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Abstract: The null signal from collider and dark matter (DM) direct detector experiments
makes the interaction between DM and visible matter too small to reproduce the correct
relic density for many thermal DM models. The remaining parameter space indicates
that two almost degenerated states in the dark sector, the inelastic DM scenario, can co-
annihilate in the early universe to produce the correct relic density. Regarding the direct
detection of the inelastic DM scenario, the virialized DM component from the nearby halo
is nonrelativistic and not able to excite the DM ground state, even if the relevant couplings
can be considerable. Thus, a DM with a large mass splitting can evade traditional virialized
DM direct detection. In this study, we connect the concept of cosmic-ray accelerated DM
in our Milky Way and the direct detection of inelastic scattering in underground detectors
to explore spectra that result from several interaction types of the inelastic DM. We find
that the mass splitting δ < O(1 GeV) can still be reachable for cosmic ray accelerated DM
with mass range 1 MeV < mχ1 < 100 GeV and sub-GeV light mediator using the latest
PandaX-4T data, even though we conservatively use the astrophysical parameter (effective
length) Deff = 1 kpc.
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1 Introduction

The gravitational evidence of dark matter (DM) is strong and clear. However, its nongrav-
itational interaction with the standard model (SM) has not yet been observed. Conversely,
if the DM number density in the early universe can be described by the thermal Boltz-
mann distribution, such as the SM particles, the Planck measured relic density [1] implies
that DM must interact with the SM besides gravity. Among the various methods to de-
tect the interaction between DM and SM, laboratory measurements, including the Large
Hadron Collider (LHC) [2, 3] and DM direct detection (DD) [4, 5], provide the most robust
searches. However, only null signals have been reported. Particularly, the limits from either
XENON1T [4] or PandaX-4T [5] rule out the DM-proton elastic scattering cross section
close to the neutrino floor. These stringent constraints squeeze the allowed DM model
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Figure 1. Cosmic ray accelerated inelastic DM detection scenario: p+χ1 → p′+χ2 → p′+χ1 +V ,
where p denotes the CR proton or helium, and the prime is used to distinguish the same particles
in the initial and final states. The inelastic DM χ1 and χ2 are the ground state and excited
state, respectively; V is the mediator between SM and DM; and N is the target nucleus inside the
underground detector. By this mechanism, the final χ1 is accelerated.

parameter space to some fine-tuning regions where the correct relic density is generated by
some special mechanisms (e.g., resonance or coannihilation [6]). The coannihilation region
indicates that the lightest DM particle χ1 and the next lightest one χ2 almost degenerate
in mass. When the coannihilation mechanism governs DM annihilations, the χ1 − χ1−SM
coupling can be negligible. Thus, the χ1 − p elastic scattering will be suppressed [7–12].
In contrast, the resonance region (the mass of the mediator such as Higgs equal to twice
the DM mass) may be completely probed in future DD sensitivities (e.g., see Higgs portal
DM models [13–18]).

The standard DM DD strategy is to detect DM-nucleon interactions by measuring
the recoil energy of DM-nucleon scattering under the following consideration. When the
Earth sweeps the local virialized halo, the Maxwell-Boltzmann distributed DM, hereafter
called virialized DM (vDM), hits the detector target. Because the vDM velocity is non-
relativistic, the currently measured nuclei recoil energy range does not cover DM mass
lighter than ≈ 5 GeV for xenon-type detectors [4, 5, 19]. Also, such a standard method
may also be blind when searching the coannihilation region because the incoming vDM
is non-relativistic and its small kinetic energy cannot excite DM to the next lightest one,
namely its kinetic energy smaller than the mass difference between χ1 to χ2. Quantitatively,
a DM mass heavier than O( TeV) is needed to detect an excitation from χ1 to χ2 with the
mass splitting ≈ O(100 keV) [20].

Other researchers have proposed searching for accelerated vDMs by considering their
collisions with the high energy cosmic ray (CR) protons [21–25]. When collisions occur,
the DM mass below a few GeV can be accelerated to be relativistic and enter the under-
ground detector with kinetic energy higher than the designed threshold energy. This kind
of cosmic ray accelerated vDM (CRDM), has recently received much attention because it
demonstrates what is possible to detect sub-GeV DM with current DM DD experiments.
Even if CRDM fluxes are several orders of magnitude lower than those of vDM, the de-
tection of CRDM helps us to probe the DM mass region lighter than a few GeV using the
sensitivity of XENONnT and PandaX-4T. This DM mass region was almost undetectable
by using the vDM scenario. With a similar idea, light CRDM can be detected with a
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neutrino telescope [26] or by studying the diurnal effect caused by light CRDM [27]. In
addition, such a collision between the CR proton and DM may also smash the proton and
produce neutrino and gamma ray [28].

We extend the CRDM elastic scattering to the inelastic scattering scenario (see the
schematic carton in figure 1). The first vertex occurs in the Milky Way, where χ1 is excited
to χ2 after the first collision. Unlike the elastic CRDM scenario, χ2 is not a stable particle
and subsequently decays back to χ1 and emits a mediator particle V before reaching the
underground detector. The velocity of χ1 here can be higher than elastic CRDM because
the decay from heavier χ2 can boost χ1 again. Recently, investigating a similar scenario
with the vector-vector interaction between femionic DM and SM, ref. [29] found that this
approach can probe a larger mass splitting ≈ 100 MeV. Conversely, the traditional vDM
inelastic scattering search is limited to the heavier mass and low mass splitting [20].

In this study, we consider both elastically and inelastically produced CRDM. To clarify
their difference, we list their productions and mass splitting δ conditions as follows:

• For inelastic scattering, the full process is p+ χ1 → p′ + χ2 → p′ + χ1 + V as shown
in figure 1, where the mass splitting δ between χ1 and χ2 is nonzero. To simplify the
calculation, we assume that χ2 in the decay is on shell, and as a result, we will focus
on the light mediator case in this study, i.e., δ > mV .

• The elastically produced CRDM refers to CR-DM elastic scattering p+χ1 → p′+χ1.
In this situation, χ2 is not present, and δ = 0 as well.

We consider that the DM-proton cross section of the vector-vector interaction is rather
a constant, independent of incoming proton energy. However, the CR spectrum rapidly
decreases with CR energy. Except for the vector-vector interaction between fermionic DM
and SM, there are more possible interaction types, and the velocity-dependent terms can
also be important, which are beyond the popular (velocity-independent) spin-independent
(SI) and spin-dependent (SD) form. Thus, we study several CRDM spectra based on
different types of interactions to see the impact on the detected event rate. We investigate
the exclusion power of the latest PandaX-4T data [5] in the region of the lower mass
mχ1 < 1 GeV and larger mass splitting δ ∼ O( GeV).

The remainder of this paper is organized as follows. First, we introduce several different
types of DM-SM interactions in section 2 by considering both fermionic and scalar DM.
In section 3, we describe the detection of elastic and inelastic DM-proton scattering for
both vDM and CRDM. In section 4, we examine the interactions with the latest and most
stringent exclusion from PandaX-4T. Finally, we conclude the study in section 5.

2 Effective inelastic DM interactions

To demonstrate our work, we consider minimum DM Lagrangians where a Z2 even vec-
tor/axial vector mediator V 1 and a DM χ1 with its excited state χ2 are considered as the

1The leptophobic mediator V will mainly decay to mesons or quarks if kinematically allowed. For
mV < mπ, V can still decay to e+e−, νν via one loop process or V − Z boson mixing. Note that the
lifetime of V must be shorter than 1 second to avoid spoiling typical Big Bang nucleosynthesis history.
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Figure 2. The integrated cross section of process pχ1 → p′χ2 as a function of incoming proton
energy Ep. We used red and blue lines to denote CvN = 0 and CaN = 0, respectively. Compared with
the elastic scenario (solid lines), we also present δ = 1 MeV as dashed lines. The AA interaction
(Cvχ = CvN = 0) has a greater cross section than VV one (Caχ = CaN = 0), while for Lf2 , which is
illustrated by ED, the resulting difference between the vector interaction and axial vector interaction
of LV N is small.

new implementation to the SM. We discuss both Majorana and real scalar DM fields in
this study. The common nucleon-V interactions are:

LV N = Nγµ
(
CvN + CaNγ

5
)
NVµ. (2.1)

The couplings CvN and CaN are for vector and axial vector interactions for nucleon. We
require their sizes to be less than unity. Otherwise, the DM interaction with the nucleon
would be so strong and be observed by detectors. The mediator V can be either a photon-
like boson charged under the U(1) gauge or Z-like boson charged under SU(2) gauge. To
maintain gauge invariance, ref. [30] indicates that if the boson V is SU(2) dark Z, the
tree-level amplitude squared must be computed with a unitary gauge [31, 32], which will
be considered in this study for both the vector and axial-vector interactions.

