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1 Introduction

As we know, not only does the photon ring outside of the black hole play a vital role
in predicting the intricate patterns of the black hole image, but also controls the photon
sphere quasinormal ringdowns of massless fields such as the gravitational waves. Very
recently, it has been discovered in [1] that the photon sphere quasinormal modes exhibit
an emergent SL(2, R) symmetry for the static spherically symmetry black hole, namely the
spectrum of the photon sphere quasinormal modes forms the highest weight representation
of the emergent SL(2, R) symmetry, which is further found to persist also for the stationary
rotating Kerr black hole [2]. Later on, to gain a deeper understanding of this emergent
SL(2, R) symmetry, the authors in [3] initiate the exploration of the self-dual warped AdS
black hole, which arises as an approximation to the near-extremal Kerr black hole with the
SL(2, R) isometry. In particular, the resultant spectrum of quasinormal modes by explicit
calculation can be identified as the highest weight representation of the SL(2, R) isometry.
It is further shown in [4] that the aforementioned emergent SL(2, R) symmetry associated
with the spectrum of the photon sphere quasinormal modes, if redefined appropriately by
virtue of the residual degrees of freedom, can be regarded precisely as the eikonal limit of
the SL(2, R) isometry.

As in the context of AdS/CFT correspondence, the identification of such a symmetry
is suspected to offer us a guiding principle to search for the holographic dual field theory
description of the black hole under consideration through Kerr/CFT correspondence and
warped AdS/CFT correspondence, respectively [5–8]. In particular, the SL(2, R) symmetry
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dictated quasinormal modes correspond to the poles of the retarded Green function of the
putative dual CFT. Such a specific correspondence has been confirmed in AdS3/CFT2,
where analytic results can be readily obtained for both sides. Speaking specifically, the
analytic result for the quasinormal modes of the scalar, vector, and spinor perturbations
in the BTZ black hole is first obtained by directly solving the equations of motion [9, 10].
Later on, inspired by [11] and [12], the authors in [13] demonstrate that the quasinormal
modes can be constructed as the left and right chiral highest weight representation of the
SL(2, R) isometry for the scalar and metric perturbations. This algebraic construction has
been further generalized to other three dimensional black holes with the vector perturbation
included [14, 15]. However, the involved calculation is somewhat complicated, which makes
the SL(2, R) isometry obscure albeit recovered in the final result as it should be the case.
Such a technical deficiency is rescued in [16] by resorting to the two intrinsic tensor fields
associated with the SL(2, R) isometry of the BTZ black hole as well as the covariant
derivative rather than the ordinary derivative in the course of analysis. Among others, one
very advantage of this strategy is that the spinor perturbation can be incorporated and
treated in a uniform manner as other tensor fields.

As alluded to in the very beginning, the SL(2, R) isometry of the self-dual warped AdS
black hole is supposed to play a similar role in controlling the spectrum of quasinormal
modes algebraically. However, such a suspicion has so far been confirmed solely for the
(massless) scalar perturbation due to its obvious simplicity. So it is tempting to check this
suspicion for other perturbations explicitly by utilizing the strategy developed in [16]. The
purpose of this paper is to show this is also the case for both vector and spinor perturba-
tions. To make the whole analysis as simple as possible, we are required to introduce the
two intrinsic tensor fields associated with the Casimir of the full SL(2, R)×U(1) isometry
of the self-dual warped AdS black hole. This is the main difference from the BTZ black
hole, where the full isometry is given by SL(2, R)L×SL(2, R)R but the two intrinsic tensor
fields are associated with the Casimir of each SL(2, R) sector. It is noteworthy that the
warp factor makes the additional U(1) isometry also display itself in Riemann curvature,
which turns out to have an extra effect on the conformal weight of the spinor perturbation.
Except for these nuances, the whole procedure devised in [16] proves to be applicable to the
self-dual warped AdS black hole with the SL(2, R)× U(1) symmetry manifest throughout
the whole analysis.

