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Abstract We propose three scenarios for compact hybrid
stars composed of nuclear and dark matter. These hybrid stars
could provide alternative interpretations to the LIGO/Virgo
events GW170817 and GW190425. To demonstrate our pro-
posal, we solve the Tolman–Oppenheimer–Volkoff configu-
rations of hybrid stars by using the SLy4, APR4, and SKb
equations of state (EoS) for nuclear matter, and an EoS for
a bosonic self interacting dark matter (SIDM) proposed by
Colpi et al. (Phys Rev Lett 57:2485, 1986). We then obtain
their mass–radius and tidal Love number (TLN)-mass rela-
tions, and further examine the possible saddle instability of
these compact objects by the generalized Bardeen–Thorne–
Meltzer (BTM) criteria. Our results show that the hybrid star
scenarios are able to explain GW170817 and GW190425.
Some hybrid stars can have compact neutron or mixed cores
around 10 km while possessing thick dark matter shells, thus
they can be more massive than the maximum mass of the
typical neutron stars but are electromagnetically detected
with about the same size of neutron stars. Reversely, we also
infer the dark matter model from the parameter estimation of
GW190425. Our proposed hybrid stars can be further tested
by the coming LIGO/Virgo O3 events.

1 Introduction

Dark matter, though constituting 85% of the matter content
of the Universe, reveals little evidence via direct search of
the past three decades [1–4]. However, it is hard to detect
the dark matter directly by the conventional electromagnetic
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means due to its rare interaction with baryonic matter. On
the other hand, everything gravitates. If dark matter can form
compact stars, the gravitational wave (GW) emitted from the
associated compact binary coalescence (CBC) can then be
detected. By the observed data, we can infer the equation
of state (EoS) [5–10] and the corresponding microscopic
theory of dark matter [11–13]. This can be thought as an
alternative direct search through the relation between gravi-
tational astronomy, microscopic and macroscopic physics of
dark matter. The most popular model for dark matter is the
WIMP (weakly interacting massive particles) [14]. Despite
that, the WIMP cannot well explain some astrophysical prop-
erties of the dark matter halo, such as the smooth core profile
or the missing satellites. It motivates to introduce SIDM (the
self-interacting dark matter) to resolve these issues [15–18].
Moreover, it has been shown [19–22] that some bosonic mod-
els of SIDM can yield compact stars of a few solar masses,
the so-called dark stars.

Given the possibility of compact dark stars, one can spec-
ulate the existence of compact hybrid stars composed of both
dark and nuclear matter. This is the analogue to the dark halos
made of dark and baryonic matter [23] but in a much smaller
scale. There are three scenarios of compact hybrid stars as
shown in Fig. 1, which depend on how dark and nuclear mat-
ter interact, and also on the accretion mechanism. Scenario I
is to have the stars with neutron core and dark matter shell,
and Scenario II is for the stars with dark matter core and
neutron shell. For both scenarios we assume there is either
interaction between dark and nuclear matter, or spontaneous
symmetry breaking to form the domain wall separating the
core and the shell.1 Otherwise, it will lead to scenario III,
in which the dark and nuclear matter mix inside the core,

1 A possible scenario for the formation of domain wall between nuclear
matter and dark matter is for them to belong to two different symmet-
ric phases of the same underlying theory, such as some kind of grand
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Fig. 1 Three scenarios of hybrid stars. Black color denotes dark matter
and brown color denotes nuclear matter. For scenario I the star consists
of a pure nuclear matter core and a pure dark matter shell, and for
scenario II it consists of a pure dark matter core and a pure nuclear
matter shell. For scenario III, we have a mixed core and either a pure
dark matter shell (IIIa) or a pure nuclear matter one (IIIb). They can
form the systems of binary hybrid stars (BHS)

but with only one component in the shell. Some models for
hybrid stars of scenario IIIa and IIIb have been proposed and
studied in [25,26], respectively. These hybrid stars can be
seen as the cousins of neutron stars, with the new parameter
rW characterizing the radius of the inner core. Here, we sim-
ply assume the existence of these hybrid stars and leave their
formation mechanism for future studies.2

In contrast to neutron stars, it is hard to directly observe
dark stars or hybrid stars by electromagnetic signals since
the dark matter couples very weakly to the baryonic matter.
Despite that, some key properties such as mass, radius, and
tidal deformability of the compact stars depend sensitively on
the details of the constituent matter, including the proportions
of the nuclear and dark matter, and their associated equations
of state. Therefore, we may be able to identify the dark or
hybrid stars by measuring these key properties, which will be
encoded in the GW emitted from the coalescence of binary
hybrid stars (BHS). In such a way, we can test the above three
scenarios of BHS via GW events discovered by LIGO/Virgo.
Currently, there are two observed events usually identified as
binary neutron stars (BNS), namely, GW170817 [34,35] and
GW190425 [36]. The key feature of both events is their low
tidal Love numbers (TLNs). Moreover, the total mass and
the associated component masses of GW190425 seem larger
than the ones expected for the neutron stars, in comparison
to GW170817. Besides, in the event GW190814 [37], one
of its component stars is inferred to have a mass of 2.6 M�.
This is marginally heavier than the typical maximum mass

unified model. We admitted that the scenario I and II remain hypothet-
ical without a concrete model realization. In [24] a domain wall can
form between fermionic dark matter and nuclear matter with a fine-
tuned repulsive interaction but a negligible cross section 10−47 cm2,
see the rightmost plot of Fig. 9 of [24]. This can be seen as a dynamical
alternative to the above phase separation scenario.
2 The capture rate of dark matter by neutron star is too small to form
sizable share in the hybrid stars due to the negligible interaction between
dark matter and baryons [27,28]. However, there are proposals to dra-
matically increase the cross-section by forming the nuggets [29–32]
so that the capture rate could be accelerated. Another possibility for
quickly accumulating dark matters is through the Bondi accretion [33].