Next, we discuss interesting DM-V interactions LV D and thus the completed La-
grangian to describe p + χ1 → p′ + χ2 process is LV N + LV D. Then, we focus on some
characteristic types of Lagrangians for demonstration.
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2.1 Fermionic DM interaction

For the fermionic DM scenario, two common types of effective interactions between DM
and V are considered:

Lf1 =
[
χ2γµ

(
Cvχ + Caχγ

5
)
χ1 + h.c.

]
V µ, (2.2)

Lf2 = 1
ΛE(M)

χ̄2σµνΓE(M)χ1F
µν
V , (2.3)

where FµνV = ∂µV ν−∂νV µ, σµν = i
2(γµγν−γνγµ), electric dipole-like interaction ΓE = iγ5,

and magnetic dipole-like interaction ΓM = 1. The index f refers to the Majorana DM.
The parameter ΛE(M) is the new physics scale and is a dimensional coupling that cannot
be compared with Cvχ or Caχ directly. Also, we only consider the product of χχV and
NNV couplings that appears in the scattering amplitude. Therefore, we can simply fix
the coupling constants of the dark sector as constants Cv/aχ = 1 and ΛE(M) = 100 MeV.
We then compare the results based on different values of the NNV coupling, namely, CvN
or CaN , and can easily rescale the result for other choices.

For simplicity, we focus on one type of interaction each time. In principle, there
are four DM-SM interactions for Lf1 : vector-vector (VV), vector-axial vector (VA), axial
vector-vector (AV), and axial vector-axial vector (AA). Similarly, there are four possible
DM-SM interactions for Lf2 : vector-magnetic dipole (MD), axial vector-magnetic dipole,
vector-electric dipole (ED), and axial vector-electric dipole. We choose the representative
operators VV, AA, ED, and MD in this study because the VV and AA interaction predicts
the minimal and maximum p − χ1 cross sections, respectively, and ED and MD are the
most familiar DM models in the community.

The cross sections based on eq. (2.2) and eq. (2.3) are given in appendix B.2. For
a comparison of axial vector and vector interaction in LV N , figure 2 shows an integrated
cross section of the process pχ1 → p′χ2 as a function of incoming proton energy Ep for each
interaction of LfV D. The solid lines represent the degenerate scenario (mχ1 = mχ2), while
the dashed lines are based on the inelastic cross section with δ = 1 MeV. In figure 2a, the
cross section of AA is higher than that of VV in the lower Ep region due to an additional
contribution to the cross section of the AA, which dominates for small values of Ep. When
the mediator mass is light, the enhancement is strong. Mass splitting can enhance axial
vector interaction but suppress the vector interaction at the lower Ep region. However, in
the large Ep region, all the interactions predict almost the same cross section. For dipole
interactions of LfV D, the resulting difference between the vector and axial vector in LV N
is less noticeable, as illustrated in figure 2b. Also, when mass splitting δ exists, there
is a kinematic constraint on Ep for the inelastic scattering. More details are shown in
appendix. A. Therefore, the dashed lines do not start at Ep = mp.

In figure 3, we show the integrated cross sections for Lf1 (left panel) and Lf2 (right
panel) by comparison with three different mediator masses: mV = 10 keV (blue lines),
mV = 1 MeV (black lines), and mV = 1 GeV (red lines). As a demonstration, we only
present the vector interaction (with CaN = 0) case while the cross section for the axial
vector interaction will be larger, as shown in figure 2. Again, we use the solid line for the
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Figure 3. The integrated cross section for the process pχ1 → p′χ2 with respect to the energy of
incoming proton Ep for Lf1 (left panel) and Lf2 (right panel). Three mediator masses 10 keV (blue
lines), 1 MeV (black lines), and 1 GeV (red lines) are shown. The difference between the red dashed
line and red solid line are negligible. We only plot the SM vector interaction (CaN = 0) case as a
demonstration.

degenerate scenario and the dashed line for the inelastic scattering. Generally, both the
larger δ and larger mV can suppress the cross section at the small Ep region, but the cross
section will eventually be saturated in the high-energy region. When δ � mV , the cross
section can even be suppressed up to the Ep > 100 GeV region (cf. blue dashed line in
panel (a)). Comparing two different fermionic DM interactions, the suppression due to δ
is more severe in the Lf1 than Lf2 for the light mV case.

2.2 Scalar DM interaction

Regarding the interactions between the spin-zero inelastic scalar DM and the vector medi-
ator, we also consider two benchmarks:

Ls1 = gχ(χ1∂
µχ2 − χ2∂

µχ1)Vµ, (2.4)

Ls2 = 1
Λ2
s

(∂µχ2∂νχ1)FµνV . (2.5)

As a comparison, the dipole-like interaction eq. (2.5) is considered. The index s denotes
scalar DM. As mentioned above, only the product of the DM and SM couplings appears in
the cross section. We therefore only alter the SM coupling constant CvN and CaN in eq. (2.2)
and fix the coupling constants of the dark sector as gχ = 1 and Λs = 100 MeV.

In figure 4, we compare the integrated cross section for Ls1 (left panel) and Ls2 (right
panel). The color scheme is the same as figure 2. Fixing the vector interaction of SM part,
Ls1 leads to an almost identical cross section as the fermionic case Lf1 by comparing the
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Figure 4. The integrated cross section between scalar DM and an incoming proton as a function
of its energy Ep. A nonzero δ contributes to an enhancement for Lagrangian Ls1 with SM axial
vector interaction. For Ls2, the resulting difference between the SM vector and axial vector interac-
tion is tiny.

blue lines in figure 2a and 4a. This result is due to the similarity of their amplitude squared
structure. Conversely, for fixing the SM axial vector interaction, the δ = 0 case for Ls1 (red
solid line) differs from the one for Lf1 , where the former is flat, but an enhancement appears
in the latter. This result is due to the nontrivial behavior of amplitude squared of axial
vector interaction with the unitary gauge. When fixing the SM axial vector, we observe
that both the DM interactions Lf1 and Ls1 lead to cross sections with the same order using
the same coupling strength if Ep increases sufficiently. Also, when δ = 0, the enhancement
of Ls1 vanishes but remains for Lf1 . This enhancement is actually only important for a light
mediator mass. For dipole form interaction Ls2, as shown in figure 4b, the cross section
is generally suppressed at the lower Ep region. In addition, the inelastic scattering cross
section does not differ markedly from that of elastic scattering.

In figure 5, we plot the inelastic scalar DM scenario with the same scheme as in figure 3.
With a similar amplitude squared structure, figure 3a and 5a are almost identical, even if
their spins are different. For Ls2 as shown in figure 5b, we can see that the cross section is
not sensitive to δ at all. However, the cross section is sensitive to mV only for large mV

(red lines), where its value is markedly suppressed.

3 Detection of vDM and CRDM

In this section, we first review the formulas of traditional inelastic DM scattering with the
target nuclei. vDM is present around the Earth with a local density ρ0 = 0.3 GeV·cm−3, and
its velocity distribution can be simply described by a soft truncated Maxwell-Boltzmann
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Figure 5. Same as in figure 3 but for scalar DM scenario. The left and right panels are for the
interactions Ls1 and Ls2, respectively.

form. In the second part of this section, the inelastic CRDM fluxes dφχ/dTχ during the
CR-DM collisions, which can be altered with respect to different values of mχ1 and δ, are
investigated. Finally, we estimate the detected inelastic DM event rate R of the CRDM
scattering with the target nuclei.