The rest of paper is organized as follows. In the subsequent section, we provide a
brief review of the self-dual warped AdS black hole as a solution to the topological massive
gravity, where the SL(2, R)×U(1) isometry is identified and relevant geometric quantities
are presented in an explicit way for our later usage. In section 3, with the quadratic
Casimir of SL(2, R)×U(1) Lie algebra, we introduce its Lie derivative representation and
two associated tensor fields, which turn out to be proportional to the metric and the volume
element, respectively. In section 4, we first derive how the solutions to the equations
of motion fall in a uniform manner into the representations of the SL(2, R) × U(1) Lie
algebra for the scalar, vector, and spinor field in the self-dual warped AdS black hole
and then present the algebraic approach to the quasinormal modes as the highest weight
representation of the SL(2, R) Lie subalgebra for each fixed azimuthal quantum number,
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where the main bulk of tensor and spinor analysis is performed in a purely abstract way
without resorting to any specific coordinate system.1 We conclude our paper in the last
section.

Notation and conventions follow [17] unless specified otherwise.

2 Self-dual warped AdS black hole, SL(2, R)×U(1) isometry and relevant
geometric quantities

Let us start with the self-dual warped AdS black hole

ds2 = `2
[
−dT 2 + dx2

sinh2 x
+ Λ2

(
dφ+ dT

tanh x

)2]
, (2.1)

where ` is the warped AdS radius and the warp factor Λ is so defined that the unwarped
self-dual AdS black hole is given by Λ = 1. Whence the inverse metric can be obtained as

gab = 1
`2

{
− sinh2 x

(
∂

∂T

)a ( ∂

∂T

)b
+ cosh x sinh x

[(
∂

∂T

)a ( ∂

∂φ

)b
+
(
∂

∂φ

)b ( ∂

∂T

)a]

+ sinh2 x

(
∂

∂x

)a ( ∂

∂x

)a
+ 1− Λ2 cosh2 x

Λ2

(
∂

∂φ

)a ( ∂

∂φ

)b}
,

(2.2)
and the associated volume element reads

ε = Λ`3 csch2x dT ∧ dx ∧ dφ. (2.3)

Such a black hole has the SL(2, R) × U(1) isometry with the corresponding Killing
fields defined as follows

La0 = −
(
∂

∂T

)a
,

La−1 = e−T
[
− cosh x

(
∂

∂T

)a
+ sinh x

(
∂

∂x

)a
+ sinh x

(
∂

∂φ

)a]
,

La+1 = eT
[
− cosh x

(
∂

∂T

)a
− sinh x

(
∂

∂x

)a
+ sinh x

(
∂

∂φ

)a]
,

W a
0 =

(
∂

∂φ

)a
, (2.4)

whereby the commutators satisfy the following SL(2, R)×U(1) Lie algebra

[L0, L±1] = ∓L±1, [L+1, L−1] = 2L0, [W0, Lm] = 0. (2.5)

with m = 0,±1. Note that our self-dual warped AdS black hole is not locally maximally
symmetric. Instead, one can show that the corresponding Riemann tensor, Ricci tensors,

1To our best knowledge, the equation of motion for the metric perturbation on top of the warped AdS is
essentially third order in the topological massive gravity, and has not been tamed into so well understood
a form as in AdS. So we leave it to future work.
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Ricci scalar, and Einstein tensor are given by

Rabcd = 2(ga[cRd]b − gb[cRd]a)−Rga[cgd]b,

Rab = Λ2 − 2
2`2 gab + 1− Λ2

Λ2`4
W0aW0b,

R = Λ2 − 4
2`2 ,

Gab = Λ2

4`2 gab + 1− Λ2

Λ2`4
W0aW0b.

