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Understanding the systematic differences in extractions of the proton
electric form factors at low Q2
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Systematic differences exist between values of the proton’s electric form factors in the low-Q2 region extracted
by different experimental and theoretical groups, though they are all making use of basically the same electron-
proton scattering data. To try to understand the source of these differences, we make use of the analytically well-
behaved rational (N = 1, M = 1) function, a predictive function that can be reasonably used for extrapolations
at Q2 → 0. First, we test how well this deceptively simple two-parameter function describes the extremely
complex and state-of-the-art dispersively improved chiral effective field theory calculations. Second, we carry
out a complete re-analysis of the 34 sets of electron-proton elastic scattering cross-section data of the Mainz A1
Collaboration with its unconstrained 31 normalization parameters up to Q2 = 0.5 (GeV/c)2. We find that subtle
shifts in the normalization parameters can result in relatively large changes in the extracted physical qualities. In
conclusion, we show that by simply using a well-behaved analytic function, the apparent discrepancy between
recent form-factor extractions can be resolved.
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I. INTRODUCTION

Nucleons are the building blocks of atomic nuclei, which
constitute essentially all visible matter in the universe. There-
fore, understanding their composition and dynamics in terms
of the underlying quark-gluon degrees of freedom of quantum
chromodynamics (QCD)—the theory of strong interaction—
has been at the frontier of modern nuclear and hadronic
physics for decades. The electromagnetic structure of the nu-
cleon is traditionally considered to be directly accessible by
the Sachs electric (Gp

E ) and magnetic (Gp
M) form factors in

the proton case. Form-factor studies have attracted tremen-
dous interest for more than half a century, as demonstrated
by enormous experimental and theoretical efforts since the
1950s and 1960s [1–4] to recent review articles [5]. The
precise information about nucleon electromagnetic form fac-
tors allows for precision tests of lattice QCD calculations.
The proton charge radius extracted from the proton electric
form factor is an important input to the bound state quantum
electrodynamics (QED) calculations of atomic energy levels
and to the determination of the Rydberg constant, one of the
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most precise fundamental constants in physics [6]. The recent
substantial progress in our understanding of the form factors,
extracted from electron-proton elastic scattering can be found
in [5,7–9].

The commonly applied technique to extract Gp
E/M from an

unpolarized e-p elastic scattering cross section is the Rosen-
bluth separation method [10]. This was the case for most
of and especially early proton form factor measurements.
This method works well in a kinematic region, where both
Gp

E/M contribute to the cross section significantly, and as
such, these form factors can be extracted without introducing
large systematic uncertainties associated the method itself.
However, the Gp 2

E term will dominate the cross section if Q2

is small, whereas the Gp 2
M term becomes dominant at high

Q2. As a result, in a high-Q2 region the Gp
E data typically

have large uncertainties, while the Gp
M data uncertainties are

larger in a low-Q2 region. The ratio Gp
E/Gp

M can be extracted
by measuring spin-dependent asymmetry from longitudinally
polarized electrons scattering off from a polarized proton tar-
get [11]. A recoil proton polarization measurement [12–17],
in which a longitudinally polarized electron beam scatters
off from an unpolarized proton target, and the recoil proton
polarization is measured, provides another way to determine
the proton electric-to-magnetic form-factor ratio. Several cru-
cial experiments using the Rosenbluth technique have been
conducted for measuring the proton form-factor ratio in a
higher Q2 range of 0.4–5.5 (GeV/c)2 [18–20], and for ad-
dressing its discrepancy from the ratio measured with the
polarization transfer technique. By combining unpolarized
cross-section measurements with the form-factor ratio deter-
mined from one of the two aforementioned methods, one can
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extract the two proton form factors without the limitation of
the Rosenbluth separation method [21].

In this paper, we consider two recent e-p scattering experi-
ments. The first experiment was conducted at the experimental
setup of the A1 collaboration [22–25] at Mainz Microtron
(MAMI) [26–28], and the second one at the setup of the
PRad collaboration at Jefferson Lab Hall B [29–34] with
the CEBAF accelerator [35]. The A1 detector setup consists
of three high resolution magnetic spectrometers, labeled A,
B, and C, which can be rotated around the central axis to
perform measurements at various scattering angles. The mea-
sured scattering angle is detected with an absolute accuracy
0.01◦ (0.175 mrad). The PRad setup utilizes a magnetic-
spectrometer-free, calorimeter-based method along with a
windowless hydrogen gas target, by means of which sev-
eral limitations of the previous e-p experiments have been
overcome, allowing the setup to achieve the forward most
scattering angle of ≈0.7◦. Both experiments have extracted
the proton electric form factor and the electric (charge) ra-
dius (rp

E ) from cross-section data analyzed in the ranges
of Q2 = 0.0038–0.9772 (GeV/c)2 for Mainz A1 and Q2 =
0.0002–0.0582 (GeV/c)2 for PRad.

