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The present work is devoted to the characterization of the Leggett-Garg inequality (LGI) for three
flavored neutrino oscillations in the presence of both matter and charge-conjugation and parity violating
effects. This study complements and completes the recent one put forward in arXiv:1710.05562 by relaxing
the stationary condition. At variance with the latter case, the LGI contains interference terms which cannot
be expressed in terms of experimentally measurable quantities, thus drawing a clear-cut distinction between
the two scenarios, as well as highlighting the role of the stationary assumption on such systems. We find
that the additional terms are small for a high energy neutrino beam compared to the maximum value
attained by the Leggett-Garg parameter.
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I. INTRODUCTION

One of the most characterizing aspects of quantum
mechanics is the principle of superposition, according to
which a system exists simultaneously in different states until a
measurement is performed on it. A counterintuitive situation
occurs when one tries to ascertain the quantum nature of
mesoscopic systems, an endeavor that is broadly known as
macroscopic quantum coherence (such as, e.g., the famous
Schrödinger’s cat), which has been subjected to a number of
investigations. Bell’s inequality [1] represents in this regard a
milestone result providing a quantitative criterion to distin-
guish between classical and quantum correlations between
spatially separated systems. In the temporal regime, Leggett-
Garg inequalities (LGIs) investigate the nature of correlations
among measurements performed on the same system but at
different instants of time. In [2], the intuitionabout ourviewof
macroscopic systems was formalized in terms of two prin-
ciples, namely (i) macroscopic realism and (ii) noninvasive
measurability (NIM) [3–5]. The former implies that mea-
surements performed on the system of interest just reveal
preexisting values, while the latter (NIM) asserts that such
measurements can beperformedwithout changing the state of

the system. Besides providing a test bed for macroscopic
coherences, LGI have been employed to investigate the
notion of realism, i.e., whether a description of the system
under consideration can or cannot be given in terms of a set of
hiddenparameters.AnyviolationofLGIwould automatically
exclude any hidden-variable theory.
Quantum coherences extended over macroscopic dis-

tances have been in the spotlight in the context of flavor
oscillations in neutrinos and mesons [6–12]. This provides
ample reason for promoting such systems as candidates to
study LGI. Clearly, in this scenario the postulate of NIM
makes contact with experiments somewhat difficult. One
then resorts to the additional assumption of stationarity,
implying that correlations between different measurements
only depend on time differences instead of specific time
instants. This leads to a modified version of the LGIs called
Leggett-Garg-type inequalities (LGtIs), where all the inter-
mediate nonmeasurable correlations are replaced by meas-
urable ones [13–16]. Such approach was recently used in
[17], where the resulting LGtI can be recast in terms of
experimentally measurable quantities such as neutrino
flavor oscillation probabilities.
In the present work, however, we intend to complement

and complete that analysis by considering the full LGI in its
original setting and show that it is violated in the context of
three flavor neutrino oscillations andmatter interactions. It is
worth mentioning that various quantum information theo-
retic quantities were considered in the context of two
and three flavor neutrino oscillations also in [18,19]. The
factorization of the Hilbert space was achieved there by
the occupation number of neutrinos introduced
in [20]. Here, we study the LGI in the context of three
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flavor neutrino oscillations. A study of the LG-type inequal-
ity in the two and three flavor scenario was presented in
[21,22] and [23], respectively.
In this contribution we investigate the full three flavor

neutrino dynamics, which allows the inclusion of charge
parity ðCPÞ violations as well as the disentangling of the
mass hierarchy problem. The paper is organized by
introducing LG inequalities and the dynamics of neutrinos
in vacuum and matter. Then we present the relevant
correlators and analyze them generally. We make use of
the experimental input parameters like energy and baseline
of the two ongoing experiments NOνA (NuMI Off-axis νe
Appearance) [24,25] and T2K (Tokai to Kamioka) [26] and
the future experiment DUNE (Deep Underground Neutrino
Experiment) [27].

