∏
τ,τ ′

DΣoff(τ, τ ′) exp

[

−
∫
dτ

1

2

N∑
i=1

ψi(τ)∂τψi(τ) +
1

2

∫
dτ

∫
dτ ′Σ(τ, τ ′)

N∑
i=1

ψi(τ)ψi(τ
′)

+

∫
dτ

∫
dτ ′Σoff(τ, τ ′)

N
2∑

k=1

ψ2k−1(τ)ψ2k(τ
′)

− N

2

∫
dτ

∫
dτ ′Σ(τ, τ ′)G(τ, τ ′)− N

2

∫
dτ

∫
dτ ′Σoff(τ, τ ′)Goff(τ, τ ′)

+
J2N

2q

∫
dτ

∫
dτ ′G(τ, τ ′)q − iµN

2

∫
dτGoff(τ, τ)

]
. (A.12)

The fermion path integral gives the following functional determinant:∫ ∏
i,τ

Dψi(τ) exp

[
−
∫
dτ

1

2

N∑
i=1

ψi(τ)∂τψi(τ)

+
1

2

∫
dτ

∫
dτ ′Σ(τ, τ ′)

N∑
i=1

ψi(τ)ψi(τ
′) +

∫
dτ

∫
dτ ′Σoff(τ, τ ′)

N
2∑

k=1

ψ2k−1(τ)ψ2k(τ
′)

=

∫ ∏
i,τ

Dψi(τ) exp

[
− 1

2

∫
dτ

∫
dτ ′

N/2∑
k=1(

ψ2k−1(τ) ψ2k(τ)
)[(1 0

0 1

)
∂τδ(τ − τ ′)−

(
Σ(τ, τ ′) Σoff(τ, τ ′)

−Σoff(τ ′, τ) Σ(τ, τ ′)

)](
ψ2k−1(τ ′)

ψ2k(τ
′)

)]

=

[
Pf

((
1 0

0 1

)
∂τ −

(
Σ Σoff

−ΣT
off Σ

)]N
2

= exp

[
N

2
log Pf

((
1 0

0 1

)
∂τ −

(
Σ Σoff

−ΣT
off Σ

))]
. (A.13)

Then, we get the effective action in terms of the G,Σ variables:

Z =

∫ ∏
τ>τ ′

DG(τ, τ ′)
∏
τ>τ ′

DΣ(τ, τ ′)
∏
τ,τ ′

DGoff(τ, τ ′)
∏
τ,τ ′

DΣoff(τ, τ ′)

exp
N

2

[
log Pf

((
1 0

0 1

)
∂τ −

(
Σ Σoff

−ΣT
off Σ

))

−
∫
dτ

∫
dτ ′Σ(τ, τ ′)G(τ, τ ′)−

∫
dτ

∫
dτ ′Σoff(τ, τ ′)Goff(τ, τ ′)

+
J2

q

∫
dτ

∫
dτ ′G(τ, τ ′)q − iµ

∫
dτGoff(τ, τ)

]
. (A.14)
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A.1 Large q expansion and Liouville action

In this section we derive the Liouville action at large q limit. The original Euclidean

action is

−SE
N

=
1

2
log Pf

((
1 0

0 1

)
∂τ −

(
Σ Σoff

−ΣT
off Σ

))

− 1

2

∫
dτ

∫
dτ ′

[
1

2
Tr

[(
Σ(τ, τ ′) Σoff(τ, τ ′)

−Σoff(τ ′, τ) Σ(τ, τ ′)

)(
G(τ, τ ′) −Goff(τ ′, τ)

Goff(τ, τ ′) G(τ, τ ′)

)]

− J2

q
G(τ, τ ′)q

]
− 1

2
iµ

∫
dτGoff(τ, τ)

=
1

2
log Pf

((
1 0

0 1

)
∂τ −

(
Σ Σoff

−ΣT
off Σ

))

− 1

2

∫
dτ1

∫
dτ2

(
G(τ1, τ2)Σ(τ1, τ2) +Goff(τ1, τ2)Σoff(τ1, τ2)− J

2

2q2
(2G(τ1, τ2))q

)
− i

2

µ̂

q

∫
dτ1Goff(τ1, τ1). (A.15)

We define

G(τ1, τ2) = G0(τ1, τ2)

(
1 +

1

q
g(τ1, τ2)

)
,

Goff(τ1, τ2) = G0off(τ1, τ2)

(
1 +

1

q
goff(τ1, τ2)