We are particularly interested in the discrepancy of Gp
E

extracted by Mainz A1 and PRad. The Q2 range measured
in PRad has an overlap with the Mainz data above Q2 =
0.0038 (GeV/c)2. In that range, Gp

E obtained from fits to the
Mainz and earlier data falls about 1.5% faster than the PRad
data, which is shown in Figure 2 of [36] for example. As
pointed out in [36], this discrepancy in the overlap Q2 region
cannot be explained by problems in the extrapolation to Q2 =
0, or by an inadequate selection of fit models (like inadequate
fit functions or Q2 ranges). In this regard, a few upcoming
experiments, e.g., PRad-II [37] may solve this issue.1 On the
other hand, one can still try to address the Gp

E discrepancy by
focusing on the last step of the form factor extraction—the
fitting. What we mean is explained in what follows.

PRad has developed an expandable framework for finding
mathematical functions (fitters), which allows for extraction
of rp

E in a robust way, by using pseudodata generated over
a broad set of various Gp

E input functions [34,38]. This has
been done using the expected Q2 binning and uncertainties
of the PRad experiment, prior to the extraction of rp

E from
the PRad data on Gp

E . A similar method is also applied in
the studies of [23,39]. The fact that different analytic choices
can impact the extraction of Gp

E from elastic e-p cross-section
data [40] motivates a desire to use the lowest order (N = 1,
M = 1), two-parameter fitting function, Rational (1,1) (ap-
plied by PRad in fitting its Gp

E data and obtaining rp
E ), to fit

the Mainz A1 data in some Q2 range, and then compare this
fit with the PRad data, as well as with the fit of the tenth order
polynomial function (one of the functions applied by Mainz
A1 in obtaining its Gp

E and rp
E ).

Nonetheless, our basic motivation for using the lowest or-
der rational function and a selected Q2 range is anchored upon

1The PRad-II experiment is designed to reduce the total uncertainty
on rp

E by a factor of ≈4 compared to that of PRad.

the results of [41–45]. In particular, a novel theoretical frame-
work called dispersively improved chiral effective field theory
(DIχEFT) is introduced and developed in [41–43] to calculate
the nucleon form factors. The DIχEFT framework combines
the chiral effective field theory with dispersion analysis, and
produces theoretical parametrizations describing the nucleon
electromagnetic form factors. The calculation with controlled
uncertainties is based on the first principles of DIχEFT, and
is consistent with empirical amplitude analysis [43], which
is a state-of-the-art theoretical calculation. In this regard, the
Rational (1,1) function is simply taken by us as a reasonable
approximation, which has been checked by comparing it to
those extremely complex functions in [41–43]. This frame-
work, which is applicable up to Q2 ≈ 0.5 (GeV/c)2, was used
for extraction of the proton electric and magnetic radii from
the world data and the Mainz A1 e-p scattering data [44,45].

In addition, one should note that the effect from the two-
photon-exchange (TPE) correction has been investigated and
found to be negligible in the PRad kinematics. In particular,
e-p event generators used in the simulations for the PRad rp

extraction [34], also included the contribution from the TPE
processes (studied in [46–48]), which was estimated to be
<0.2% of the e-p elastic scattering cross section in the PRad
kinematic range. In a recent study, based on the nucleon form
factors obtained within the dispersion theoretical framework
in [49], the differential cross sections are calculated for e-p
and e+-p at the PRad/PRad-II kinematics for such electron
and positron elastic scattering experiments [37,50]. The cross
section sensitivity to different sets of TPE corrections is in-
vestigated. This study shows that an uncertainty emerging
from those corrections becomes a secondary effect when it
is compared with the nucleon form-factor uncertainties at the
PRad/PRad-II beam energies. The TPE contribution has also
been determined to be very small [51] in an earlier study of
rp determination. While the TPE effects are not significant in
magnitude, they introduce a strong angular dependence in the
cross section [52,53], which contributes to the discrepancy in
the proton form-factor ratio determined at high Q2 between
the Rosenbluth and polarization transfer measurements.

Based upon using the Rational (1,1) fitter function, along
with studying its comparison with DIχEFT form-factor
parametrizations, we perform a reanalysis of the Mainz
A1 cross-section data with its 34 different combinations of
the unconstrained 31 normalization parameters up to Q2 =
0.5 (GeV/c)2, and show that this reanalysis possibly resolves
the Gp

E discrepancy puzzle between the Mainz A1 and PRad
data. However, to be more specific, we use 31 sets of 29
normalization parameters within this Q2 range. The paper is
organized as follows. Section II introduces the notations and
formalism pertinent to our discussion. In Sec. III, we discuss
the comparison of the DIχEFT parametrizations with the Ra-
tional (1,1), as well as the fit of Rational (1,1) to the Mainz A1
data. We show our main result in Sec. IV, and discuss some
would-be prospects.

