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We derive an explicit analytical expression for the magnetic dipole moment of the ρ meson, μρ, in a
relativistic constituent-quark model. We adopt our relativistic approach to composite systems, modified
instant-form (mIF) relativistic quantum mechanics (RQM), that we used particularly to construct a unified
π & ρ model [Phys. Rev. D 93, 036007 (2016)] describing electroweak properties of light mesons. This
model provides a parameter-free calculation to give μρ ¼ 2.16� 0.03 ½e/2Mρ� which is in accordance with
the conventional experimental data. The magnetic, quadrupole, and charge form factors also are derived
and presented. We consider the small uncertainty of our value of the magnetic moment as one of the
undoubted advantages of the method. A comparison is made with recent lattice QCD results and previous
calculations using a variety of methods.
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I. INTRODUCTION

For our understanding of the structure of strong inter-
action, the electromagnetic form factors are of fundamental
importance and give complementary information. Hadron
form factors provide an important tool for understanding
the structure of bound states in quantum chromodynamics
(QCD). The study of electromagnetic properties of the π
and ρ mesons consisting of two light (u, d) quarks is of
particular interest because in numerous respects they are
the simplest bound states.
It is worth noting that the experimental situation is quite

different in the cases of π and ρmesons. The pion properties
are well known from experiments. On the contrary, the
experimental data on the ρ meson are scarce. Its lifetime is
very short, ∼4.5 × 10−24 s, so direct measurements of its
electroweak properties (e.g., electromagnetic form factors
and static moments) are nearly impossible.
Nevertheless, these form factors are important for hadron

physics: for example, they contribute to meson exchange
currents. They are also closely related to axial-vector diquark
models of nucleon form factors. Besides, the description of

the ρ meson is of interest on its own account. Under such
conditions, the role of theoretical investigationsdoes increase.
Indeed, recently the interest in ρmeson form factors has been
renewed. During recent years, a number of theoretical
approaches to the structure of the ρmeson appeared although
their results cannot be directly compared to measurements.
Below, we review these approaches while discussing the
results of the calculations presented in Table I.
Theoretical approaches to the description of bound states

are split into two directions. From the high-energy side,
QCD, which is widely believed to be a fundamental theory
of the strong forces, becomes strongly coupled at the
relevant energy scales, so trustworthy perturbative calcu-
lations help a little in the quantitative description of precise
low-energy data, which there is no lack of. From the low-
energy side, a number of successful models to describe the
data have been developed. To be quantitative, they neces-
sarily require some phenomenological input. None of these
models can be consistently and quantitatively derived from
the QCD Lagrangian.
The approach thatwe use in the present paper is a particular

relativistic formulation of constituent-quark model (CQM)
that is based on the classical paper by P. Dirac [29] [so-called
relativistic Hamiltonian dynamics (RHD) or relativistic
quantum mechanics (RQM)]. RQM can be formulated in
different ways or in different forms of dynamics. The main
forms are instant form (IF), point form (PF) and light-front
(LF) dynamics. The description of different forms of RQM
dynamics can be found in the reviews [30–33]. Today, the
approach is largely used for nonperturbative description of
particle structure. It gives an opportunity to construct a
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nonperturbative QCD model on the basis of constituent-
quarkmodels. It is just such amodel that we have constructed
[34]—the unified π & ρ model with no free parameters
remaining.
Now our goal is to obtain the value of the ρ meson

magnetic moment μρ using explicit analytic formula which
we derive here within the unified π&ρmodel. It is extremely
important to emphasize that our μρ is obtained without any
fitting parameters: in the unified π&ρ model [34] there
remains no possibility to fit, all parameters are already fixed.
Our result for the magnetic moment, μρ ¼ 2.16� 0.03
½e/2Mρ�, compares well with the conventional experimental
result, but with significantly smaller uncertainty.
The model constructed in [34] is based on our version of

RQM, the modified instant form (mIF) of RQM [35,36],
and on the actual calculation of the π-meson structure [37]
in 1998. This model has predicted with surprising accuracy
the values of FπðQ2Þ, which were measured later in JLab
experiments [38–42] (see discussion in Ref. [43]). Another
advantage of the approach is matching with the QCD
predictions in the ultraviolet limit: when consistent-quark

masses are switched off, as expected at high energies, the
model reproduces correctly not only the functional form of
the QCD asymptotics, but also the numerical coefficient;
see Refs. [44–46] for details. Let us note that mIF was
successfully used also for other composite systems,
namely, the deuteron [47–49] and the K-meson [50].
The rest of paper is organized as follows. In Sec. II we