of neutron stars. Thus, this component star can hardly be
considered as an ordinary neutron star, instead it could be
either a dark or a hybrid star. Therefore, due to the lack of
electromagnetic signals for the above GW events, they all
can be the candidates of dark or hybrid stars. Our study in
this work is trying to provide a framework to examine such
possibilities in details. We hope that future observations will
scrutinize these scenarios. Reversely, we can constrain the
dark matter model by analyzing the astrophysical properties
of the hybrid stars from the GW data.3

The organization of the paper is as follows: In Sect. 2 we
introduce the EoS for the models used for dark and nuclear
matters; Sect. 3 shows TOV configurations and how to cal-
culate the tidal Love number; Sect. 4 illustrates M–R and
Λ–M relations from our numerical results; In Sect. 5 we
fit GW170817 and GW 190425 using our models; Sect. 6
describes the parameter estimation for the EoS of dark mat-
ter; Sect. 7 is the conclusion. In the Appendix, we summarize
the (reverse) BTM Stability Criteria.

2 Model of equation of state for dark and nuclear
matter

In this paper, we show that both GW170817 and GW190425
can be easily explained by a simple toy model of hybrid stars
based on the above three scenarios. We do not aim to pin
down the models for nuclear and dark matter, but to demon-
strate the viability of the hybrid star scenarios. There are
many bosonic dark matter model candidates, some of which
predict light dark matter particles such as Axion [39]. How-
ever, the ultralight dark matter is difficult to form compact
stars [40], instead it may form dark matter clouds around
compact objects [41].

For our purpose of searching for compact stars of a few
solar masses, it is more natural to choose heavier dark mat-
ter with mass around MeV to GeV. It had been shown that
the WIMP may not be able to yield smooth dark halo pro-
files. This leads to the proposal of introducing SIDM to fix
the issue [15–18]. Thus, when considering a model of hybrid
stars, we adopt a simple SIDM model, that is a bosonic com-
plex scalar field φ with potential m2|φ|2 + λ

4 |φ|4, where
m is the dark matter mass and λ is the coupling constant.
Moreover, we consider this model in an extreme regime with
λM2

planck/m
2 � 1, where Mplanck is the Planckian mass

scale. In this regime, this SIDM model can be equivalently
described by a hydrodynamic perfect fluid with EoS given

3 Note added: Following the main idea of this paper, in our subsequent
work [38] we extend to other dark matter models and try to interpret
GW190814 [37] as the hybrid stars proposed here. In particular, some
M–R and Λ–M relations presented in this paper and discussion of BTM
criteria are adopted in [38].
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by [19]

ρ/ρ� = 3 (p/p�) + B (p/p�)1/2, (1)

where B ∼ 0.08√
λ

( m
GeV )2 is a free parameter.4 In this work, we

adopt the following astrophysical units

r� = GNM�/c2, ρ� = M�/r3�, p� = c2ρ�

which are the (half) Schwarzschild radius of the Sun, the cor-
responding energy density and pressure, respectively. Note
that M� denotes the solar mass, andGN the Newton constant,
which is related to the Planckian mass by GN = 1/M2

planck .
For this SIDM model to explain the smooth density pro-

file of dark halos, one needs to impose the constraint on the
cross-section of self-scattering, which is translated into a tiny
window for λ [18]:

30
( m

GeV

)3/2
< λ < 90

( m

GeV

)3/2
. (2)

Therefore, if we can pin down the parameter B from the
GW events, we can almost determine the parameters of this
SIDM model. As a first step, in this work we only consider the
bosonic SIDM. There are also fermionic SIDM [11,12,24],
which we leave for the future work.

For the nuclear matter, there are also many candidate
models with different EoS. One type is the phenomenolog-
ical model like the SLy4 [44], APR4 [45] and SKb [46]5

used extensively in gravitational wave data analysis [34–
36]. The other type is derived theoretically, like the one in
[47] from a well-motivated holographic quantum chromody-
namics model, i.e., Sakai–Sugimoto model [48–50]. Since
the phenomenological model is more generally accepted, we
choose three representative phenomenological models for the
discussion.

3 Tolman–Oppenheimer–Volkoff configuration and
tidal Love number

The GW of CBC encodes the component masses M1,2, and
also the TLNs Λ1,2 in the following combined quantity

Λ̃ = 16

13

(M1 + 12M2)M4
1 Λ1 + (M2 + 12M1)M4

2 Λ2

(M1 + M2)5
. (3)

Note that Λ̃ = (Λ1 + Λ2)/2 for M1 = M2. For each hybrid
star scenario, we have two model parameters B and rW . We

4 This EoS is slightly below the “sound barrier”, which means the
derived sound speed is always below the conformal limit, i.e., 1/

√
3

of the light speed, and it takes the same form as the conjectured EoS of
quark matter in the deep core of neutron star [42,43]. The coincidence
is due to the φ4 potential and the nearly massless nature of quarks in
the high chemical potential limit. If one consider higher φn with n > 4,
the resultant EoS can break sound barrier [38].
5 Available from https://compose.obspm.fr.

shall connect the model parameters to the inferred quantities
from the observation data by the mass–radius and TLN–mass
relations.