II. NOTATIONS AND FORMALISM

If we focus on the Sachs electric and magnetic form factors
of the proton, they are interpreted as Fourier transforms of
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the proton charge and magnetic moment distributions (in the
nonrelativistic limit), given by

Gp
E/M (Q2) =

∫
ρ

p
E/M (�x) ei �q�x d3x. (1)

In the so-called Breit frame, where the proton bounces back
after absorbing a virtual photon, by also having the z axis
pointing in the direction of the incident proton, the following
formulas for the kinematic variables should be used:

Ep = Ep′ , ν = 0, �p = − �p′ = 1
2 �q, Q2 = |�q|2. (2)

Assuming the Taylor expansion at the limit of Q2 → 0, along
with spherically symmetric density distributions, the form
factors are represented as

Gp
E/M (Q2) =

∫ (
1 + i �q�x − (�q�x)2

2
+ · · ·

)
ρ

p
E/M (�x) d3x

= 1 − 1

6

〈
rp 2

E/M

〉
Q2 + C2 Q4 + · · ·, (3)

where the proton electric and magnetic three-dimensional
root-mean-square radii according to Sachs [3] are identified as

rp
E/M ≡ rp

E/M,rms ≡
√〈

rp 2
E/M

〉

=
⎛
⎝− 6

Gp
E/M (0)

dGp
E/M (Q2)

dQ2

∣∣∣∣∣
Q2=0

⎞
⎠

1/2

, (4)

where Gp
E (0) = 1 and Gp

M (0) = μp = 2.7928μN [54].
One should note that for a theory-based analysis, it is ad-

vantageous to use the Dirac, F p
1 (Q2), and Pauli, F p

2 (Q2), form
factors of the proton [55], which are related to the Sachs Q2-
dependent form factors by the following linear combinations:

Gp
E (Q2) = F p

1 (Q2) + Q2

4m2
p

F p
2 (Q2),

Gp
M (Q2) = F p

1 (Q2) + F p
2 (Q2). (5)

In one-photon exchange approximation, the differential
Born cross section for the elastic e-p scattering is given in
terms of the Sachs Q2-dependent form factors Gp

E (Q2) ≡ Gp
E

and Gp
M (Q2) ≡ Gp

M [4]:

(
dσ

d�

)
0

=
(

dσ

d�

)
Mott

((
Gp

E

)2 + τ
(
Gp

M

)2

1 + τ

+ 2τ
(
Gp

M

)2
tan2

(
θ

2

))

=
(

dσ

d�

)
Mott

ε
(
Gp

E

)2 + τ
(
Gp

M

)2

ε (1 + τ )
, (6)

where (dσ/d�)Mott is the recoil-corrected relativistic Mott
cross section on a point-like particle,(

dσ

d�

)
Mott

= 4α2 cos2

(
θ

2

)
1

Q4

(E ′)3

E
. (7)

The dimensionless kinematic variables ε and τ are given by

ε =
(

1 + 2(1 + τ ) tan2

(
θ

2

))−1

, τ = Q2

4m2
p

, (8)

and the four-momentum transfer squared is

Q2 = −q2 = 4EE ′ sin2

(
θ

2

)
, (9)

describing an electron of energy E , scattering off a proton at
rest through an angle θ with respect to the beam direction of
the scattered electron of energy E ′ that is expressed as

E ′ = E

(
1 + 2E

mp
sin2

(
θ

2

))−1

. (10)

The deduction of the Born cross section shown in Eq. (6)
requires a correction factor, fcorr, from calculations of ra-
diative and other effects. Therefore, the relation of the
experimental and Born cross sections can be written as(

dσ

d�

)
exp

= fcorr

(
dσ

d�

)
0

. (11)

The published elastic e-p scattering cross-section data from
the Mainz A1 experiment includes 34 sets of data and 31
independent normalization factors as discussed in [22–24].
The data are presented as the cross-section ratio to the dipole
cross section, which is simply Eq. (6) but with the form factors
there taken to be the standard dipole ones:

Gp
E ,dipole(Q2) =

(
1 + Q2

0.71(GeV/c)2

)−2

,

(12)

Gp
M,dipole(Q2) = μp

(
1 + Q2

0.71(GeV/c)2

)−2

,

and that ratio (after all corrections) is expressed as

σexp

σdipole
≡

(
ε
(
Gp

E

)2 + τ
(
Gp

M

)2

ε
(
Gp

E ,dipole

)2 + τ μ2
p

(
Gp

E ,dipole

)2

)
. (13)

In order to obtain the final cross-section ratio values, 34
groups of various cross-section ratios are multiplied by the 31
independent normalization factors according to

σexp

σdipole
→ n1 × n2 × σexp

σdipole
, (14)

where n1 and n2 are any pair of the 31 normalization factors,
and any such combination for each group of data points is
given in the Supplemental Material of [23]. In the analysis
herein, we use only the data sets less than or equal to Q2 =
0.5 (GeV/c)2, and thus only 29 independent normalization
parameters.

III. AN ANALYSIS BASED ON USING THE LOWEST
ORDER RATIONAL FUNCTION MOTIVATED

BY THE DIχEFT calculations

A. Comparison of the Rational (1,1) to the DIχEFT
parametrizations

The DIχEFT theoretically derived parametrizations of the
proton electromagnetic form factors [41–43] can be expressed
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in terms of the nucleon electric and magnetic radii [see the
definition in Eq. (4)],