recall briefly the main points of our model. The ρ meson
electromagnetic current is written in terms of the Sachs
form factors as well as in terms of form factors appropriate
to the general method of relativistic invariant parametriza-
tion of matrix elements of local operators that we use. The
brief description of the modified impulse approximation
(MIA) is given. In Sec. III the ρ-meson magnetic moment is
obtained. It is shown that the electromagmetic static
moments of the ρ meson are to be considered as regular
generalized functions (distributions) determined on the
space of test functions—quark-quark wave functions.
To calculate the static moments one has to take the weak
limits at Q2 → 0 of corresponding functionals. The explicit
analytic expression for the ρ meson magnetic moment is
obtained. We discuss the values of the parameters of the
model which were defined previously in [34], and that we
use here. The value of the calculated ρ meson magnetic
moment is given. This Section contains a discussion and
the comparison of obtained results with the results of other
authors. We briefly conclude in Sec. IV and present some
details of the calculation in the Appendix.

II. ELECTROMAGNETIC FORM FACTORS
OF THE ρ MESON IN MODIFIED INSTANT

FORM RQM

In this paper we use the relativistic constituent model that
describes the hadron properties at the quark level in terms
of degrees of freedom of constituent quarks. The constitu-
ent quarks are considered as extended objects, the internal
characteristics of which (mean square radius, anomalous
magnetic moments, form factors) are parameters of the
model. As a relativistic variant of the constituent model we
choose the method of RQM.
The RQM method, as a relativistic theory of composite

systems, is based on the direct realization of the Poincaré
algebra on the set of dynamical observables on the Hilbert
space. The RQM theory of particles lies between local field
theoretic models and nonrelativistic quantum mechanical
models.
Contrary to the field theory, RQM deals with a finite

number of degrees of freedom from the very beginning.
This is certainly a kind of a model approach. The
preservation of the Poincaré algebra ensures the relativistic
invariance. So, the covariance of the description in the
frame of RQM is due to the existence of the unique unitary
representation of the inhomogeneous group SLð2; CÞ on
the Hilbert space of composite system states with a finite
number of degrees of freedom.

TABLE I. The comparison of the results for the magnetic
moment μρ (in natural magnetons e/2Mρ) in different approaches.

Model μρ

This work, mIF RHD 2.16� 0.03
Cardarelly, LF RHD [1] 2.26
Melo, LF RHD [2] 2.14
Bakker, LF RHD [3] 2.1
Jaus, LF RHD [4] 1.83
Choi, LF RHD [5] 1.92
He, LF, IF RHD [6] 1.5
He, PF RHD [6] 0.9
Biernat, PF RHD [7] 2.20
Sun, LF CQM [8] 2.06
Hawes, Dyson-Schwinger equation (DSE) [9] 2.69
Ivanov, DSE [10] 2.44
Bhagwat, DSE [11] 2.01
Roberts, DSE [12] 2.11
Pitschmann, DSE [13] 2.11
Carrillo-Serrano, Nambu–Jona-Lasinio
model (NJL) [14]

2.59

Luan, NJL [15] 2.1
Samsonov, QCD sum rules [16] 2.0� 0.3
Aliev, QCD sum rules [17] 2.4� 0.4
Melikhov, LF triangle [18] 2.35
Šimonis, bag model [19] 2.06
Bagdasaryan, relativistic CQM [20] 2.3
Badalian, relativistic Hamiltonian [21] 1.96
Djukanovic, effective field theory [22] 2.24
Andersen, lattice [23] 2.25� 0.34
Hedditch, lattice [24] 2.02
Lee, lattice [25] 2.39� 0.01
Owen, lattice [26] 2.21� 0.08
Lushevskaya, lattice [27] 2.11� 0.10
Gudinõ, experiment [28] 2.1� 0.5
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The mathematics of RQM is similar to that of non-
relativistic quantum mechanics and permits one to assimi-
late the sophisticated methods of phenomenological
potentials. It can be generalized to describe three or more
particles. RQM is based on the simultaneous action of
two fundamental principles, relativistic invariance and the
Hamiltonian principle, and presents the most adequate tool
to treat the systems with a finite number of degrees of
freedom. The use of RQM enables one to separate the main
degrees of freedom and thus to construct a convenient
relativistic invariant approach to the electroweak structure
of two-particle composite systems.
We use one of the forms of RQM, namely a version of

the IF. The dynamics of a composite system, that is the
interaction of the constituents is described in IF in the frame
of the general RQM axiomatics. This means, particularly,
that the inclusion of the interaction in the algebra of the
Poincaré group is realized by means of the Bakamjian-
Thomas procedure [51] which permits to preserve the
commutation relations between the generators of the group
(the observables (see the reviews [31,33]). Following this
procedure one includes the constituent-interaction operator
by adding it to the operator of the mass of the free
constituent system:

M̂0 → M̂I ¼ M̂0 þ V̂: ð1Þ

Here M̂0 is the operator of the invariant mass of the system
without interaction and M̂I is the operator of the mass of
interacting system. In IF dynamics, the interaction operator
obeys the following conditions:

M̂I ¼ M̂þ
I ; M̂I > 0; ð2Þ

½ ˆP⃗; V̂� ¼ ½ ˆJ⃗; V̂� ¼ ½▽⃗P; V̂� ¼ 0: ð3Þ

The conditions (2) present spectral conditions for the mass
operator. Equations (3) ensure that the algebraic relations of
the Poincaré algebra are fulfilled. The constraints (3) are
not too restrictive. For example, they are satisfied by all
nonrelativistic interaction potentials. Equations (3) mean,
in particular, that the interaction potential does not depend
on the total moment of the system. In RQM the wave
function of the system of interacting particles is defined as
the eigenfunction of a complete set of commuting oper-
ators. In IF this set is

M̂2
I ðor M̂IÞ; Ĵ2; Ĵ3;

ˆP⃗: ð4Þ

Ĵ2 is the operator of the square of the total angular

momentum. In IF the operators Ĵ2; Ĵ3;
ˆP⃗ coincide with

those for the free system. So, in (4), only the operator
M̂2

I ðM̂IÞ depends on the interaction.

To diagonalize the operators Ĵ2; Ĵ3;
ˆP⃗; one has first to

construct the adequate basis in the state space of composite
system. In the case of two-particle system the Hilbert space
in RQM is the direct product of two one-particle Hilbert
spaces:Hqq̄ ≡Hq ⊗ Hq̄. As a basis inHqq̄ one can choose
the following set of two-particle state vectors where the
motion of the center of mass is separated:

jP⃗; ffiffiffi
s

p
; J; l; S; mJi: ð5Þ

Here Pμ ¼ ðp1 þ p2Þμ, P2
μ ¼ s,

ffiffiffi
s

p
is the invariant mass of

the two-particle system, l is the orbital angular momentum
in the center-of-mass frame (C.M.S.), S⃗2 ¼ ðS⃗1 þ S⃗2Þ2 ¼
SðSþ 1Þ; S is the total spin in C.M.S., J is the total angular
momentum with the projection mJ, and p1, p2 are the
constituent moments. The two-particle basis with separated
motion of the center of mass (5) is connected with the basis
of individual spins and momenta of two particles through
the appropriate Clebsh-Gordan decomposition for the
Poincaré group (see, e.g., [33]).
So, to obtain the system wave function in the basis (5)

one needs to diagonalize the operator M̂2
I (or M̂I).

The eigenvalue problem for the operator M̂2
I can be written

in the form of nonrelativistic Schrödinger equation, the
corresponding interaction operator having the meaning of a
phenomenological nonrelativistic potential. The two-
particle wave function of relative motion for fixed total
angular momentum is:

φJ
lSðkðsÞÞ ¼

ffiffiffi
s4

p
ulSðkÞk;

X
lS

Z
u2lSðkÞk2dk ¼ 1; ð6Þ

where ulSðkÞ is a model wave function which is a solution
of the eigenvalue problem for the operator M̂2

I or M̂I in the
representation given by the basis (5), k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

p
/2. The

normalization factors that stay in (6) with ulSðkÞ correspond
to the transition to the relativistic density of states:

k2dk →
k2dk

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p : ð7Þ

It is worth to notice that wave functions in RQM defined
as the eigenfunctions of the operators set (4) in general are
not the same as relativistic covariant wave functions
defined as solutions of wave equations or as the matrix
elements of a local Heisenberg field.
Our approach has a number of features that distinguish it

from other forms of dynamics and other approaches in the
frames of IF [33,35,36]. In particular, this approach
(see, for example, [33,36]) differs essentially from that
of traditional RQM in what concerns the method of
construction of transition current operators. The main point
of our approach to the construction of the electroweak
current operator is the so-called method of the canonical
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parametrization of the local operator matrix elements. The
foundation of the method was given in [52] and it was
generalized to the case of composite systems in [53–55].
This parametrization is a realization of the Wigner-Eckart
theorem for the Poincaré group [55] and so it enables one,
for given matrix element of arbitrary tensor dimension, to
separate the reduced matrix elements (form factors) that are
invariant under the action of the Poincaré group. Matrix
element of an operator is presented by a sum of terms which
are the products of a covariant and an invariant parts. The
covariant part of the matrix element describes its trans-
formation (geometrical) properties while all the dynamical
information about the transition is contained in the invariant
part—in the reduced matrix elements, or form factors. In
our approach, the reduced matrix elements are generalized
functions. Strictly speaking, they are generalized functions
in all cases of composite models, in particular, if one uses
impulse approximation.
Our approach has the following characteristic features:

(a) The electroweak current matrix element satisfies
automatically the relativistic covariance conditions
and in the case of the electromagnetic current also
the conservation law.