)
. (A.16)

where G0(τ1, τ2) = 1
2sgn(τ1 − τ2) and G0off(τ1, τ2) = i

2sgn(µ̂) is the two point function of

free fermion with a Hamiltonian H = iµ
∑

k ψ2k−1ψ2k with µ → 0 limit. In large q limit,

they satisfy(
1 0

0 1

)
∂τ

(
G0(τ, τ ′) −G0off(τ ′, τ)

G0off(τ, τ ′) G0(τ, τ ′)

)
=

(
1 0

0 1

)
∂τ

(
1
2sgn(τ − τ ′) − i

2sgn(µ̂)
i
2sgn(µ̂) 1

2sgn(τ − τ ′)

)

=

(
δ(τ − τ ′) 0

0 δ(τ − τ ′)

)
. (A.17)

Then, we can write them as

G0ab =

(
G0(τ, τ ′) −G0off(τ ′, τ)

G0off(τ, τ ′) G0(τ, τ ′)

)
, [G0]−1

ab =

(
1 0

0 1

)
∂τ . (A.18)

We can expand the Pfaffian as

log Pf(G−1
0 − Σ) = log Pf(G−1

0 (1−G0 ∗ Σ))

= log Pf(G−1
0 )− 1

2
Tr(G0 ∗ Σ)− 1

4
Tr(G0 ∗ Σ ∗G0 ∗ Σ) + · · · . (A.19)
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Then, the action becomes

SE
N
≈ −1

2
log Pf(G−1

0 ) +
1

4

|µ̂|
q

∫
dτ +

1

8
Tr(G0 ∗ Σ ∗G0 ∗ Σ)

+
1

2q

∫
dτ1

∫
dτ2

(
Σ(τ1, τ2)G0(τ1, τ2)g(τ1, τ2) + Σoff(τ1, τ2)G0off(τ1, τ2)goff(τ1, τ2)

)
−J

2

4q2

∫
dτ1

∫
dτ2e

g(τ1,τ2) − |µ̂|
4q2

∫
dτgoff(τ, τ)

= −1

2
log Pf(G−1

0 ) +
1

4

|µ̂|
q

∫
dτ +

1

8
Tr(G0 ∗ Σ ∗G0 ∗ Σ)

+
1

4q

∫
dτ1

∫
dτ2

∑
ab

Σab(τ1, τ2)G0ab(τ1, τ2)gab(τ1, τ2)

−J
2

4q2

∫
dτ1

∫
dτ2e

g(τ1,τ2) − |µ̂|
4q2

∫
dτgoff(τ, τ). (A.20)

To integrate out Σ field, it is helpful to introduce

Φab(τ1, τ2) = [G0 ∗ Σ]ab(τ1, τ2) =

∫
dτG0ac(τ1, τ)Σcb(τ, τ2). (A.21)

Then, this satisfies

Σab(τ1, τ2) = ∂τ1Φab(τ1, τ2). (A.22)

Then, the effective action becomes

SE/N ≈ −
1

2
log Pf(G−1

0 ) +
1

4

|µ̂|
q

∫
dτ +

1

8
Tr(G0 ∗ Σ ∗G0 ∗ Σ)

+
1

4q

∫
dτ1

∫
dτ2

∑
ab

Σab(τ1, τ2)G0ab(τ1, τ2)gab(τ1, τ2)

−J
2

4q2

∫
dτ1

∫
dτ2e

g(τ1,τ2) − |µ̂|
4q2

∫
dτgoff(τ, τ)

≈ −1

2
log Pf(G−1

0 ) +
1

4

|µ̂|
q

∫
dτ +

1

8
Tr(Φ ∗ Φ)

− 1

4q

∫
dτ1

∫
dτ2

∑
ab

Φab(τ1, τ2)∂τ1(G0ab(τ1, τ2)gab(τ1, τ2))

−J
2

4q2

∫
dτ1

∫
dτ2e

g(τ1,τ2) − |µ̂|
4q2

∫
dτgoff(τ, τ). (A.23)

By integrating out Φ, we obtain the effective action as

SE/N =
1

8q2

∫
dτ1dτ2

∑
ab

∂τ1(G0ab(τ1, τ2)gab(τ1, τ2))∂τ2(G0ab(τ1, τ2)gab(τ1, τ2))

−J
2

4q2

∫
dτ1

∫
dτ2e

g(τ1,τ2) − |µ̂|
4q2

∫
dτgoff(τ, τ). (A.24)

There is a nontrivial Jacobian when we change the integration variable from Σ to Φ, but

this is gab independent. We also omit the other terms that are gab independent. Because
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G0ab are constants except for τ1 = τ2 and g(τ, τ) = 0, the effective action now becomes

