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Abstract We consider the effects that modifications to gen-
eral relativity (GR) at high densities may have on the structure
of spherical compact objects. Such effects can be modeled via
semi-classical corrections that are manifest in an additional
effective (i.e. non-physical) term in the energy momentum
tensor. In particular, we consider two kinds of effective cor-
rections that are quadratic in the density: one inspired by
loop quantum gravity (LQG) and one inspired by Einstein–
Cartan Theory (ECT). For both corrections, we consider two
standard toy models of compact objects, one with polytropic
equation of state and the other described by the MIT-bag
model. We show that the LQG-inspired corrections can pro-
duce objects with greater radius and total mass, while the
ECT-inspired corrections produce objects that are smaller
and less massive than their counterparts in GR.

1 Introduction

The description of massive gravitating sources plays a funda-
mental role in general relativity (GR) since Schwarzschild’s
derivation of the constant density interior solution in 1916 [1].
The subsequent works of Tolman [2] and Oppenheimer and
Volkoff [3] paved the way for the study of relativistic stellar
structure (e.g. [4–6]) that led to our modern understanding of
the structure of neutron stars (NSs) (e.g. [7–9]) and the forma-
tion of black holes. By solving the Tolman–Oppenheimer–
Volkoff (TOV) equation we are able to study the properties
of theoretical compact objects depending on choices made
for the equation of state (EoS) describing the matter content
of the object. Such models have proven to be extremely use-
ful in the description of existing astrophysical sources such
as NSs as well as other objects, such as quark stars [10,11],
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hybrid quark stars [12,13], boson stars [14,15], and gravas-
tars [16–18].

The questions regarding the existence and properties of
compact objects are closely related to the behavior of matter
and gravity under extreme conditions: namely high density
and strong curvature. Observations until now have shown
no conclusive proof of the existence of another island of
stability beyond NSs; however, it has been argued that stable
configurations may occur for other matter models beyond
the NS limit, with the quark star model being one of the
candidates [19,20].

As densities increase the issue is made more complicated
by our ignorance regarding the behavior of matter fields under
such extreme conditions and the eventual failure of classical
GR to describe the behavior of gravity at high curvature.
For this reason modifications to GR in the strong curvature
regime have been considered as well, and these may affect
the pressure and density profiles for a given EoS.

Typically, modifications to GR lead to modified ver-
sions of the TOV equation. The literature regarding com-
pact objects in alternative theories of gravity is vast (e.g.
[21–30]). Despite the large variety of models proposed, there
are some common underlying features that appear in almost
every approach. In fact, a good classical limit for any modi-
fied theory of gravity has a critical energy scale (correspond-
ing to a critical density or a critical length) around which
deviations from GR become non-negligible. For example,
the TOV equation in f (R) gravity with f (R) = R + αR2

(where R is the Ricci scalar) has been considered for var-
ious EoS in [31,32], where the authors found that relation
between the mass–radius relation for the modified theory and
the mass–radius relation in pure GR has a turning point about
a characteristic central density, leading to objects of higher
masses and radii at lower central densities. Also, in [33]
the authors considered the TOV equation obtained from a
quantum-improved Einstein theory obtained by allowing for
variations of Newton’s constant at high energies and showed

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-7780-6&domain=pdf
mailto:ayan003@e.ntu.edu.sg
mailto:daniele.malafarina@nu.edu.kz


236 Page 2 of 10 Eur. Phys. J. C (2020) 80 :236

that the corresponding mass–radius relation leads to smaller
and less massive objects.

Modifications coming from other quantum-improved the-
ories, such as loop quantum gravity (LQG) have been shown
to induce quadratic corrections to the density in the strong
field (see [34,35] for an application to cosmology) and mod-
els of gravitational collapse inspired by LQG have been
shown to have repulsive effects that halt collapse and turn
it into a bounce (e.g. [36]).

However, it is important to notice that this model depen-
dent critical scale need not be related to the Planck scale. In
fact, the general belief that the threshold for the appearance of
quantum-gravity effects must be at the Planck scale is based
mostly on geometrical arguments involving G, c and h̄. This
belief may be questioned, due to the lack of experimental
evidence and to the possible existence of other fundamental
scales (e.g. [37]). Then it is possible to argue that deviations
from classical GR may appear at density scales other than
the Planck density. For example, in Einstein–Cartan Theory
of gravity (ECT) [38–43], the relaxation of the assumption
that the space-time be torsion-free leads to a theory of grav-
ity coupled to spin. This naturally resolves the occurrence
of singularities, such as the black hole [44] and big bang
singularities [45]. The critical density arising within ECT
for the simplest spin models is several orders of magnitudes
lower than the Planck density. Compact objects in ECT and in
theories of gravity with torsion have been considered in [46–
50], while rotating fluids with torsion have been investigated
in [51]. More recently Bohmer et al. [52] and independently
Luz and Carloni [53] have studied modifications to the TOV
equation coming from ECT and determined the upper mass
bound for some class of compact objects.

In the present article we consider two classes of semi-
classical modifications to GR and investigate the role that
these modifications may play in producing measurable
effects in astrophysical compact objects. In particular, we
focus on semi-classical corrections that arise naturally in
LQG-inspired and ECT-inspired models and induce correc-
tions that are quadratic in the density. We implement such
modifications into two well known toy models for compact
objects: A polytropic fluid model describing a NS and a MIT-
bag model [54] describing an hypothetical quark star. By
obtaining the mass–radius relation, we investigate the range
of critical densities at which such effects may be detected via
observations and how they may alter the size and mass of the
compact objects.