(b) We propose a modified impulse approximation (MIA),
which is formulated in terms of reduced matrix

elements and not in terms of operators as it takes
place in standard impulse approximation. It is con-
structed in a relativistic invariant way. This means that
our MIA does not depend on the choice of the
coordinate frame, and this contrasts principally with
the “frame-dependent” impulse approximation usually
used in the instant form (IF) of dynamics.

(c) For composite systems (including the spin-1 case) the
approach guarantees the uniqueness of the solution for
form factors and does not use such concepts as “good”
and “bad” current components.

The analytic properties of the pion form factor in the
complex plane of the transfer momentum square in our
model correspond to properties that follow from general
principles of quantum field theory [56]. The model was also
applied to the calculation of electroweak parameters of the
ρ meson [34], for which particularly interesting relations
have been obtained. It is just those results which give the
parameter-free method that permits to obtain the magnetic
moment of the ρ meson without any fitting.
The static electromagnetic moments of a particle are the

limit values of Sachs form factors at Q2 → 0. For spin-1
particles, including ρ meson, the electromagnetic current
matrix element can be written in terms of Sachs form
factors in the Breit frame as follows (see, e.g., [57,58]):

hp⃗ρ; mJjjμð0Þjp⃗ρ
0; m0

Ji ¼ GμðQ2Þ;

G0ðQ2Þ ¼ 2pρ0

�
ðξ⃗0ξ⃗�ÞGCðQ2Þ þ

�
ðξ⃗�Q⃗Þðξ⃗0Q⃗Þ − 1

3
Q2ðξ⃗0ξ⃗�Þ

�
GQðQ2Þ
2M2

ρ

�
;

G⃗ðQ2Þ ¼ pρ0

Mρ
½ξ⃗0ðξ⃗�Q⃗Þ − ξ⃗�ðξ⃗0Q⃗Þ�GMðQ2Þ: ð8Þ

Here GC, GQ, GM are the charge, quadrupole and magnetic
form factors, respectively,

qμ ¼ ðpρ − p0
ρÞμ ¼ ð0; Q⃗Þ;

pμ
ρ ¼

�
pρ0;

1

2
Q⃗

�
; p0

ρ
μ ¼

�
pρ0;−

1

2
Q⃗

�
;

pρ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ρ þ
1

4
Q2

r
; Q⃗ ¼ ð0; 0; QÞ:

ξμð�1Þ ¼ 1ffiffiffi
2

p ð0;∓ 1;−i; 0Þ;

ξμð0Þ ¼ ð0; 0; 0; 1Þ:
The arguments of the polarization vector ξ are the projec-
tions of the total angular momentum. The static limits of
form factors in (8) give the magnetic μρ (in units e/2Mρ)
and the quadrupole Qρ moments [58]:

GMð0Þ ¼ μρ; GQð0Þ ¼ M2
ρQρ: ð9Þ

One can use the general procedure of relativistic covar-
iant construction of local operators matrix elements to
obtain, in our version of IF RQM, the current matrix
element (8) in an arbitrary coordinate system [36]:

hp⃗c; mJρjjμð0Þjp⃗ρ
0; m0

Jρi
¼ hmJρjD1ðpρ; p0

ρÞ
X
i¼1;3

F̃ i
pðtÞÃi

μjm0
Jρi;

F̃ 1
cðtÞ ¼ f̃ρ10 þ f̃ρ12

�
½ipρνΓ

νðp0
ρÞ�2 −

1

3
Sp½ipρνΓ

νðp0
ρÞ�2

�

×
2

Sp½pρνΓ
νðp0

ρÞ�2
;

F̃ 3
ρðtÞ ¼ f̃ρ30;

Ã1
μ ¼ ðpρ þ p0

ρÞμ;

Ã3
μ ¼

i
Mρ

εμνλσpν
ρp0

ρ
λΓσðp0

ρÞ: ð10Þ
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Here p0
ρ; pρ are 4-momenta of the ρ meson in initial and

final states, respectively, m0
Jρ; mJρ are projections of the

total angular momenta, D1ðpρ; p0
ρÞ is the matrix of Wigner

rotation, Mρ is the ρ meson mass, f̃ρ10; f̃
ρ
12, f̃

ρ
30 are the

charge, quadrupole and magnetic form factors of the ρ
meson, respectively.
The spin 4-vector ΓνðpρÞ is (see, e.g., [33]):