3.1 Traditional detection of the virialized DM

We first consider the case of vDM. The Earth sweeps the local DM halo, where DMs are
virialized, and their velocity v can be well described by a Maxwell-Boltzmann distribution
f(v). Following the convention of ref. [33], the differential event rate of scattering between
DM and the target nucleus per unit detector mass with respect to the recoil energy Q can
be written as:

dR
dQ =

∑
T
ξT

ρ0
mχ1mT

∫
v>vmin(Q)

vf(v)dσχT
dQ d3v, (3.1)

where the parameter ξT is defined as:

ξT = ηTmT∑
T
ηTmT

. (3.2)

The isotope fraction ηT can also be found online.2 The target mass mT depends on the
material used in the detectors. The momentum transfer q differs from the recoil energy Q
but are related by q2 = 2mTQ. For a mass splitting δ between χ1 and χ2, the kinetic phase
space in the inelastic process will be restricted by a minimum velocity, which is determined

2https://www.webelements.com/xenon/.
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by taking the limits of small δ and v:

vmin(Q) = 1√
2mTQ

(
mTQ

µχN
+ δ

)
, (3.3)

where µχN is the dark matter-nucleon reduced mass. Taking the nonrelativistic limit
Tχ1 = mχ1v

2/2 and one-dimensional velocity distribution, eq. (3.1) in terms of the DM
fluxes dφχ/dTχ = ρ0f(v)/m2

χ1 returns the general form:

dR
dQ =

∑
T

ξT
mT

∫
Tχ[vmin(Q)]

dφχ
dTχ

dσχT
dQ dTχ. (3.4)

In the limit v → 0, the cross section dσχT /dQ includes spin-independent (SI) and spin-
dependent (SD) components. The SI component can also be coherently enhanced by target
atom number square A2, particularly:

dσSI
χT

dQ =
dσSI

χp

dQ × µ2
A
µ2
p

×
[
Z + fn

fp
(A−Z)

]2

× F 2(Q,A,Z) , (3.5)

where µ2
p and µ2

A are the DM-proton and DM-atom reduced masses, respectively, and for
isospin conservation, fp = fn. When using a velocity- and spin-independent cross section
in this study, we only take the Helm type form factor for F 2(Q,A,Z) as ref. [34].

Finally, theoretically predicted events can be compared with experimental measure-
ments by including the efficiency of the underground detector ε(Q) to account for the
experimental analysis. Thus, the total event rate is:

R =
∫ ∞

0
ε(Q)dR

dQdQ. (3.6)

3.2 Inelastic production of CRDM

The vDMs near the Earth are non-relativistic, and their mean and escape velocities are
approximately 240 km s−1 and 540 km s−1 [4, 35, 36]. However, DM may be accelerated
by high-energy CR protons toward the Earth with a relativistic velocity. If the masses of
χ1 and χ2 differ by a small mass splitting δ, such a high energy transfer from CR can excite
χ1 to χ2. The inelastic DM collision with the CR proton can be described as:

p+ χ1 → p′ + χ2 → p′ + χ1 + V, (3.7)

where p is a cosmic proton and V is a Z2 even boson mediated between SM and dark sectors.
To ensure that V is produced on the shell, we require δ > mV throughout this study.
Compared with the nonrelativistic vDM originating from our neighborhood, the CRDM
produced by pχ1 scattering may occur everywhere in our galaxy. Similar to refs. [21, 22],
the DM flux caused by pχ1 scattering is:

dφMW
χ1

dTχ1
=
∫
dΩ
∫

l.o.s.
d`

∫
dEp

ρχ(r)
mχ1

dφp
dEp

dσpχ1→p′χ1V

dTχ1
, (3.8)
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where we take the Navarro-Frenk-White halo profile for illustration and the DM halo
density is defined as ρχ. The integration is performed along the line of sight (l.o.s.). The
distribution dσpχ1→p′χ1V /dTχ1 describes the differential cross section of the collision process
given in eq. (3.7) with respect to kinetic energy of the final state χ1. The differential flux
of CR protons dφp/dEp is in units of GeV−1 cm−2 s−1 sr−1.

In ref. [28], they compared two different CR proton spatial distributions: one with a
uniform and isotropic distribution in a cylinder, and the other with the actual simulation
resulting from GALPROP [37]. However, the differences in the accelerated DM fluxes between
these two results are small. Therefore, we can follow refs. [22, 24, 26, 28] to assume that
the CR proton distribution is uniform and isotropic in a cylinder with radius R = 10 kpc
and half-height h = 1 kpc. The spectra for protons and helium are taken from ref. [38]
for Ep . 106 GeV (below the first knee). We can also use the CR fluxes approximately
described by a broken power law dφp/dEp ∝ E−γp , where γ ≈ 3 for 106 . Ep . 2×108 GeV
(below the second knee), and γ ≈ 3.3 for 2 × 108 . Ep . 3 × 109 GeV (below the ankle).
Also, we can neglect the Ep > 3×109 GeV flux due to Greisen-Zatsepin-Kuzmin cutoff [39].
Because we only take the spatial independent dφp/dEp, we can simplify the standard DM
fluxes eq. (3.8) by integrating the DM halo density:

dφMW
χ1

dTχ1
= ρ0
mχ1

×Deff ×
∑

i=p,He

∫
dEi

dφi
dEi

G2
i (2mχ1Tχ1)dσpχ1→p′χ1V

dTχ1
, (3.9)

where Deff is the effective length:

Deff =
∫
dΩ
∫

l.o.s.

ρ[r(`,Ω)]
ρ0

d`. (3.10)

The G2
i (Q2) here is simply taken in its dipole form:

G2
i (Q2) =

[
1 + Q2

Λ2
i

]−4

, (3.11)

where Λp = 770 MeV and ΛHe = 410 MeV.
Because the process used in eq. (3.7) is a 2→ 3 process with on-shell produced χ2, we

can simply used a narrow width approximation to break down the Feynman diagram to
pχ1 → p′χ2 and χ2 → χ1V . Therefore, the distribution of the cross section can be written
as:

dσpχ1→p′χ1V

dTχ1
=
∫
dσpχ1→p′χ2

dTχ2

dTχ2

dTχ1

dBχ2→χ1V

d cos θ′ d cos θ′, (3.12)

where θ′ is the angle between the χ2 direction in the lab frame of the pχ1 and χ1 directions
for χ2 → χ1V decay in the χ2 rest frame. The differential cross section dσpχ1→p′χ2/dTχ2

and expression of dBχ2→χ1V are shown in appendix B.
Next, we need a Jacobian dTχ2/dTχ1 . Considering the process of χ2 → χ1 +V , we can

express the final Tχ1 by initial Eχ2 in the lab frame:

Tχ1 =
E∗χ1Eχ2 + |p∗χ1 |

√
E2
χ2 −m2

χ2 cos θ′

mχ2
−mχ1 , (3.13)
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Figure 6. (a) Comparison of vDM and CRDM fluxes. Both vDM and CRDM fluxes are obtained
by using χ̄2γ

µχ1Vµ interaction with mχ1 = 10 MeV, mV = 100 keV, and CaN = 10−3. The value of
Deff for CRDM is fixed to 1 kpc as a default value. (b) Spectra of CRDM with the VV interaction.
Three benchmarks of DM mass 1 MeV (red lines), 100 MeV (green lines), and 1 GeV (red lines) are
presented. We also plot three different mass splittings, δ = 0 (solid lines), δ = 1 MeV (dashed lines),
and δ = 10 MeV (dash-dotted lines).

where E∗χ1 = (m2
χ1 + m2

χ2 − m2
V )/(2mχ2) and |p∗χ1 | =

√
E∗2χ1 −m2

χ1 are the energy and
momentum of χ1 in the χ2 rest frame. By inverting eq. (3.13), one can obtain the expression
of Tχ2 as:

Tχ2(Tχ1 , cos θ′) =
mχ2E

∗
χ1(mχ1 + Tχ1)

(E∗χ1)2 − (|p∗χ1 | cos θ′)2 −mχ2

−
mχ2 |p∗χ1 | cos θ′

√
(mχ1 + Tχ1)2 − (E∗χ1)2 + (|p∗χ1 | cos θ′)2

(E∗χ1)2 − (|p∗χ1 | cos θ′)2 . (3.14)

We can differentiate the above equation to obtain dTχ2/dTχ1 :

dTχ2

dTχ1
= mχ2

(E∗χ1)2 − (|p∗χ1 | cos θ′)2 ×

E∗χ1 −
|p∗χ1 | cos θ′(mχ1 + Tχ1)√

(mχ1 + Tχ1)2 − (E∗χ1)2 + (|p∗χ1 | cos θ′)2

 .
(3.15)

For illustration, we calculate the fluxes of several characteristic interactions by applying
eq. (3.12). Because the difference of SM axial vector and vector interaction has already
been discussed (figure 2 and figure 4), we only display the situation of vector interaction
and focus on the effects of kinematic variables. Additionally, we do not show the flux
generated by Ls1, from which the resulting cross section is similar to the VV cross section.