The paper is organized as follows: In Sect. 2 we review
the classical setup for the interior of compact objects in GR
and introduce the semi-classical corrections that lead to the
modified TOV equation. Section 3 will present the mass–
radius relations for some simple toy models for NSs and
compare them with the corresponding mass–radius relations
obtained in the classical setup (the corresponding results for

quark stars are presented in Appendix A). Finally Sect. 4 is
devoted to a brief discussion of the possible implications of
the results for models of astrophysical compact objects.

All the results presented in this work can be reproduced
by running the Python notebook file available publicly at
github.com/AyanNB/TOVSolver_py/.

2 Compact objects with effective corrections

The metric for a static, spherically symmetric gravitating
object can be written in diagonal form as

ds2 = −e2Φ(r)c2dt2 + dr2

1 − 2Gm(r)
c2r

+ r2dΩ2, (1)

where Φ(r) and m(r) need to be determined from Einstein’s
equations and dΩ2 is the usual line element on the unit two-
sphere. Considering the matter source to be of the form of
a perfect fluid Tμν = (ρ + p/c2)uμuν + pgμν , with uμ

the four-velocity of the fluid, ρ(r)c2 the total energy density
and p(r) the isotropic pressure, Einstein’s equations take the
form

dΦ

dr
= m + 4πr3 p/c2

r(r − 2Gm/c2)
, (2)

dp

dr
= −G(ρ + p/c2)

dΦ

dr
, (3)

dm

dr
= 4πr2ρ, (4)

where Eqs. (2) and (3) can be combined in the TOV equation

dp

dr
= −G(ρ + p)

m + 4πr3 p/c2

r(r − 2Gm/c2)
. (5)

The total density can be expressed as

ρ = ρ̃
(

1 + ε

c2

)
, (6)

where ρ̃ is rest mass density and ε is the internal energy
density which can be obtained from the first law of thermo-
dynamics for an adiabatic process as

dε

dρ̃
= p

ρ̃2 . (7)

The internal energy density typically amounts to a few per-
cent of the total energy density of the system and it is not
affected by modifications at high densities. Since we are
interested in a qualitative estimate of the effects of strong
gravity on compact objects, for simplicity in the following
we will focus on the total density of the system ρ. The system
is closed once an Equation of State (EoS)

p = f (ρ), (8)

relating the pressure to the density is provided. The pressure
profile p(r) is then obtained from the integration of Eq. (5)
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with the integration constant fixed by the value of the central
pressure p0 = p(0), as obtained from the central density
ρ(0) = ρ0 via p0 = f (ρ0). The central value for Eq. (4) is
naturally chosen as m(0) = 0. The boundary of the compact
object Rb is given by the condition p(Rb) = 0 and the total
mass of the object M can be obtained from Eq. (4) as

M = 4π

∫ Rb

0
r2ρ(r)dr. (9)

This, in turn, implies for the boundary condition for Eq. (2)
e2Φ(Rb) = 1 − 2GM/(c2Rb), which matches to an exterior
Schwarzschild geometry with mass parameter M .

Assuming that departures from GR will appear at some
critical energy scale we may consider an effective theory in
which Einstein’s equations are replaced by

Gμν + 〈Gμν〉 = 8πκTμν, (10)

where κ = G/c4, and the term 〈Gμν〉, describing the mod-
ifications that the effective theory entails for the geometry,
becomes negligible at low curvatures. Then we can take the
corrections to the geometry due to the effective theory to the
right-hand-side of Eq. (10) and define an effective energy
momentum tensor from 8πκT eff

μν = 8πκTμν − 〈Gμν〉 and
write

Gμν = 8πκT eff
μν . (11)

In this manner the problem becomes equivalent to solving
the classical set of Einstein’s field equations for an effective
(i.e. non-physical) matter source which encompasses both the
physical matter and the geometric modifications. The choice
of 〈Gμν〉 (and therefore of the effective energy momentum
tensor) depends on the specific model for the modifications
to GR that one wishes to consider. In the following we will
study two simple approaches that are inspired by two effec-
tive theories of gravity, namely LQG and ECT. However, one
may consider semi-classical corrections per se without any
reference to the original alternative theory.

The procedure then is the following: We use the effec-
tive energy momentum tensor to write the TOV equation for
the non-physical effective matter source. We shall call this
equation the effective Tolman Oppenheimer Volkoff (eTOV)
equation. This equation is formally identical to the original
TOV equation with effective quantities in place of the physi-
cal ones. For a given value of the central density ρ0 we find the
corresponding value of the effective central density ρeff

0 . The
integration of the eTOV equation yields the effective pres-
sure profile peff(r) which is then used to find the boundary
radius from peff(Rb) = 0. The total mass of the object is then
obtained from the integration of the classical (not effective)
Eq. (4), between zero and Rb. The obtained model can then
be compared with the corresponding classical one, obtained
from the integration of the classical TOV equation with the
same central density.