Γ0ðpρÞ ¼ ðp⃗ρj⃗Þ;

Γ⃗ðpρÞ ¼ Mρj⃗þ
p⃗ρðp⃗ρj⃗Þ
pρ0 þMρ

;

Γ2 ¼ −M2
ρjðjþ 1Þ: ð11Þ

One can easily obtain the relation between the form
factors in the form (10) and Sachs form factors (8):

GCðQ2Þ ¼ f̃ρ10ðQ2Þ;

GQðQ2Þ ¼ 2M2
ρ

Q2
f̃ρ12ðQ2Þ;

GMðQ2Þ ¼ −Mρf̃
ρ
30ðQ2Þ: ð12Þ

In the paper [36] the form factors (10) were presented in
the form of double integrals:

f̃ρinðQ2Þ ¼
Z

d
ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞG̃inðs;Q2; s0Þφðs0Þ; ð13Þ

where φðsÞ is the quarks wave function in the ρ meson in
the sense of RQM, G̃inðs;Q2; s0Þ are the reduced matrix
elements on the Poincaré group. They are Lorentz-invariant
regular generalized functions.
It is worth to note that while obtaining (13) no

assumption or approximation concerning the form of the
electromagnetic current operator was made. We have not
assumed, in particular, that the current operator is a sum of
the one-particle current operators of the constituents, that
means that we have not used the so-called impulse
approximation which is known to break the Lorentz-
covariance and the conservation law for the composite-
system electromagnetic current in IF RQM. So, for (13) the
Lorentz-covariance and current conservation law are valid.
In general, the explicit formof the functions G̃inðs;Q2; s0Þ,

is unknown. To calculate these functions we propose a
modified impulse approximation (MIA). In contrast to the
generally accepted impulse approximation MIA is formu-
lated in terms of reduced matrix elements on the Poincaré
group (form factors) extracted from the current matrix
element and not in terms of current operators themselves.
For (13), MIA means that the reduced matrix elements
G̃inðs;Q2; s0Þ are changed for the free two-particle form
factors with no interaction between components. Such free
form factors enter the electromagnetic currentmatrix element

for a system of two free particles with ρ-meson quantum
numbers. The corresponding formulas for these form factors
are given in the Appendix. Note that the current matrix
element as a whole still contains some contributions of two-
particle currents in a way which such that ensures its correct
transformation properties.
Using the relations (12) we derive the integral repre-

sentations for the ρ-meson Sachs form factors in MIA:

GCðQ2Þ ¼
Z

d
ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞg0Cðs;Q2; s0Þφðs0Þ;

GQðQ2Þ ¼ 2M2
ρ

Q2

Z
d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞg0Qðs;Q2; s0Þφðs0Þ;

GMðQ2Þ ¼ −Mρ

Z
d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞg0Mðs;Q2; s0Þφðs0Þ;

ð14Þ

where g0C; g0Q; g0M are the free two-particle charge, quad-
rupole and magnetic form factors for the system of two free
fermions with quantum numbers of ρ meson respectively
(the explicit expression for these form factors are given in
Appendix), φðsÞ is the two-quark ρ-meson wave function
in the sense of RQM,

φðsÞ ¼ ffiffiffi
s4

p
ψðkÞk; k ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

p
ð15Þ

with the normalization condition:

Z
k2ψ2ðkÞdk ¼ 1:

As was shown in [35] the free two-particle electromag-
netic form factor is a regular generalized function (dis-
tribution) defined on the space of test functions inR2,Q2 is
the parameter of the generalized function. This generalized
function giving the ρ meson form factor is given by the
functional hg0iðs;Q2; s0Þ;ϕðs; s0Þi; i ¼ C, Q, M that is
defined as an integral of the product of the function
g0iðs;Q2; s0Þ and the test function ϕðs; s0Þ. If we take the
product of quark wave functions in the initial and the final
states for the test function, then the considered functional is
the corresponding ρ-meson form factor.

