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Abstract We derive chiral Ward identities for lattice QCD
with Wilson quarks and Nf ≥ 3 flavours, on small lat-
tices with Schrödinger functional boundary conditions and
vanishingly small quark masses. These identities relate the
axial variation of the non-singlet pseudoscalar density to the
scalar one, thus enabling the non-perturbative determination
of the scale-independent ratio ZS/ZP of the renormalisation
parameters of these operators. We obtain results for Nf = 3
QCD with tree-level Symanzik-improved gluons and Wilson-
Clover quarks, for bare gauge couplings which cover the
typical range of large-volume Nf = 2 + 1 simulations with
Wilson fermions at lattice spacings below 0.1 fm. The pre-
cision of our results varies from 0.3 to 1%, except for the
coarsest lattice, where it is 2%. We discuss how the ZS/ZP

ratio can be used in the non-perturbative calculations of O(a)

improved renormalised quark masses.
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1 Introduction

Lattice QCD with Wilson fermions is a long-established
regularisation. The fermionic action satisfies most desirable
properties, namely strict locality, lack of fermion doublers,
and preservation of flavour symmetry in a straightforward
way. Well-known shortcomings are the presence of discreti-
sation effects linear in the lattice spacing and, most impor-
tantly, the loss of chiral symmetry. The first problem is solved
by applying the Symanzik-improvement programme (see for
instance Ref. [1] for a review and Ref. [2] for more details).
Chiral symmetry is recovered in the continuum, at the cost
of having to deal with complicated renormalisation proper-
ties for most quantities of interest (cf. Ref. [3] and refer-
ences therein; for a review see also Ref. [4]). A frequently
cited example of these complications is the power diver-
gence mcrit ∼ 1/a, which must be subtracted from bare
quark masses before they are renormalised multiplicatively.
Other examples are the normalisation parameter ZA of the
axial current and the ratio ZS/ZP of the non-singlet scalar
and pseudoscalar density renormalisation parameters. In a
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regularisation scheme which respects chiral symmetry, these
quantities are strictly equal to unity at finite values of the
UV cutoff. With Wilson fermions these quantities are scale-
independent finite functions of the gauge coupling, which
tend to unity as we approach the continuum limit. In principle
they are determined by requiring that chiral Ward identities
at non-vanishing lattice spacing tend to their formal counter-
parts in the continuum limit. The scope of this paper is to
provide a method for the determination of ZS/ZP based on
Ward identities on physically small lattices with Schrödinger
functional boundary conditions and realising a line of con-
stant physics (LCP) in parameter space. Results are obtained
for Nf = 3 dynamical quarks.

The general idea behind using chiral Ward identities in
order to evaluate ZS/ZP for Wilson fermions appeared in
Ref. [3].1 It has been put to practice with quenched, unim-
proved Wilson fermions in Ref. [5] and subsequently with
tree-level Symanzik-improved ones in Ref. [6]. The chiral
Ward identities in question were obtained for large-volume
lattices with periodic boundary conditions and non-chiral
quark masses. Ratios of ZS/ZP were calculated at fixed
gauge coupling for several quark masses and extrapolated to
the chiral limit. A second-generation of calculations was not
based on Ward identities but obtained by computing ZS and
ZP in the RI/MOM scheme [7]. Again these calculations are
performed at finite quark masses, followed by chiral extrap-
olations. A well known problem in this approach is that the
ZS/ZP ratio thus obtained differs from the Ward identity
one by “Goldstone pole contaminations” at the IR end of a
renormalisation window. This problem was first identified in
Ref. [7], and subsequently discussed in Refs. [8–11] (and
reviewed in Ref. [4]), while the discussion specific to the dif-
ference between Ward identity and RI/MOM determinations
of the ratio ZS/ZP is found in Ref. [10]. Although the prob-
lem is greatly attenuated by the RI/SMOM variant of this
method [12], the requirement of a reliable renormalisation
window is inherent in these approaches.

In the present work we revisit the Ward identity method,
with an important novelty: lattices with small physical vol-
umes and Schrödinger functional boundary conditions are
used, with quark flavours degenerate in mass and (almost)
at the chiral limit. In doing so, we follow closely the
method introduced in Ref. [13] (and originally applied in
the quenched approximation in that work) for the non-
perturbative determination of the scale independent normal-
isation parameter ZA of the axial vector current. Updates
and optimisations of these computations can be found in
refs. [14,15] for two- and three-flavour QCD, respectively.
Ward identities are imposed at constant physics to ensure a

1 In practice, distinct chiral Ward identities are used for the computa-
tion of the ratio ZS/(ZPZA) and ZA; the two results are subsequently
multiplied to give ZS/ZP.

removal of O(a) effects in on-shell quantities and, at the same
time, smoothly vanishing O(a2) effects as the bare coupling
is varied. It must be stressed that the chiral Ward identi-
ties adopted in these works to determine ZA are valid for
Nf ≥ 2 quark flavours, while the ones we introduce in the
present work for the determination of ZS/(ZPZA) are valid
for Nf ≥ 3.

We note in passing that, based on the chirally rotated
Schrödinger functional construction of Ref. [16], a more
recent method for the non-perturbative computation of
ZS/ZP has been mentioned in Ref. [17].

This paper is organised as follows: in Sect. 2 (Sect. 2.1)
we formally derive chiral Ward identities for continuum
QCD, which relate correlation functions of non-singlet pseu-
doscalar and scalar composite operators (densities). The for-
mer are correlation functions with two operator insertions
at two distinct space-time points (an axial current and a
pseudoscalar density) in the presence of a generic exter-
nal source operator. The latter involve a single insertion of
the scalar operator. Subsequently (Sect. 2.2), we rewrite the
same Ward identities in the lattice-regularised QCD with Wil-
son fermions. The external source consists of two standard
Schrödinger functional boundary sources, each placed at a
temporal boundary. The loss of chiral symmetry by Wilson
fermions is taken into account by the renormalisation con-
stants ZP and ZS of the pseudoscalar and scalar densities
and the normalisation of the axial current, ZA. In the chi-
ral limit, these Ward identities hold up to O(a2) discretisa-
tion effects. We also discuss the corrections arising in practi-
cal simulations, which slightly deviate from the chiral limit;
these are O(am, a2). Finally, in Sect. 2.3 we re-express these
Ward identities in terms of traces of valence quark propaga-
tors, which multiply factored-out traces of generators of the
SU (Nf) flavour group.