Gp
E (Q2) = Ap

E (Q2) + 〈
rp2

E

〉
BE (Q2) + 〈

rn2
E

〉
B̄E (Q2),

(15)
Gp

M (Q2) = Ap
M (Q2) + 〈

rp2
M

〉
BM (Q2) + 〈

rn2
M

〉
B̄M (Q2),

where the functions Ap
E/M (Q2) are the radius-independent

parts, while the functions BE/M (Q2), B̄E/M (Q2) are the parts
proportional to the nucleon electric/magnetic radii. The de-
tails of the parametrizations shown in Eq. (15) and the values
of these functions at different Q2 points from 0 to 1 (GeV/c)2

are given in the Supplemental Material of [45].
So, DIXEFT employs fixed radius values as its input. In

the analysis of the Mainz data using the DIXEFT method [45],
Alarcon et al. have used different radii as input in the DIXEFT
calculation and compared it with the Mainz data to obtain
the most overlapping radii. This method is different from the
methods used in the Mainz and PRad analyses, which use
analytic functions to fit the data and carry out the extrapolation
to derive rp

E directly.
As discussed in [40], the choice of an analytic function has

a dramatic impact on the form-factor extraction. The results of
this paper demonstrate that when using regression algorithms,
it is crucial to have a solid mathematical basis and/or a good
physical model. Consequently, it is essential for a selected
analytic function to have a strong physical meaning, such
that it can be well compared to theoretical calculations. Gen-
erally, one can think of statistical predictive models, which
attempt to generalize beyond some data sets that are being
fitted. Such models require incorporation of physics consid-
erations and/or mathematical requirements to keep the fits
well-behaved, rather than making them of intricate nature.

In this section, we make use of the Rational (1,1), which
is determined in PRad studies to be the best robust fitter
for extraction of the proton electric radius [33,34,38]. This
functional form is given by

fRational (1,1)(Q
2) ≡ Rational (1, 1) = 1 + p(a)

1 Q2

1 + p(b)
1 Q2

, (16)

where the coefficients p(a)
1 and p(b)

1 are two free fitting param-
eters.2 The rational function in Eq. (16) is the lowest order of
the multiparameter rational-function of Q2 represented by

fRational (N,M)(Q
2)

≡ Rational (N, M)

=
(

1 +
N∑

i=1

p(a)
i Q2i

)/ ⎛
⎝1 +

M∑
j=1

p(b)
j Q2 j

⎞
⎠, (17)

The form factors Gp
E and Gp

M given in terms of the Ratio-
nal (1,1) will be represented as

Gp
E (Q2) = 1 + p(a)

1,E Q2

1 + p(b)
1,E Q2

, Gp
M (Q2) = μp

1 + p(a)
1,MQ2

1 + p(b)
1,MQ2

. (18)

2We borrow the same nomenclature as the one used in [38,56].

FIG. 1. Gp
E (top) and Gp

M (bottom) residuals between the fitted
Rational (1,1) and the DIχEFT parametrizations as a function of
Q2

max (end point of the fit). The neutron electromagnetic radii are
fixed to be 〈rn 2

E 〉 = −0.116 fm2 and rn
M = 0.864 fm [57], while the

proton radii rp
E/M are varied from 0.80 fm to 0.88 fm.

The fitting parameters have a direct relation to the proton
electric/magnetic radii, which is expressed by

rp
E/M =

√
6
(
p(b)

1,E/M − p(a)
1,E/M

)
. (19)

In order to compare the Rational (1,1) with the DIχEFT
parametrizations, we use Eq. (15) to generate a set of Gp

E/M

pseudo-data at various equidistant Q2 points in the range of 0
to 1 (GeV/c)2. Then we fit the Rational (1,1) to the pseudo-
data in different ranges of Q2 from 0 to Q2

max, respectively.3

In the pseudodata generation, the neutron electromagnetic
radii are fixed to be 〈rn 2

E 〉 = −0.116 fm2 and rn
M = 0.864 fm,

whereas the proton radii rp
E/M are varied in the region from

0.80 fm to 0.88 fm. After obtaining the fitting parameters of
Rational (1,1) from the fit, the residual can be calculated ac-
cording to the formula shown below, which characterizes the

3Q2
max is an upper value in a specific Q2 binning set, which we take

from the full range of the Mainz A1 cross-section data set.
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FIG. 2. The fit results for Gp
E (top) and Gp

M (bottom) divided
by the standard dipole form factors shown in Eq. (12). The red
solid curves show the Rational (1,1) best fit to the Mainz A1 cross-
section data up to Q2

max = 0.5 (GeV/c)2; the grey bands show the 1σ

uncertainty of the Rational (1,1) fit; the green dashed curves show
the tenth order polynomial function fitted to the Mainz A1 data taken
from the supplemental material of [23]; the black dotted curves show
the DIχEFT parametrizations.

difference between the fitted Rational (1,1) and the DIχEFT
parametrizations defined as

Gp
E/MResidual

≡
∑Npoints

(
Gp,Rational (1,1)

E/M (Q2) − Gp,DIχEFT
E/M (Q2)

)2

Npoints
, (20)

where Npoints is the number of points within the Q2 range.
The results of Gp

E and Gp
M residuals are shown in Fig. 1.

In both cases, the residuals are small. Fig. 1 shows that the
Rational (1,1) has an excellent agreement with the DIχEFT
parametrizations at low-Q2 region. Besides, this result sup-
ports such a rational fitting function to be a good candidate for
the robust and precise extraction of the proton electric radius,
which has in turn been demonstrated in [33,34].