SE
N

=
1

16q2

∫
dτ1

∫
dτ2

(
∂τ1g(τ1, τ2)∂τ2g(τ1, τ2)− ∂τ1goff(τ1, τ2)∂τ2goff(τ1, τ2)

)
− 1

4q2

∫
dτ1

∫
dτ2J 2eg(τ1,τ2) − |µ̂|

4q2

∫
dτgoff(τ, τ). (A.25)

B Numerical solution to the Schwinger-Dyson equations

After the Wick rotation and the compactification of τ direction τ ∼ τ +β with ψi(τ +β) =

−ψi(τ), we can rewrite the partition function of the mass deformed SYK model as

Z =

〈∫
Dψe−

∫
dτ( 1

2
ψ∂τψ+Hdef )

〉
Jijk`

=

∫
DGDΣDGoffDΣoffe

−NSeff(G,Σ,Goff,Σoff), (B.1)

where

Seff = S
(1)
eff + S

(2)
eff + S

(3)
eff + S

(4)
eff , (B.2)

with

S
(1)
eff = −1

2
log Pf

(
−1

2δ(τ − τ ′)∂τ ′ + 1
2Σ(τ, τ ′) 1

2Σoff(τ, τ ′)

−1
2Σoff(τ ′, τ) −1

2δ(τ − τ ′)∂τ ′ + 1
2Σ(τ, τ ′)

)
,

S
(2)
eff =

1

2

∫
dτdτ ′(Σ(τ, τ ′)G(τ, τ ′) + Σoff(τ, τ ′)Goff(τ, τ ′)),

S
(3)
eff = −J

2

2q

∫
dτdτ ′G(τ, τ ′)q,

S
(4)
eff =

iµ

2

∫
dτGoff(τ, τ), (B.3)

as explained in the appendix A. In the limit of N → ∞, we can evaluate the integrations

over the bi-local fields by the saddle point approximation

Z ≈ e−NSeff(G,Σ,Goff,Σoff), (B.4)

with G,Σ, Goff,Σoff satisfying the saddle point equations (namely, the equation of motion

for Seff)

δSeff

δG(τ, τ ′)
=

δSeff

δΣ(τ, τ ′)
=

δSeff

δGoff(τ, τ ′)
=

δSeff

δΣoff(τ, τ ′)
= 0. (B.5)

In this section we explain how to solve the saddle point equations and evaluate Seff over

the solution numerically. First we assume that the solution depends on τ, τ ′ only through

the difference τ − τ ′ and satisfies the anti-periodicity G(τ − τ ′+β) = −G(τ − τ ′) reflecting

the anti-periodicity of ψi, so that we can expand G,Σ, Goff,Σoff in discrete fourier series

G(τ) = 1
β

∑∞
n=−∞ e

−iωnτ G̃(ωn) with ωn = 2π
β (n+ 1

2). Now, for the numerical computation,

let us further discretize τ coordinate as

τ =
βm

2Λ
, (m = 0, 1, · · · , 2Λ− 1), (B.6)
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which is equivalent to introducing an UV cutoff to ωn as −Λ ≤ n ≤ Λ− 1, so that each of

G,Σ, Goff,Σoff is a finite (2Λ) dimensional vector both in ω-space and τ -space and related as

Gm = G

(
τ =

β

2Λ
m

)
=

1

β

Λ−1∑
n=−Λ

e−
πim

Λ
(n+ 1

2
)G̃n, G̃n = G̃(ωn) =

β

2Λ

2Λ−1∑
m=0

e
πim

Λ
(n+ 1

2
)Gm,

(B.7)

and the same for Σ, Goff,Σoff. With (B.7), each term in the effective action (B.3) reduces

to a discrete summation17

S
(1)
eff = −1

4

Λ−1∑
n=−Λ

log

[(
1 +

Σ̃n

iωn

)2

− Σ̃off,nΣ̃off,−n−1

ω2
n

]
− log 2

2
,

S
(2)
eff =

β2

4Λ

2Λ−1∑
m=0

(ΣmGm + Σoff,mGoff,m) =
1

2

Λ−1∑
n=−Λ

(Σ̃nG̃−n−1 + Σ̃off,nG̃off,−n−1),

S
(3)
eff = −β

2J2

4Λq

2Λ−1∑
m=0

(Gm)q,

S
(4)
eff =

iµ

2

Λ−1∑
n=−Λ

G̃off,n. (B.8)

and the saddle point equations are given by the ordinal derivatives of these terms by either

the τ -components or the ω-components of G,Σ, Goff,Σoff. It is convenient to perform