III. THE ρ-MESON MAGNETIC MOMENT IN π&ρ
MODEL. RESULTS AND DISCUSSION

To calculate the ρ-meson magnetic moment in our
approach we have to take the static limit of the form factor
(14) and to choose the values of the parameters entering our
equations. The limit is to be taken in the weak sense and
there is no need in fitting the parameters: all of them were
fixed in our π&ρ model in our previous work [34].
It is easy to see that the function (14) has no strong limit

at Q2 → 0. As the function is a generalized function one
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has to take the limit in the weak sense. So, the (weak) static
limit of (14) gives the following ρ-meson magnetic
moment:

μρ ¼
Mρ

2M

Z
∞

2M
d

ffiffiffi
s

p φ2ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

p

×

�
1 − LðsÞ þ ðκu þ κd̄Þ

�
1 −

1

2
LðsÞ

��
;

LðsÞ ¼ 2M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

p
ð ffiffiffi

s
p þ 2MÞ

×

�
1

2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4M2Þ

q
þ ln

ffiffiffi
s

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

p
ffiffiffi
s

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

p
�
;

ð16Þ
where κu, κd̄ are anomalous magnetic moments of u - and
d̄-quarks.
It is of interest to separate the contribution to (16) of

purely relativistic kinematic effect of the Wigner rotation of
quark spins [35,36] that appears under relativistic invariant
spin summation. If we put ω1 ¼ ω2 ¼ 0 in the free two-
particle magnetic form factor (see Appendix) we obtain the
magnetic moment without taking into account the Wigner
spin rotation in the form:

μ̃ρ ¼
Mρ

2M
ð1þ κu þ κd̄Þ

×
Z

∞

2M
d

ffiffiffi
s

p φ2ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

p
�
1 −

1

2
LðsÞ

�
; ð17Þ

The spin-rotation contribution is negative and its value is
≈15% of that of the ρ-meson magnetic moment.
To calculate the numerical value of the ρ-meson mag-

netic moment (16) we use for the wave functions in the
sense of RQM (15) the following model wave function that
depends on only one parameter and is largely used in
relativistic composite quark model (on a level with har-
monic oscillator wave function) [59] (see, also [60]), the
power-law wave functions:

ψðkÞ ¼ NPLðk2/b2ρ þ 1Þ−n; n ¼ 2; 3: ð18Þ
The parameters that enter our calculation in whole are

from two groups:
(1) the parameters that describe the constituent quarks

per se (the quark mass M, the anomalous magnetic
moments of quarks κq, that enter our formulas
through the sum sq ¼ κu þ κd̄, and the quark mean
square radius (MSR) hr2qi);

(2) the parameter bρ that enters the quark wave function
(18) and is determined by the quark interaction
potential.

As it was shown in [34], to calculate electroweak
properties of the ρ meson, one can use the same values
of quark parameters from the first group as were used for

the pion [37]. In the paper [37] on the pion, we have shown
that in our approach all the parameters of the first group are
the functions of the quark mass M and are defined by its
value. In particular, for the quark MSR we can use the
relation (see, also [61])

hr2qi ≃ 0.3/M2: ð19Þ

In our π&ρ model [34], the mass of the constituent u- d̄
quarks was chosen to be M ¼ 0.22 GeV. The sum of the
anomalous magnetic moments of quarks was taken as
sq ¼ 0.0268 in quark magnetons. It is just these values of
the parameters that in the frame of our version of IF RQM
provide the successful and predictive description of pion
properties [37,43], as it was mentioned in the Introduction.
For the parameter bρ of the wave function, we use the

value obtained in our paper [34] from the fitting of the
lepton decay constant of the ρ meson. Using the wave
function (18) with n ¼ 3 we have obtained bρ ¼
ð0.385� 0.019Þ GeV. The uncertainty is due to the uncer-
tainty of the experimental value of the decay constant
fexpρ ¼ ð152� 8Þ MeV [62,63]. The calculation of [34]
schematically can be presented as a chain,

fexpρ → bρ → hr2ρi; ð20Þ

and the obtained value hr2ρi ¼ ð0.56� 0.04Þ fm2, one can
consider as a theoretical extraction of the experimental
value (see, e.g., [64]).
The electromagnetic form factors of constituent quarks

are taken in the form [33,44,45,65]

Gq
EðQ2Þ ¼ eqfqðQ2Þ;