(2.6)

As one can see, the Riemann tensor receives an extra contribution from the U(1) generator.
In particular, this U(1) generator will also leave its footprint in the following expression, i.e.,

Rabcdε
ab
eε
cd
f = Λ2

`2
gef + 4(1− Λ2)

Λ2`4
W0eW0f , (2.7)

which, as mentioned before and shown later, will have an effect on the conformal weight
of the spinor perturbation. On the other hand, although the Weyl tensor vanishes auto-
matically, the self-dual warped AdS black hole is not conformally flat because the Cotton
tensor defined as Cab = εa

cd∇c(Rdb − 1
4Rgdb) is given by

Cab = Λ(1− Λ2)
2`3 gab + 3(Λ2 − 1)

2Λ`5 W0aW0b, (2.8)

which does not vanish when Λ 6= 1. Accordingly, we have

Gab −
4− Λ2

12`2 gab + 2`
3ΛCab = 0, (2.9)

which means that our self-dual warped AdS black hole can be supported by the gravitational
Chern-Simons term as a solution to the topological massive gravity [3].

3 Quadratic Casimir, its Lie derivative representation and two associated
tensor fields

The quadratic Casimir operator of SL(2, R)×U(1) Lie algebra is defined as

C2 = L2 +
(

1− 1
Λ2

)
W 2

0 (3.1)

with
L2 = L2

0 −
1
2(L+1L−1 + L−1L+1) (3.2)

the Casimir operator of SL(2, R) Lie subalgebra. Note that the Lie derivative of tensor
and spinor fields obeys [LX ,LY ] = L[X,Y ] and LαX = αLX for the arbitrary Killing vector
fields X and Y with the arbitrary constant α. Therefore the above Lie algebra can be
naturally represented by the Lie derivative. In particular, the quadratic Casimir operators
can be realized by the Lie derivative as follows

C2 = L2−
(

1− 1
Λ2

)
LW0LW0 = LL0LL0−

1
2
(
LL+1LL−1 + LL−1LL+1

)
−
(

1− 1
Λ2

)
LW0LW0 .

(3.3)
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Now inspired by the strategy developed in [16], we construct the following two tensor
fields associated with the quadratic Casimir of SL(2, R)×U(1), i.e.,

Hab = La0L
b
0 −

1
2(La+1L

b
−1 + La−1L

b
+1)−

(
1− 1

Λ2

)
W a

0W
b
0 (3.4)

and

Zabc = L0a∇bL0c −
1
2(L+1a∇bL−1c + L−1a∇bL+1c)−

(
1− 1

Λ2

)
W0a∇bW0c.

Obviously, H is a symmetric tensor field. By a straightforward calculation, one can show
that H is actually proportional to our metric, i.e.,

Hab = `2gab. (3.5)

Regarding Z, we first notice that it is antisymmetric between the last two indices due to the
Killing equation ∇aξb = ∇[aξb]. Second, ∇bHac = 0 tells us that it is also antisymmetric
between the first and third indices. So Z is virtually a 3-form, which implies that it should
be proportional to the volume element. In addition, we have

∇aZabc = L0a∇a∇bL0c −
1
2(L+1a∇a∇bL−1c + L−1a∇a∇bL+1c)−

(
1− 1

Λ2

)
W0a∇a∇bW0c

= Rcb
ad[L0aL0d −

1
2(L+1aL−1d + L−1aL+1d)−

(
1− 1

Λ2

)
W0aW0c] = 0, (3.6)

where Rabcd = Rab[cd] is used in the last step while the Killing equation and the identity

∇a∇bξc = Rcba
dξd (3.7)

for any Killing field ξ are used in the first and second steps, respectively. Therefore, the
proportional coefficients in front of the volume element should be constant. In particular,
an explicit computation leads to

Zabc = −Λ`
2 εabc. (3.8)

It is noteworthy that the nice properties exhibited in eq. (3.5) and eq. (3.8) respectively
for H and Z fields will be lost if one naively constructs them simply out of the quadratic
Casimir of SL(2, R) Lie subalgebra.