In figure 6, we compare the vDM flux (orange solid line) with CRDM fluxes (green
lines) using mχ1 = 10 MeV, mV = 100 keV, and CvN = 10−3 (left). We use VV interaction
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for CRDM as a demonstration, but the shapes for other interactions do not differ much
except for their scales. For CRDM, we take Deff = 1 kpc as a default value. The green
solid line represents elastic scattering with mχ1 = mχ2 , but the dashed and dashed-dotted
lines describe the mass splitting δ = 1 MeV and δ = 10 MeV, respectively. We note that
a larger mass splitting makes a stronger suppression for the lower Tχ1 . We can clearly
see that the fluxes of vDM in the figure 6a peaks at approximately 10−8 GeV, where DM
has a nonrelativistic velocity around 10−3c. As an expected feature from CRDM, its Tχ1

can be comparable with mχ1 , where DM is relativistic particle. In fact, light vDM, such
as mχ1 = 10 MeV, is not detectable for the present underground experiments due to its
low kinetic energy. However, both elastic and inelastic CRDM obtain enough energy to be
observed. Also, we can see that the magnitude of fluxes of vDM can be approximately 11
orders higher than CRDM, which occurs because the integrated cross section of CR collision
with DM is small (∼ 10−27 cm2), even if the CRDM fluxes are accumulated over the line
of sight, particularly Deff . The current powerful PandaX-4T and XENON1T detectors are
thus capable of testing such events.

We also show the CRDM fluxes with three different DM masses and splittings in fig-
ure 6b. We use three benchmarks of DM mass 1 MeV (red lines), 100 MeV (green lines), and
1 GeV (blue lines). For the three mass splittings, the solid, dashed, and dash-dotted lines
correspond to the mass-degenerated case, δ = 1 MeV, and δ = 10 MeV, respectively. We
can see that all the mass-degenerated cases have smooth curves, but those non-degenerated
curves show sharp peaks at Tsp. The spectrum follows the CR spectrum at the Tχ > Tsp
region but also has a markedly different shape from the CR shape in the Tχ < Tsp re-
gion. As shown in eq. (3.9), the CRDM energy spectrum is the product of the distribution
dσpχ1/dTχ1 and CR energy spectrum. We also show in figures 2, 3, 4, and 5 that the cross
section is flat at high energy, but the δ contribution dominates dσpχ1/dTχ1 in the lower
energy region. Thus, in the small energy region Tχ < Tsp, the spectrum is strongly affected
by dσpχ1→p′χ1V /dTχ1 .

For the CRDM with δ = 0, its energy is only provided by pχ1 elastic collision. More-
over, a final state χ1 can be boosted by δ owing to the χ2 decay after the inelastic
pχ1 → p′χ2 process, as also mentioned in ref. [29]. Therefore, the CRDM flux with a
larger δ can depart from the mass-degenerate scenario toward higher energy. Thus, δ can
cause a sharp peak Tsp in the spectrum toward higher energy but with a decline of total flux.

For dipole-like operators, we show the CRDM fluxes for fermionic DM cases (two up-
per panels) and scalar DM cases (two lower panels) In figure 7. The left panels show the
light mediator scenarios (mV = 100 keV), while the right panels show the heavy mediator
scenario (mV = 10 MeV). We use the same color scheme as figure 6b, and the important
features such as the shifts of the shark peaks are also mentioned previously. Comparing with
the VV interaction in figure 6b, the spectra of the elastic scattering of all dipole-like inter-
actions are softer. Therefore, the fluxes of the sharp peaks created by χ2 decay (δ 6= 0) are
generally lower than δ = 0 case in the dipole-like interactions. Finally, the flux of the scalar
dipole-like DM interaction is lower than that of the fermionic interaction when using the
same values of couplings. Note that CvN = 10−1 for the former and CvN = 10−2 for the latter.
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Figure 7. Energy spectra of CRDM for Lf2 (upper panels) and Ls2 (lower panels). The mediator
masses applied here are mV = 100 keV (left figures) and mV = 10 MeV (right figures). The color
scheme is the same as figure 6b.
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Figure 8. Detection rate dR/dQ (DRU or keV−1kg−1day−1) of fermionic CRDM χ−xenon scat-
tering for Lf1 (left) and Lf2 (right). The mass degenerated cases δ = 0 are represented as solid lines,
while the dashed lines are for δ = 20 MeV.

3.3 CRDM detection rate

Following the conventions of refs. [21, 40], we can write down the differential recoil rate
per target nucleus of relativistic DM in underground detectors:

dR
dQ

=
∑
T

ξT
mT

∫ ∞
Tmin

dTχ1
dσχ1T
dQ

dΦMW
χ1

dTχ1
, (3.16)

where Tmin is the minimum kinetic energy of incoming DM, and only T =xenon is used
in this study. For those DM that strongly interact with nuclei, Tmin can be varied with
respect to the DM length of propagation in the Earth and the DM-nuclei cross section in
the attenuation process. When the attenuation effect is negligible, the Tmin only depends
on the kinematics, as shown in appendix. A.

As shown in section 3.1, the final dσχN/dQ has to be the product of the χp cross
section and the form factor as performing in eq. (3.5). However, the form factor for the SI
or SD cross section is derived by velocity-independent technology. As shown in refs. [41–
45], a velocity-dependent collision (e.g., dipole interaction) sometimes contains more than
these two contributions. Therefore, we use the effective operator method developed by
refs. [41–45] to extract the complete form factor for our inelastic interactions. In these
studies, the leading order of the velocity contribution was used. Considering that the form
factor relates σχp to σχT , the inelastic cross section of DM-target scattering is:

dσχT
dQ

(mχ1 , δ,mV , Q) = dσχT
dQ

∣∣∣∣
EFT
×
M2

χp(mχ1 , δ,mV , Q)
M2

χp,EFT
(3.17)
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where the effective operator cross section dσχT
dQ |EFT is obtained with the publicly avail-

able numerical code LikeDM-DD [33]. M2
χp(mχ1 , δ,mV ) are calculated in appendix B, but

M2
χp,EFT is used with δ = 0 and the limit mV � Q.
Because the form factors are independent of mV and δ, eq. (3.17) is valid. The VV,

AA, MD, and ED interactions in the effective theory limit correspond to the effective
operators Q(6)

1 , Q(6)
4 , Q(5)

1 , and Q(5)
2 in ref. [33], respectively. Only the fermionic DM cases

are presented here because the result for scalar interaction Ls1 is similar to that of the VV
interaction, and Ls2 is markedly suppressed by Λ2

s.
We now show the predicted event rate with fermionic VV (red lines in figure 8a),

AA (blue lines in figure 8a), MD (red lines in figure 8b) and ED (blue lines in figure 8b)
interactions. We can clearly see a dip in the curves of VV, ED, and MD whose form factor
contains a significant contribution from the SI component. The AA interaction may contain
the SD component without A2 enhancement, but the CRDM fluxes of AA interaction are
generally higher than those of VV so that the AA event rate is not much lower than VV
at the lower recoil range in the elastic case. When Q > 40 keV, the spectrum of AA can be
even higher than that of VV by using the same parameters. Generally, in the elastic case,
the AA interaction predicts the highest event rate at high Q, but VV predicts the highest
at the low Q. Due to the new physics scale ΛE(M) suppression, the dipole-like interactions
ED and MD generally lead to a lower rate. Also, splitting δ can reduce the detected rate,
and AA predicts the highest rate for δ = 20 MeV. Thus, unlike elastic scattering scenario,
the target xenon is more sensitive to detect the AA inelastic scattering cross section than
the VV interaction, even if the AA interaction may not depend on the SI form factor
enhanced by coherence.