Given a set of (B, rW ) we first obtain the mass–radius rela-
tion by solving the Tolman–Oppenheimer–Volkoff (TOV)
equations [51,52] for multi-component cases [53,54] using
units G = c = 1:

p′
I = −(ρI + pI )φ

′, m′
I = 4πr2ρI , φ′ = m + 4πr3 p

r(r − 2m)
,

(4)

where ′ := d
dr , I = D or N , the mass inside radius r

is m(r) = ∑
I m I , pressure p = ∑

I pI , energy density
ρ = ∑

I ρI by summing the contributions from both dark
matter (I = D) and nuclear matter (I = N ), and the Newton
potential φ := 1

2 ln(−gtt ) with gtt the t t-component of the
metric. The size R of the star is determined by p(r = R) = 0,
and the mass of the star is given by m(R). For the first sce-
nario, we set pD = ρD = 0 and use EoS SLy4 to solve TOV
equations for r ≤ rW . For r ≥ rW we set pN = ρN = 0 and
set initial value of pD at rW equal to pN (rW ), then use (1)
to solve the TOV equations until r = R. For scenario II, we
do the same thing by swapping the roles of dark and nuclear
matters. For the third scenario, we tune the initial values at
r = 0 for both pD and pN and use both (1) and EoS SLy4
to solve the TOV. In this case, rW is determined by the first
vanishing pI , then we solve the TOV equations for r > rW
until r = R for the remaining non-vanishing pI component.

Naively, one can sum (4) over the components to get a set
of single-fluid TOV equations. However, the EoS for each
component is usually not in a linear form, it is then impossible
to form an EoS of multi-fluid, namely ρ = ∑

I ρI 	= ρ(p).
This requires to impose an initial condition for each com-
ponent when solving the TOV, and leads to the subtlety
discussed right below when considering the stability of the
hybrid stars of the third scenario based on the generalization
of the Bardeen–Thorne–Meltzer (BTM) criteria [55].

A key difference between the first two scenarios and the
third one is the stability issue. For the first two, we have just
one initial value parameter for solving TOV, i.e., either pD(0)

or pN (0), but have both for the third one, thus the stability
issue of the latter is more tricky due to the possible saddle
instability.

Another issue is regarding the determination of rW . It
seems that rW is a free parameter in scenario I and II, but can
be determined automatically in scenario III. This, however, is
not true. For scenarios I and II to have a domain wall separat-
ing the dark matter and baryonic phases, there should have
model interactions between these two components, which
will then build up the chemical equilibrium between them.
This implies that some mixed phase rule should be applied
to determine rW . Therefore, even in scenarios I and II, rW
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is not a free parameter. Despite that, it needs to specify the
model interaction to determine rW unambiguously, such as
the example in [24]. In this work we will not consider sce-
nario I and II for any particular model interactions, instead
we choose rW as a parameter to characterize the model inter-
actions between dark matter and baryons.

After having solved the stable TOV configurations, we
solve the linear perturbation around them to extract the TLN,
denoted by Λ and defined by

Qab = −M5Λ Eab, (5)

where M is the mass of the star, Qab is the induced quadru-
ple moment, and Eab is the external gravitational tidal field
strength. To consider the tidal deformability for the hybrid
stars of scenario III, we need to generalize the derivation
of [56,57] for the single fluid to the multi-fluid cases. We
again need to solve the following equation for y(r) :=
r H ′(r)/H(r) with H(r) the linear perturbation of gtt around
a TOV configuration:

r y′ + y2 + P(r)y + r2Q(r) = 0, (6)

with the boundary condition y(0) = 2 and

P = (1 + 4πr2(p − ρ))/(1 − 2m/r), (7)

Q = 4π

(
5ρ + 9p +

∑
I

ρI + pI
dpI /dρI

− 6

4πr2

)
/(1 − 2m/r)

−4φ′2. (8)

The above equations are rigorously derived from Einstein
equation, and the main difference from the single-fluid case
is encoded in the

∑
I

ρI+pI
dpI /dρI

term of (8).
Moreover, when we consider a hybrid star with two sep-

arated phases like the first two scenarios, the TOV and tidal
equations must be solved separately for each phase, and then
match the results by junction conditions on the domain wall.
The pressure p is continuous, but the energy density ρ is
not, so that y encounters a jump around the domain wall.
The required junction conditions are sketched below, and for
more details, see [57].

Suppose the pressure reads pW on the domain wall located
at r = rW . The sound speed near a density discontinuity is

dρ

dp
= 1

c2
s

= dρ

dp

∣∣∣∣
p 	=pW

+ Δρp δ(p − pW ), (9)

where Δρp = ρ(pW + 0) − ρ(pW − 0) is the energy den-
sity jump across pW . Yet since p decreases as r increases,
equivalently Δρp = − (ρ(rW + 0) − ρ(rW − 0)) ≡ −Δρ.