4 SL(2, R) × U(1) symmetry and quasinormal modes in the self-dual
warped AdS black hole

As a warm-up, let us rework with the scalar field φ, whose equation of motion is given by

(∇a∇a − µ2)φ = 0. (4.1)

The Lie derivative acting on the scalar field gives rise to

LXLY φ = Xa∇a(Y b∇bφ) = (Xa∇aY b)∇bφ+XaY b∇a∇bφ, (4.2)
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whereby we have

C2φ = Zaa
b∇bφ+Hab∇a∇bφ = `2gab∇a∇bφ = (µ`)2φ. (4.3)

Now let us proceed with the massive vector field A, whose equation of motion is
given by

εa
bc∇bAc = −µAa. (4.4)

Whence we can see that the Lorenz condition is satisfied automatically as follows

∇aAa = − 1
µ
εabc∇a∇bAc = − 1

2µε
abcRabc

dAd = − 1
2µε

abcR[abc]
dAd = 0 (4.5)

due to the cyclic identity R[abc]d = 0. Furthermore, we have

µ2Ad = −µεdea∇eAa = εdea∇e(εabc∇bAc) = εadeεa
bc∇e∇bAc

= (gdcgeb − gdbgec)∇e∇bAc = ∇a∇aAd −∇a∇dAa

= ∇a∇aAd +∇d∇aAa −∇a∇dAa = ∇a∇aAd +RdabcAcgab

= ∇a∇aAd −RdcAc. (4.6)

On the other hand, by the Lie derivative acting on this vector field, we have

LXLYAa = Xb∇b(LYAa) + LYAb∇aXb

= Xb∇b(Y c∇cAa +Ac∇aY c) + (Y c∇cAb +Ac∇bY c)∇aXb

= (Xb∇bY c)∇cAa +XbY c∇b∇cAa + (Xb∇aY c)∇bAc +AcX
b∇b∇aY c

+(Y c∇aXb)∇cAb +Ac∇b(Y c∇aXb)−AcY c∇b∇aXb. (4.7)

Whence we can further obtain

C2Aa = Zbb
c∇cAa +Hbc∇b∇cAa + 2Zcab∇cAb +Ac∇bZcab +AcRcabdH

bd −AcRadHdc

= `2gbc∇b∇cAa + `Λεacb∇cAb − `2RacAc

= [(µ`)2 − Λµ`]Aa, (4.8)

where the identity (3.7) is used in the first step.
With the above experience, let us manipulate the spinor field, which is more involved.

To this end, we start with the Dirac equation

(γa∇a + µ)ψ = 0. (4.9)

Here γa = eaIγ
I and the covariant derivative acting on the spinor field is given by ∇a =

∂a + 1
4ωIJaγ

IJ , where eaI constitute a set of orthogonal normal vector bases, and Gamma
matrices satisfy {γI , γJ} = 2ηIJ with the spin connection ωIJa = eIb∇aebJ and γIJ =
1
2 [γI , γJ ]. Next acting on the Dirac equation with γb∇b − µ, we obtain

0 = (γb∇b − µ)(γa∇a + µ)ψ = (γaγb∇a∇b − µ2)ψ
= (gab∇a∇b + γab∇a∇b − µ2)ψ = (∇a∇a − µ2)ψ + γab∇[a∇b]ψ

=
(
∇a∇a − µ2 + 1

8Rabcdγ
abγcd

)
ψ, (4.10)
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where γab = eaIe
b
Jγ

IJ . On the other hand, the Lie derivative of spinor fields with respect
to Killing fields is given by [18]

LXψ = Xa∇aψ −
1
4γ

abψ∇bXa, (4.11)

whereby we have

LXLY ψ = Xa∇aLY ψ −
1
4γ

abLY ψ∇bXa

= Xa∇a
(
Y c∇cψ −

1
4γ

cdψ∇dYc
)
− 1

4γ
ab
(
Y c∇cψ −

1
4γ

cdψ∇dYc
)
∇bXa

= (Xa∇aY c)∇cψ +XaY c∇a∇cψ −
1
4γ

cdψXa∇a∇dYc −
1
4(Xa∇dYc)γcd∇aψ

−1
4(Y c∇bXa)γab∇cψ + 1

16γ
abγcdψ∇d(Yc∇bXa)−

1
16γ

abγcdψYc∇d∇bXa.