G-derivative by τ -components and the derivative in Σ, Goff,Σoff by ω-components and

we obtain

∂Seff

∂Gm
= 0→ Σm = J2(Gm)q−1,

∂Seff

∂Σ̃n

= 0→ G̃n +
iωn − Σ̃−n−1

(iωn − Σ̃−n−1)2 + Σ̃off,nΣ̃off,−n−1

= 0,

∂Seff

∂G̃off,n

= 0→ Σ̃off,n = −iµ, (B.9)

∂Seff

∂Σ̃off,n

= 0→ G̃off,n

=
Σ̃off,n

2

[
1

(iωn − Σ̃−n−1)2 + Σ̃off,nΣ̃off,−n−1

+
1

(iωn + Σ̃n)2 + Σ̃off,nΣ̃off,−n−1

]
.

From the fourth equation in (B.9) we find that G̃off,n satisfies the following symmetry

property:

G̃off,−n−1 = G̃off,n. (B.10)

17Here we have renormalized the functional determinant S
(1)
eff such that the partition function correctly

reproduces the partition function of N free fermions in the limit of J, µ→ 0, as explained also in [11].
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For G̃n and Σ̃n, we find that we can consistently impose the following symmetry property

G̃−n−1 = −G̃n, Σ̃−n−1 = −Σ̃n, (B.11)

though they may not be satisfied for general solutions. In the same way we can also impose

the following reality relations:

G̃∗n = −G̃n, Σ̃∗n = −Σ̃n, G̃∗off,n = −G̃off,n. (B.12)

If we impose these symmetry properties, the Schwinger-Dyson equations (B.9) finally sim-

plifies into the following pair of equations

G̃n +
iωn + Σ̃n

(iωn + Σ̃n)2 − µ2
= 0, Σm = J2(Gm)q−1, (B.13)

together with

G̃off,n =
−iµ

(iωn + Σ̃n)2 − µ2
, Σ̃off,n = −iµ. (B.14)

The equation for G and Σ (B.13) can be solved numerically by using the same iteration

technique as exploited in the undeformed SYK model ([11], appendix G). Once we obtain

a set of solution (G,Σ) the large N partition function, or the large N free energy F =

− 1
β logZ, can be evaluated from (B.4) with (B.3) as

F ≈ NSeff

β
(B.15)

= − 1

4β

Λ∑
n=−Λ

log

[(
1 +

Σ̃n

iωn

)2

+
µ2

ω2
n

]
− 1

2β

Λ∑
n=−Λ

Σ̃nG̃n −
βJ2

4Λq

2Λ−1∑
m=0

(Gm)q − log 2

2β
,

where we have also used the symmetry property of G (B.11).

Note that in the above formulation Goff is merely an auxiliary field which does not

contribute to the partition function, but just play a role to fix Σ̃off as Σ̃off,n = −iµ. Nev-

ertheless Goff itself is a physically meaningful observable Goff(τ) = 〈ψ2i−1(τ)ψ2i(0)〉 and

useful for the consistency check of the different approaches of the computations.

C Detail of the large q finite temperature analysis

In this appendix we give a detail of the large q analysis. As it was done in [5], we divide the

range of the inverse temperature into four region that consists from the inverse temperature

of order q log q, q ,
√
q and 1.

C.1 Inverse temperature of order β = q log q

In this order, we fix

σ = qe−βµ. (C.1)
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The general solution at early time is given by

eg(τ) =
α2

J 2 sinh2(α|τ |+ γ)
,

egoff(τ) =
4α̃2

J 2
e−2γ̃e−2α̃|τ |, (C.2)

with the boundary conditions

g(0) = 0, ∂τgoff(0+) = −µ̂, (C.3)

and at τ →∞ we impose that (C.2) matches with the early time expansion (5.28)

1

2
+

1

q
log

2α

J −
γ

q
− α

q
τ + · · · = A cosh

βµ

2
− µτA sinh

βµ

2
+ · · · ,

1

2
+

1

q
log

2α̃

J −
γ̃

q
− α̃

q
τ + · · · = A sinh

βµ

2
− µτA cosh

βµ

2
+ · · · . (C.4)

The condition at τ = 0 (C.3) gives

α = J sinh γ, 2α̃ = µ̂. (C.5)