Section 3 takes an even closer look at these Ward identities.
We distinguish several equivalence classes, each consisting
of identities with different flavour structure, which reduce to
the same relations between correlation functions, giving the
same ZS/(ZPZA) result. Ward identities belonging to differ-
ent equivalence classes provide ZS/(ZPZA) estimates which
differ by O(am, a2) effects. If we neglect these effects, we
can combine identities from different equivalence classes,
ending up with new relations between correlation functions
(true up to O(am, a2) errors). Thus we can explore to what
extent different equivalence classes provide independent esti-
mates of ZS/(ZPZA). Some of these estimates are expected
to be noisier than others, as they are obtained using both
quark-connected and quark-disconnected correlation func-
tions.

In Sect. 4 we present our results for QCD with Nf = 3
dynamical flavours, where the lattice gauge action is tree-
level Symanzik-improved and the fermion action is non-
perturbatively Wilson–Clover improved. Our simulations are
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performed with degenerate mass flavours lying close to the
chiral limit. The non-perturbative determination of the ratio
ZS/ZP is carried out along a line of constant physics in
parameter space. In practice, this requirement is met by ensur-
ing a volume of almost constant spatial extent L ∼ 1.2 fm
in physical units, with Schrödinger functional boundary con-
ditions. The ratio between temporal and spatial extent T/L
is also kept fixed. This implies that any remaining intrin-
sic ambiguities in ZS/ZP of O(a2) or higher (in the O(a)

improved setup adopted here) disappear smoothly towards
the continuum limit. The gauge couplings of our simulations
span a range typical for the computations performed by the
CLS (Coordinated Lattice Simulations) effort in QCD with
Nf = 2 + 1 flavours of non-perturbatively improved Wilson
fermions [18–21]. Our ZS/(ZPZA) results are divided out
by ZA, estimated in Ref. [22]. Our ZS/ZP estimates are sub-
sequently extrapolated to the chiral limit at fixed g2

0. Results
are obtained from several Ward identities; they differ by dis-
cretisation effects. Thus it is possible to create ratios of the
different ZS/ZP determinations, and plot them against (pow-
ers of) the lattice spacing, confirming the expected scaling
behaviour. The statistically and systematically most precise
ZS/ZP determination is parameterised as a continuous func-
tion of g2

0, which is our final answer. This is compared to
two other determinations: one is based on ratios of PCAC
quark masses with different flavours, employing essentially
the same small-volume Schrödinger functional setup [23];
the other is based on the relation between bare current quark
masses and bare subtracted quark masses, computed on large
volumes with open boundary conditions [20].

Finally, in Sect. 5 we discuss how ZS/ZP can be used
in quark mass determinations along the lines proposed
in Ref. [24], but performing the mass renormalisation in
the Schrödinger functional scheme and the renormalisation
group running non-perturbatively, between renormalisation
scales μhad ∼ �QCD and μPT ∼ MW. Such a calculation is
subjected to different systematics than the standard ALPHA-
CLS method, recently applied in Ref. [25].

Work in progress culminating to this paper had been
reported in Refs. [26,27].

2 Chiral Ward identities for ZS/ZP

In this Section we will derive chiral Ward identities which
relate correlation functions of non-singlet scalar and pseu-
doscalar composite operators (densities). These enable us to
compute non-perturbatively the ratio ZS/ZP, which deter-
mines the relative normalisation of these scalar and pseu-
doscalar densities when the regularisation (Wilson fermion
action) breaks chiral symmetry. First we will derive the per-
tinent chiral Ward identities in the formal continuum the-
ory. Subsequently, we will show their lattice analogues with

Schrödinger functional boundary conditions. The resulting
Ward identity computation of ZS/ZP follows very closely
that of ZA, described in refs. [13–15].

Our notation is pretty standard. Definitions of com-
posite operators of dimension-3, axial transformations and
Schrödinger functional (SF) boundary operators are collected
in Appendix A. Conventions concerning the su(Nf) flavour
algebra are to be found in Appendix B. The lattice spacing
is denoted by a, the (squared) gauge coupling by g2

0, and the
inverse lattice coupling by β ≡ 6/g2

0. Bare current (PCAC)
and subtracted masses are defined in Appendix C.

2.1 Formal chiral Ward identities in the continuum

Under the small axial variations (A.8) of the fermion fields
the formal, continuum QCD action in Euclidean space-time
transforms as follows:

δAS =
∫

d4x
[
(∂μεa(x))Aaμ(x) + iεa(x)ψ̄(x){Ta, M}γ5ψ(x)

]

=
∫

d4x εa(x)
[

− ∂μAaμ(x) + 2mPa(x)
]
. (1)

The fermion mass matrix is denoted by M . We work in
the flavour symmetric (isospin) limit, so all quark masses m
are degenerate. In the last expression we have integrated by
parts the term with the axial current. Chiral Ward identities
are obtained by considering that under the change of field
variables defined in Eqs. (A.6), the expectation value of any
composite operator O (and products of them) is invariant. In
the limit of small axial variations this leads to:

δA〈O〉 = 1

Z δA 〈
∫

[Dψ][Dψ̄][DGμ] O exp(−S) 〉 = 0

⇒ 〈δAO〉 = 〈O δAS〉 . (2)

We now take the axial variations to be non zero only in a
space-time region R with a smooth boundary ∂R (i.e., for x ∈
R, εa(x) 	= 0; otherwise εa(x) = 0). The above expression
reduces to

∫
R
d4xεa(x)

[
∂μ〈Aa

μ(x) O〉−2m〈Pa(x) O〉
]
= − 〈δAO〉 .

(3)

We consider a product of composite operators O=Pb(y)
Oext, where y ∈ R and Oext is defined outside the region R.
This implies that δAO = [δAPb(y)]Oext. The pseudoscalar
density Pb(x) transforms as follows:

δAPb(x) = εc(x)dcbeSe(x) + εc(x)
δcb

Nf
ψ̄(x)ψ(x) . (4)
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At this stage we impose that εc(x) = εδac; i.e., it is a con-
stant phase ε in a fixed direction a in flavour space, so that
Ward identities become expressions reflecting global chi-
ral symmetry. Moreover, in order to sidestep a number of
complications,2 we chose a 	= b, so that the last term on
the r.h.s. of Eq. (4) drops out.3 Putting everything together, we
obtain
∫
R
d4x

[
∂μ 〈Aa

μ(x)Pb(y)Oext〉 − 2m 〈Pa(x)Pb(y)Oext〉
]

= −dabe〈Se(y)Oext〉 . (5)

We note in passing that the first term is a surface term:

∫
R
d4x ∂μ 〈Aa

μ(x)Pb(y)Oext〉

=
∫

∂R
dσμ(x)〈Aa

μ(x)Pb(y)Oext〉 .