When integrating (6) near the domain wall at r = rW ,
most of the terms give zero, and only the terms proportional

to the δ-function can contribute. Therefore, this then results
in

r y′(r)
∣∣∣∣
r=rW

+ r24πeλ(r) (ρ(r) + p(r))
dρ

dp

∣∣∣∣
r=rW

= 0. (10)

Since dρ
dp = dρ

dr
1

dp/dr , where dp
dr can be read off from the first

TOV equation (4), and dρ
dr |r=rW = Δρ δ(r − rW ), we obtain

that6

Δy = Δρ

p + m(rW )/(4πr3
W )

, (11)

where Δy ≡ y(rW + 0) − y(rW − 0). As a result, we can
solve the TOV and tidal deformation equations with the above
junction conditions for scenarios I and II.

Once (6) is solved, the TLN Λ can be obtained through an
algebraic expression of yR ≡ y(R) and the “compactness”
C = M/R given by [56,57]

Λ = 16

15
(1 − 2C)2 [2 + 2C (yR − 1) − yR]

×
{

2C (6 − 3yR + 3C(5yR − 8))

+4C3
[
13 − 11yR + C(3yR − 2) + 2C2(1 + yR)

]

+3(1 − 2C)2 [2 − yR + 2C(yR − 1)] log (1 − 2C)

}−1
.

(12)

4 M–R and Λ–M relations

Based on the above, we evaluate the M–R and Λ–M relations
for the three hybrid star scenarios with dark matter EoS given
by (1) and nuclear matter EoS given by SLy4, APR4 and SKb,
respectively. In Fig. 2 we first show the M–R relations of the
three chosen neutron EoS, where we see they all yield the neu-
tron stars of maximal mass slightly above 2M�, and satisfy
the multimessenger constraints given in [58], i.e., the radius
of a 1.4 M� neutron star should be 11.75+0.86

−0.81 km at 90%
confidence level. These constraints are obtained assuming
pure neutron stars. There are more possibilities when intro-
ducing the contribution of dark matter as considered in this
work.

4.1 For scenario I and II

We consider the case with three different EoSs for nuclear
matter and vary the parameters of the dark matter EoS. In
Figs. 3, 4 and 5 we show the M–R relations for the first two
scenarios forB = 0.035 (with various rW labelled as aRN for
the first scenario, and as aRD for the second) or B = 0.055

6 There are typos in the counterpart of (11) in [57].
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Fig. 2 Mass–radius relations for three representative neutron EoS:
SLy4, APR4 and SKb. The aqua line indicates the multimessenger con-
straints from the results of [58] on the radii of neutron stars of 1.4 M�

Fig. 3 Mass–radius relations for the hybrid stars of type (I) and (II) in
Fig. 1, which are made of nuclear matter of SLy4 EoS and dark matter
of EoS (1) with B = 0.035 or 0.055. With B = 0.035 these relations
are labelled by aRN= rW (red) for the first scenario, by aRD= rW
(blue) for the second. Similarly, with B = 0.055 they are labelled
by bRN= rW (red) and bRD= rW (blue)). For example, aRD = 8
means the radius of dark core is 8 km, with B = 0.035. The unstable
configurations are indicated by the parts of dashed lines. Note that rW is
a parameter to characterize the model interaction between dark matter
and baryons. The crosses labeled by Tn indicate special stars mentioned
later in Table 1

(labelled by bRN and bRD), and in Figs. 6, 7 and 8 we
show their corresponding Λ-R relations. From the results,
we observe the following. (i) The one labelled by aRD= 0
(and bRD= 0) is the pure neutron stars which can both fit
GW170817 and the traditional astronomical observations.
As the dark matter core increases its size, the maximal mass
goes down first as the boson EoS is less stiff, then goes up as
the allowed maximal mass of boson EoS is higher, and at the
same time the total radius becomes larger. (ii) For the first sce-
nario, we see that there is a jump around aRN= 9.5 in Figs. 3
and 4, aRN= 10.2 in Fig. 5, or bRN= 7 in Fig. 3 (though
bRN= 7 is not shown explicitly) respectively, beyond which
the small-radius configurations become unstable (indicated

Fig. 4 Mass–radius relations of the hybrid stars of type (I) and (II) in
Fig. 1, which are made of nuclear matter of APR4 EoS and dark matter
of EoS (1) with B = 0.035 or 0.055. The notations are the same with
that in Fig. 3

Fig. 5 Mass–radius relations of the hybrid stars of type (I) and (II) in
Fig. 1, which are made of nuclear matter of SKb EoS and dark matter
of EoS (1) with B = 0.035 or 0.055. The notations are the same with
that in Fig. 3

Fig. 6 Corresponding TLN–mass relations of Fig. 3. Similarly, the
unstable configurations are indicated by the parts of dashed lines

by dash line in Figs. 3, 4 and 5), this may imply some first
order phase transition. On the other hand, above this criti-
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Fig. 7 Corresponding TLN–mass relations of Fig. 4. Similarly, the
unstable configurations are indicated by the parts of dashed lines

Fig. 8 Corresponding TLN–mass relations of Fig. 5. Similarly, the
unstable configurations are indicated by the parts of dashed lines

cal RN, there are more compact hybrid stars which can be
consistent with LIGO/Virgo observations with small TLN as
indicated in Figs. 6, 7 and 8. (iii) The configurations with
M larger than 3M� are mainly composed of dark matter, as
seen from the ratio of rW /R. Contrarily, the more compact
hybrid stars of smaller R are mainly composed of nuclear
matter. This is understandable since the three neutron EoSs
are stiffer than EoS (1). It then implies that the final states
of most binary hybrid stars’ mergers are unstable unless the
initial stars are almost pure dark stars. Thus, if the compo-
nent stars of GW190425 are the hybrid stars of these two
scenarios, the final state will collapse into a black hole.