The condition at τ →∞ gives

1

2
+

1

q
log

2α

J −
γ

q
= A cosh

βµ

2
,

1

2
+

1

q
log

2α̃

J −
γ̃

q
= A sinh

βµ

2
, (C.6)

and

α

q
= µA sinh

βµ

2
,

α̃

q
= µA cosh

βµ

2
, (C.7)

which lead to

α = α̃, γ̃ = γ + σ. (C.8)

The parameter A is also determined as

A = e−
βµ
2 . (C.9)

We ignored subleading terms in large q expansion.18

18For example, we find that α
α̃

= tanh βµ
2

= q2−σ2

q2+σ2 = 1 − 2σ2

q2
+ · · · . This can be approximated by 1 in

the large q limit.
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The energy is given by

E

N
=

[
1

q
∂τG(τ, 0)

∣∣∣
τ=0+

+ i
µ

2

(
1− 2

q

)
Goff(0, 0)

]

=
1

q2

1

2
∂τg(τ, 0)

∣∣∣
τ→0

+ i
µ̂

2q

(
1− 2

q

)
i

2

(
1 +

1

2
goff(0)

)
= − 1

2q2

µ̂

tanh γ
− µ̂

4q
− µ̂

4q

(
1− 2

q
+

2

q
log(sinh γe−γ̃)

)
= − 1

2q2

µ̂

tanh γ
− µ̂

4q

(
1− 2

q
+

2

q
log

µ̂

J e
−γ̃
)

+O(q−3). (C.10)

In terms of γ, σ variables, it can be written as

β
∂l

∂β
= −βE

=
βµ̂

2q2

[
− q

2
+ 1− 1

tanh γ
− log(2 sinh γe−γ̂)

]
=

log q
σ

2q

[
− q

2
+ 1− 1

tanh γ
− log(2 sinh γe−γ̂)

]
. (C.11)

Here we defined l ≡ logZ
N = −βF

N . To derive the free energy, it is convenient to take the

derivative of the partition function:

J ∂l

∂J =
β

q2

∫ β

0
dτJ 2eg(τ) =

βµ̂

2q2

[
1

tanh γ
− 1

]
, (C.12)

µ
∂l

∂µ
= − i

2
βµGoff(0, 0) =

βµ̂

4q

[
1 +

2

q
log(2 sinh γe−γ̃)

]
. (C.13)

Note that

J ∂l

∂J + µ
∂l

∂µ
=
βµ̂

2q2

[
1

tanh γ
− 1 +

q

2
+ log(2 sinh γe−γ̃)

]
= β

∂l

∂β
. (C.14)

This is because the partition function is the function of dimension less quantity: l =

l(βµ, βJ ). The free energy is given by

l(γ, σ) =
log q

σ

2q

(
q

2
− 1 +

1

tanh γ
+ log(2 sinh γe−γ̃) + σ

)
+
σ

2q

=
log q

σ

2q

(
q

2
− 1 +

1

tanh γ
+ log(2 sinh γe−(γ+σ)) + σ

)
+
σ

2q
. (C.15)

As a function of β and µ, the free energy becomes

l(β, µ) =
βµ

4
+
e−βµ

2
+
βµ

4q

[
log(2 sinh γ) +

1

tanh γ
− γ − 1

]
, (C.16)

where µ̂ = 2J sinh γ is a function of only µ. The thermal entropy is given by

S/N =
l + βE

N
= l − β ∂l

∂β
=
σ

q

(
1 + log

q

σ

)
= e−βµ(1 + βµ). (C.17)
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C.1.1 Temperature of order β = q

In this regime σ
q = e−βµ = e

−β
q
µ̂

is finite. In other word, σ is of order q, if we extrapolate

the large q expansion the off diagonal correlation function becomes

Goff(τ) =
i

2

(
1 +

1

q
goff(τ) + · · ·

)
=

i

2

(
1 +

1

q

(
2 log

µ̂

J − 2γ̃ − µ̂τ
)

+ · · ·
)

=
i

2

(
1− 2σ

q
+ o(q−1)

)
. (C.18)

Therefore, even at τ = 0 the leading of q expansion of Goff(τ) becomes smaller than 1
2 .