Comments about the attenuation of the DM flux during propagation. In this
study, we ignore the attenuation effect from the Earth but focus on the exclusion limits,
as in ref. [29]. In principle, a simple version of transport equations should at least include
the propagation of χ1 and χ2. For the elastic CRDM scenario, attenuation is important
for σχp > O(10−28) cm2 [21–24, 26]. However, it is difficult to know for inelastic scattering
without a simulation. Considering the same cross section for both δ = 0 and δ > 0
scenarios, the inelastic DM can lose its energy much more efficiently than elastic DM
because of χ1 → χ2 excitation and χ2 decay. Conversely, if using the same coupling for
these two scenarios, the cross section for the δ > 0 case may be lower than that for δ = 0,
such as for the VV case.

Quantitatively, a numerical code that simulates the energy distribution of χ1 and χ2
after their propagation should be developed but is beyond the scope of this study. Our
research team plans to return to this issue in the future with a novelly designed numerical
code.

4 Current constraints from PandaX-4T

The current, most stringent limitation of the DM-proton scattering cross section is from
PandaX-4T [5]. The DM-proton elastic scattering cross section σχp above 3.3× 10−47 cm2
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at DM mass ∼ 30 GeV is excluded in 90%C.L. with 3.7 tons of liquid xenon target and an
exposure of 0.63 tonne×year. However, such a limit is only applicable to elastic vDM. To
apply to inelastic and relativistic DM scenarios, we must restore the limit of event rate R
rather than that of σχp.

Thus, we can recast the PandaX-4T 90% C.L. of event rate in the following. First,
we insert the published σχp values of PandaX-4T 90% C.L. into eq. (3.1) and eq. (3.6),
Then, the event rates for a fixed DM mass can be determined. Actually, the published
PandaX-4T exclusion plot is based on the recoil energy spectra, which is related to the
incoming DM kinetic energy. In this study, we use the efficiency curve from ref. [46], and
the window of the maximum efficiency is located for the detected recoil energies between
20 keV and 100 keV. The total event rate with an incoming DM momentum larger than
threshold energy 30 MeV (mχ1 = 30 GeV with DM velocity 10−3c) is found to be nearly
constant at R ∼ 4/0.63/tonne/year. However, R varies rapidly when the incoming DM
momentum is smaller than 30 MeV. Thus, we use R ∼ 4/0.63/tonne/year projected onto
the (δ, CN ) and (mχ1 , δ) planes to show the detection capability of PandaX-4T.

Results are shown in figure 9. Generally, there are four unknown variables that we
are interested in: mχ1 , δ, mV and the coupling strength CN = C

a/v
N . Again, we take

Deff = 1 kpc, Cvχ = Caχ = 1 , and ΛE(M) = 100 MeV for dipole-like interaction here. As a
reference, the pχ1 → p′χ2 cross section with Cv/aN ≈ 10−3 for VV and AA, respectively, and
CvN ≈ 10−2 for both MD and ED at a high Ep are approximately equal to O(10−28) cm2.

In figure 9a and 9b, by fixingmχ1 andmV , we obtain the limits of CN for each δ and the
VV (blue solid line), AA (red dash-dotted line), ED (green dashed line), and MD (purple
dotted line) interactions. An interesting feature is that the exclusion lines of CN remain rel-
atively flat when the mass splitting is less than a given value near δ . 10 MeV. Thus, if δ is
comparable to mV , the total event rate is no longer sensitive to the changes of δ. However,
δ larger than 10 MeV can weaken the limit. As mentioned in the former sections, a larger δ
can reduce the inelastic CRDM event rate. Compared with the inelastic vDM scenario as
the result from [20], the inelastic CRDM helps us to probe a larger δ region. When increas-
ing mχ1 , the limits for the interactions with a γ5 (AA and ED) at the region δ < 10−2 GeV
are markedly improved, but the limit for the MD interaction can be even weaker. In the
large δ region, PandaX-4T rapidly loses exclusion power if considering a large mχ1 . Because
the order of coupling strength can also represent the related size of the DM-proton cross
section, the PandaX-4T result projected on the AA interaction can give the most stringent
limit on CN while the higher dimensional operators, especially MD, have weaker limits.

Figure 9c and 9d show the exclusion limits from PandaX-4T projected to the (mχ1 ,
δ) plane. Due to the on-shell condition δ > mV , the pink region is not accessible. Based
on the information of figure 9a and 9b, we arbitrarily fix their couplings to optimize their
detection as closer as the PandaX-4T limit at δ → 0. In figure 9c, we find that only
the exclusion region of the AA interaction is between two red dash-dotted lines, while the
exclusion regions are below the corresponding lines for other interactions. These results
occur because mass splitting (see figure 2a) plays a role of enhancement in AA interaction.
The bottom left corner with δ < 5×10−2 GeV and mχ1 < 2×10−3 GeV becomes an allowed
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(c) mV = 1 MeV.
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Figure 9. PandaX-4T limits are projected onto the plane (δ, CN ) [two upper panels] and the
plane (mχ1 , δ) [two lower panels]. The line-of-sight halo integration Deff is taken as 1 kpc.
The benchmark interactions are VV (blue solid lines), AA (red dash-dotted line), ED (green
dashed line), and MD (purple dotted line). In panel (a), ED and MD lines overlap. We fixed
ΛE(M) = 100 MeV for ED and MD.
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Figure 10. 95% upper limits projected in the (mχ, CN ) plane. (a) the limits with fixed values
δ = 100 MeV and mV = 1 MeV for VV, AA, ED, and MD. (b) Comparison between XENON1T and
PandaX-4T based on the VV interaction. The XENON1T limit from ref. [29] is used for comparison.

region again for AA interaction. Thus, as long as we choose some stronger coupling, this
allowed region can sink to the inaccessible (pink) region. In figure 9d, we take all the
coupling strengths CN = 2.5 × 10−2.A turning point then appears in all the interactions,
and the limits behave differently at the smaller and larger mχ1 regions. We can understand
these points and limits as follows. The upper limits of δ at the large mχ1 region decrease
with respect to mχ1 , mainly because DM number density ρ0/mχ1 decreases. The limits at
the small mχ1 region are similar to vDM limits, which always increase with mχ1 . With
heavy mediator masses mV = 10 MeV and CN = 2.5 × 10−2, we find that PandaX-4T
provides the most stringent limit for AA in the large mχ1 region but for VV in the lower
mχ1 region. With the help of the CRDM scenario, the PandaX-4T exclusion of δ can be
extended to 0.1 GeV, even 1 GeV in some cases.

Finally, in figure 10, we present the 95% upper limits projected in the (mχ, CN )
plane. The mediator mass and astrophysical effective length are fixed to mV = 1 MeV and
Deff = 1 kpc, respectively. In figure 10a, the upper limits of PandaX-4T are based on the
scenarios: VV (blue solid line), AA (red dashed-dotted line), ED (green dashed line), and
MD (purple dotted line). With the fixed values δ = 100 MeV, the ordering of 95% limits in
four scenarios remain similar to those in figure 9. In figure 10b, the previous XENON1T
limits (dashed lines) are taken from ref. [29]. Because ref. [29] only considers the VV
interaction, we use the same parameter configurations as theirs for a comparison between
the elastic case (blue lines), δ = 10 MeV (red lines), and δ = 100 MeV (purple lines). Thus,
the results of this study generally agree with the limits derived in ref. [29]. We also notice
that the CRDM fluxes are roughly 10 orders of magnitudes lower than vDM, see figure 6a.
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Because of the higher kinetic energy of CRDM, the PandaX-4T data can probe sub-GeV
DM region in CRDM but not in vDM scheme. An example comparison is demonstrated
in figure 12a of the appendix C.