(4.12)

Then it is not hard to show

C2ψ = Zaa
c∇cψ +Hac∇a∇cψ −

1
4γ

cdψRcdaeH
ae − 1

2Z
a
dcγ

cd∇aψ

+ 1
16γ

abγcdψ∇dZcba −
1
16γ

abγcdψRabdeH
e
c

= `2∇a∇aψ + Λ`
4 εabcγ

cb∇aψ + `2

16Rabcdγ
abγcdψ

= `2(µ2 − 1
16Rabcdγ

abγcd)ψ − Λ`
4 εabcγ

bc∇aψ

= `2(µ2 − 1
16Rabcdε

abeεcdfγeγf )ψ + Λ`
2 γa∇aψ

=
[
(µ`)2 − Λµ`

2

]
ψ −

(
Λ2

16 gef + 1− Λ2

4Λ2`2
WeWf

)
γ(eγf)ψ

=
[
(µ`)2 − Λµ`

2

]
ψ −

(
3Λ2

16 + 1− Λ2

4

)
ψ

=
[
(µ`)2 − Λµ`

2 + Λ2 − 4
16

]
ψ, (4.13)

where the identity γab = εabcγc and eq. (2.7) have been used in the fourth and fifth steps,
respectively.

So the upshot of the whole bulk of tensor and spinor analysis presented above is
that the solutions to the equations of motion for various fields all turn out to fall into
the representations of the SL(2, R) × U(1) Lie algebra characterized by the value of the
Casimir, i.e.,

C2Φ = λΦ (4.14)

with λ = (u`)2 for the scalar field, λ = (u`)2 − Λµ` for the vector field, and λ = (u`)2 −
Λµ`

2 + Λ2−4
16 for the spinor field.
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With this in mind, we can construct the quasinormal modes by the standard algebraic
approach. Namely, we start from the highest weight mode of the SL(2, R) Lie subalgebra
with a fixed azimuthal quantum number m as follows

LW0Φ(m0) = imΦ(m0), L2Φ(m0) = λLΦ(m0), LL+1Φ(m0) = 0, LL0Φ(m0) = hΦ(m0),

(4.15)
where the component of Φm0 associated with the orthogonal normal basis chosen in ap-
pendix B can be written formally as

Φ(m0) = e−hT+imφΨ(m0)(x) (4.16)

with the conformal weight h and the eigenvalue λL of the SL(2, R) Casmir given respec-
tively by

h = 1±
√

1 + 4λL
2 , λL = λ− (Λ2 − 1)m2

Λ2 . (4.17)

Then the quasinormal modes can be obtained as the infinite tower of the descendent
modes, i.e.,

Φ(mn) = LnL−1Φ(m0) (4.18)

with n = 0, 1, 2, · · · . Note that LL0Φ(mn) = (h+n)Φ(mn), so we have the following spectrum
of quasinormal frequencies

ωmn = −i(h+ n) (4.19)

with the imaginary part of ωmn required to be negative by definition.
We conclude this section by mentioning that in the eikonal regime |m| � 1, λ in

eq. (4.17) can be neglected. This amounts to saying that the effects from the mass and
spin are both subleading in the eikonal limit, which substantiates the claim made in [3].

5 Conclusion

Partially motivated by the emergent SL(2, R) symmetry in the photon sphere quasinormal
modes of the Kerr black hole, we have successfully obtained the analytic expression for the
spectrum of quasinormal modes of the scalar, vector, and spinor fields in the exactly soluble
self-dual warped AdS black hole in a uniform manner by fully exploiting its SL(2, R)×U(1)
isometry. To achieve this, we have introduced the two tensor fields associated with the
Casimir of the full SL(2, R)×U(1) Lie algebra and unveiled their pleasing relations to the
metric and volume element respectively. Then we show that the solutions to the equations
of motion of the scalar, vector, and spinor fields all fall into the representations of the
SL(2, R)×U(1) Lie algebra by our tensor and spinor analysis, where no specific coordinate
system is used and the aforementioned two tensor fields make SL(2, R) × U(1) symmetry
transparent in the whole analysis. The resultant spectrum of quasinormal modes can be
further constructed as the highest weight representation of the SL(2, R) Lie subalgebra.