Gq
MðQ2Þ ¼ ðeq þ κqÞfqðQ2Þ; ð21Þ

where eq is the quark charge and κq is the quark anomalous
magnetic moment. The quark form factor has the form [65]

fqðQ2Þ ¼ 1

1þ lnð1þ hr2qiQ2/6Þ ; ð22Þ

where hr2qi is theMSR of the constituent quark. Values of all
parameters used in these expressions are taken from the π-
meson calculation. As we have mentioned, these values give
the pion form factor asymptotics at large momentum transfer
that coincides with that of QCD (see e.g., Ref. [45]).
In Figs. 1–3, the results for the electromagnetic ρ-meson

form factors obtained with the parameters described above
are presented. For comparison, the results from some other
papers are given. Our quadrupole form factor differs
strongly from that of other given results. In this context
it is necessary to note that we (as opposed to, e.g., [5]) take
into account the quark structure in terms of quark form
factors (21), (22), that accelerating the decay of form
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factors. Note that the calculation using the formulas
analogous to (14) described well the electron-deuteron
polarization scattering [47] and so the experimental deu-
teron quadrupole form factor.
Finally, using the mentioned values of the parameters of

the π&ρ model, we obtain from (16) the following value of
the magnetic moment

μρ ¼ 2.16� 0.03 ½e/2Mρ�

which is in accordance with the conventional experimen-
tal data.
During the last decade, a number of papers appeared that

considered the electroweak properties of ρ meson accord-
ing to the growing interest to the problem. A lot of
theoretical information is obtained while the experimental
base remains scare. We list below only the papers where the
value of the ρ-meson magnetic moment is given whereas a
lot of interesting papers on ρ meson remain out of scope,
for example those based on the holographic approach [66].
First, we refer to different formulation of RQM in the

frame of relativistic composite model (see, e.g., [1–8,67].
These approaches are the most close in spirit to our
approach. There are approaches based on the Dyson-
Schwinger equation [9–13], on the Nambu-Jona-Lasinio
model [14,15]. Some authors use QCD sum rules [16,17],
Feynmann diagrams in the light front formalism [18], the
bag model [19], relativistic composite model [20], the
constructed relativistic Hamiltonian [21], a low-energy
effective field theory [22], or lattice QCD calculations
[23–27]. In the paper [28] the ρmeson magnetic moment is
obtained from BABAR cross section data for the reaction
eþe− → πþπ−2π0. They found the values using prelimi-
nary data from the BABAR Collaboration for the μexperρ ¼
2.1� 0.5 [e/2Mρ]. In a recent paper, BABAR Collaboration
presents [68] the new experimental results concerning the
mentioned reaction. One can hope that the new data
processing would make it possible to increase the precision
of the value of μρ extracted from the experimental data.
The values of the ρ-meson magnetic moment in different

approaches are presented in Table I.
One can see from Table I that the majority of results is

grouped close to the value μρ ¼ 2e/2Mρ, that is near the
gyromagnetic ratio g ¼ 2. The authors of the paper [69]
noted, that universal closeness to g ¼ 2 may be also
understood in comparison to the equivalence principle
for vector mesons.
Let us discuss briefly our results. We emphasize once

again that our calculation of the magnetic moment in the
frame of the π&ρmodel is parameter-free and is in very good
accordance with experiment. The given value of the uncer-
tainty of our result is totally due to the uncertainty of the
experimental data for fρ. So, the refinement of this data will
bring about thedecrease of the uncertainty of our result forμρ.FIG. 3. The magnetic ρ meson form factor, legend as in Fig. 1.

FIG. 2. The quadrupole ρ meson form factor in the logarithmic
scale, legend as in Fig. 1.

FIG. 1. Modulus of the charge ρ meson form factor. Solid line
(red): the results of our calculations with wave function (18) at
n ¼ 3 and parameters described in the text, dashed line (green):
the results of calculation in point-form dynamics [7], short-
dashed line (blue): the result of calculations in light-front
dynamics [5], dot-dashed line (violet): the results of calculation
in the Dyson-Schwinger equation approach [9].
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It is worth to notice that the π&ρ model gives the value
of the charge ρ- meson radius [34] in accordance with the
Wu-Yang hypothesis [70] (see also Refs. [71–74]).

IV. CONCLUSIONS

To summarize, we calculate the magnetic dipole moment
of the ρ meson, μρ, in relativistic constituent-quark model.
We derive explicit analytical expression for μρ exploiting
our relativistic approach to composite systems, a version of
the instant-form relativistic quantum mechanics. We have
used this approach in the paper [34] to construct a unified
π&ρ model describing electroweak properties of light
mesons. In the present paper we calculate μρ using our
unified π&ρ model without addition of any fitting param-
eters. This parameter-free calculation gives the value
contribution of the Wigner spin rotation to the magnetic
moment μρ is (≈15%). We consider the small uncertainty
(≈1.4%). of our value of magnetic moment as one of
undoubted advantages of the method. A comparison is
made with recent lattice QCD results and other calculations
using variety of methods.
So, we can state that in the frame of our π&ρ model, that

is in our version of IF RQM approach and at the same
common values of quark parameters, the concordant
description of electroweak properties of the π and ρmesons
is obtained. The constructed relativistic approach demon-
strated the predictability in describing the pion electro-
magnetic form factors (see our paper [43]) and gives, in
accordance with experimental data, the electroweak char-
acteristics of the pion as well as of the ρ meson.
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APPENDIX: FREE TWO-PARTICLE FORM
FACTORS