(6)

As done in Ref. [13] for ZA, we chose the region R to be the
space-time volume between the hyper-planes at y0 − t and
y0 + t .4 Boundary conditions in space are periodic, implying∫
R dx0d3x∂k〈Ak · · · 〉 = 0. The Ward identity becomes

∫
d3x
〈[
Aa

0(y0 + t; x) − Aa
0(y0 − t; x)

]
Pb(y0; y) Oext

〉

− 2m
∫

d3x
∫ y0+t

y0−t
dx0 〈Pa(x0; x)Pb(y0; y)Oext〉

= −dabe〈Se(y)Oext〉 .

(7)

It is convenient to introduce a spatial integration over y:

∫
d3y

∫
d3x
〈[
Aa0(y0 + t; x) − Aa0(y0 − t; x)

]
Pb(y0; y)Oext

〉

−2m
∫

d3y
∫

d3x
∫ y0+t

y0−t
dx0 〈Pa(x0; x)Pb(y0; y)Oext〉

= −dabe
∫

d3y 〈Se(y)Oext〉 . (8)

The second line of the l.h.s. contains a contact term, arising
when r ≡ |x − y| → 0. The operator product is expressed
in terms of an OPE (recall that a 	= b)

2 With Wilson fermions, the singlet scalar operator ψ̄(x)ψ(x) mixes
with the identity operator, introducing the complication of power diver-
gences. Moreover, Wick contractions of the fermion fields of this oper-
ator generate quark-disconnected diagrams.
3 Here we are working with the algebra su(Nf ) for Nf ≥ 3; for Nf = 2
we have that dabe = 0 and the r.h.s. of Eq. (4) is trivial.
4 This choice of hyperplanes is made for simplicity. A more general
choice, y0 − t− and y0 + t+, with t− 	= t+ and t−,t+ > 0, is also
acceptable.

Pa(x) Pb(y) ∼ dabe
∞∑
k=1

CkQ
e
k [D] r

D−6

= dabeC1S
e(x)r−3 + · · · ,

(9)

where [D] is the operator dimension and the Wilson coeffi-
cients Ck contain logarithms. The most divergent term in the
OPE, taking into account the various symmetry properties of
the operator product, is proportional to Se(x). The contribu-
tion to the space-time volume integral 2m

∫
R · · · of a small

four-sphere of centre x and radius a (or a small four-cube of
size a) is then ∼ m

∫ a
0 dr r3 r D−6〈· · · 〉 ∼ m aD−2 〈· · · 〉 and

thus the leading term in the OPE contributes O(am). In the
lattice regularisation this implies that the contact term con-
tributes an O(am) discretisation effect to the Ward identity,
even in a Symanzik-improved setup.

2.2 Lattice Ward identities with Schrödinger functional
boundary conditions

We now adapt the previous formal manipulations to the lattice
regularisation with Schrödinger functional boundary condi-
tions. The external source for the Ward identity correlation
functions is chosen to be a tensor in flavour space Oad

ext:

Oad
ext = 1

2L6O′aOd , (10)

withO′a andOd defined in Eqs. (A.9). With this source and in
lattice notation the Ward identity (8) becomes (with b 	= c):

ZAZP a
6

×
{∑

x,y

〈O′a[(AI)
b
0(y0 + t; x)

− (AI)
b
0(y0 − t; x)

]
Pc(y0; y)Od〉

− 2ma
∑
x,y

y0+t∑
x0=y0−t

w(x0) 〈O′a Pb(x0; x) Pc(y0; y)Od〉
}

= −dbce ZS a3
∑

y

〈O′a Se(y)Od〉 + O(am, a2) . (11)

In this expression, repeated flavour indices e are summed, as
usual. The weight factor is w(x0) = 1/2 for x0 = y0 ± t and
w(x0) = 1 otherwise. It is introduced in order to implement
the trapezoidal rule for discretising integrals. The mass m is
the current quark mass defined in Eq. (C.5); recall that we
work with degenerate masses.

Assuming that we work in the chiral limit (or with nearly
vanishing quark masses, so that O(am) effects may be safely
neglected), the above Ward identity is valid up to O(a2)
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dicretisation errors in lattice QCD with Wilson quarks. Chi-
ral symmetry breaking implies the (re)normalisation and
improvement properties summarised in Appendix C. The
Symanzik b-coefficients appearing in Eqs. (C.2)–(C.4) mul-
tiply the subtracted quark mass mq or the quark mass matrix
Mq. When working in or close to the chiral limit, as is the case
in our simulations, we may safely drop these terms. Putting
everything together we obtain Ward identity (11). The renor-
malisation factors of the external sources O′a and Od are not
taken into consideration, as they cancel out on both sides of
the identity. Note that the term proportional to the current
quark mass m may also be dropped in the chiral limit. In
practice, since we are always working with masses that are
not strictly zero, it turns out that it is advantageous to keep
this term; see Ref. [15] and Sect. 4.1.

Equation (11) can be solved for ZS/(ZPZA). With ZA

known either from other PCAC Ward identities [13–15]
or from the chirally rotated Schrödinger functional formal-
ism [22], we can thus obtain ZS/ZP.

2.3 Lattice Ward identities, Wick contractions, and flavour
factors

Ward identity (11) relates expectation values of four com-
posite operators on the l.h.s. to those of three composite
operators on the r.h.s.; with a slight abuse of terminology,
we call these four- and three-point correlation functions,
respectively. We express these correlation functions, with
Schrödinger functional boundary fields, in terms of traces
of quark propagators. In standard ALPHA notation [28],
[ψ(y) ψ̄(x)]F denotes a quark propagator in a fixed back-
ground gauge field configuration, where x and y are space-
time points in the bulk of the lattice. Propagators from the
x0 = 0 boundary to the bulk are [ζ(v)ψ̄(y)]F (with v a point
at the x0 = 0 boundary), while those from the x0 = T bound-
ary to the bulk are [ζ ′(v′)ψ̄(y)]F (with v′ a point at x0 = T ).
Boundary-to-boundary propagators are [ζ ′(v′)ζ̄ (u)]F. For
proper definitions see Ref. [28]. Note that, since we are work-
ing in the su(Nf)-symmetric limit, all masses are degenerate
and quark propagators of different flavours are indistinguish-
able.5

Performing the Wick contractions, we write the three-
point correlation function of Eq. (11) as

a3
∑

y

〈O′a Se(y)Od〉

= −ia15
(
T dea FS;1(y0) + T aed FS;2(y0)

)
,

(12)