LQG-inspired corrections

The simplest effective correction that can be considered is a
quadratic negative term to be added to the rest mass density.
This can be written as

ρeff = ρ

(
1 − ρ

ρcr

)
, (12)

whereρcr is a constant depending on the energy scale at which
the modifications become important and for convenience now
ρ denotes the rest mass energy density. This type of correction
originated in the context of loop quantum cosmology [55]
and has been considered also in LQG-inspired models for
collapse. In the case of LQG the critical density ρcr must
be of the order of the Planck density (namely around ρPl �
1093 g/cm3). However, for a generic quadratic correction,
the value of ρcr describes merely the scale at which repulsive
effects become important and so in principle it can take values
lower than the Planck density (see for example [56] where
the observed amplitude for scalar perturbations suggests a
critical density of the order of 10−9ρPl).

The effective pressure can be obtained via an EoS formally
identical to Eq. (8) as

peff = f (ρeff). (13)

Note that the eTOV equation obtained in this manner is iden-
tical to the classical TOV equation with effective density
and pressure in place of their classical counterparts. How-
ever, differences in the object’s structure do appear, and they
do manifest in the mass–radius relation. The reason is that,
for calculating the object’s mass in the semi-classical case,
one has to use Eq. (9) with the physical density ρ while the
boundary radius Rb is obtained from integration of the effec-
tive eTOV equation.

ECT-inspired corrections

A similar approach can be constructed within a theory of
gravity with torsion such as ECT. Here we shall follow a
simple procedure to relate the spin-density of the fluid to the
torsion contribution to the gravitational field (see [38–43] for
details). We will assume that the spin properties of the fluid
can be described by an antisymmetric tensor sμν which is
related to the torsion tλμν = (Γ λ

μν − Γ λ
νμ)/2 via

tλμν = 8πκuλsμν, (14)

where uλ is the four-velocity of the fluid. Then the spin-
density is simply defined as

s2 = 1

2
sμνs

μν. (15)

Notice that in the torsion-free case the affine connection Γ λ
μν

is symmetric and thus tλμν and s2 vanish. A model for collapse
with repulsion originating from torsion effects due to fermion
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interaction was studied in [57]. In the case of ECT-inspired
compact objects, in order to close the system of Einstein’s
equations, one needs to specify an EoS together with a pre-
scription for the spin-density s2 for the fluid’s particles. Here
we will follow the most common approach to matter fluids
with spin for which the spin-density can be obtained from a
characterization of the fermion gas [45]. Then the effective
density and pressure take the form

ρeff = ρ − 8πκs2, (16)

peff = p − 8πκc2s2. (17)

Note that in order for the effective pressure to vanish at the
surface of the object the spin-density should also vanish. Dif-
ferent choices of s2 are possible (e.g. [52]). Here we shall
consider the simple case of an ideal gas with no spin polar-
ization for which the spin-density s2 takes the form

s2 = h̄2

8
〈n2〉, (18)

where h̄ is the reduced Planck constant and n is the particle
density of the fluid. Then the simplest model for the spin-
density is obtained for s2 � ρ2 [58] and we can rewrite
Eqs. (16) and (17) as

ρeff = ρ − ρ2

ρcr
, (19)

peff = p − ρ2

ρcr
c2, (20)

where the classical density and pressure are related via the
EoS and the critical density ρcr is model dependent.

3 Polytropic equation of state

We now apply the above formalism to a simple toy model
describing a NS with polytropic equation of state of the kind

p = kργ . (21)

The aim is to characterize how effective corrections affect a
polytropic compact object. The value chosen for k is 7.454×
10−3 (with appropriate units in the cgs system depending on
the value of γ ). Then for γ = 2.5 we obtain a maximum
NS mass of value of the order of 2.1M�, which is consistent
with observations [59,60].

LQG-inspired corrections

In order to qualitatively understand the effect of introduc-
ing LQG-inspired corrections, we first look at the case with
γ = 2. In this case, the equations simplify and we can obtain
analytic estimates. By combining Eqs. (12) and (21), we can
write the effective pressure as a function of the classical pres-
sure as

Rb [km]

M
M

Fig. 1 Mass–radius relation for compact objects with LQG-inspired
corrections and polytropic EoS with γ = 2.5 and k = 7.454×10−3 (in
cgs units). The solid curve (1) shows the purely relativistic case. The
dashed curve (2) is obtained for ρcr = 1017 g/cm3, the dotted curve
(3) is obtained for ρcr = 4 × 1016 g/cm3, the dash-dotted curve (4) is
obtained for ρcr = 1.5 × 1016 g/cm3. See Table 1 for details

r [km]

p
p0

Fig. 2 Pressure profile for compact objects with LQG-inspired cor-
rections and polytropic equation of state with k = 7.454 × 10−3 and
γ = 2.5. The central density is chosen as ρ0 = 1.65 × 1015 g/cm3 and
critical densities are the same as in Fig. 1. See Table 1 for details

peff = p

(
1 − 2

√
p√

kρcr
+ p

kρ2
cr

)
. (22)

When p ≥ 4k/ρ2
cr, the effective pressure is greater than the

classical pressure, which leads to a larger boundary radius,
and therefore a more massive compact object (for a fixed
central density). Other values of γ exhibit a similar behavior,
as seen in Fig. 1 and in Fig. 2 for γ = 2.5. Figure 1 shows
the comparison between the mass–radius relation for NSs
with polytropic EoS (21) and the mass–radius relation for the
corresponding NSs once semi-classical corrections given by
Eqs. (12) and (13) are included with different values of ρcr.
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Table 1 The masses and radii of the compact objects with polytropic
EoS and central density 1.65 × 1015 g/cm3 for different values of γ

in the LQG-inspired gravity. The case with γ = 2.5 is illustrated in
Fig. 2. Masses are in units of solar masses, radii are in km, densities are
in g/cm3