TABLE I. The 29 independent normalization factors from the
Rational (1,1) fit are multiplied into combined factors for the 31
data sets, as well as into analogous combined factors from the
unbounded/bounded (with alternating signs) tenth order polynomial
function fits discussed in [40].

Data set n1 n2 Unbounded-poly Bounded-poly Rational (1,1)

1 3 - 0.9996 1.0032 0.9936
2 1 3 0.9997 1.0020 0.9961
3 1 4 0.9995 1.0037 0.9921
4 1 5 0.9996 1.0030 0.9949
5 2 4 0.9996 1.0013 0.9987
6 2 5 0.9997 1.0005 1.0015
7 9 - 0.9996 1.0043 0.9914
8 7 9 0.9996 1.0042 0.9915
9 6 9 0.9996 1.0044 0.9912
10 8 9 0.9999 1.0053 0.9932
11 13 - 0.9993 1.0041 0.9905
12 14 - 0.9992 1.0038 0.9900
13 11 13 0.9993 1.0042 0.9906
14 10 13 0.9996 1.0048 0.9902
15 10 14 0.9996 1.0045 0.9897
16 10 15 0.9994 1.0036 0.9917
17 12 15 0.9990 1.0034 0.9877
18 18 - 0.9994 1.0045 0.9894
19 19 - 0.9993 1.0037 0.9897
20 16 18 0.9995 1.0049 0.9903
21 16 19 0.9995 1.0041 0.9906
22 16 20 0.9993 1.0039 0.9916
23 17 20 0.9993 1.0045 0.9891
24 25 - 0.9992 1.0042 0.9881
25 21 25 0.9993 1.0037 0.9893
26 21 26 0.9995 1.0048 0.9893
27 23 26 0.9995 1.0051 0.9879
28 22 26 0.9988 1.0042 0.9979
29 29 30 0.9994 1.0038 0.9919
30 27 29 0.9994 1.0043 0.9887
31 27 31 1.0001 1.0039 0.9912

B. Fitting of the Rational (1,1) to the Mainz A1
cross-section data

In the Mainz A1 data set, there are 1422 cross-section data
points in the entire range of Q2 from 0.0038 to 0.9772
(GeV/c)2. Note that there are 538 data points in the overlap
Q2 region with the PRad data set, and this overlap region is
Q2 = 0.0038–0.0582 (GeV/c)2. Also, for the new regressions
done herein with the Rational (1,1) function, over a range of
Q2 from 0 to 0.5 (GeV/c)2, we are using 90% of the Mainz
data, 1285 out of 1422 cross-section points. This is simply
the range, where we have validated the function against the
theory, and the presented results do not significantly change if
the entire set is used.

Based upon the discussion hitherto, we assume that Gp
E

and Gp
M have the forms of Rational (1,1) [see Eq. (18)]. We

plug Eq. (18) into Eq. (13), then fit it to the Mainz A1 cross-
section data up to Q2

max = 0.5 (GeV/c)2. In this fitting range,
there are 31 sets of data with 29 independent normalization
factors. We then use 29 independent normalization factors in
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FIG. 3. Comparison between the Rational (1,1) fit to the Mainz A1 cross-section data up to Q2 = 0.5 (GeV/c)2 and the tenth order
polynomial function fit to the A1 data taken from the Supplemental Material of [23]. The PRad Gp

E data with the statistical and systematic
uncertainties summed in quadrature and the Rational (1,1) fit to the PRad data are shown as well. The difference between the left and right
plots is that in the right one we divide Gp

E by the standard electric dipole parametrization from Eq. (12).

the fitting, which are multiplied by the fitting function accord-
ing to Eq. (14). The results of the extracted Gp

E and Gp
M divided

by the standard dipole form factors from Eq. (12) are shown
in Fig. 2, where the red solid curves are the Rational (1,1) best
fits, and the grey bands show their 1σ uncertainty regions. For
comparison, we also plot the DIχEFT parametrizations, as
well as the tenth order polynomial function fit taken from the
Supplemental Material of [23]. It is shown that the wiggling
behavior in Gp

M from the tenth order polynomial function fit
can be resolved by using the Rational (1,1) fit.

In the DIχEFT parametrizations, the neutron electro-
magnetic radii are fixed as 〈rn 2

E 〉 = −0.116 fm2 and rn
M =

0.864 fm, which are average values taken from PDG [57]. For
the proton electromagnetic radii we take the central values
obtained from the Rational (1,1) best fit: rp

E = 0.837 fm and
rp

M = 0.842 fm with χ2/dof = 1.41. The rp
E result is con-

sistent with several other reanalyses of this data [44,55,58–
64] though inconsistent with some other reanalyses [65,66].
Differences between these fits, which are all fitting the same
experimental data, can be traced back to subpercent level
variations in the 29 normalization parameters.

The corresponding 29 normalization factors from the Ra-
tional (1,1) fit are multiplied into combined factors for the 31
data sets as shown in Table I. For comparison, the combined
factors from the unbounded and bounded 11th order polyno-
mial function fits discussed in [40] are also shown. As shown,
these normalization are in general consistent at the level of 1%
or less.