In a short summary: in general, due to the additional com-
ponent of matters, our hybrid stars can host a wider range of
masses and TLNs than pure neutron stars or dark stars. This
will then be taken as a special feature to distinguish from the
pure neutron and dark stars of a given EoS in the forthcoming
GW observational data.

Finally, we should remind the readers that in scenario I
and II, rW should be determined by a given model interac-
tion between dark matter and baryons. Therefore, our results

Fig. 9 Mass–radius (up) and TLN–mass (down) relations of the hybrid
stars of type (IIIa) and (IIIb) in Fig. 1 for SLy4 EoS and for dark matter
EoS with B = 0.055. The region of stable configurations is specified by
the black-encircled area. Different black lines correspond to different
core pressures of dark matter but varying the core pressures of the
nuclear matter, and the brown lines are the other way around. The crosses
indicate special stars T11 and T12 mentioned later in Table 1

can be thought as tabulating the possible configurations of
scenarios I and II for generic model dark matter-baryon inter-
actions.

4.2 For scenario III

Next, we show the M–R and Λ–M relations for the third
scenario of hybrid stars, namely the mixed ones in the core,
and the associated star configurations are denoted by bMX
for B = 0.055 of dark matter EoS combined with the three
neutron EoSs. In Figs. 9, 10 and 11 we show the results.

Unlike the first two scenarios, there are saddle instabili-
ties for the third scenario. For a single-component star, its
stability is determined by varying the central pressure. For a
hybrid star of scenario III, the central pressure is a sum of the
neutron partial pressure and dark matter partial pressure. One
necessary condition for a stable hybrid star is that, it remains
stable when perturbing either partial pressure while keeping
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Fig. 10 Mass–radius (up) and TLN–mass (down) relations of the
hybrid stars of type (IIIa) and (IIIb) in Fig. 1 for APR4 EoS and for
dark matter EoS with B = 0.055. The colouring means the same as that
in Fig. 9

the other fixed. This is called saddle (in)stability. To judge
the stable regions, we apply the lessons learned from the
(reverse) BTM Stability Criteria in the appendix. According
to the typical examples in Fig. 17, we can roughly7 mark the
stable regimes in Fig. 9 by the black-encircled areas. We omit
to mark the stable regimes in Figs. 10 and 11, since those are
similar to that in Fig. 9.

We see that the stable hybrid stars of the third scenario
are limited to the left part of the M–R curves, which are
more NS-like and can have the maximum masses comparable
with the ones of pure neutron stars. On the right-top part
of the curves, there are no stable DM-like hybrid stars due
to the saddle instability. One naive interpretation is because
that a boson star with low central pressure like 10−6 p� is
stable, while a neutron star with the same central pressure
is unstable. Thus, a hybrid star deviating a little from a pure
neutron star can have a stable boson part with low boson
central pressure. Moreover, as in the first two scenarios, our

7 By “roughly” we mean that the area boarder is not marked in high
accuracy, but the stability of each point can be precisely determined if
we draw the lines more densely.

Fig. 11 Mass–radius (up) and TLN–mass (down) relations of the
hybrid stars of type (IIIa) and (IIIb) in Fig. 1 for SKb EoS and for
dark matter EoS with B = 0.055. The colouring means the same as that
in Fig. 9

hybrid stars can feature a wider range of masses and TLNs
than the pure neutron stars of a given EoS.

Even there are still uncertainties for the EoS of nuclear
matter which may hinder our above interpretations, it is still
interesting to demonstrate the capability of our hybrid stars
with a given nuclear matter EoS, i.e., SLy4, to interpret the
observed GW events such as GW190425. The full picture
by pinning down the uncertainties for both nuclear and dark
matter should be expected from the PE of the coming GW
events.

5 Fitting of GW170817 and GW 190425

After discussing the general M–R and Λ–M relations for the
three scenarios of compact hybrid stars, we see the three rep-
resentative neutron EoS lead to similar results, so we mainly
choose SLy4 case as an example for the discussion in this sec-
tion. We now pick up some specific configurations as listed
in Table 1 which can be identified as the component stars for
the GW170817 and GW 190425. In Table 1 we have listed
12 hybrid stars labeled by the index Tn with n= 1 · · · 12.
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Table 1 List of 12 specific hybrid stars, most of which are indicated
on Figs. 3 and 9. The first entry labels the stars, and the second entry is
the type of hybrid stars as defined earlier, then the subsequent entries

are total mass, mass ratio of dark matter to the total mass, total radius,
respective core radius and TLN. The core pressures of dark matter for
T11 and T12 are 2.5 × 10−4 p� and 2.0 × 10−4 p�, respectively