5 The notation for fermion fields is somewhat ambiguous: for example,
while in this Subsection ψ(x), ζ(v), ζ ′(v′) etc. stand for fields of a
single flavour, in Appendix A the same quantities denote column vectors
in flavour space. This ambiguity is fairly standard and should not create
confusion.

where T aed ≡ Tr(T aT eT d) are traces of three flavour
su(Nf) generators and FS;1(y0), FS;2(y0) are expectation
values of traces of quark propagators with a scalar inser-
tion. The exact expressions can be found in Table 1. Note
that traces Tr act in flavour space, traces tr act in spin-colour
space, and 〈· · · 〉 denote averages over gauge field config-
urations. In Fig. 1 we show the quark-line diagrams corre-
sponding to the spin-colour traces in the above equation. Any
Wick contraction between fermion fields at the same point
in the bulk [ψ(y), ψ̄(y)]F, or between boundary fields at
the same time-slice (e.g. [ζ(v)ζ̄ (u)]F) gives rise to a quark-
disconnected diagram,6 multiplied by the trace of an su(Nf)

generator. As this trace is zero, such diagrams do not con-
tribute to the three-point correlation function. An example of
such a diagram is shown in Fig. 1.

In Appendix D we combine the usual γ5-Hermiticity prop-
erty of quark propagators, charge conjugation invariance of
the lattice theory, and the trace properties of Eq. (B.4), to cast
the r.h.s. of Eq. (12) into a single real term, and obtain for
the r.h.s. of the Ward identity (11):

WI r.h.s. = −a15

2
ZSd

bcedadeRe
[
FS;1(y0)

]
. (13)

Next we concentrate on the l.h.s. of Eq. (11). For simplicity
we drop, for the moment, the term proportional to the quark
mass. The l.h.s. consists of boundary-to-boundary correlation
functions with two insertions of dimension-3 operators in the
bulk, which can be cast in the general form

a6
∑
x,y

〈O′a Ab
0(x) P

c(y)Od〉 = a18
9∑

k=1

T abcd
k FAP;k(x0, y0) .

(14)

Upon performing the Wick contractions, each correlation
function is expressed as the sum of 9 terms. They are products
of traces of flavour matrices (denoted as T abcd

k ) and traces
of loops of quark propagators averaged over gauge field con-
figurations (denoted as FAP;k(x0, y0)). The former traces are
defined as:

T abcd
1 ≡ Tr(T aT bT cT d), T abcd

2 ≡ Tr(T aT dT cT b) ,

(15)

T abcd
3 ≡ Tr(T aT bT dT c), T abcd

4 ≡ Tr(T aT cT dT b) ,

(16)

6 It is common practice to refer to these diagrams simply as discon-
nected. Since from a strict field-theoretic point of view they are con-
nected (with multitudes of gluon lines, some of which contain fermion
loops), the term quark-disconnected is more appropriate (valence-
quark-disconnected would be even more accurate, but far too long). In
the literature, quark-connected and quark-disconnected are sometimes
referred to as one- and two-boundary diagrams.
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Fig. 1 The trace diagrams contributing to the expectation values of
Table 1. The leftmost (rightmost) wall is time-slice x0 = 0 (x0 = T )
with a γ5 Dirac matrix between circles. The hexagons in the bulk repre-
sent the insertions of a scalar operator S(y). The open circles correspond
to the boundary fields ζ (at x0 = 0) and ζ ′ (at x0 = T ), while the filled

circles denote ζ̄ (at x0 = 0) and ζ̄ ′ (at x0 = T ). Quark-connected dia-
grams FS;1 and FS;2 are single traces, formed by starting from any point
and following the lines (quark propagators) around until we close the
loop. The quark-disconnected diagram is a product of two traces

Table 1 Mathematical expressions for the diagrams FS;k depicted in Fig. 1 and the diagrams FAP;k depicted in Fig. 2

FS;1(y0) =∑y
∑

u,v,u′,v′
〈
tr
{[ζ ′(v′)ζ̄ (u)]Fγ5[ζ(v)ψ̄(y)]F[ψ(y)ζ̄ ′(u′)]Fγ5

}〉
FS;2(y0) =∑y

∑
u,v,u′,v′

〈
tr
{[ζ ′(v′)ψ̄(y)]F[ψ(y)ζ̄ (u)]Fγ5[ζ(v)ζ̄ ′(u′)]Fγ5

}〉
FAP;1(x0, y0) = −∑x,y

∑
u,v,u′,v′

〈
tr
{[ζ ′(v′)ψ̄(x)]γ0γ5[ψ(x)ψ̄(y)]γ5[ψ(y)ζ̄ (u)]γ5[ζ(v)ζ̄ ′(u′)]γ5

}〉
FAP;2(x0, y0) = −∑x,y

∑
u,v,u′,v′

〈
tr
{[ζ ′(v′)ζ̄ (u)]γ5[ζ(v)ψ̄(y)]γ5[ψ(y)ψ̄(x)]γ0γ5[ψ(x)ζ̄ ′(u′)]γ5

}〉
FAP;3(x0, y0) = −∑x,y

∑
u,v,u′,v′

〈
tr
{[ζ ′(v′)ψ̄(x)]γ0γ5[ψ(x)ζ̄ (u)]γ5[ζ(v)ψ̄(y)]γ5[ψ(y)ζ̄ ′(u′)]γ5

}〉
FAP;4(x0, y0) = −∑x,y

∑
u,v,u′,v′

〈
tr
{[ζ ′(v′)ψ̄(y)]γ5[ψ(y)ζ̄ (u)]γ5[ζ(v)ψ̄(x)]γ0γ5[ψ(x)ζ̄ ′(u′)]γ5

}〉
FAP;5(x0, y0) = −∑x,y

∑
u,v,u′,v′

〈
tr
{[ζ ′(v′)ψ̄(y)]γ5[ψ(y)ψ̄(x)]γ0γ5[ψ(x)ζ̄ (u)]γ5[ζ(v)ζ̄ ′(u′)]γ5

}〉
FAP;6(x0, y0) = −∑x,y

∑
u,v,u′,v′

〈
tr
{[ζ ′(v′)ζ̄ (u)]γ5[ζ(v)ψ̄(x)]γ0γ5[ψ(x)ψ̄(y)]γ5[ψ(y)ζ̄ ′(u′)]γ5

}〉
FAP;7(x0, y0) = +∑x,y

∑
u,v,u′,v′

〈
tr
{[ζ ′(v′)ψ̄(x)]γ0γ5[ψ(x)ζ̄ ′(u′)]γ5

}
tr
{[ψ(y)ζ̄ (u)]γ5[ζ(v)ψ̄(y)]γ5

}〉
FAP;8(x0, y0) = +∑x,y

∑
u,v,u′,v′

〈
tr
{[ζ ′(v′)ψ̄(y)]γ5[ψ(y)ζ̄ ′(u′)]γ5

}
tr
{[ψ(x)ζ̄ (u)]γ5[ζ(v)ψ̄(x)]γ0γ5

}〉
FAP;9(x0, y0) = +∑x,y

∑
u,v,u′,v′

〈
tr
{[ζ ′(v′)ζ̄ (u)]γ5[ζ(v)ζ̄ ′(u′)]γ5

}
tr
{[ψ(x)ψ̄(y)]γ5[ψ(y)ψ̄(x)]γ0γ5

}〉

T abcd
5 ≡ Tr(T aT cT bT d), T abcd

6 ≡ Tr(T aT dT bT c) ,

(17)