Although the self-dual warped AdS black hole is more involved than the simplest BTZ
black hole, our work demonstrates that the strategy previously developed in [16] for the
algebraic approach to the spectrum of quasinormal modes in the BTZ black hole turns
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out to be utterly applicable to the self-dual warped AdS black hole. As we know, there
are other three dimensional warped AdS black hole solutions with the SL(2, R) × U(1)
isometry [19–21] , where a variety of quasinormal modes have been calculated out mainly
by solving the equations of motion analytically [22–26]. Note that the key to making
our algebraic approach work lies in the three properties of our self-dual AdS black hole
exhibited in eq. (2.7), eq. (3.5), and eq. (3.8), which are believed to hold also for other
warped AdS black holes except that the prefactors in front of the metric, quadratic of the
U(1) generator and volume element may be varied. Thus with our present work, we are
convinced that the derivation of these quasinormal modes can also be made as simple as
possible by our algebraic approach.
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A An explicit calculation of Z

By ∇aξb = 1
2(dξ)ab for any Killing field ξ, we have

Zabc = Z[abc] = 1
2

[
L0[adL0bc] −

1
2(L+1[adL−1bc] + L−1[adL+1bc])−

(
1− 1

Λ2

)
W0[adW0bc]

]
= 1

6

[
L0 ∧ dL0abc −

1
2(L+1 ∧ dL−1abc + L−1 ∧ dL+1abc)−

(
1− 1

Λ2

)
W0 ∧ dW0abc

]
,

(A.1)
where

L0a = gabL
b
0 = −`2[(Λ2 coth2 x− csch2x)(dT )a + Λ2 coth x(dφ)a], (A.2)

L−1a = gabL
b
−1 = −e−T `2csch x[(Λ2 − 1) coth x(dT )a − (dx)a + Λ2(dφ)a],

L+1a = gabL
b
−1 = −eT `2csch x[(Λ2 − 1) coth x(dT )a + (dx)a + Λ2(dφ)a],

(A.3)

and

(dL0)ab = `2csch2x[Λ2(dx)a ∧ (dφ)b − 2(Λ2 − 1) coth x(dT )a ∧ (dx)b],
(dL−1)ab = e−T `2csch x[(2− Λ2 − Λ2 cosh2 x)csch2x(dT )a ∧ (dx)b − Λ2(dφ)a ∧ (dT )b

+Λ2 coth x(dx)a ∧ (dφ)b],
(dL+1)ab = eT `2csch x[(2− Λ2 − Λ2 cosh2 x)csch2 x(dT )a ∧ (dx)b + Λ2(dφ)a ∧ (dT )b

+Λ2 coth x(dx)a ∧ (dφ)b],
(dW0)ab = `2Λ2csch2x(dT )a ∧ (dx)b. (A.4)

With this, we can finally obtain

Z = −Λ2`4csch2x

2 dT ∧ dx ∧ dφ. (A.5)

– 9 –
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B A little bit of spinor analysis

Associated with the choice of the orthogonal normal bases as ea0 = sinhx
` ( ∂

∂T )a− coshx
` ( ∂

∂φ)a,
ea1 = sinhx

` ( ∂
∂x)a, and ea2 = 1

Λ`(
∂
∂φ)a, the non-vanishing spin connections can be written as

ω01a = −ω10a = (2− Λ2) coth x
2 (dT )a −

Λ2

2 (dφ)a,

ω02a = −ω20a = −Λcsch x
2 (dx)a,

ω12a = −ω21a = Λcsch x
2 (dT )a.

(B.1)

Thus we have

LL0Ψ(x) = La0∇aΨ(x)− 1
4γ

abΨ(x)∇bL0a

= La0∂aΨ(x) + 1
4L

a
0ωaIJγ

IJΨ(x)− 1
4γ

IJΨ(x)eaIebJ∇bL0a

= 1
4γ

IJΨ(x)(La0ωaIJ − eaIebJ∇bL0a) = 0.

(B.2)

Similarly, we can also obtain LW0Ψ(x) = 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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