ρcr 1 2 3 4
∞ 1017 4 × 1016 1.5 × 1016

γ = 2 M = 1.331 M = 1.336 Rb = 11.077 M = 1.356

Rb = 10.974 Rb = 11.013 Rb = 11.077 Rb = 11.263

γ = 2.25 M = 1.743 M = 1.750 M = 1.761 M = 1.786

Rb = 11.080 Rb = 11.119 Rb = 11.182 Rb = 11.368

γ = 2.5 M = 2.118 M = 2.130 M = 2.149 M = 2.195

Rb = 11.250 Rb = 11.292 Rb = 11.358 Rb = 11.554

γ = 2.75 M = 2.410 M = 2.429 M = 2.456 M = 2.528

Rb = 11.394 Rb = 11.434 Rb = 11.502 Rb = 11.704

If the critical density is set at Planck scale, namely ρcr =
ρpl � 5×1093 g/cm3, then semi-classical corrections to NSs
are bound to be negligible. As expected, the critical density
at which repulsive corrections start to become significant is
only slightly higher than the NS density. We see that, for
ρcr � 1.5 × 1016 g/cm3, the mass–radius curve is distin-
guished from the classical case, giving an � 300 m increase
in the radius of a 2.1M�-mass NS. This amounts to ∼ 3% dif-
ference, which, however, is too small to be measurable with
current techniques (e.g. [61]). For ρcr � 4×1016 g/cm3 and
higher, the influence of semi-classical corrections become
< 1%, which is practically negligible.

Figure 2 shows the pressure profiles for γ = 2.5 for a
NS model with the classical central density of ρ0 = 1.65 ×
1015 g/cm3. The increase in the boundary radius corresponds
to a higher total mass by, e.g., ∼ 3% for the case with ρcr �
1.5 × 1016 g/cm3).

For completeness, we investigated the robustness of the
above conclusions against different values of γ in the EoS.
In these models, the value of k is chosen in such a way that
a given central density corresponds to the same central pres-
sure. We observe that the variations in the total mass and
boundary radius for the NS are more significant for larger
values of γ , as can be gleaned from Table 1. In all cases con-
sidered, we find that the qualitative behavior shown in Fig. 1
does not change.

ECT-inspired corrections

Similarly to the previous case, the effects of ECT-inspired
corrections can be estimated by writing the effective pressure
in terms of the classical pressure by combining Eqs. (20) and
(21). In this case, for γ = 2.5, we obtain

peff = p

(
1 − 1

k
√

ρρcr

)
= p

(
1 − 1

k4/5 p1/5ρcr

)
(23)

Rb [km]

M
M

Fig. 3 Mass–radius relation for compact objects with ECT-inspired
corrections and polytropic equation of state with k = 7.454 × 10−3

and γ = 2.5. The solid curve (1) shows the purely relativistic case. The
dashed curve (2) is obtained for ρcr = 8×1017g/cm3, the dotted curve
(3) is obtained for ρcr = 4 × 1017g/cm3, the dash-dotted curve (4) is
obtained for ρcr = 2 × 1017g/cm3. See Table 2 for details

which is always smaller than the classical pressure. This
implies that, for ECT-inspired modifications, the boundary
radius and the total mass of the compact object will always
be smaller than their classical counterparts. We also see that
the difference between the effective model and the classical
model becomes smaller for larger densities. This behavior
occurs for γ > 2, as can be seen from the fact that, for
γ = 2, the above equation becomes peff = p − p/(kρcr),
which is linear in p (i.e. it does not depend on ρ).

In Fig. 3, we show the mass–radius relation for NSs
with polytropic EoS and ECT-inspired corrections given by
Eqs. (19) and (20) with γ = 2.5 and different values of
the critical density. Again, as expected, in the case where
the critical density is set at natural spin-density for neutrons,
namely ρcr � 5 × 1054 g/cm3, then ECT corrections to NSs
are negligible. As in the previous case, the critical density
at which repulsive corrections start to become significant is
slightly higher than the NS density, namely of the order of
ρcr � 1017 g/cm3 (see Table 2 for details).

Interestingly, in this case, the torsion-induced repulsive
effects to the polytropic EoS model do not affect the maxi-
mum mass that can be achieved by NSs, which is determined
by the values of k and γ , with effective corrections playing
a negligible role. As a consequence, in contrast with what
happens in the LQG-inspired case, for ECT-inspired correc-
tions we see that significant deviations from the classical
case in the mass–radius relation occur only for low central
densities. In fact, as can be seen from Eq. (23), effective
corrections become smaller at larger densities in this case.
Therefore, changes in the boundary radius of the object are
more significant for NSs with central density of the order of
� 5 × 1014 g/cm3 than those with higher values.
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Table 2 Comparison of the radii of ECT-inspired compact objects with
polytropic EoS and central density ρ0 = 6.5×1014 g/cm3 for different
values of the polytropic index. The case of γ = 2.5 is illustrated in
Fig. 4. Masses are in units of solar masses, radii are in km, densities are
in g/cm3