T abcd
7 ≡ Tr(T aT b)Tr(T dT c) , (18)

T abcd
8 ≡ Tr(T aT c)Tr(T dT b) , (19)

T abcd
9 ≡ Tr(T aT d)Tr(T cT b) , (20)

while the latter ones are also given in Table 1.
The spin-colour trace diagrams are shown in Fig. 2. We

see that there are six quark-connceted diagrams, and three
quark-disconnected ones. The condition b 	= c implies that
T9FAP;9(x0, y0) = 0, due to the vanishing of Tr(T cT b).
From Eq. (B.2) we see that T abcd

k for k = 7, 8 are real.
Once more we combine γ5-Hermiticity, charge conjuga-

tion invariance, and Eq. (B.5), to obtain for the l.h.s. of the
Ward identity (11):

WI l.h.s. = ZAZP a18

×
⎡
⎣ ∑
k=1,3,5

2Re (T abcd
k )

{
FAP;k(y0+t, y0)−FAP;k(y0 − t, y0)

}

+
8∑

k=7

T abcd
k

{
FAP;k(y0 + t, y0) − FAP;k(y0 − t, y0)

}⎤⎦ .

(21)

Note that correlation functions FAP;k are real for k =
1, . . . , 9. See Appendix D for more details. We will use a
somewhat more compact notation, defining

Δk(y0, t) ≡ FAP;k(y0 + t, y0) − FAP;k(y0 − t, y0) . (22)

Collecting Eqs. (13), (21), and (22), we write the Ward iden-
tity (11) in the chiral limit as:

a3ZAZP

×
[ ∑
k=1,3,5

2Re (T abcd
k )Δk(y0, t) +

∑
k=7,8

T abcd
k Δk(y0, t)

]

= − ZS

2
dbcedadeRe

[
FS;1(y0)

]
+ O(a2) . (23)

In order to keep the equation simple, we have not shown
the mass-dependent terms with two pseudoscalar density
insertions, appearing in Eq. (11). These terms are included
in the numerical analysis, which is carried out close to, but
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Fig. 2 The trace diagrams contributing to the expectation values of
Table 1. Conventions are similar to those of Fig. 1. The diamonds in
the bulk represent the insertions of a pseudoscalar operator P(y). The
squares in the bulk represent the insertions of an axial current A0(x)
or a pseudoscalar operator P(x) (giving rise to the Dirac matrices γ0γ5
or γ5, respectively). Quark-connected diagrams FAP;3, FAP;5, FAP;1

are single traces, formed by starting from any point and following
the lines (quark propagators) around until we close the loop. Quark-
disconnected diagrams FAP;8, FAP;7, FAP;9 are products of two traces.
Diagrams FAP;2, FAP;4, FAP;6 are not shown, as they are related to
FAP;1, FAP;3, FAP;5; cf. Eqs. (D.5)

not strictly at the chiral limit. The reader should have no dif-
ficulty convincing himself that they are exactly analogous
to FAP;k(y0 + t, y0) and FAP;k(y0 − t, y0) appearing above.
Their net effect is to add extra mass-dependent contributions
to the Δk(y0, t) functions. From now on, the Δk(y0, t) func-
tions are meant to include these contributions, proportional
to the quark mass. Consequently, the uncertainty on the r.h.s.
of Eq. (23) becomes O(am, a2).

It is interesting to compare the Ward identities we have
derived here to the one introduced in Ref. [13] for the deter-
mination of ZA. The former are valid for Nf ≥ 3, while the
latter for Nf ≥ 2. The Ward identity of Ref. [13] involves
correlation functions with two axial current insertions in the
bulk. In our case we have more complicated contributions,
consisting of time-differences of correlation functions with
one axial current and one pseudoscalar density insertion.

3 Determination of ZS/(ZPZA) from Ward identities

Ward identity (23) is a master equation, from which a plethora
of relations arise for specific choices of flavour indices
a, b, c, d. In what follows, each of them will be distinguished
by the label WI(abcd). Not all of them are suitable for the
determination of ZS/ZP. The following constraints need to
be imposed:

(i) b 	= c; this ensures the suppression of the scalar term in
Eq. (4);

(ii) dbce 	= 0 and dade 	= 0, so that the r.h.s. of Eq. (23)
does not vanish. Note that once b, c are fixed, property A
in Appendix B ensures that dbce 	= 0 for a single value of

e. Thus the summation over e on the r.h.s. of our master
equation is trivial and the requirement dbcedade 	= 0 is
satisfied for at most a single value of e;

(iii) f bce = 0 for the choice of indices b, c, e for which
dbce 	= 0; f ade = 0 for the choice of indices a, d, e
for which dade 	= 0. This follows from property B
in Appendix B.

In spite of these constraints, a lot of freedom remains in the
choice of flavour indices, resulting in many Ward identities.
They are relations between the correlation functions of the
master equation, which can be solved for ZS/(ZPZA). These
Ward identities can be grouped into different equivalence
classes. Each class consists of several identities WI(abcd)
with different flavour indices a, . . . , d, but identical flavour
factors Re (Tk) (k = 1, 3, 5, 7, 8), and thus the same Eq. (23).
Therefore, the same ZS/(ZPZA) estimate is obtained from
all Ward identities of the same equivalence class. Estimates
of ZS/(ZPZA) from Ward identities of different classes differ
by discretisation effects.