II. LEGGETT-GARG INEQUALITIES IN THREE
FLAVOR NEUTRINO OSCILLATIONS

Here, we give a brief description of LGIs. The time
evolution of neutrinos in vacuum and matter is discussed
next, followed by a discussion of the LGIs for neutrinos.
The next subsection discusses the time evolution of
neutrinos in vacuum and matter, followed by the discussion
of the Leggett-Garg inequalities for neutrinos with a focus
on the two ongoing experiments NOνA and T2K and also
the future experiment DUNE.

A. Leggett-Garg inequalities

Consider a quantum system with an underlying Hilbert
space H and dynamics generated by a Hamiltonian H.
Moreover, let Q̂ be a generic dichotomic observable (with
possible outcomes �1) satisfying the properties Q̂† ¼ Q̂,
Q̂2 ¼ 1. The two-time correlation function between the
measurement of Q̂ at times ti and tj (ti ≥ tj) is given by
the quantity Cij ≡ hQ̂ðtiÞQ̂ðtjÞi, where h…i indicates the
average performed over many repetitions. Here Q̂ðtÞ
denotes the time evolution of the observable Q̂ in the
Heisenberg picture, i.e., Q̂ðtÞ≡ Û†ðtÞQ̂ ÛðtÞ. For a generic
set of n measurements of the dichotomic observable,
the LGI provides a clear-cut bound on the parameter
Kn ≡P

n−1
i¼1 Ci;iþ1 − C1;n, which allows us to determine

the existence of a hidden-variable theory describing the
system of interest: For any n ≥ 3, if realism and NIM are
satisfied, then Kn ≤ n − 2.
In what follows we will focus on the first of such figures

of merit, namely the LG parameterK3 and its LG inequality

K3 ¼ C01 þ C12 − C02 ≤ 1 ð1Þ

whose violation would provide evidence that a realistic
description of the system cannot be given. The quantum
mechanical bound for K3 is

3
2
for a two level system [2]. It

was shown in [28] that this bound holds for systems with an
arbitrary (but finite) number of levels, as long as the
measurements are given by just two projectors [29–32].
In the limitN → ∞, LGI can be violated up to its maximum
algebraic sum [33]. The simple form of Eq. (1) is the
common feature of Bell-type inequalities which are based
on the usual Kolmogorovian rules of the probability. While
the two quantities C01 and C02 can always be easily
expressed in terms of measurable quantities, since the first
measurement of the observable Q̂ occurs at the initial time
t0, the expression of the intermediate two-time correlation
function C12 poses in general a real challenge since it
depends on the whole history from the initial time t0 to the
second measurement time t1. In order to bypass this
difficulty, the NIM postulate is usually replaced by the
weaker condition of stationarity. Under the assumption that
the time intervals t2 − t1 and t1 − t0 are equal to each other,
the resulting LGtI then take the much simpler form

K̃3 ¼ 2C01 − C02; ð2Þ

which again is bounded from above by 1 if realism is valid
[13,14]. This LGtI was used in the context of neutrino
oscillation [17] to address the problem of neutrino mass
hierarchy.
In this work we use LGI in its original setting and focus

on the ongoing experimental facilities like NOνA and T2K
as well as the future DUNE experiment. The matter effect
and CP violation are also taken into account in our
analysis.

B. Neutrino state evolution in vacuum
and in constant matter density

The nonzero mass squared differences lead to the
phenomenon of neutrino oscillation, the existence of a
flavor state jναi into a coherent superposition of mass
eigenstates jνki,

jναi ¼
X
k

U�
αkjνki; ð3Þ

where Uαk are the elements of a 3 × 3 unitary PMNS
(Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix U
parametrized by three mixing angles (θ12, θ23, θ13) and a
CP-violating phase δ. A convenient parametrization for
Uðθ12; θ23; θ32; δÞ is given by

Uðθ12; θ23; θ32; δÞ ¼

0
BB@

c12c13 s12c13 s23e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s13s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CCA ð4Þ
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where cij ¼ cos θij, sij ¼ sin θij, θij being the mixing
angles and δ the CP-violating phase. The experimental
values for the PMNS mixing matrix are taken from the
Particle Data Group [34]. Equation (3) represents the state
of the neutrino at time t ¼ 0. At a later time t, the flavor
state evolves into

jναðtÞi ¼
X
k

U�
αke

−iEktjνki;