ρcr 1 2 3 4
∞ 8 × 1017 4 × 1017 2 × 1017

γ = 2 M = 0.946 M = 0.958 M = 0.952 M = 0.945

Rb = 13.200 Rb = 13.210 Rb = 13.180 Rb = 13.135

γ = 2.25 M = 1.191 M = 1.182 M = 1.173 M = 1.155

Rb = 13.146 Rb = 13.099 Rb = 13.056 Rb = 12.966

γ = 2.5 M = 1.489 M = 1.482 M = 1.474 M = 1.459

Rb = 13.425 Rb = 13.386 Rb = 13.350 Rb = 13.276

γ = 2.75 M = 1.830 M = 1.825 M = 1.819 M = 1.808

Rb = 13.840 Rb = 13.801 Rb = 13.773 Rb = 13.719

r [km]

p
p0

Fig. 4 Pressure profile for compact objects with ECT-inspired cor-
rections and polytropic equation of state with k = 7.454 × 10−3,
γ = 2.5. All models have the same classical central density ρ0 =
6.5 × 1014g/cm3. See Table 2 for details

Figure 4 shows the pressure profiles for this model for
a classical central density of ρ0 = 6.5 × 1014 g/cm3. The
boundary radius changes by roughly 1% with the introduction
of ECT-inspired corrections with ρcr = 2 × 1017 g/cm3 and
variations of the total mass are comparable, as can be seen in
Table 2. For robustness we have checked the above result for
different values of γ > 2, again choosing k in such a way that
in each case with a given central density would correspond to
the same central pressure. We see that the qualitative behavior
shown in Fig. 3 does not depend on the value of γ > 2, as
can also be seen in Table 2.

It is worth noticing that since in the LQG-inspired case
repulsive effects produce NSs with larger boundary radius,
while in the ECT-inspired model we always obtain a smaller
boundary radius, it could be possible to distinguish the two
types of modifications, at least in principle.

Finally, we studied the effect of LQG- and ECT-inspired
correction on quark stars using MIT-bag model EOS and we
find qualitatively similar corrections. See Appendix A for a
detailed discussion.

4 Discussion

In the present article we studied how semi-classical correc-
tions to general relativity (GR) may alter the mass–radius
relations of toy models describing neutron stars and quark
stars. We considered two kinds of modifications that give
negative quadratic corrections to the density, one inspired
by LQG and the other inspired by Einstein–Cartan Theory
(ECT), and allowed for the critical densities to take any value
above the object’s central density.

We have shown that these modifications to Einstein’s
equations bear different consequences for the structure of
compact objects. In fact, LQG- and ECT-inspired modifica-
tions induce opposite changes in the mass–radius relations:
LQG-inspired correction are more significant at high central
densities and induce larger boundary radii for the objects.
ECT-inspired corrections are more significant at low central
densities and induce smaller boundary radii.

It must be noted that this is a qualitative study and there
are other effects that do influence the maximum mass and
boundary radius achievable by a compact object with a given
EoS. The most important one is, of course, rotation (e.g. [62–
64]), which can account for an increase of the maximum mass
of up to 25% in the case of uniform rotation (see [65] for a
recent review of rotating compact stars).

One of the most interesting issues of the current ongoing
discussion on the limits of GR concerns the possible obser-
vational effects that modifications to the theory may bear
on astrophysical phenomena. Is it possible to experimentally
detect a signature of the departure from classical GR? And
is it possible to use such signature to validate or invalidate
different alternative approaches to gravity? While until some
years ago the answer to both questions was in the negative, in
recent times the possibility to test the regime where the rela-
tivistic description may fail has come within our experimen-
tal reach. This is thanks to the observation of gravitational
waves from binary mergers [66–69] by the LIGO collabora-
tion and the ’image’ of a supermassive black hole candidate
by the Event Horizon Telescope collaboration [70]. In partic-
ular, the observation of neutron stars mergers is already pro-
viding data on the nature and properties of compact objects
[71–73]. For example, in [74–76] constraints on the neutron
star EoS were obtained from the observational data while
in [77–79] the observed merger was used to constrain the
validity of alternative theories of gravity. In [80] the data
was used to investigate the role played by vacuum energy at
the core of neutron stars, in order to test the properties of
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vacuum energy independently from the expansion rate of the
universe. Similarly in [81] the authors investigated the role
played by the presence of the cosmological constant at the
core of compact objects.

At present there is great interest in the theoretical possi-
bility of finding departures from classical GR in some astro-
physical phenomena. The idea that deviations from the clas-
sical theory may be observable in the vicinity of compact
objects has been suggested in [82]. In [83] it was shown that
gravitational waves detected by LIGO may carry information
as regards exotic compact objects. Also, the idea that such
effects may be observable at ordinary energy scales and more
in general the idea that repulsive effects may appear at high
densities have been suggested (e.g. [84]), while the idea that
torsion effects may be observable at ordinary energy scales
(like solar system tests of gravity) was investigated in [85].

Here we have shown that it is possible for certain kinds
of modifications to GR, occurring at low enough densities,
to have observable consequences on the mass and radii of
compact objects. Similar results have been found in other
approaches such as in f (R) gravity (see [31,32]) and in
asymptotic safe gravity (see [33]). However, each approach
bears its own unique features that, in principle, could be
tested by future astrophysical observations. For example,
in [31,32] the authors found that for several choices of the
EoS the mass–radius relation obtained in f (R) gravity with
f (R) = R + αR2 leads to an increase of the total mass
for low central densities and to a decrease of the total mass
for high central densities with respect to the GR case. This
modification of the mass–radius relation with respect to the
pure GR scenario is different from the one obtained here,
suggesting that the two approaches can be distinguished. At
present, given our ignorance of the EoS for realistic neutron
stars and quark stars, it is not possible to determine which
approach, if any, is more viable. However, we have seen that
the effects of the modifications to GR depend both on the
modified theory and on the EoS and are therefore distin-
guishable, at least in principle. In the newly opened era of
multi-messenger astronomy, it is reasonable to expect that
future measurements of the masses and radii of neutron stars
will determine more accurately the valid range of equations
of state and thus constrain the allowed models and values for
modifications to appear.
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Appendix A: MIT-bag equation of state