Index Type M MD/M R RD RN Λ

T1 aRD 1.37 0 11.59 0 360

T2 aRD 1.37 0.07 11.96 4.5 486

T3 aRD 1.9 0.65 10.77 8 21

T4 aRD 1.7 0.26 13.19 8 352

T5 aRD 1.5 0.21 13.54 8 999

T6 aRD 3.42 0.93 26.91 25 1802

T7 aRN 1.7 0.15 12.90 10.7 79

T8 aRN 3.5 1.0 33.34 0 390

T9 bRD 1.7 0.53 11.63 8 104

T10 bRN 1.7 0.01 11.97 10.7 77

T11 bMX 1.37 0.30 10.14 10.14 9.35 87

T12 bMX 1.7 0.11 10.06 7.62 10.06 25

Most of them are indicated on Fig. 3 and 9. The types aRD,
aRN, bRD, bRN and bMX are defined as before to indicate
the different choices of core radius and B. Especially, we
list T6 and T8 to show that the typical high-mass stars with
masses larger than 3M� are mainly dark stars and cannot be
the final states of the mergers of low mass hybrid stars mainly
composed of nuclear matter. Besides, most of the stars with
masses lower than 2M� have radii just 2 or 3km larger than
the typical radii of neutron stars, say around 11 km. Some of
them such as T7 and T10 yet have 10.7 km neutron cores to
be consistent with the observed electromagnetically visible
radius [59–61].

Since Λ̃ = (Λ1 + Λ2)/2 for the equal-mass binary, any
two stars from the same type labelled by either a or b, e.g.,
two T2’s, two T11’s, or {T1, T2} etc, can form a binary of
hybrid stars with Λ̃ close to it observational upper bound to
explain GW170817.

In contrast, for GW190425 the inferred total mass M1 +
M2 � 3.4+0.3

−0.1M�, with M1 ∈ (1.62, 1.88)M�, M2 ∈
(1.45, 1.69)M� and Λ̃ ≤ 600 for low spin prior, or with
M1 ∈ (1.61, 2.52)M�, M2 ∈ (1.12, 1.68)M� and Λ̃ ≤
1100 for high-spin prior [36]. From Table 1, we can find
the following pairs of hybrid stars with SLy4 EoS to explain
GW190425: (1) two T4’s with Λ̃ = 352, (2) {T3, T5} with
Λ̃ = 348, (3) two T7’s with Λ̃ = 79, (4) two T9’s with
Λ̃ = 104, (5) two T10’s with Λ̃ = 77 and (6) two T12’s with
Λ̃ = 25. From Table 1 it is interesting to see that the values
of Λ cover a wide range, even with the same masses.

Note that for GW170817, the inferred total mass M1 +
M2 � 2.73+0.04

−0.01M� with M1 ∈ (1.36, 1.60)M�, M2 ∈
(1.16, 1.36)M� and Λ̃ = 300+420

−230 for low-spin prior. For
simplicity, we consider the equal mass pair with M1 = M2 =
1.37M� [34,35]. The pure-neutron or hybrid stars with such

mass in the list are T1, T2 and T11. In this set, unlike T11
which belongs to the third scenario, T1 and T2 belong to the
first two scenarios and have none or little dark matter.

In conclusion, we have demonstrated that it is quite easy
to fit the gravitational events GW170817 and GW190425
as some hybrid stars of all three scenarios considered in this
paper. This opens a venue to fit the future gravitational events
as the hybrid stars considered in this paper, and can further
pin down the possible parameter range of m and λ of φ4

SIDM by the method introduced in the next section.

6 Parameter estimation for EoS of dark matter

We finally would like to demonstrate that one can use the GW
data and the associated parameter estimation (PE) results to
obtain the posteriors of the EoS parameter B and the model
parameter rW of the hybrid stars. For simplicity, we will con-
sider the first two scenarios of hybrid stars made of nuclear
matters with three kinds of EoS and the bosonic SIDM with
EoS given by (1). Based on the results, we can further deter-
mine the range of the model parametersm and λ of φ4 SIDM.
This shows that the GW data analysis can be used to constrain
the model of dark matter, mark as a triumph of GW astropar-
ticle physics.

The main idea is to map the headcounts, which are labelled
by (M,Λ), of the PE posteriors of a GW event based on
Markov-Chain-Monte-Carlo method into the density plots
of B and rW , via the help of the mass–radius and TLN–
mass relations obtained in Sect. 4. The headcount here means
the number of populations of a particular TOV configuration
labeled by (M,Λ) in the inference file associated with the PE
posteriors from MCMC sampling. Given the model parame-
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Fig. 12 Flow chart of obtaining posteriors of model parameters for
the hybrid stars from the posteriors of PE for a particular GW event,
such as GW190425. Here, Box (i) is to obtain the headcounts of the PE
posterior of GW190425; Box (ii) and (iii) are to find the corresponding
(B, rW ) for each headcount labelled by (M,Λ) from mass–radius and
TLN–mass relations; and Box (iv) and (v) are to use the results in the
previous step to obtain the density plot of (B, rW ) on the (M,Λ)-plane,
and their corresponding evidence regions and marginal distributions.
See also the discussions in the main text

Fig. 13 Density plots of parameters (B, rW ) on the (M,Λ)-plane of
the hybrid star configurations of scenario I (Left panel, with rW = RN )
and II (Right panel, with rW = RD), with neutron EoS chosen as
SLy4. The sidebars indicate the scales of the density plots. There is
no hybrid star configuration falling inside the corresponding (M,Λ)

regions when (B, rW ) go beyond the maximal values of the sidebars.
The credible intervals of 50% and 90% of the PE results for GW190425
are indicated by the blue dashed lines [62]

ters (B, rW ), one can solve a set of stable hybrid stars speci-
fied by the mass–radius and TLN–mass relations. Therefore,
by associating the headcounts in the PE posteriors with pos-
sible (B, rW )’s one can then obtain the density plots of B and
rW on the (M,Λ)-plane. In summary, the key procedures of
the above mapping are summarized in Fig. 12, each Box of
which performs some intermediate steps of the task. These
steps go as follows: (1) Box (i) in Fig. 12 is to obtain the
headcounts of the PE posterior of GW190425 from [36]; (2)
Box (ii) is to discrete the prior space of (B, rW ); (3) Box (iii)
is to solve the TOV configurations and TLN for each point in
this discrete prior space; (4) using the results of (3), Box(iv)
is to obtain the density plot of (B, rW ) on the (M,Λ)-plane;
(5) Box (v) is to obtain the associated evidence regions and
marginal distributions of (B, rW ).