The charge g0C, quadrupole g0Q, and magnetic g0M form
factors for free two-particle system are

g0Cðs;Q2; s0Þ ¼ 1

3
Rðs;Q2; s0ÞQ2

× fðsþ s0 þQ2ÞðGu
EðQ2Þ þ Gd̄

EðQ2ÞÞ
× ½2 cosðω1 − ω2Þ þ cosðω1 þ ω2Þ�

−
1

M
ξðs;Q2; s0ÞðGu

MðQ2Þ þ Gd̄
MðQ2ÞÞ

× ½2 sinðω1 − ω2Þ − sinðω1 þ ω2Þ�g;
ðA1Þ

g0Qðs;Q2;s0Þ¼1

2
Rðs;Q2;s0ÞQ2

×fðsþs0þQ2ÞðGu
EðQ2ÞþGd̄

EðQ2ÞÞ
× ½cosðω1−ω2Þ−cosðω1þω2Þ�

−
1

M
ξðs;Q2;s0ÞðGu

MðQ2ÞþGd̄
MðQ2ÞÞ

× ½sinðω1−ω2Þþsinðω1þω2Þ�g; ðA2Þ

g0Mðs;Q2; s0Þ ¼ −2Rðs;Q2; s0Þ
�
ξðs;Q2; s0Þ½Gu

EðQ2Þ þGd̄
EðQ2Þ� sinðω1 − ω2Þ þ

1

4M
½Gu

MðQ2Þ þGd̄
MðQ2Þ�

× ½ðsþ s0 þQ2ÞQ2

�
3

2
cosðω1 − ω2Þ þ

1

2
cosðω1 þ ω2Þ

�
−
1

4
ξðs;Q2; s0Þ

×

�ð ffiffiffiffi
s0

p
þ 2MÞðs − s0 þQ2Þ þ ðs0 − sþQ2Þ

ffiffiffiffi
s0

p
ffiffiffiffi
s0

p ð ffiffiffiffi
s0

p þ 2MÞ þ ð ffiffiffi
s

p þ 2MÞðs0 − sþQ2Þ þ ðs − s0 þQ2Þ ffiffiffi
s

p
ffiffiffi
s

p ð ffiffiffi
s

p þ 2MÞ
�

× ½sinðω1 − ω2Þ − sinðω1 þ ω2Þ� −
1

2
ξ2ðs;Q2; s0Þ

�
1ffiffiffiffi

s0
p ð ffiffiffiffi

s0
p þ 2MÞ þ

1ffiffiffi
s

p ð ffiffiffi
s

p þ 2MÞ
�

× ½cosðω1 − ω2Þ þ cosðω1 þ ω2Þ��
�
: ðA3Þ

Here,

Rðs;Q2; s0Þ ¼ ðsþ s0 þQ2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4M2Þðs0 − 4M2Þ

p ϑðs;Q2; s0Þ
½λðs;−Q2; s0Þ�3/2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2/4M2

p ;

ξðs;Q2; s0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ss0Q2 −M2λðs;−Q2; s0Þ

q
;

and ω1 and ω2 are the Wigner rotation parameters,
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ω1 ¼ arctan
ξðs;Q2; s0Þ

M½ð ffiffiffi
s

p þ
ffiffiffiffi
s0

p
Þ2 þQ2� þ

ffiffiffiffiffiffi
ss0

p
ð ffiffiffi

s
p þ

ffiffiffiffi
s0

p
Þ ;

ω2 ¼ arctan
αðs; s0Þξðs;Q2; s0Þ

Mðsþ s0 þQ2Þαðs; s0Þ þ
ffiffiffiffiffiffi
ss0

p
ð4M2 þQ2Þ ;

αðs;s0Þ¼2Mþ ffiffiffi
s

p þ
ffiffiffiffi
s0

p
, ϑðs;Q2;s0Þ¼θðs0−s1Þ−θðs0−s2Þ, θ is the step–function,

s1;2 ¼ 2M2 þ 1

2M2
ð2M2 þQ2Þðs − 2M2Þ ∓ 1

2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðQ2 þ 4M2Þsðs − 4M2Þ

q
;

and M—the mass of u–and d̄ quarks. The functions s1;2ðs;Q2Þ give the kinematically available region in the plane ðs; s0Þ.
Gu;d̄

E;MðQ2Þ–is the Sachs form factors of u–and d̄ quarks.
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