IV. DISCUSSION AND CONCLUSION

In this section we make use of validation data to see how
well these fits generalize to data that have not been included
in the regressions. For this purpose we make use of the high
precision, low Q2 PRad data [33,34]. In Fig. 3, which covers
the Q2 range of the PRad experiment, we again see the red
solid curve describing the Rational (1,1) fit to the Mainz A1
cross-section data up to Q2 = 0.5 (GeV/c)2, and the green

dashed curve describing the tenth order polynomial function
fitted to the same Mainz A1 data set [23]. Also shown is the
PRad data along with a black dash-dotted curve which is a
Rational (1,1) fit to just PRad Gp

E data [33,34].
The proton electric form-factor discrepancy puzzle ob-

served between the A1 and PRad data is visualized as
the difference between the dashed and dash-dotted curves
in the left and right plots of Fig. 3. Thereby, one may con-
sider the solid curve there to be a possible solution to this
problem. Furthermore, we show in Fig. 4 the comparison
between the extracted Gp

E data, using the Rational (1,1) fit to
the A1 cross-section data up to Q2 = 0.5 (GeV/c)2 and the
tenth order polynomial function fit to the same data taken from
the Supplemental Material of [23]. That figure clearly shows
how the choice of a fit function is capable of shifting the float-
ing normalization factor, and thus shifting the extracted form
factors significantly. Here, by simply using the analytically
well-behaved Rational (1,1) fit function, the extracted A1 Gp

E
form factors become consistent with the PRad Gp

E data within
uncertainties.

However, it has been shown that changes in e-p scattering
data binning choices or in the choice of fitting function can
result in substantially incompatible results [40]. As a conse-
quence, we do not exclude a possibility that one can improve
the results demonstrated in Figs. 3 and 4 by employing an
adequate selection of other fit models. It is perhaps plausi-
ble to construct such models with constraints, such as the
Rational (1,3) or a bounded high-order polynomial, using
the so-called data-driven method from [56], or using some
theoretical frameworks and approaches, like DIχEFT. With
such constrained functions, one could try to refit the entire
Q2 range of available data with an analytically well-behaved
function [67].

ACKNOWLEDGMENTS

This work is supported in part by the U.S. Department of
Energy, Office of Science, Office of Nuclear Physics under

065505-6



UNDERSTANDING THE SYSTEMATIC DIFFERENCES IN … PHYSICAL REVIEW C 106, 065505 (2022)

FIG. 4. The left plot shows the Gp
E form factor data extracted from the PRad and A1 experiments [22,23,33]. For the shown A1, the Gp

E

points are extracted from the cross sections using the floating normalizations driven by two 10th order polynomial functions used in a regression
[23]. The right plot shows the Rational (1,1) fit to the same data up to Q2 = 0.5 (GeV/c)2. Here the A1 cross-section normalization factors
are determined with the Rational (1,1) fit. The uncertainties of the former are the statistical and systematic ones summed in quadrature. The
horizontal lines are shown for the purpose of reference. This pair of plots clearly shows the influence the choice of a fit function can have on
the A1 experiment’s floating normalization parameters.

Contract No. DE-FG02-03ER41231, as well as with Con-
tract No. DE-AC05-06OR23177, under which the Jefferson

Science Associates operates the Thomas Jefferson National
Accelerator Facility.

[1] R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
[2] F. J. Ernst, R. G. Sachs, and K. C. Wali, Phys. Rev. 119, 1105

(1960).
[3] R. G. Sachs, Phys. Rev. 126, 2256 (1962).
[4] L. N. Hand, D. G. Miller, and R. Wilson, Rev. Mod. Phys. 35,

335 (1963).
[5] V. Punjabi, C. F. Perdrisat, M. K. Jones, E. J. Brash, and C. E.

Carlson, Eur. Phys. J. A 51, 79 (2015).
[6] E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev.

Mod. Phys. 93, 025010 (2021).
[7] J. Arrington, C. D. Roberts, and J. M. Zanotti, J. Phys. G: Nucl.

Part. Phys. 34, S23 (2007).
[8] C. F. Perdrisat, V. Punjabi, and M. Vanderhaeghen, Prog. Part.

Nucl. Phys. 59, 694 (2007).
[9] H. Gao and M. Vanderhaeghen, Rev. Mod. Phys. 94, 015002

(2022).
[10] M. N. Rosenbluth, Phys. Rev. 79, 615 (1950).
[11] A. Liyanage et al. (SANE Collaboration), Phys. Rev. C 101,

035206 (2020).
[12] M. K. Jones et al. (Jefferson Lab Hall A Collaboration), Phys.

Rev. Lett. 84, 1398 (2000).
[13] O. Gayou et al. (Jefferson Lab Hall A Collaboration), Phys. Rev.

Lett. 88, 092301 (2002).
[14] O. Gayou et al., Phys. Rev. C 64, 038202 (2001).
[15] X. Zhan et al., Phys. Lett. B 705, 59 (2011).
[16] A. J. R. Puckett et al., Phys. Rev. Lett. 104, 242301

(2010).
[17] A. J. R. Puckett et al., Phys. Rev. C 85, 045203 (2012).
[18] M. E. Christy et al. (E94110 Collaboration), Phys. Rev. C 70,

015206 (2004).
[19] I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005).
[20] M. E. Christy et al., Phys. Rev. Lett. 128, 102002 (2022).