The details of the mass–radius and TLN–mass relations
are already obtained in Sect. 4, which will then be used in

Fig. 14 Posteriors for the dark matter EoS parameter B (horizontal
axis) of the SIDM and the core-radius rW (vertical axis) for the first (top
sub-figure) and the second (bottom sub-figure) scenarios with neutron
SLy4 EoS. The inner circled regions are 50% credible interval, and the
outer ones are 90% credible interval. The inferred best-fitted values of
B and rW are also given in Table 2

step (2) of the above procedure. As mentioned, we will only
consider the hybrid stars of scenarios I (rW = RN ) and II
(rW = RD) for estimating the m and λ from the inference
file of GW190425. Follow the above procedure and the flow
chart of Fig. 12 by giving the prior range of B = [0, 1] and
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Fig. 15 Posteriors for the dark matter EoS parameter B (horizontal
axis) of the SIDM and the core-radius rW (vertical axis) for the first (top
sub-figure) and the second (bottom sub-figure) scenarios with neutron
APR4 EoS. The inferred best-fitted values of B and rW are also given
in Table 2

rW = [0, 25], we obtain the density plots of (B, rW ) on the
(M,Λ)-plane of the hybrid star configurations of scenario I
(rW = RN ) and II (rW = RD) as shown in Fig. 13, for the
SLy4 case (other cases are similar). Based on the density plot
we can further obtain the corresponding evidence region and
the marginal distributions ofB and rW , with different choices
of neutron EoS: SLy4, APR4 and SKb. The results are shown

Fig. 16 Posteriors for the dark matter EoS parameter B (horizontal
axis) of the SIDM and the core-radius rW (vertical axis) for the first (top
sub-figure) and the second (bottom sub-figure) scenarios with neutron
SKb EoS. The inferred best-fitted values of B and rW are also given in
Table 2

in Figs. 14, 15 and 16, and the inferred best-fitted values are
summarized in Table 2.

We see that the PE posteriors of GW190425 give a range
of the core radius of the hybrid stars of scenarios I and II.
Overall, we see that the neutron core is smaller than the dark
core. Moreover, note that RN denotes the electromagneti-
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Table 2 The inferred best-fitted values of the EoS parameter B and the core-radius rW for scenario I and II of hybrid stars, with three different
choices of neutron EoS

TYPE Scenario I Scenario II

B RN(km) B RD(km)

SLy4 0.07+0.09
−0.02 6.44+1.98

−2.85 0.05+0.04
−0.02 10.29+3.49

−4.10

APR4 0.07+0.10
−0.02 6.02+2.05

−2.74 0.05+0.04
−0.03 9.98+3.46

−3.69

SKb 0.08+0.16
−0.03 6.95+2.06

−2.89 0.05+0.05
−0.03 9.78+3.65

−4.23

cally visible size of the neutron core, and RD the size of the
invisible dark core.

Moreover, the model parameterB ∼ 0.08√
λ

( m
GeV )2, together

with the astrophysical constraint (2), i.e., 30( m
GeV )3/2 < λ <

90( m
GeV )3/2, the above evidence region ofB (since the results

for the three neutron EoS are consistent, we take the SLy4
case for example) can yield the following compatible range
of m and λ of φ4 SIDM:

2.68 < m < 10.53GeV, 131 < λ < 3076 (13)

for scenario I, and

1.78 < m < 6.65GeV, 71 < λ < 1542 (14)

for scenario II. Note that both cases satisfy well the con-
straint λM2

planck/m
2 � 1. We expect future GW data will

sharpen the above estimation. The above procedure can be
also applied to other types of dark matter models, and can
provide the constraints from GW data analysis for the model-
building of the dark matter. Thus, we have demonstrated
the possibility of constraining the dark matter model by the
hybrid star scenarios.

7 Conclusion

In the current cosmology scenario, dark matter is more abun-
dant than the normal matter, despite that we have known
almost nothing about it. Although the self-interaction of dark
matter could be weak, we cannot exclude the possibility for it
to form compact objects like dark stars. The lack of traditional
astronomical observations of dark stars, on the contrary, indi-
cates the importance of GW events as probes for them. There-
fore, we examine the GW properties of dark or hybrid stars
by assuming their existence, rather than ruling them out for
granted. We choose some special EoSs for neutrons and dark
bosons in this paper, but the method we develop here can be
applied to any EoS. That means, any compact star with two
or more components can be discussed using our model.