We consider here a simple toy model for matter constituting
a strange quark star as given by the MIT-bag model. The
EoS, with the simplifying assumption of neglecting the quark
mass, takes the form

p = ρc2 − 4B

3
, (A.1)

where typically the bag constant B ranges between 58.926
and 91.5 MeV/fm3 (see [86] for details). While this is an
idealized model, the aim here is to study the effect of mod-
ifications to GR, which are expected to have qualitatively
similar impact in more sophisticated models. As we will see
below, when considering semi-classical corrections, larger
values of B imply smaller departures from the classical case.
Therefore in the following, in order to bring out the effects
of the semi-classical corrections, we shall use a lower bound
conservative assumption for the bag constant taking the value
B = 50 MeV/fm3 [87] and investigate the effects of repul-
sive corrections on the mass–radius relation of quark stars.

LQG-inspired corrections

In Fig. 5 we show the mass–radius relation for quark stars
with MIT-bag EoS and LQG-inspired corrections given by
Eq. (12) with different values of the critical density. We see
that the presence of repulsive effects in the bag model allows
for the maximum mass of the quark star to be higher than the
corresponding classical case. This is somewhat similar to the
repulsive effects obtained by adding a distribution of electric
charge to the quark star (e.g. [88]). For a critical density of
the order of ρcr � 1016 g/cm3, the maximum allowed mass
for the quark star can be � 5% larger than the corresponding
classical case.

Figure 6 shows the comparison of the pressure profiles
for this model for different choices of the critical density.
We take the same value of the classical central density as
ρ0 = 1.65 × 1015 g/cm3 and for different values of ρcr

we obtain objects with different size and total mass. Then
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Rb [km]

M
M

Fig. 5 Mass–radius relation for compact objects with LQG-inspired
corrections and MIT-bag equation of state B = 50 MeV/fm3. The
solid curve (1) shows the purely relativistic case. The dashed curve
(2) is obtained for ρcr = 1017 g/cm3, the dotted curve (3) is obtained
for ρcr = 4 × 1016 g/cm3, the dash-dotted curve (4) is obtained for
ρcr = 1.5 × 1016 g/cm3

r [km]

p
p0

Fig. 6 Pressure profile for compact objects with LQG-inspired cor-
rections and MIT-bag EoS B = 50 MeV/fm3. The comparison is
done for models that have the same classical central density ρ0 =
1.65 × 1015 g/cm3. See Table 3 for details

Table 3 Comparison of the radii of the LQG-inspired compact objects
with MIT-bag model EoS and central density ρ0 = 1.65 × 1015 g/cm3

for different values of the bag constant B in units MeV/fm3. Masses
are in units of solar masses, radii are in km, densities are in g/cm3

ρcr 1 2 3 4
∞ 1017 4 × 1016 1.5 × 1016

B = 50 M = 2.151 M = 2.166 M = 2.1905 M = 2.255

Rb = 11.782 Rb = 11.802 Rb = 11.833 Rb = 11.919

B = 60 M = 1.963 M = 1.976 M = 1.996 M = 2.050

Rb = 11.005 Rb = 11.020 Rb = 11.044 Rb = 11.107

B = 75 M = 1.691 M = 1.700 M = 1.714 M = 1.749

Rb = 9.941 Rb = 9.949 Rb = 9.959 Rb = 9.983

Rb [km]

M
M

Fig. 7 Mass–radius relation for compact objects with ECT-inspired
corrections and MIT-bag equation of state B = 50 MeV/fm3. The
solid curve (1) shows the purely relativistic case. The dashed curve (2)
is obtained for ρcr = 5 × 1017 g/cm3, the dotted curve (3) is obtained
for ρcr = 2.5 × 1017 g/cm3, the dash-dotted curve (4) is obtained for
ρcr = 1017 g/cm3

Table 4 Comparison of the radii of ECT-inspired compact objects with
MIT-bag model EoS and central density ρ0 = 6.5 × 1014 g/cm3 for
different values of the bag constant B in units MeV/fm3. Masses are in
units of solar masses, radii are in km, densities are in g/cm3

ρcr 1 2 3 4
∞ 5 × 1017 2.5 × 1017 1017

B = 50 M = 1.592 M = 1.583 M = 1.574 M = 1.545

Rb = 11.887 Rb = 11.860 Rb = 11.832 Rb = 11.743

B = 60 M = 1.168 M = 1.157 M = 1.146 M = 1.112

Rb = 10.351 Rb = 10.314 Rb = 10.276 Rb = 10.159

B = 75 M = 0.492 M = 0.4805 M = 0.467 M = 0.430

Rb = 7.394 Rb = 7.328 Rb = 7.259 Rb = 7.049

a critical density of the order of ρcr = 1.5 × 1016 g/cm3

produces an increase of roughly 1% in the radius of the object
while the mass increases by roughly 5% (see Table 3).

The robustness of the result can be checked by choosing
different values of the bag constant B of 60 and 70 MeV/fm3.
We see from Table 3 that the qualitative behavior presented
in Fig. 5 does not change for these values of B. The values of
the NS mass and radius summarized in Table 3 are consistent
with this behavior.