[21] J. Arrington, W. Melnitchouk, and J. A. Tjon, Phys. Rev. C 76,
035205 (2007).

[22] J. C. Bernauer et al. (A1 Collaboration), Phys. Rev. Lett. 105,
242001 (2010).

[23] J. C. Bernauer et al. (A1 Collaboration), Phys. Rev. C 90,
015206 (2014).

[24] J. C. Bernauer, Measurement of the elastic electron-proton cross
section and separation of the electric and magnetic form factor
in the Q2 range from 0.004 to 1 (GeV/c)2, Ph.D. thesis, Jo-
hannes Gutenberg-Universität Mainz, Institut für Kernphysik,
2010, https://www.osti.gov/etdeweb/servlets/purl/21403504.

[25] K. I. Blomqvist et al., Nucl. Instrum. Methods Phys. Res. A
403, 263 (1998).

[26] H. Herminghaus, A. Feder, K. H. Kaiser, W. Manz, and H. Von
Der Schmitt, Nucl. Instrum. Methods 138, 1 (1976).

[27] K. H. Kaiser et al., Nucl. Instrum. Methods Phys. Res. A 593,
159 (2008).

[28] A. Jankowiak, Eur. Phys. J. A 28, 149 (2006).
[29] A. Gasparian et al., PAC39 proposal C12-11-106 (2011), https:

//www.jlab.org/exp\_prog/proposals/12/C12-11-106.pdf.
[30] A. Gasparian (PRad at JLab Collaboration), EPJ Web Conf. 73,

07006 (2014).
[31] M. Meziane (PRad Collaboration), AIP Conf. Proc. 1563, 183

(2013).
[32] C. Peng and H. Gao, EPJ Web Conf. 113, 03007 (2016).
[33] W. Xiong et al., Nature (London) 575, 147 (2019).
[34] W. Xiong, A high precision measurement of the proton charge

radius at JLab, Ph.D. thesis, Duke University, 2020, https://
dukespace.lib.duke.edu/dspace/handle/10161/20844.

[35] C. W. Leemann, D. R. Douglas, and G. A. Krafft, Annu. Rev.
Nucl. Part. Sci. 51, 413 (2001).

[36] J. C. Bernauer, EPJ Web Conf. 234, 01001 (2020).

065505-7

https://doi.org/10.1103/RevModPhys.28.214
https://doi.org/10.1103/PhysRev.119.1105
https://doi.org/10.1103/PhysRev.126.2256
https://doi.org/10.1103/RevModPhys.35.335
https://doi.org/10.1140/epja/i2015-15079-x
https://doi.org/10.1103/RevModPhys.93.025010
https://doi.org/10.1088/0954-3899/34/7/S03
https://doi.org/10.1016/j.ppnp.2007.05.001
https://doi.org/10.1103/RevModPhys.94.015002
https://doi.org/10.1103/PhysRev.79.615
https://doi.org/10.1103/PhysRevC.101.035206
https://doi.org/10.1103/PhysRevLett.84.1398
https://doi.org/10.1103/PhysRevLett.88.092301
https://doi.org/10.1103/PhysRevC.64.038202
https://doi.org/10.1016/j.physletb.2011.10.002
https://doi.org/10.1103/PhysRevLett.104.242301
https://doi.org/10.1103/PhysRevC.85.045203
https://doi.org/10.1103/PhysRevC.70.015206
https://doi.org/10.1103/PhysRevLett.94.142301
https://doi.org/10.1103/PhysRevLett.128.102002
https://doi.org/10.1103/PhysRevC.76.035205
https://doi.org/10.1103/PhysRevLett.105.242001
https://doi.org/10.1103/PhysRevC.90.015206
https://www.osti.gov/etdeweb/servlets/purl/21403504
https://doi.org/10.1016/S0168-9002(97)01133-9
https://doi.org/10.1016/0029-554X(76)90145-2
https://doi.org/10.1016/j.nima.2008.05.018
https://doi.org/10.1140/epja/i2006-09-016-3
https://www.jlab.org/exp_prog/proposals/12/C12-11-106.pdf
https://doi.org/10.1051/epjconf/20147307006
https://doi.org/10.1063/1.4829405
https://doi.org/10.1051/epjconf/201611303007
https://doi.org/10.1038/s41586-019-1721-2
https://dukespace.lib.duke.edu/dspace/handle/10161/20844
https://doi.org/10.1146/annurev.nucl.51.101701.132327
https://doi.org/10.1051/epjconf/202023401001


JINGYI ZHOU et al. PHYSICAL REVIEW C 106, 065505 (2022)

[37] A. Gasparian et al. (PRad Collaboration), PRad-II: A new up-
graded high precision measurement of the proton charge radius,
(2020), arXiv:2009.10510.

[38] X. Yan, D. W. Higinbotham, D. Dutta, H. Gao, A. Gasparian,
M. A. Khandaker, N. Liyanage, E. Pasyuk, C. Peng, and W.
Xiong, Phys. Rev. C 98, 025204 (2018).