5 Conclusion and prospect

In this study, we are motivated by the feature that DM relic density can be simply fulfilled
at the co-annihilation region. However, the DM located in this region escapes from the
standard DM direct detection constraints. Therefore, we investigated inelastic DM models
that contain a pair of almost mass-degenerated DM particles χ1 and χ2. Because the
standard DD method is not able to detect the vDM with extremely low momentum, this
kind of inelastic DM model can be hidden within the analysis unless the DM mass is
heavy enough mχ1 ∼ O( TeV). By considering the relativistic CRDM events created by
the collision between the nonrelativistic vDM with the CR proton and helium, the lightest
χ1 can be excited to χ2 and successively decay back to χ1. Energetic χ1 can be detected
within the DM underground detector, such as PandaX-4T, in this study. We have thus
demonstrated that mass splitting δ < O(1 GeV) can still be achieved with the DM mass range
considered in this study with the latest PandaX-4T data, even though we conservatively take
the astrophysical parameter Deff = 1 kpc.

Recently, a similar study [29] considered the VV interaction and produced a rather
flat cross section with respect to the CR proton energy Ep. Beyond the scope of ref. [29],
we also studied several different interactions, including both fermionic and scalar DM.
By studying the predicted CRDM spectra of the different interactions, we found that the
parameters (mχ1 , δ, mV , and Ep) play different roles in the fermionic AA interactions of
eq. (2.2) compared with others, while the fermionic VV interaction of eq. (2.2) is almost
identical with the scalar interaction of eq. (2.4). Conversely, we also studied the dimension-
suppressed dipole-like interactions of eq. (2.3) and eq. (2.5). Because χ1 can be relativistic
before colliding with xenon in the detectors, we used the velocity-dependent form factor
based on the effective theory framework. Therefore, our results for AA and dipole-like
interactions are more reliable.

We then comment on possible constraints from other experiments that may be able to
test the same parameter space. We focused on the mass of mediator mV smaller than δ

and mχ1 in this study. Then, we assumed that the mediator is leptophobic. With these
two conditions, the cross sections of DM production via off-shell mediators in fixed targets,
B-factories, and LHC experiments are suppressed. Therefore, if CN . 10−2, we can safely
ignore the above constraints in our scenarios.3 However, the light leptophobic mediator
is confronted with the constraints of low-energy n-Pb scattering [47, 48] and hadronic
Υ(1S) decay [52]. In particular, the former provides the constraint CN . 5 × 10−3 for
mV . 10 MeV [53] but loses its exclusion power when mV increases. We find that the upper
limit of CN from the low energy n-Pb scattering can be complemented to the PandaX-4T
limit derived in this study. For a comparison, one can refer to appendix C for more details.
More constraints and searches for light mediator V can be found in refs. [53–55].

3Note that this mass spectrum setting is different from the usual ones withmV > 2mχ1 +δ in refs. [49–51].
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In the last paragraph, we would like to note several interesting extensions of this study,
even though they are beyond the scope of this study. Interesting follow-up research should
consider the Earth’s attenuation effect of CRDM propagation. In this study, we only
focused on the exclusion limit, but the attenuation can be important when the χ1p inter-
action cross section is large. Compared with the scenario for elastic CRDM scattering with
Earth atoms, the inelastic scattering requires two dark particle propagation equations. In
addition, the geometry of the propagation region might be complicated, and it can be chal-
lenging to solve the propagation equations analytically. Thus, we plan to return to this issue
in the future with a numerical solution. Another interesting follow-up study would describe
the form factor more precisely. In this study, we simply rescaled the form factor obtained
by the assumption of elastic scattering. In addition, only the leading order of the velocity
contribution has been included. Although much effort may be needed, this research would
be useful, particularly if a more realistic form factor was developed for inelastic scattering.
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A Kinematics of two-body inelastic collisions

As schematically shown in figure 1, there are two scenarios of DM collisions: (i) the high-
energy protons of cosmic rays scattering with stationary DM χ, namely, p+ χ1 → p′ + χ2,
where χ2 is the excited state of χ1 with a mass of mχ2 = mχ1 + δ; (ii) the accelerated DM
colliding with the stationary nucleus N in the detector χ1 +N → χ2 +N ′.

Considering the general two-body relativistic collision, p1 + p2 → p3 + p4, their masses
are mi with i = 1, 2, 3, 4. We can write down the 4-momentum of each particle of the
process in lab frame ΣL:

p1 = (E1,p1),
p2 = (E2 = m2,p2 ' 0),
p3 = (E3,p3),
p4 = (E4,p4). (A.1)

In the center-of-mass (CM) frame Σ∗, all physical quantities are marked with ∗:

p∗1 = (E∗1 ,p∗1),
p∗2 = (E∗2 ,p∗2 = −p∗1),
p∗3 = (E∗3 ,p∗3),
p∗4 = (E∗4 ,p∗4 = −p∗3), (A.2)
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The total 4-momentum P of two systems are simply:

P (Σ∗) = (M, 0), and P (ΣL) = (E1 +m2,p1). (A.3)

Also:

|p∗3| = 1
2

√(
m2

3 −m2
4
)2

M2 +M2 − 2
(
m2

3 +m2
4
)
, and

E∗4 = M2 −m2
3 +m2

4
2M . (A.4)

Boosting from the CM frame to the lab frame, one will obtain the magnitude of velocity
β = |p1| / (E1 +m2) and Lorentz factor γ = (E1 +m2)/M . Therefore, the invariant mass
M will be related to E1 via:

M = (E1 +m2)
√

1− β2 =
√
m2

2 +m2
1 + 2m2E1. (A.5)

A.1 Accelerating process p+ χ1 → p′ + χ2

In the process of p(p1) + χ1(p2) → p′(p3) + χ2(p4), where the four-momentum label has
been given in parentheses, one has p2 = (E2 = mχ1 ,p2 ' 0), and χ2 is the accelerated DM
after collision, with energy E4. We can insert E1 = Ep, m1 = m3 = mp, m2 = mχ1 , and
m4 = mχ1 + δ into eq. (A.4) and obtain:

E∗4 = E∗χ2 = mχ1(mχ1 + Ep) + δ(δ/2 +mχ1)
M

. (A.6)

If δ = 0, we can safely return to the case of elastic collision. Also, the condition E∗χ2 >

(mχ1 + δ) is required for χ1 being excited to χ2. This results in a universal lower limit for
Ep, which is mp + δ + δ(δ+2mp)

2mχ1
.

To determine the minimum value of Ep in eq. (3.9), it would be useful to introduce
the scattering angle θ∗ where the component of p∗3 along the direction of p∗1 is |p∗3| cos θ∗.
Therefore, we substitute E4 by Tχ2 +mχ1 + δ to obtain:

Tχ2 =
E∗χ2(mχ1 + Ep)− |p∗χ2

|
√
E2
p −m2

p cos θ∗√
(mχ1 +mp)2 + 2mχ1(Ep −mp)

− (mχ1 + δ). (A.7)

where |p∗χ2 | =
√

(E∗χ2)2 − (mχ1 + δ)2.
We would like to obtain the range of Ep from eq. (A.7). Because Tχ2(Ep, cos θ∗)

reaches maximum and minimum values when θ∗ = π and θ∗ = 0, respectively, we may
define Tmax

χ2 (Ep) = Tχ2(EP , θ∗ = π) and Tmin
χ2 (Ep) = Tχ2(EP , θ∗ = 0). For a fixed Ep, the

allowed region of Tχ2 should be between Tmin
χ2 and Tmax

χ2 , illustrated in figure 11.
Similar to the elastic case, the constraint of Tχ2 can be expressed by Emin

p (Tχ2):

Ep > Emin
p = Tχ2 + δ

2 +

√√√√Tχ2(mχ1 + Tχ2
2 + δ)(2m2

p +mχ1Tχ2 − δ2

2 )
2mχ1Tχ2 − δ2 . (A.8)

where 2mχ1Tχ2 > δ2 should be satisfied. The minimum value of Emin
p is mp + δ+ δ(δ+2mp)

2mχ1
.