In this paper we have shown that it is possible to explain
some GW events such as GW170817 and GW190425 by our
hybrid star scenarios. There remain uncertainties in the EoS
of nuclear matter, which may hinder the hybrid star identi-

fications. However, for a given EoS of nuclear matter, the
possible configurations on the mass–radius and mass-TLN
diagrams are broader than the given pure neutron star con-
figurations. This should be true even taking into account the
uncertainties of EoS for nuclear matter. Besides, the introduc-
tion of three different neutron EoSs helps to reduce the effect
of the uncertainties. Therefore, we expect the dark/hybrid star
scenarios should be pinned down or ruled out by future GW
observations, especially when the interpretation of exotic
compact objects is invoked.

Our study integrates three areas: gravitational waves,
astronomy, and particle physics. The vision becomes more
clear than confined to a single subject. From our results, we
see that a hybrid star can have a mass higher than the maximal
mass of the neutron stars for a given EoS of nuclear matter.
Moreover, the visible neutron core of this heavier hybrid star
could still be comparable to the radius of the corresponding
neutron star even if its total size is far larger than its core
size. This then opens a possibility to lower/relax the max-
imal mass requirement for a nuclear EoS, and at the same
time is able to interpret the more massive compact object
as a hybrid star when its mass is higher than the maximal
mass of a conventional neutron star. A recent example is the
companion star in GW190814, which has a mass of 2.6M�.
This is larger than the conventional neutron star’s maximal
mass, which is about 2.5M�. Our hybrid star scenario can
easily explain GW190814 as well as the other two possible
BNS/BHS events, GW170817 and GW190425.
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Appendix A: BTM stability criteria

Here we like to elaborate on the criterion for judging the
stable regions of stars. A simple way of determining the sta-
ble region is the so-called BTM (Bardeen–Thorne–Meltzer)
criteria8 [55] as follows: We start with the stable configura-
tion with very low core pressure, and trace along the M–R
curve by increasing the core pressure. Then, when passing
through an extremum on the M–R curve, we can have the
following two situations: (1) If the M–R curve bends coun-
terclockwise, a stable mode will become unstable; (2) Oth-
erwise, one unstable mode becomes stable. By this way, we
can determine which part on the M–R curve admits stable
configurations.

However, in most of the cases we will not solve the M–R
curve for the very low core pressure, such as the case consid-
ered here. To determine the stability of the regime interested,
we can assume the stability/instability of a certain part of the
M–R curve, and then apply the BTM criteria reversely as
follows,
Reverse BTM Stability Criteria9: when passing through
each extremum of the M–R curve in the direction of decreas-
ing the core pressure,

1. if the M–R curve bends clockwise, one unstable mode
becomes stable;

2. Otherwise, one stable mode becomes unstable.

After that, we can apply the BTM criteria on the same regime
for consistency check to determine the stability/instability of
the initial part. Some examples for the above practice are
shown in Fig. 17 where the solid lines denote the stable
regions, and the dotted parts the unstable ones. The arrows
indicate the direction of increasing core pressure. Note that
curves O-A-B-C and O ′-A′-D′-B ′-C ′ look quite similar but

8 This was shown in [55] to be equivalent to the stability analysis by
solving the Sturm–Liouville eigenmodes of radial oscillation.
9 See [38] for more discussions.

Fig. 17 Some typical examples for the stability regimes of the M–
R curve of the third scenario hybrid stars. The black curves are NS-
like and the brown curves are DM-like, which are defined in the main
text. The block arrows indicate the directions of increasing of the core
pressures. We use the (reverse) BTM criteria discussed in the main
text to determine the stable/unstable regimes, which are indicated by
solid/dotted parts. A caveat for the intersection point is as follows. Since
the mass and radius depend on both the core pressures of nuclear and
dark matter, some intersection points may be the faked ones and cannot
be used to judge the saddle (in)stability. For examples, the intersection
points C and Y are real ones, while the point X is a fake intersection
point. For more details, see the main text

differ by the extremum D′. Thus, they have quite different sta-
bility/instability structures after applying the above (reverse)
BTM criteria.

Moreover, in the third scenario of hybrid stars, we have
two orthogonal ways of changing the core pressures, and thus
arrive at two sets of M–R curves. One set called NS-like is to
fix the core pressure of dark matter, but change the one of the
nuclear matter, and the other one, called DM-like, is the other
way around. A typical example is shown in Fig. 17, where
the black curves are NS-like and the brown curves are DM-
like. We apply the above (reverse) BTM criteria to determine
the stability/instability regime of each curve, then look for
the regimes where both NS-like and DM-like curves admit
stability. These regimes will then be identified as the stable
hybrid stars of scenario III. However, there is one caveat.
In Fig. 17 we see that one brown curve may intersect one
black curve twice, for example, C and X on the curve O-
A-B-C . Since on the same black curve, the core pressure of
the dark matter part is fixed, so one of them will be the fake
intersection point. In this case, X is not the “real” intersection
point since C is the starting point at which the core pressure
of the dark matter is equal to the one on the black curve.
Thus, the intersection point X will not be used to judge the
saddle stability. Another subtle issue is if there is a change
of stability around the sharp edge points, such as B and B ′
at which a first-order phase transition from a nuclear crust to
a dark crust may happen. Notice that the rotation directions
before and after such points are opposite (from clockwise to
counterclockwise) thus the BTM criteria cannot be applied,

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2022) 82 :366 Page 13 of 14 366

and B ′ is not even an extremum. In [63] it was shown that
there is a stability change around such points. More rigorous
derivation is needed for the future study. However, due to the
fact that B ′-D′ and B-A are already stable, C ′-D′ and C-B
shall be stable no matter if we adopt the criteria of [63].
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