[39] E. Kraus, K. E. Mesick, A. White, R. Gilman, and S. Strauch,
Phys. Rev. C 90, 045206 (2014).

[40] S. K. Barcus, D. W. Higinbotham, and R. E. McClellan, Phys.
Rev. C 102, 015205 (2020).

[41] J. M. Alarcón and C. Weiss, Phys. Rev. C 96, 055206
(2017).

[42] J. M. Alarcón and C. Weiss, Phys. Rev. C 97, 055203
(2018).

[43] J. M. Alarcón and C. Weiss, Phys. Lett. B 784, 373 (2018).
[44] J. M. Alarcón, D. W. Higinbotham, C. Weiss, and Z. Ye, Phys.

Rev. C 99, 044303 (2019).
[45] J. M. Alarcón, D. W. Higinbotham, and C. Weiss, Phys. Rev. C

102, 035203 (2020).
[46] O. Tomalak, Few Body Syst. 59, 87 (2018).
[47] O. Tomalak and M. Vanderhaeghen, Phys. Rev. D 93, 013023

(2016).
[48] O. Tomalak and M. Vanderhaeghen, Eur. Phys. J. A 51, 24

(2015).
[49] Y.-H. Lin, H.-W. Hammer, and U.-G. Meißner, Phys. Lett. B

827, 136981 (2022).
[50] T. J. Hague et al., Eur. Phys. J. A 57, 199 (2021).
[51] P. G. Blunden and I. Sick, Phys. Rev. C 72, 057601 (2005).

[52] P. G. Blunden, W. Melnitchouk, and J. A. Tjon, Phys. Rev. Lett.
91, 142304 (2003).

[53] P. G. Blunden, W. Melnitchouk, and J. A. Tjon, Eur. Phys. J. A
24, 59 (2005).

[54] G. Schneider et al., Science 358, 1081 (2017).
[55] Y.-H. Lin, H.-W. Hammer, and U.-G. Meißner, Phys. Lett. B

816, 136254 (2021).
[56] J. Zhou et al., Phys. Rev. C 103, 024002 (2021).
[57] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[58] T. Mart and A. Sulaksono, Phys. Rev. C 87, 025807 (2013).
[59] I. T. Lorenz and U.-G. Meißner, Phys. Lett. B 737, 57 (2014).
[60] K. Griffioen, C. Carlson, and S. Maddox, Phys. Rev. C 93,

065207 (2016).
[61] D. W. Higinbotham, A. A. Kabir, V. Lin, D. Meekins,

B. Norum, and B. Sawatzky, Phys. Rev. C 93, 055207
(2016).

[62] M. Horbatsch, E. A. Hessels, and A. Pineda, Phys. Rev. C 95,
035203 (2017).

[63] S. Zhou, P. Giulani, J. Piekarewicz, A. Bhattacharya, and D.
Pati, Phys. Rev. C 99, 055202 (2019).

[64] Z.-F. Cui, D. Binosi, C. D. Roberts, and S. M. Schmidt, Phys.
Rev. Lett. 127, 092001 (2021).

[65] G. Lee, J. R. Arrington, and R. J. Hill, Phys. Rev. D 92, 013013
(2015).

[66] A. V. Gramolin and R. L. Russell, Phys. Rev. D 105, 054004
(2022).

[67] J. J. Kelly, Phys. Rev. C 70, 068202 (2004).

065505-8

http://arxiv.org/abs/arXiv:2009.10510
https://doi.org/10.1103/PhysRevC.98.025204
https://doi.org/10.1103/PhysRevC.90.045206
https://doi.org/10.1103/PhysRevC.102.015205
https://doi.org/10.1103/PhysRevC.96.055206
https://doi.org/10.1103/PhysRevC.97.055203
https://doi.org/10.1016/j.physletb.2018.07.060
https://doi.org/10.1103/PhysRevC.99.044303
https://doi.org/10.1103/PhysRevC.102.035203
https://doi.org/10.1007/s00601-018-1413-8
https://doi.org/10.1103/PhysRevD.93.013023
https://doi.org/10.1140/epja/i2015-15024-1
https://doi.org/10.1016/j.physletb.2022.136981
https://doi.org/10.1140/epja/s10050-021-00508-6
https://doi.org/10.1103/PhysRevC.72.057601
https://doi.org/10.1103/PhysRevLett.91.142304
https://doi.org/10.1140/epjad/s2005-05-010-2
https://doi.org/10.1126/science.aan0207
https://doi.org/10.1016/j.physletb.2021.136254
https://doi.org/10.1103/PhysRevC.103.024002
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevC.87.025807
https://doi.org/10.1016/j.physletb.2014.08.010
https://doi.org/10.1103/PhysRevC.93.065207
https://doi.org/10.1103/PhysRevC.93.055207
https://doi.org/10.1103/PhysRevC.95.035203
https://doi.org/10.1103/PhysRevC.99.055202
https://doi.org/10.1103/PhysRevLett.127.092001
https://doi.org/10.1103/PhysRevD.92.013013
https://doi.org/10.1103/PhysRevD.105.054004
https://doi.org/10.1103/PhysRevC.70.068202