¼
X
β

Aνα→νβðtÞjνβi; ð5Þ

where we have expanded jναi in terms of the energy (mass)
eigenstates jνki, which evolve independently under the
Schrödinger equation. This leads to the amplitudes Aνα→νβ
of transition from flavor να to νβ given by

Aνα→νβðtÞ ¼
X
k

Uβke−iEktU�
αk: ð6Þ

Consequently, the probability of transition at t ≈ L is
given by

Pνα→νβðtÞ ¼ jAνα→νβðtÞj2 ¼
����
X
k

Uβke−iEktU�
αk

����
2

: ð7Þ

The amplitudes Aνα→νβðtÞ form the elements of the
so-called flavor evolution matrix UfðtÞ. In matrix notation
the state represented by the vector ναðtÞ≡ ðνeðtÞνμðtÞντðtÞÞ
is connected to the state at t ¼ 0 by

ναðtÞ ¼ UfðtÞναð0Þ: ð8Þ

Neutrinos propagating through a constant matter density
(with electron density Ne) interact weakly with electrons.
This interaction is characterized by the matter density
parameter A ¼ � ffiffiffi

2
p

GFNe. As a result of this interaction,
the Hamiltonian Hm ¼ diag½E1; E2; E3� (in mass basis)
picks up an interaction term Vf ¼ diag½A; 0; 0� (in flavor
basis). This leads to the following form of the flavor
evolution matrix [35]

UfðLÞ ¼ ϕ
X3
n¼1

e−iλnL

3λ2n þ c1
½ðλ2n þ c1ÞIþ λnT̃ þ T̃2�: ð9Þ

The phase ϕ ¼ e−i
TrHm

3
L, c1 ¼ detðTÞtrðT−1Þ and the

Hamiltonian in mass basis is Hm ¼ Hm þ U−1VfU. The
λn are the eigenvalues of T and the matrix T and T̃ are given
in [35]. The flavor evolution operator defined in Eq. (9) can
be used to deal with the situation when neutrinos pass
through a series of matter densities with the matter density
parameters A1; A2;…; An. In this case, the total evolution
operator becomes

Utot
f ðLÞ ¼

Yn
i¼1

UfðLiÞ: ð10Þ

Here, L ¼ P
n
i¼1 Li and UfðLiÞ is evaluated for the density

parameter Ai. A useful application of Eq. (10) has been
suggested for the mantle-core-mantle step function model
simulating Earth’s matter density profile [36].

C. Leggett-Garg inequality for neutrinos

In this subsection we characterize the LG parameter K3

in the case of three flavor neutrinos and study the validity of
LGI using input parameters from two of the current major
experimental platforms, namely NOνA and T2K and the
future experiment DUNE. Therefore, we focus on having a
specific initial flavor eigenstate, i.e., νμ, and choose equal
time intervals (t0 ¼ 0, t1 ¼ t, t2 ¼ 2t). Herewith, our LG
parameter K3 becomes the sum of the following correlation
functions

K3 ¼ Cð0; tÞ þ Cðt; 2tÞ − Cð0; 2tÞ ≤ 1: ð11Þ

To compute the two-time correlation functions C we need
to employ the dichotomic observable Q̂ ¼ 2jναihναj − 1,
which physically corresponds to asking whether the neu-
trino is still in the state jνμi (associated outcome 1) or has
undergone a transition to another flavor state jναi with
α ≠ μ (associated outcome −1). Straightforwardly one
finds for

Cð0; tÞ ¼ 4δαμhνμðtÞjναihναjνμðtÞi
− 2hνμðtÞjναihναjνμðtÞi − 2δαμ þ 1

¼
�
2Pμ→μðtÞ − 1 for α ¼ μ

1 − 2Pμ→αðtÞ for α ≠ μ
ð12Þ

where Pμ→μðtÞ is the surviving probability and Pμ→αðtÞ
is the transition probability. Use has been made of the fact
that the completeness condition in three flavor neutrino
oscillation is