Especially, we do not expect the expansion Goff(τ) ∼ i
2

(
1 + 1

q goff(τ) + · · ·
)

. We still have

the long time expansion

G(τ) = A cosh[µ(β/2− τ)], Goff(τ) = iA sinh[µ(β/2− τ)], (C.19)

and early time 1/q expansion for diagonal correlator

G(τ) =
1

2
(1 +

1

q
g(τ) + · · · ), eg(τ) =

α2

J 2 sinh2(ατ + γ)
. (C.20)

Matching the late time and early time correlator for G(τ) gives

1

2
+

1

q
log

2α

J −
γ

q
− α

q
τ + · · · = A cosh

βµ

2
− µτA sinh

βµ

2
+ · · · , (C.21)

which leads to

1

2
+

1

q
log

2α

J −
γ

q
= A cosh

βµ

2
,

α

q
= µA sinh

βµ

2
. (C.22)

The first equation gives

A cosh
βµ

2
=

1

2
+ o(q−1), (C.23)

which determines

A =
1

2 cosh βµ
2

+ o(q−1). (C.24)

The second equation with A = 1

2 cosh βµ
2

+ o(q−1) gives

α =
µ̂

2
tanh

βµ

2
. (C.25)

The initial condition gives g(0) = 0, which gives

α = J sinh γ. (C.26)
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This determines γ as

sinh γ =
µ̂

2J tanh
βµ

2
. (C.27)

Therefore, the correlation functions become

G(τ) =
1

2

coshµ
(
β
2 − τ

)
cosh µβ

2

+ o(1/q),

Goff(τ) =
i

2

sinhµ
(
β
2 − τ

)
cosh µβ

2

+ o(1/q). (C.28)

To evaluate the partition function, it is convenient to use

J ∂J l =
βµ

2q
tanh

βµ

2

[
1

tanh γ
− 1

]
,

µ∂µl =
βµ

4
tanh

βµ

2
+ o(1/q), (C.29)

and use J ∂J l + µ∂µl − β∂βl = 0. The integral becomes19

l =
1

2
log

(
2 cosh

βµ

2

)
+
βµ

2q
tanh

βµ

2

[
log(2 sinh γ) +

1

tanh γ
− γ − 1

]
. (C.30)

In the high temperature limit, we can expand γ and l as

γ ∼ q(βµ)2

4βJ , l ∼ 1

2
log 2 +

(βµ)2

16
+
βJ
q2

+
(βµ)2

4q
log

q(βµ)2

4βJ + · · · . (C.31)

C.2 Temperature of order β ∼ √q
We study the temperature of order β ∼ √q. In this regime we can approximate G(τ) =
1
2

(
1 + g(τ)

q

)
everywhere in τ ∈ [0, β]. The Schwinger-Dyson equation becomes

0 = ∂τGoff(τ)−
∫
dτ ′Σ(τ − τ ′)Goff(τ ′) + iµG(τ) ∼ ∂τGoff(τ) + i

µ

2
. (C.32)

Here we ignore the term that contains Σ because Σ is of order q which can be ignored at

the leading of the 1/q expansion. We also approximate G(τ) ∼ 1
2 , which is the leading of

the 1/q expansion that we mentioned above. Then we can solve this equation with the

condition Goff

(
β
2 + τ

)
= −Goff

(
β
2 − τ

)
as

Goff(τ) =
i

2
µ

(
β

2
− τ
)
. (C.33)

The equation for G(τ) becomes

0 = ∂τ [∂τG(τ)−
∫
dτ ′Σ(τ − τ ′)G(τ ′) + iµGoff(τ)]. (C.34)

19This only reproduce µ∂µl = βµ
4

tanh βµ
2

, which is order one in 1/q expansion.
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Using the expansion G(τ) = 1
2

(
1 + g(τ)

q

)
and Goff(τ) = i

2µ
(
β
2 − τ

)
, we obtain the Liou-

ville like equation

∂2
τ g(τ)− 2J 2eg(τ) − qµ2 = 0. (C.35)

We can further change the variables as

x =
τ − β

2

β
, eĝ = (βJ )2eg, (C.36)

where x ∈
[
− 1

2 ,
1
2

]
. Then, the Liouville like equation becomes

∂2
xĝ − 2eĝ − 2k = 0, k =

q(µβ)2

2
. (C.37)

k is now finite in our parameter regime β ∼ √q, µ ∼ 1/q. The boundary condition for ĝ is

eĝ(±
1
2

) = (βJ )2, (C.38)

which is ∞ in the leading of 1/q expansion. Therefore, we should seek the solution which

diverges at x = ±1
2 . The first integral of the equation (C.35) is(

dĝ

dx

)2

− 4eĝ − 4ĝk = const = −4eĝ0 − 4ĝ0k, (C.39)

where we defined ĝ0 ≡ ĝ(0) with ĝ′(0) = 0. Then, we can take the integral of this first

integral as

2x =

∫ ĝ

ĝ0

dg√
eg − eĝ0 + k(g − ĝ0)

. (C.40)

The condition ĝ(±1
2) =∞ determines ĝ0 as a function of k through the integral equation

1 =

∫ ∞
ĝ0

dg√
eg − eĝ0 + k(g − ĝ0)

, (C.41)

or

e
ĝ0
2 =

∫ ∞
0

dg√
eg − 1 + k̃g

, (C.42)

where we defined k̃ = ke−ĝ0 .