The combinations of conditions (i)–(iii) simmer down to
the choice of flavour indices (a, b, c, d), withb 	= c, such that
dbcedade 	= 0. We systematically investigated the choices
of flavour indices which fulfill these conditions with a com-
puter algebra program and grouped them into the equivalence
classes which are tabulated in Table 2. These results depend
on the su(Nf) Gell–Mann matrix definitions of Appendix B.
Some interesting observations are:

• There are pairs of equivalence classes that have the same
number of elements. Examples are WI(1245) paired to
WI(1425), WI(1144) paired to WI(1414) etc. These pairs
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Table 2 Ward identities WI(abcd) grouped into equivalence classes. Each class is labeled by four flavour indices abcd, of a representative element,
listed in the leftmost column. All elements of the same class are grouped to the right. For more explanations, see text

Equivalence class label Equivalence class elements

1245 1245 1254 1267 1276 1346 1357 1364 1375 2145 2154 2167 2176 2347 2356 2365 2374 3146 3157 3164 3175

3247 3256 3265 3274 4512 4521 4567 4576 4613 4631 4723 4732 5412 5421 5467 5476 5623 5632 5713 5731

6413 6431 6523 6532 6712 6721 6745 6754 7423 7432 7513 7531 7612 7621 7645 7654

1425 1425 1436 1524 1537 1627 1634 1726 1735 2415 2437 2514 2536 2617 2635 2716 2734 3416 3427 3517 3526

3614 3625 3715 3724 4152 4163 4251 4273 4361 4372 4657 4756 5142 5173 5241 5263 5362 5371 5647 5746

6143 6172 6253 6271 6341 6352 6475 6574 7153 7162 7243 7261 7342 7351 7465 7564

1486 1486 1587 1684 1785 2487 2586 2685 2784 3484 3585 3686 3787 4168 4278 4348 4843 4861 4872 5178 5268

5358 5853 5862 5871 6148 6258 6368 6841 6852 6863 7158 7248 7378 7842 7851 7873 8416 8427 8434 8517

8526 8535 8614 8625 8636 8715 8724 8737

1846 1846 1857 1864 1875 2847 2856 2865 2874 3844 3855 3866 3877 4438 4483 4618 4681 4728 4782 5538 5583

5628 5682 5718 5781 6418 6481 6528 6582 6638 6683 7428 7482 7518 7581 7738 7783 8146 8157 8164 8175

8247 8256 8265 8274 8344 8355 8366 8377

1468 1468 1578 1648 1758 2478 2568 2658 2748 4186 4287 4384 4816 4827 4834 5187 5286 5385 5817 5826 5835

6184 6285 6386 6814 6825 6836 7185 7284 7387 7815 7824 7837 8461 8472 8562 8571 8641 8652 8742 8751

1144 1144 1155 1166 1177 2244 2255 2266 2277 3344 3355 3366 3377 4411 4422 4433 4466 4477 5511 5522 5533

5566 5577 6611 6622 6633 6644 6655 7711 7722 7733 7744 7755

1414 1414 1515 1616 1717 2424 2525 2626 2727 3434 3535 3636 3737 4141 4242 4343 4646 4747 5151 5252 5353

5656 5757 6161 6262 6363 6464 6565 7171 7272 7373 7474 7575

1188 1188 2288 3388 8811 8822 8833

1818 1818 2828 3838 8181 8282 8383

4488 4488 5588 6688 7788 8844 8855 8866 8877

4848 4848 5858 6868 7878 8484 8585 8686 8787

Table 3 Classes of Ward
identities (first column), the
corresponding flavour factors of
Eq. (23) (columns 2 to 6) and
the product of symmetric
tensors d of the same equation
(last column)

WI(abcd) Re (T abcd
1 ) Re (T abcd

3 ) Re (T abcd
5 ) T abcd

7 T abcd
8 dbcedade

WI(1245) −1/16 1/16 0 0 0 −1/4

WI(1425) 0 1/16 −1/16 0 0 −1/4

WI(1486) −√
3/24

√
3/48

√
3/48 0 0 −√

3/12

WI(1846)
√

3/48
√

3/48 −√
3/24 0 0 −√

3/12

WI(1468)
√

3/48 −√
3/24

√
3/48 0 0

√
3/6

WI(1144) 1/16 1/16 0 1/4 0 1/4

WI(1414) 0 1/16 1/16 0 1/4 1/4

WI(1188) 1/24 1/24 1/24 1/4 0 1/3

WI(1818) 1/24 1/24 1/24 0 1/4 1/3

WI(4488) 5/48 5/48 −1/12 1/4 0 1/12

WI(4848) −1/12 5/48 5/48 0 1/4 1/12

of classes are separated by a single horizontal line in
Table 2. Class WI(1468) does not have a partner.

• The flavour factors Re (Tk) for (k = 1, 3, 5), T7, and T8

of paired classes have closely related numerical values;
see Table 3. We will see below how this leads to useful
relations between certain Δk functions.

• The quark disconnected traces Δ7 and Δ8 do not con-
tribute to the equivalence classes of the top half of Table 2
(separated by a triple line from the bottom half).

In Table 3 we collect the flavour factors Re (Tk) (k =
1, 3, 5), T7, and T8 for each class. Depending on the choice
of flavour indices a,b,c,d, some of these flavour factors van-
ish. This simplifies the resulting Ward identity. Also here the
top part of the Table (separated by a double line from the bot-
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tom half) lists the Ward identities without Δ7- and Δ8-type
contributions.

There are two possible ways of using the 11 Ward iden-
tities of Table 3. A first approach would be to determine
ZS/(ZPZA) from each of the 11 variants of Eq. (23). In prin-
ciple these determinations differ by O(am, a2) effects and
that should provide a handle for a good control of the related
systematics. However, in practice the different ZS/(ZPZA)

results are all obtained from the same configuration ensem-
bles and are thus strongly correlated. Moreover, paired Ward
identities (in the sense discussed above; cf. Table 2) have
very similar relations between their Δk-terms and this also
leads to very similar Z -ratios.

A second approach would be to combine these Ward iden-
tities in order to first obtain relations between the various
Δk-terms. These would be true up to O(am, a2) at fixed
gauge coupling, and once established, would simplify the
equation(s) relating ZS/(ZPZA) to the Δk’s. In this spirit we
proceed as follows:

(i) Starting from Ward identities without quark discon-
nected contributions (i.e., with Re (T7) = Re (T8) = 0;
top part of Table 3), we combine the pair WI(1245) and
WI(1425) to obtain:

Δ1(y0, t) = Δ5(y0, t) + O(am, a2) , (24)

ZAZPa
3[Δ1(y0, t) − Δ3(y0, t)

]
= −ZSRe

[
FS;1(y0)

]+ O(am, a2) . (25)

Note that by combining the pair WI(1486) and WI(1846)
we also obtain the above expressions, so this pair does
not provide extra information.