P
α¼e;μ;τ jναihναj ¼ 1, leading to PμeðtÞ þ

PμμðtÞ þ PμτðtÞ ¼ 1 in Eq. (12).
The probabilities with matter effect depend on the

neutrino energy E, the mass square differences
Δij ¼ m2

j −m2
i , the matter density parameter A, the mixing

angles θij and the CP-violating phase δ, i.e.,
Pμ→α ¼ Pμ→αðE; t; A;Δ12;Δ31; θ12; θ23; θ13; δÞ. For brev-
ity in nomenclature, we suppress all the other dependences
except the time dependence. The ongoing neutrino experi-
ments NOνA and T2K are studying the transition proba-
bilities, Pμ→eðtÞ. Thus we focus on the choice α ¼ e in the
following.
The tricky part is the correlation Cðt; 2tÞ since it cannot

be rewritten into surviving or/and transition probabilities if
one does not invoke the stationary condition, i.e.,

LEGGETT-GARG INEQUALITY IN THE CONTEXT OF … PHYS. REV. D 99, 095001 (2019)

095001-3



considering Leggett-Garg-type inequalities which has been
done in detail in [17]. The correlation function computes to

Cðt; 2tÞ ¼ 1 − 2Pμ→eðtÞ − 2Pμ→eð2tÞ
þ 4αðtÞPμ→eð2tÞ þ 4βðtÞ: ð13Þ

Finally, our LG function is given by

K3 ¼ 1 − 4Pμ→eðtÞ þ 4αðtÞPμ→eð2tÞ þ 4βðtÞ; ð14Þ

with

αðtÞ ¼ jU11
f ðtÞj2; ð15Þ

βðtÞ ¼ Re½U11
f ðtÞŪ21

f ðtÞU22
f ð2tÞŪ12

f ð2tÞ
þ U11

f ðtÞŪ31
f ðtÞU32

f ð2tÞŪ12
f ð2tÞ�: ð16Þ

Here Ūij
f ¼ Uij�

f represents the complex conjugate of Uij
f ,

the ijth element of the flavor evolution matrix Uf defined
in Eq. (8). The parameters α and β, apart from time t, also

depend on the energy of neutrino and the mixing angles and
mass squared differences. Also α, unlike β, is independent
of the CP-violating phase δ. It should be noticed that for
α ¼ 0.5 and β ¼ 0, we recover the stationarity limit of LGI
given by Eq. (2). An important observation is that for
higher energies, the interference term β converges to zero.
Also, the term α, which varies between zero and 1, averages
to 1

2
, thereby taking LGI to LGtI. Therefore, LGtI can be

thought of as a kind of LGI for higher neutrino energies.

D. Leggett-Garg inequality in neutrino experiments

Neutrino oscillation experiments are typically in the
ultrarelativistic limit, and hence t can be approximated by L
[37]. The distance traveled by the neutrinos in a given
experiment is an important parameter and is called the
baseline of the experiment. In this work, we have studied
the LGI for two ongoing experiments NOνA [38,39] and
T2K [40,41] and the future experiment DUNE [27]. The
baseline for these three experiments is 1300 km for DUNE,
810 km for NOνA and 295 km for T2K. Both DUNE and

FIG. 1. Leggett-Garg function K3 plotted against energy for DUNE (top), NOνA (middle) and T2K (bottom) experimental setups for
different values of the CP-violating phase δ. The left and right panels correspond to the initial neutrino and antineutrino state,
respectively. The sign of Δ31 is taken to be positive. The time can be identified with the length (baseline) which is 1300, 810 and 295 km
for DUNE, NOνA and T2K, respectively.
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NOνA use the neutrinos from Fermilab with the energy
between 2 and 10 GeV for the former and 1 and 5 GeV for
the latter. T2K uses the neutrino source from JPARC (Japan
Proton Accelerator Research Complex) in Tokai with the

approximate energy 0.5–1 GeV. All these experiments use
the νμ=ν̄μ source and the neutrinos travel the matter density
of approximately 2.8 gm=cm3 which corresponds to the
density parameter A ≈ 1.01 × 10−13 eV.