As a check, we can consider the k = 0 case. In this case, we obtain

eĝ0 = π2, eĝ(x) =
π2

cos2 πx
, (C.43)

which is consistent with the β →∞ limit of the large q SYK model with keeping τ
β finite.

The free energy in this regime is given by

l =
1

2
log 2 +

(βµ)2

16
+
βJ
q2
− (βµ)2

4q
log(βJ ) +

h(qβ2µ2)

q2
, (C.44)
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with an undetermined function h(k). The J dependence is determined from the derivative

of the free energy

J ∂l

∂J =
1

2q2

∫ 1
2

− 1
2

dx eĝ(x) =
1

2q2

∫ 1
2

− 1
2

(
1

2

∂2ĝ

∂x2
− k
)

=
1

2q2
(ĝ′(1/2)− k). (C.45)

Here we use the equation of motion eĝ = 1
2
∂2ĝ
∂x2 − k. Using the first integral, we can express

the derivative g′(x) for x > 0 region as

ĝ′(x) = 2
√
eĝ − eĝ0 + k(ĝ − ĝ0). (C.46)

Therefore, in the regime of β ∼ √q, we can approximate g′(1/2) as

g′(1/2) ∼ 2J β. (C.47)

In this way we obtain the J dependent term in the free energy l, but this method leaves

µ dependence unfixed. The leading µ dependent term comes from

∂l

∂µ
= − i

2
βGoff(0) =

β2µ

8
. (C.48)

C.2.1 Chaos exponent at order of β ∼ √q
Here we consider the out of time ordered four point function

F (t1, t2) =
1

N2

N∑
i,j=1

Tr[ρ(β/4)ψi(t1)ρ(β/4)ψj(0)ρ(β/4)ψi(t2)ρ(β/4)ψj(0)], (C.49)

where ρ(β/4) = (e−βHdef /Z(β))
1
4 and we study exponential growth of this correlator. We

can study the growth rate from the retarded kernel, which satisfies the following equation

at large q limit:

∂t1∂t2KR(t1, t2; t3, t4) = 2qδ(t13)δ(t24)Σ

(
β

2
+ it34

)
. (C.50)

Here we neglected the contribution from Σoff. The chaos exponent is given by the eigenstate

KR ∗ ψ = ψ with the form of ψ(t1, t2) = eλ(t1+t2)χ(t1 − t2). Then, χ satisfies the equation

− ∂2
yχ(y)− 2eĝl(y)χ(y) = −

(
λβ

2

)2

χ(y), (C.51)

where we defined the Lorentzian continuation ĝl(y) ≡ ĝ(iy). Therefore by studying the

bound state in this Schrödinger type equation with the potential −eĝl(y), we obtain the

chaos exponent. The function ĝl(y) has a maximum at y = 0 and decreases as |y| → ∞.

The second excited state is given by χ = ∂y ĝl(y), with the eigenvalue 0. Because of this

the above Schrödinger equation has only one negative energy state. This equation can be

studied analytically in the large k or small k limit and numerically for general k.
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C.2.2 Large k limit

In the large k limit, we can solve the equation (C.41) as

ĝ0 ≈ −
k

4
+ 2 log k. (C.52)

From the Schrödinger equation

d2ĝ

dx2
− 2eĝ − 2k = 0, (C.53)

we know the second derivative as

d2ĝ

dx2

∣∣∣
x=0

= 2eĝ0 + 2k = 2k2e−
k
4 + 2k ∼ 2k. (C.54)

Therefore, ĝl(y) = ĝ(iy) becomes

ĝl(y) = ĝ0 −
1

2

d2ĝ

dx2

∣∣∣
x=0

y2 +O(y3) = log(k2e−
k
4 )− ky2 +O(y3). (C.55)

The potential for chaos exponent is given by

eĝl(y) ≈ k2e−
k
4 e−ky

2
. (C.56)

Because the potential is very narrow for k →∞, we can approximate this as

eĝl(y) ≈ k2e−
k
4

√
2π

2k
δ(y) =

√
πk

3
2 e−

1
4
kδ(y), (C.57)

where we use
1√

2πσ2
e−

x2

2σ2 ≈ δ(x), (C.58)

for small σ. In our case, σ = 1/
√

2k. The chaos exponent is now derived as

− (λβ)2

4
χ(y) =

[
− ∂2

y − 2
√
πk

3
2 e−

1
4
kδ(y)