The condition Ep > Emin
p (Tχ2) is equivalent to Tmin

χ2 (Ep) < Tχ2 < Tmax
χ2 (Ep).

– 21 –



J
H
E
P
0
4
(
2
0
2
2
)
0
8
0

Figure 11. Kinetic relation between incoming Ep and outgoing Tχ2 . From eq. (A.7), the red curve
represents Tmax

χ2
with θ∗ = π, and the blue curve represents Tmin

χ2
with θ∗ = 0. The kinetic allowed

region is between the red and blue curves. The two curves can be uniformly described by eq. (A.8).
Two limits of the curve correspond to two kinematic constraints for inelastic collision: T kinχ2

= δ2

2mχ1

and Ekinp = mp + δ + δ(δ+2mp)
2mχ1

.

A.2 Process in the detector χ1 +N → χ2 +N ′

For the process χ1(p1) + N(p2) → χ2(p3) + N ′(p4) with p2 = (E2 = mN ,p2 ' 0), we can
swap the index that the incoming particle 1 is inelastic DM, but E4 is the energy of the
heavy nucleus after the collision. By taking the masses m2 = m4 = mN , m1 = mχ1 , and
m3 = mχ1 + δ, we can rewrite eq. (A.4) as:

E∗4 = E∗N ′ = mN (mN + Eχ)− δ(δ/2 +mχ1)
M

. (A.9)

We can boost eq. (A.9) from the CM frame to the Lab frame to obtain the recoil energy
Q = E4 −mN of nucleus. Finally, the minimal kinetic energy required to obtain a specific
recoil energy Q is:

Tmin
χ = Q

2 −mχ1 + δ(mχ1 + δ/2)
2mN

+

√
Q(2mN +Q)(mNQ+ δ2/2)(mNQ+ (2mχ1 + δ)2/2)

2mNQ
. (A.10)

B Scattering cross sections

B.1 2 → 3 cross sections

The differential cross section for the inelastic scattering p(p1)χ1(p2) → p′(k1)χ1(k2)V (k3)
can be represented as:

dσpχ1→p′χ1V = (2π)4|M2→3|2

4
√

(p1 · p2)2 −m2
pm

2
χ1

dφ3(p1 + p2; k1, k2, k3), (B.1)
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whereM2→3 is the total scattering amplitude, and φ3(p1 + p2; k1, k2, k3) is the three-body
phase space. Using the recursive relation, we have:

dφ3(p1 + p2; k1, k2, k3) = dφ2(p1 + p2; k1, q)× dφ2(q; k2, k3)(2π)3dq2 (B.2)

where q is the four-momentum of χ2. This kind of technique is extensively used in ref. [56]
With the narrow width approximation, which corresponds to the case of on-shell χ2, we
can separate the scattering process into collision and decay parts, namely, pχ1 → p′χ2 and
χ2 → χ1V . Then, |M2→3|2 can be written as:

|M2→3|2 = |M2→2|2
πδ(q2 −m2

χ2)
mχ2Γχ2

|M1→2|2, (B.3)

where M2→2 is the scattering amplitude of the collision part, and M1→2 is that of the
decay part.

We can decompose the total differential cross in the following form:

dσpχ1→p′χ1V = dσpχ1→p′χ2dBχ2→χ1V , (B.4)

where we have:

dσpχ1→p′χ2 = (2π)4|M2→2|2

4
√

(p1 · p2)2 −m2
pm

2
χ1

dφ2(p1 + p2; k1, q), (B.5)

And:

dBχ2→χ1X = 2π
Γχ2

δ(q2 −m2
χ2) |M1→2|2

2mχ2
dφ2(q; k2, k3)(2π)3dq2

= dΓχ2→χ1V

Γχ2
δ(q2 −m2

χ2)dq2. (B.6)

The total width of χ2 is defined as Γχ2 .
Finally, we successfully obtain the total differential cross section as eq. (3.12):

dσpχ1→p′χ1V

dTχ1
=
∫
dσpχ1→p′χ2

dTχ2

dTχ2

dTχ1

dBχ2→χ1V

d cos θ′ d cos θ′, (B.7)

where θ′ is the angle of χ1 in the χ2 rest frame. In this frame:

dΓχ2→χ1V

dΩ′ =
|p∗χ1 |

32π2q2 |M1→2|2 (B.8)

where Ω′ is the solid angle. In the presence of vector and axial vector interactions, we
can prove that |M1→2|2 is independent of the angle. Then, the aforementioned θ′ can be
chosen as the angle formed by χ2 momentum in the lab frame of pχ1 and χ1 momentum
for χ2 → χ1V decay in the χ2 rest frame. Therefore:

dBχ2→χ1V = dΓχ2→χ1V∫
dΓχ2→χ1V

δ(q2 −m2
χ2)dq2 −→ dΩ′

4π (B.9)

Ultimately, the factor of δ(q2−m2
χ2)dq2 will drop out in the process of integration over the

three-body phase space [57, 58]. A trivial integration over dφ′ gives the dBχ2→χ1V /d cos θ′ =
1/2.
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B.2 2 → 2 cross sections

B.2.1 The accelerating process p+ χ1 → p′ + χ2

To calculate the total differential cross section between cosmic ray protons and inelastic
dark matter in eq. (B.7), we must derive dσpχ1→p′χ2/dTχ2 first:

dσpχ1→p′χ2

dTχ2
= dσpχ1→p′χ2

dt

∣∣∣∣∣ dtdTχ2

∣∣∣∣∣ = |M|2
16πλ(s,m2

p,m
2
χ1)

∣∣∣∣∣ dtdTχ2

∣∣∣∣∣ (B.10)

where |M|2 = ∑
spins |M|2/4 is the proton-DM scattering matrix element squared, averaged

over initial spins and summed over final spins. We define the Kallen function as λ(x, y, z) =
(x− y − z)2 − 4yz, and the Mandelstam variables are:

s = m2
χ1 +m2

p + 2mχ1Ep,

t = −2mχ1Tχ2 + δ2,

u = m2
p +m2

χ1 − 2mχ1(Ep − Tχ2 − δ). (B.11)

The amplitude squared |Mij |2 with i for the V NN interaction type and j for the V χχ
interaction type are given below.

For fermionic DM:

• Vector-Vector interaction:

|MVV|2 =
[

4(CvN )2(Cvχ)2mχ1(
2mχ1Tχ2 +m2

V − δ2)2
]
×
[
− 4mχ1Ep (δ + Tχ2) + 4mχ1Ep

2

−2Tχ2

(
m2
p +mχ1 (mχ1 − Tχ2)

)
+ δ2 (mχ1 − Tχ2)

]
. (B.12)

• Axial vector-Axial vector interaction:

|MAA|2 =
[

4(CaN )2(Caχ)2mχ1(
2mχ1Tχ2 +m2

V − δ2)2
]
×
[
− 4mχ1Ep (δ + Tχ2) + 4mχ1E

2
p

+2m2
p (4δ + Tχ2) + 8m2

pmχ1 +mχ1

(
−δ2 + 4δTχ2 + 2T 2

χ2

)
+2m2

χ1Tχ2 + δ2 (− (2δ + Tχ2))

+(2m2
pTχ2 (δ + 2mχ1) 2

(
−δ2 + 2mχ1Tχ2 + 2m2

V

)
)/m4

V

]
. (B.13)

• Vector-Magnetic Dipole interaction:

|MMD|2 =
[

4(CvN )2mχ1/(ΛM )2(
2mχ1Tχ2 +m2

V − δ2)2
]
× 4

[
4mχ1E

2
p

(
2mχ1Tχ2 − δ2

)
−4mχ1Ep (δ + Tχ2)