ECT-inspired corrections

Similarly to the LQG-inspired case, the introduction of ECT-
inspired effects to the mass–radius relation for a quark star
with MIT-bag EoS may alter the maximum allowed mass for
the compact objects. However, similarly to what was found
in the polytropic case, the maximum allowed mass for a com-
pact object with ECT-inspired corrections becomes lower
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r [km]

p
p0

Fig. 8 Pressure profile for compact objects with ECT-inspired correc-
tions and MIT-bag equation of state B = 50 MeV/fm3. The compar-
ison is done for models that have the same classical central density
ρ0 = 6.5 × 1014 g/cm3. See Table 4 for details

with respect to the purely classical case. This is again due
to the fact that the effective pressure takes the form given in
Eq. (20).

In Fig. 7 we show the mass–radius relation for quark stars
with MIT-bag model EoS and ECT-inspired corrections given
by Eqs. (19) and (20) with different values of the critical
density. Critical densities ρcr of � 1017 g/cm3 are enough to
induce changes of ∼ 3% in the mass and ∼ 1% in the radius
of the object (see Table 4 for details; Fig. 8).

Again, the qualitative behavior described in Fig. 7 above
is not altered by changing the value of the bag constant and
the comparison of models with different values of B is given
in Table 4.

References

1. K. Schwarzschild, Sitzungsberichte der Kniglich-Preussischen
Akademie der Wissenschaften 424, (1916)

2. R.C. Tolman, Phys. Rev. 55, 364 (1939)
3. J.R. Oppenheimer, G. Volkoff, Phys. Rev. 55, 374 (1939)
4. S. Chandrasekhar, An Introduction to the Study of Stellar Structure

(Dover books, New York, 1967)
5. R.F. Tooper, Astrophys. J. 140, 434 (1964)
6. R.F. Tooper, Astrophys. J. 142, 1541 (1965)
7. J.M. Lattimer, M. Prakash, Phys. Rept. 621, 127 (2016)
8. J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)
9. J. Nättilä, M.C. Miller, A.W. Steiner et al., Astron. Astrophys. 608,

A31 (2017)
10. N. Itoh, Prog. Theor. Phys. 44, 291 (1970)
11. E. Witten, Phys. Rev. D 30, 272 (1984)
12. M. Alford, A. Sedrakian, Phys. Rev. Lett. 119, 161104 (2017)
13. V. Paschalidis, K. Yagi, D. Alvarez-Castillo, D.B. Blaschke, A.

Sedrakian, Phys. Rev. D 97, 084038 (2018)
14. R. Ruffini, S. Bonazzola, Phys. Rev. 187, 1767 (1969)
15. F.E. Schunck, E.W. Mielke, Class. Quantum Gravity 20, R301

(2003)
16. P.O. Mazur, E. Mottola. arXiv:gr-qc/0109035

17. P.O. Mazur, E. Mottola, Proc. Nat. Acad. Sci. 101, 9545 (2004)
18. C.B.M.H. Chirenti, L. Rezzolla, Class. Quantum Gravity 24, 4191

(2007)
19. F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005)
20. A. Sedrakian, EPJ Web Conf. 164, 01009 (2017)
21. S. Capozziello, M. De Laurentis, Phys. Rept. 509, 167 (2011)
22. P. Pani, E. Berti, V. Cardoso, J. Read, Phys. Rev. D 84, 104035

(2011)
23. P. Pani et al., Phys. Rev. Lett. 107, 031101 (2011)
24. J. Greenwald et al., Phys. Rev. D 81, 084046 (2010)
25. C. Eling et al., Phys. Rev. D 76, 042003 (2007) [Erratum: Phys.

Rev. D 80, 129906 (2009)]
26. A. Cooney et al., Phys. Rev. D 82, 064033 (2010)
27. S. Capozziello et al., Phys. Rev. D 83, 064004 (2011)
28. A.V. Astashenok, S. Capozziello, S.D. Odintsov, JCAP 01, 001

(2015)
29. K. Glampedakis, G. Pappas, H.O. Silva, E. Berti, Phys. Rev. D 92,

024056 (2015)
30. K. Glampedakis, G. Pappas, H.O. Silva, E. Berti, Phys. Rev. D 94,

044030 (2016)
31. R. Farinelli, M. De Laurentis, S. Capozziello, S.D. Odintsov,

MNRAS 440, 2909 (2014)
32. S. Capozziello, M. De Laurentis, R. Farinelli, S.D. Odintsov, Phys.

Rev. D 93, 023501 (2016)
33. A. Bonanno, R. Casadio, A. Platania, JCAP 2020(01), 022 (2020)
34. A. Ashtekar, B. Gupt, Class. Quantum Gravity 34, 014002 (2017)
35. M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001)
36. C. Bambi, D. Malafarina, L. Modesto, Phys. Rev. D 88, 044009

(2014)
37. P. Zenczykowski, Found. Sci. 24, 287 (2018)
38. F.W. Hehl, Gen. Rel. Gravity 4, 333 (1973)
39. F.W. Hehl, Gen. Rel. Gravity 5, 491 (1974)
40. F.W. Hehl, P. von der Heyde, D.G. Kerlick, J.M. Nester, Rev. Mod.