]
χ(y). (C.59)

The bound state of delta function potential

− ∂2
xψ(x)− V0δ(x)ψ(x) = E0ψ(x), (C.60)

is given by

E0 = −V
2

0

4
, (C.61)

with the ground state wavefunction

ψ0(x) =

√
V0

2
e−

V0
2
|x|. (C.62)

Therefore, we obtain

λβ = 2
√
πk

3
2 e−

1
4
k. (C.63)
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C.2.3 Small k limit

At k = 0, we obtain eĝl(y) = π2

cosh2 πy
and this gives λ = 2π

β , which is the maximal chaos

exponent. For small k, we can approximate ĝ(x) = ĝ(0)(x) + ĝ(1)(x) + · · · where eĝ(0)(x) =
π2

cos2 πx
is the k = 0 case and ĝ(1) is the first order correction in k. After Wick rotation,

we obtain the potential V (y) = −2eĝ(iy) = − 2π2

cosh2 πy
(1 + ĝ(1)(iy)). Therefore, this gives

a shift of the potential δV (y) = −2eĝ(iy)ĝ(1)(iy). The shift of ground state energy δE =

〈χ0| δV |χ0〉 gives the shift of the chaos exponent. χ0(y) is the “scramblon” wave function

at k = 0 that is given by 〈y|χ0〉 = χ0(y) =
√

π
2

1
coshπy .

The equation of motion for ĝ(1)(x) becomes

∂2
xĝ(1)(x)− 2π2

cos2 πx
ĝ(1)(x)− 2k = 0. (C.64)

The solution is given [13] by

π2

2k
ĝ(1)(x) = −1 + log(2 cosπx) +

i

4
(Li2(−e2πix)− Li2(−e−2πix)) tanπx. (C.65)

After Wick rotation, we obtain

π2

2k
ĝ(1)(iy) = −1 + log(2 coshπy) +

1

4
(Li2(−e2πy)− Li2(−e−2πy)) tanhπy. (C.66)

Then, the shift of the “ground state energy” is given by

〈χ0| δV |χ0〉 =

∫ ∞
−∞

dy
π

2

2π2

cosh4 πy
ĝ(1)(iy) = k. (C.67)

The “ground state energy” at k = 0 is

E(0) = −
(
λLβ

2

)2

= −π2. (C.68)

Therefore, the ground state energy shift is

E = E(0) + E(1) + · · · = −π2 + k + · · · . (C.69)

This gives the leading correction to the chaos exponent as

λLβ

2π
=

√
1− k

π2
= 1− k

2π2
+ · · · . (C.70)

D Comments on q = 4 case

We have derived analytic formula for the conformal limit of spin operator expectation

value (3.27), the ground state energy (3.29) and the energy in the SYK Hamiltonian (3.30).

These expression contains Γ(1− 4∆) = Γ(1− 4/q), which diverges at q = 4. This does not

mean that these observables are divergent but we should take into account the UV effects

in the actual deformed SYK model. Numerically we observe that the exact value is finite
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Figure 24. The plot of observables both in the exact ground state |Gs(µ)〉 and the variational

approximation |Bs(β(µ))〉. Here we choose the parameter to be q = 4 and J = 1. As written in the

central picture, the solid lines represent the numerics and the dashed lines represent the conformal

limit answer. Left: the plot of the ground state E0 as a function of µ. Middle: the plot of the half

of the absolute value of the spin operator expectation value | 〈Sk〉 |, which is equal to the τ = 0

off diagonal correlation function −iGoff(0), as a function of µ. Right: the plot of the energy in the

SYK Hamiltonian 〈HSYK〉 as a function of µ.

but the scaling behavior is violated by the UV effect. We found that in the small µ regime

the logarithmic behavior appears in the exact answer as

E0(µ)− E0 ∼ cE0

(
µ

J

)2

log
µ

J
, −iGoff(0) ∼ cGoff

µ

J
log

µ

J
, 〈HSYK〉 ∼ cHSYK

(
µ

J

)2

log
µ

J
.

(D.1)

We use 0.05 < µ/J < 0.2 region to fit the numerical data and the fitting gives cE0 ≈ 0.34,

cGoff
≈ −1.2 and cHSYK

≈ −0.26. We show the numerical plot of these observables and

their comparison with variational approximation in figure 24. It may be possible to derive

these coefficient analytically and we leave these problems as future works.
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