FIG. 2. Plots of the term 4βðtÞ, Eq. (14), with respect to CP-violating phase δ for DUNE (left), NOνA (middle) and T2K (right). Solid
and dashed curves correspond to the positive and negative signs of Δ31, respectively. The energies used are 3.5 GeV (DUNE), 2.5 GeV
(NOνA) and 1.4 GeV (T2K) and pertain to the maximum neutrino flux in the respective experimental setups. The left and right panels
correspond to the case of the neutrino and antineutrino, respectively.

FIG. 3. Showing the difference Δ ¼ K3 − K̃3 as a function of energy En and CP-violating phase δ. The left and right panels
correspond to the case of the neutrino and antineutrino, respectively. The function K̃3 andK3 are given by Eqs. (2) and (14), respectively.
The difference converges to zero for higher energies for all values of δ, implying that one can safely approximate LGI by LGtI for high
energy scenarios. This is because the nonmeasurable terms α and β in LGI can be approximated by 1

2
(average value) and 0 (high energy

limit), respectively, leading to LGtI.
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In Fig. 1 the LG function K3 is depicted with respect to
the energy corresponding to these three experimental setups
for different δ values. The behavior of K3 is depicted both
for the neutrino and antineutrino initial state. The violation
is more prominent in the former case, suggesting that the
neutrino is a better option for testing LGI if Δ31 is positive.
For negative values of Δ31 (not shown here) the violation is
more for the antineutrinos [17]. It can be observed from
Eq. (14) that due to the presence of the αðtÞ and βðtÞ terms,
K3 cannot be expressed only in terms of the neutrino
survival and transition probabilities. This term βðtÞ is
plotted in Fig. 2 with DUNE, NOνA and T2K parameters
as a function of the CP-violating parameter δ. Let us note
that the βðtÞ term is negative for the experimental param-
eters thus reducing the K3 value consequently a possible
violation of the bound one. In general, it can be positive as
in the case of the DUNE experiment. It turns out that at
higher energies, the difference between the LGtI and LGI
converges to zero as depicted in Fig. 3. Therefore at higher
energies, one can safely approximate LGI by LGtI. One can
attribute this to the fact that at higher energies the β term
goes to zero. Since 0 ≤ α ≤ 1, which averages to 1

2
, under

these approximations, i.e., α ≈ 1
2
and β ≈ 0, LGI reduces

to LGtI.

III. NIM CONDITION IN NEUTRINO
EXPERIMENTS

The NIM condition renders LGI difficult from the
experimental point of view. This feature is captured in
Eq. (14) in the form of nonmeasurable terms α and β
defined in Eqs. (15) and (16), respectively. The NIM
condition is intertwined with the LGI as a memory, or to
be more precise, the lack of it, that the system has been
measured. The concept of stationarity introduced in
[13,14] provides a way to bypass the problem. The two-
time correlations are functions of the time difference tj − ti
and one can replace the term Cðt; 2tÞ, the source of α and β,

by Cð0; tÞ leading to the LG-type inequality Eq. (2) which
is completely expressed in terms of the measurable neutrino
oscillation probabilities. In our earlier work [17], we used
this formalism to address the mass hierarchy problem in
neutrino physics. In the present case, one can recover the
stationarity limit of LGI under the conditions that α ¼ 0.5
and β ¼ 0. Since, 0 ≤ α ≤ 1, we can think of α ¼ 0.5 as the
average value. Also, the term β → 0 for higher energies.
Therefore, LGtI comes out as an average of LGI in high
energy regime.

IV. CONCLUSION

In this work we develop LG inequalities in the context of
three flavor neutrino oscillations including matter as well as
CP-violating effects. It turns out that the LG function
contains nonmeasurable terms, α and β, apart from the
experimentally measurable probabilities. Under the approx-
imations α ≈ 0.5 and β ≈ 0, one recovers the stationarity
limit of the LGI. These approximations hold well in high
energy experiments, since the interference term β → 0 at
higher energies, and αwhich varies between 0 and 1, can be
approximated by its average value 1

2
. Therefore, the LGtI

comes out as a high energy limit of LGI in the three flavor
scenario of neutrino oscillation. Energy and baseline are
seen to be the most important factors contributing to the
violation.
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