Phys. 48, 393 (1976)
41. R.T. Hammond, Rep. Prog. Phys. 65, 599 (2002)
42. I.L. Shapiro, Phys. Rept. 357, 113 (2002)
43. A. Trautman, Encyclopedia of Mathematical Physics, ed. by J.-P.

Francoise, G.L. Naber, S.T. Tsou, vol. 2, no. 189 (Elsevier, Oxford,
2006)

44. A. Trautman, Nat. Phys. Sci. 242, 7 (1973)
45. M. Gasperini, Phys. Rev. Lett. 56, 2873 (1986)
46. A.R. Prasanna, Phys. Rev. D 11, 2076 (1975)
47. Y.B. Suh, Prog. Theor. Phys. 59, 1852 (1978)
48. M. Demianski, M. Proszynski, Astrophys. Space Sci. 53, 173

(1978)
49. T. Boyadjiev, P. Fiziev, S. Yazadjiev, Class. Quantum Gravity 16,

2359 (1999)
50. C.G. Boehmer, A. Mussa, N. Tamanini, Class. Quantum Gravity

28, 245020 (2011)
51. Y.N. Obukhov, V.A. Korotky, Class. Quantum Gravty 4, 1633

(1987)
52. C.G. Bohmer, P. Burikham, T. Harko, M.J. Lake, Eur. Phys. J. C

78, 253 (2018)
53. P. Luz, S. Carloni, Phys. Rev. D 100, 084037 (2019)
54. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf,

Phys. Rev. D 9, 3471 (1974)
55. A. Ashtekar, P. Singh, Class. Quantum Gravity 28, 213001 (2011)
56. E. Wilson-Ewing, JCAP 03, 026 (2013)
57. C. Bambi, D. Malafarina, A. Marcianó, L. Modesto, Phys. Lett. B

734, 27 (2014)
58. M. Szydlowski, A. Krawiec, Phys. Rev. D 70, 043510 (2004)
59. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T.

Hessels, Nature 467, 1081 (2010)
60. J. Antoniadis, P.C.C. Freire, N. Wex et al., Science 340, 448 (2013)
61. A.L. Watts, N. Andersson, D. Chakrabarty et al., Rev. Mod. Phys.

88, 021001 (2016)

123

http://arxiv.org/abs/gr-qc/0109035


236 Page 10 of 10 Eur. Phys. J. C (2020) 80 :236

62. D.G. Kerlick, Astrophys. J. 185, 631 (1973)
63. J.L. Friedman, J.R. Ipser, Astrophys. J. 314, 594 (1987)
64. I.A. Morrison, T.W. Baumgarte, S.L. Shapiro, Astrophys. J. 610,

941 (2004)
65. V. Paschalidis, N. Stergioulas, Living Rev. Relativ. 20, 7 (2017)
66. B.P. Abbot et al., Phys. Rev. Lett. 116, 061102 (2016)
67. B.P. Abbot et al., Phys. Rev. Lett. 116, 241103 (2016)
68. B.P. Abbot et al., Phys. Rev. Lett. 118, 221101 (2017)
69. B.P. Abbot et al., Phys. Rev. Lett. 119, 141101 (2017)
70. K. Akiyama et al., Astrophys. J. Lett. 875, L1 (2019)
71. B.P. Abbot et al., Phys. Rev. Lett. 119, 161101 (2017)
72. L.R. Weih, E.R. Most, L. Rezzolla, Astrophys. J. 881, 73 (2019)
73. A. Bauswein, et al., AIP Conference Proceedings, vol. 2127, p.

020013 (2019)
74. D. Radice, A. Perego, F. Zappa, S. Bernuzzi, Astrophys. J. Lett.

852, L29 (2018)
75. E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Phys. Rev. Lett.

120, 172703 (2018)
76. K. Takami, L. Rezzolla, L. Baiotti, J. Phys. Conf. Ser. 600, 012056

(2015)

77. L. Sagunski et al., Phys. Rev. D 97, 064016 (2018)
78. J. Sakstein, B. Jain, Phys. Rev. Lett. 119, 251303 (2017)
79. S. Boran, S. Desai, E.O. Kahya, R.P. Woodard, Phys. Rev. D 97,

041501 (2018)
80. C. Csàki et al., JHEP 2018, 87 (2018)
81. N.K. Largani, D.E. Alvarez-Castillo, Proceedings of The XXII

International Scientific Conference of Young Scientists and Spe-
cialists (AYSS-2018) (Dubna, 2018) (April 23–27 )

82. P. Wang, H. Yang, X. Zhang, Phys. Lett. B 718, 265 (2012)
83. V. Cardoso, S. Hopper, C.F.B. Macedo, C. Palenzuela, P. Pani,

Phys. Rev. D 94, 084031 (2016)
84. J. Hansson, S. Francois, Int. J. Mod. Phys. D 26, 1743003 (2017)
85. Y. Mao, M. Tegmark, A.H. Guth, S. Cabi, Phys. Rev. D 76, 104029

(2007)
86. N. Stergioulas, Living Rev. Relativ. 6, 3 (2003)
87. T. Overgard, E. Ostgaard, Astron. Astrophys. 243, 412 (1991)
88. J.D.V. Arbañil, M. Malheiro, Phys. Rev. D 92, 084009 (2015)

123


	Note on the mass–radius relations for spherical compact objects  in general relativity with semi-classical corrections
	Abstract 
	1 Introduction
	2 Compact objects with effective corrections
	3 Polytropic equation of state
	4 Discussion
	Acknowledgements
	Appendix A: MIT-bag equation of state
	References