(
2mχ1Tχ2 − δ2

)
−2m2

pTχ2 (δ + 2mχ1) 2 +
(
2mχ1Tχ2 − δ2

)
×
(
δ2 (mχ1 + Tχ2) + 4δmχ1Tχ2 + 2m2

χ1Tχ2

) ]
. (B.14)
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• Vector-Electric Dipole interaction:

|MED|2 =
[

4(CvN )2mχ1/(ΛE)2(
2mχ1Tχ2 +m2

V − δ2)2
]
× 4

[
4mχ1Ep

2
(
2mχ1Tχ2 − δ2

)
−4mχ1Ep (δ + Tχ2)

(
2mχ1Tχ2 − δ2

)
−δ2mχ1

(
3δ2 + 4m2

p − 4δTχ2 − 2T 2
χ2

)
−δ2

(
δ2 + 2m2

p

)
(2δ + Tχ2) + 8δ2m2

χ1Tχ2 − 4m3
χ1T

2
χ2

]
. (B.15)

For scalar DM:

• Combining the vector interaction for SM and Ls1 in eq. (2.4) for scalar DM yields:

|M|2 =
[

4(CvN )2(gχ)2mχ1(
2mχ1Tχ2 +m2

V − δ2)2
]

×
[
mχ1

(
4Ep2 + δ2 − 4Ep (δ + Tχ2)− 2mχ1Tχ2

) ]
. (B.16)

• Combining the vector interaction for SM and Ls2 in eq. (2.5) for scalar DM yields:

|M|2 =
[

4(CvN )2mχ1/(Λs)4(
2mχ1Tχ2 +m2

V − δ2)2
]

(B.17)

×1
4
[
mχ1

(
4Ep2 + δ2 − 4Ep (δ + Tχ2)− 2mχ1Tχ2

) (
2mχ1Tχ2 − δ2

)2 ]
.

The corresponding differential cross section can be written as:

dσpχ1→p′χ2

dTχ2
= mχ1

8πλ(s,m2
p,m

2
χ1) |M|

2 (B.18)

B.2.2 Process in the detector χ1 +N → χ2 +N ′

Similarly, we can derive dσχN/dQ of eq. (3.16). To calculate |M|2, we must only change
the Mandelstam variables as:

s = m2
χ1 +m2

N + 2mN (Tχ1 +mχ1),
t = −2mNQ,

u = (mN −mχ1)2 + 2mN (Q− Tχ1) + δ(2mχ1 + δ). (B.19)

The amplitude squared |Mij |2 with i for the V pp interaction type and j for the V χχ
interaction type are given below.

For fermionic DM:

• Vector-Vector interaction:

|MVV|2 =
[

4(CvN )2(Cvχ)2mN(
2QmN +m2

V

)2
]
×
[
mN

(
−δ2−4(mχ1 +Tχ1)(−mχ1 +Q−Tχ1)+2Q2

)
−2Qm2

N −2mχ1

(
δ2 +mχ1(2δ+Q)

)
−2δTχ1 (δ+2mχ1)+δ2Q

]
(B.20)
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• Axial vector-Axial vector interaction:

|MAA|2 =
[

4(CaN )2(Caχ)2mN(
2QmN +m2

V

)2
]

(B.21)

×
[
mN

(
δ2 +mχ1 (8δ − 4Q+ 8Tχ1) + 12m2

χ1 + 2Q2 + 4Tχ1 (Tχ1 −Q)
)

+2Qm2
N + 2m2

χ1(Q− 2δ)− 2δmχ1 (δ − 2Q+ 2Tχ1) + δ2 (Q− 2Tχ1)

+
(
2mN (δ + 2mχ1) 2

(
2Q2m2

N +QmN

(
δ2 + 2m2

V

)
+ δ2m2

V

))
/m4

V

]
.

• Vector-Magnetic Dipole interaction:

|MMD|2 =
[

4(CvN )2mN/(ΛM )2(
2QmN +m2

V

)2
]
×4
[
4mNm

2
χ1

(
−δ2 +Q2−2δQ

)
(B.22)

−δ2mN

(
δ2−2Q2 +4QTχ1

)
−4δmNmχ1

(
δ2−2Q2 +δQ+2QTχ1

)
+δ2Q(δ+2mχ1)2−2Qm2

N

(
δ2 +4mχ1 (δ+Q−2Tχ1)+4QTχ1−4T 2

χ1

)]
.

• Vector-Electric Dipole interaction:

|MED|2 =
[

4(CvN )2mN/(ΛE)2(
2QmN +m2

V

)2
]
×4
[
−δ2mN

(
δ2−2Q2 +4QTχ1

)
−4mNm

2
χ1(δ+Q)2

−4δmNmχ1

(
δ2 +δQ+2QTχ1

)
+δ2Q(δ+2mχ1)2

−2Qm2
N

(
δ2 +4mχ1 (Q−2Tχ1)−4m2

χ1 +4QTχ1−4T 2
χ1

)]
. (B.23)

For scalar DM:

• Combining the vector interaction for SM and Ls1 in eq. (2.4) for scalar DM yields:

|M|2 =
[

4(CvN )2(gχ)2mN(
2QmN +m2

V

)2
]
× 2

[
m2
χ1 (−2δ + 2mN −Q) (B.24)

+mχ1

(
−δ2 − 2QmN + 2Tχ1 (2mN − δ)

)
+ Tχ1

(
2mN (Tχ1 −Q)− δ2

) ]
.

• Combining the vector interaction for SM and Ls2 in eq. (2.5) for scalar DM yields:

|M|2 =
[

4(CvN )2mN/(Λs)4(
2QmN +m2

V

)2
]
× 2Q2m2

N

[
2mN (mχ1 + Tχ1) (mχ1 −Q+ Tχ1)

−m2
χ1(2δ +Q)− δmχ1 (δ + 2Tχ1)− δ2Tχ1

]
. (B.25)

Again, the corresponding differential cross section is

dσχN
dQ

= mN

8πλ(s,m2
χ1 ,m

2
N ) |M|

2. (B.26)
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Figure 12. The 95% C.L. of PandaX-4T for both vDM (red dashed line) and CRDM (black solid
line) in figure 12a. As a comparison, we translate the XENON100 95% limit [59] for vDM (blue
dash-dotted line). We scale vDM limit with a factor 1010 in order to compare it with CRDM in a
same range. The mass splitting and mediator mass are taken as δ = 120 keV and mV = 100 keV.
Figure 12b: the comparison to the previous n-Pb scattering limits [53] in the (mV , CN ) plane. The
purple region is the exclusion of n-Pb scattering experiment while the PandaX-4T CRDM limits
are presented by blue line (1 GeV) and red line (10 MeV). With δ = 1.1×mV , the limits of CRDM
detection are more stringent than the previous n-Pb scattering experiment.

C Supplemental figures

In this section, we compare the new limits derived in this work with previous constraints,
to demonstrate the advantage of CRDM for inelastic DM study.

In figure 12a, we compare the 95% limits between vDM (dashed and dash-dotted)
and CRDM (solid) scheme in (CN , mχ1) plane. Since the recoil energy of underground
detectors can only reach δ ≈ O(100 keV), we fix δ = 120 keV and mV = 100 keV. Although
the vDM limits are generally about 10 orders of magnitudes stronger than CRDM limits,
they cannot probe the region mχ1 . 50 GeV. Reversely, the CRDM limits can explore the
parameter space for DM with a mass less than 50 GeV. We also translate the XENON100
limit from ref. [59] as a comparison. Similar constraints for inelastic vDM scheme can be
found in refs. [60, 61].

In figure 12b, we show the upper limit of CN in a function of mV from n-Pb scattering
(dashed purple) and our PandaX-4T CRDM limits (solid). We set δ = 1.1 × mV as a
demonstration. The most stringent constraint for mV . 100 MeV is derived from n-Pb
scattering [47, 48, 53]. However, the CRDM limits can be still more stringent than the
previous n-Pb scattering experiment, even if taking mχ1 = 1 GeV.
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