(ii) WI(1468), which has no partner, is written, in terms of
the Δ’s defined in Eq. (22), as:

ZAZPa
3[Δ1(y0, t) − 2Δ3(y0, t) + Δ5(y0, t)

]
= −2 ZSRe

[
FS;1(y0)

]+ O(am, a2) .
(26)

This on its own determines the ratio ZS/(ZPZA). Note
that combined with Eq. (24), it gives us Eq. (25). Our
conclusion is that all Ward identities with Re (T7) =
Re (T8) = 0 reduce to the equality Δ1 = Δ5 (i.e., dia-
grams FAP;1 and FAP;5 of Fig. 2 are related) and a sin-
gle Ward identity, from which ZS/(ZPZA) may be com-
puted.

(iii) Passing to Ward identities with quark-disconnected
contributions (bottom part of Table 3), we combine the
pair WI(1188) and WI(1818) to obtain:

Δ7(y0, t) = Δ8(y0, t) + O(am, a2) , (27)

ZAZPa
3[2Δ1(y0, t) + Δ3(y0, t) + 3Δ7(y0, t)

]

= −2ZSRe
[
FS;1(y0)

]+ O(am, a2) , (28)

where Eq. (24) has also been used to arrive at Eq. (28).
(iv) Similarly, the pair WI(1144) and WI(1414) combine to

give

Δ1(y0, t) + 2Δ7(y0, t)

= Δ5(y0, t) + 2Δ8(y0, t) + O(am, a2) , (29)

ZAZPa
32
[
Δ1(y0, t) + Δ3(y0, t) + 2Δ7(y0, t)

]
= −2ZSRe

[
FS;1(y0)

]+ O(am, a2) . (30)

Eq. (29) carries no new information, as it is a combination
of Eqs. (24) and (27).

(v) If we now combine Eqs. (28) and (30), we obtain again
Eq. (25) and the new relation

Δ3(y0, t) = −Δ7(y0, t) + O(am, a2) . (31)

The bottom line is that, up to O(am, a2) discretisation effects,
the 11 Ward identities corresponding to the entries of Table 3
are not all independent. They can be combined to give three
relations between the functions Δk , which depend on traces
of valence quark propagators, without references to flavour
traces; these are Eqs. (24), (27), and (31).7 The extent to
which these relations are fulfilled at non-zero lattice spacing
is an indicator of the size of discretisation effects. Moreover,
if we take them at face value, the remaining Ward identi-
ties (25), (26), (28), and (30) reduce to a single expression.
Any of them can be used to provide estimates of the ratio
ZS/(ZPZA). We expect Eqs. (28), and (30) to be noisier, as
they involve quark-disconnected diagrams. Eq. (25) seems
promising, as it only involves Δ1 and Δ3, but it cannot be
excluded a priori that Eq. (28) turns out to be better behaved.
This can only be decided by numerical investigation.

Of course, these considerations do not exhaust all possibil-
ities. Any linear combination of the Ward identities consid-
ered above, possibly combined with the relations (24), (27),
(31), can be used for the computation of ZS/(ZPZA). For
example, the linear combination L1 ≡ [WI(1245)−WI(1425)],
combined with Eq. (24) gives:

ZAZPa
3[Δ1(y0, t)

]
= −ZSRe

[
FS;1(y0)

]+ O(am, a2) .
(32)

The determination of ZS/(ZPZA) from the above depends
only on quark-connected diagrams. Similarly, the linear com-

7 As an aside we note that Eqs. (24) and (27) relate correlation functions
of similar topology (quark-connected or quark-disconnected ones). On
the contrary, Eq. (31) is more intriguing, as it relates quark-connected
to quark-disconnected diagrams.
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bination L2 ≡ [12WI(1818)−8WI(1414)] gives:

ZAZPa
3[Δ1(y0, t) + Δ8(y0, t)

]
= −ZSRe

[
FS;1(y0)

]+ O(am, a2) ,
(33)

which yields a ZS/(ZPZA) estimate from quark-connected
and quark-disconnected diagrams. The last two expressions
will be used in the following for numerical crosschecks.

4 Numerical setup and results

We investigate the proposed Ward identities on lattices with
tree-level Symanzik improved gluons and Wilson-Clover
quarks. The action coincides with the one used by CLS
[18,20,21]. We employ Schrödinger functional boundary
conditions in time, which enable us to simulate at quark
masses close to the chiral point and control systematic
effects related to the massless renormalisation framework.
The details of this aspect are discussed in Sect. 4.1. Sim-
ilar to the procedure in [15], we construct boundary-to-
boundary three- and four-point functions with pseudoscalar
Schrödinger functional wall sources and use wavefunctions
at the boundaries as explained in [29]. The statistical error
analysis is performed using a python implementation of the
�-method [30] (exploiting information from the autocorre-
lation function) with automatic differentiation [31].

The gauge ensembles used in this study are detailed in
Table 4. They coincide with the ones used in [23] but for the
ensemble C1k1. These are essentially the ensembles used in
[15,29] plus the ensembles A1k3, A1k4, B1k4, C1k1, D1k2
and D1k4, which were added to improve the chiral fits. For
the two ensembles E1k1 and E1k2 the number of molecu-
lar dynamics units was increased by factor of more than 4.
The ensembles with volume L3 × T described above are
designed to lie on a line of constant physics (LCP), where
the spatial extent of L ≈ 1.2 fm and T/L ≈ 3/2 are almost
constant. The Ward identity conditions which fix the ratio
ZS/(ZPZA) are imposed at constant physics, i.e., we require
that all length scales in the correlation functions, which define
a given condition formulated through one of the foregoing
Ward identities, are kept fixed in physical units. Once this
requirement is satisfied, only the lattice spacing a changes
as g0 is varied. Consequently, renormalisation constants (as
well as their ratios) extracted from different constant physics
conditions are expected to rapidly approach an almost unique
function of g0 as g0 → 0. For a more general discussion of the
constant physics idea in a similar context see, e.g., Ref. [32].

The initial tuning of this LCP was done based on the (uni-
versal) 2-loop beta-function as explained in Ref. [29]. Thus
the volume of the lattices varies by ≈ 10% over the range of
couplings considered. However, using the results of Ref. [19],

we verified that this deviation is proportional to the lattice
spacing a and thus contributes to our quantity of interest
only as a higher-order ambiguity.8

The simulations in this work suffer from critical slowing
down of the topological charge for smaller lattice spacings.
This phenomenon, often dubbed “topology freezing”, could
give unreliable results due to an insufficient sampling of topo-
logical sectors. We circumvent this problem by reweight-
ing all data to the trivial topological sector Q = 0 at the
cost of decreasing the effective number of configurations;
see [29,34] for a discussion. Furthermore we increase the
statistical uncertainties by attaching a tail to the integrated
autocorrelation functions as proposed in [35]. As measure
for τexp, the autocorrelation time of the slowest mode in the
simulation, we use the integrated autocorrelation time of the
squared topological charge Q2 extracted from the longest
Monte Carlo chain for each value of β. The τexp-values for
the individual ensembles can be found in Table 4.

In order to solve the Ward identity for ZS/ZP we need non-
perturbative knowledge of the non-singlet axial current renor-
malisation constant ZA and the O(a) improvement coeffi-
cient cA. The constant ZA was calculated on a subset of the
gauge configurations in this work, Ref. [15], as well as in the
chirally rotated Schrödinger functional, Ref. [22], which is
a completely different determination. We prefer the results
from the latter because of their smaller statistical uncertain-
ties. The errors of ZA are accounted for in quadrature when
solving for ZS/ZP in our Ward identity expressions. For cA

we use the results of [29], without error, following standard
practice.

In principle the ratio we would like to determine, as well
as all correlation functions involved, depend on the O(a)

improved coupling g̃2
0 = g2

0[1 + abgtr Mq/Nf ], where the
coefficient bg is only known at 1-loop perturbation theory
[2]. This issue is of no relevance here, as all normalisation
conditions are imposed at zero quark mass. However, this
should be kept in mind when using results obtained here in
a different setting with non-vanishing sea quark masses.

In order to study the scaling behaviour of some of our
results, we need the lattice spacings in physical units at the
bare couplings used in this work. In Ref. [19], such values are
provided for couplings close to those in Table 4; these enable
us to extract the lattice spacings at our gauge couplings using
a polynomial interpolation.

As additional cross checks we investigate the non-
perturbative validity of the identities (24), (27) and (31). The
results can be found in Appendix E.

8 A more explicit quantitative investigation of violations of the constant
physical volume requirement by our Schrödinger functional ensem-
bles, demonstrating that it affects the Ward identity determination of
improvement coefficients and normalisation factors only beyond the
order we are actually interested in, will be reported in [33].
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Table 4 Summary of
simulation parameters: the first
column (ID) labels our gauge
configuration ensembles, the
second column lists the lattice
sizes L3 × T/a4, the third one
the inverse gauge couplings β,
the fourth the Wilson hopping
parameters κ , the fifth shows the
total number of molecular
dynamics units MDU, the sixth
the autocorrelation time of the
slowest mode τexp, and the last
one the corresponding lattice
spacing a, estimated from
Ref. [19]

ID L3 × T/a4 β κ MDU τexp a in fm

A1k1 123 × 17 3.3 0.13652 20480 1.031(71) 0.1045(18)

A1k3 123 × 17 3.3 0.13648 6876 2.06(14) 0.1045(18)

A1k4 123 × 17 3.3 0.1365 96640 1.031(71) 0.1045(18)

E1k1 143 × 21 3.414 0.1369 38400 1.61(12) 0.08381(68)

E1k2 143 × 21 3.414 0.13695 57600 1.61(12) 0.08381(68)

B1k1 163 × 23 3.512 0.137 20480 4.41(96) 0.06954(43)

B1k2 163 × 23 3.512 0.13703 8192 4.41(96) 0.06954(43)

B1k3 163 × 23 3.512 0.1371 16384 4.41(96) 0.06954(43)

B1k4 163 × 23 3.512 0.13714 27856 4.41(96) 0.06954(43)

C1k1 203 × 29 3.676 0.1368 7848 10.7(4.1) 0.05170(42)

C1k2 203 × 29 3.676 0.137 15232 10.7(4.1) 0.05170(42)

C1k3 203 × 29 3.676 0.13719 15472 10.7(4.1) 0.05170(42)

D1k2 243 × 35 3.81 0.13701 5360 62(14) 0.04175(70)

D1k4 243 × 35 3.81 0.137033 79664 31.0(7.0) 0.04175(70)

0.000 0.002 0.004 0.006 0.008 0.010 0.012
am

0.8

0.9

1.0

1.1

1.2

Z
S
/Z

P

β = 3.676
WI(1468) massless
WI(1468) massive

Fig. 3 Comparison of the chiral extrapolation for WI(1468) at β =
3.676 with and without the term proportional to the mass. In the massless
case the data cannot be described by a linear function in am for the full
mass range. The dotted line visualises the chiral extrapolation of the
massless data set excluding the outmost data point. When the mass
term is included, the data shows no significant quark mass dependence.
The slope of the linear fit function, shown as the dashed line, where the
shaded area corresponds to the 1σ uncertainty, is zero within error

4.1 Chiral extrapolation

From the plethora of possible renormalisation conditions
listed in Sect. 3, we single out a class labeled WI(1468)
to which only quark connected diagrams contribute and for
which the statistical precision is best. We detail the analysis
for this specific choice, but the same steps also apply to any
other identity discussed in the following.

In order to obtain ZS/ZP at vanishing quark mass, we
extra- or interpolate the data at fixed bare coupling to the chi-
ral point. For this procedure we employ the O(a) improved
PCAC mass, which we average over the central third of the
temporal extent of the lattice, similarly to what was done in

Ref. [23]. This choice keeps the plateau length approximately
constant in physical units. For the insertion times in the mas-
ter Eq. (23), we chose y0 = T/2 and t = T/6 rounded up to
the closest integer.9 The idea behind this choice is to place
the operators as far away from the temporal boundaries as
possible, so as to suppress boundary induced cutoff effects,
while keeping the individual operators apart from each other,
thus avoiding contact terms.

In Fig. 3 we show the chiral extrapolation of our pre-
ferred determination WI(1468), at β = 3.676, where quark
masses cover a large range in lattice units. We compare
results obtained from the Ward identity with and without
the mass term [i.e., the term with two pseudoscalar inser-
tions in Eq. (11)]. We see that in the “massive” case our
results display a linear behaviour in the whole mass range.
In addition statistical uncertainties are smaller and the data
show an almost flat dependence on am, resulting to a more
reliable chiral extrapolation. Therefore, we obtain ZS/ZP in
the chiral limit by fitting linearly the results of the “massive”
case. For this fit we employ orthogonal distance regression
[36] which takes into account not only errors in the depen-
dent, but also in the independent variable. The error obtained
from this procedure for the chirally extrapolated ZS/ZP is in
general larger compared to the one obtained from a standard
least squares fit. Results for the individual ensembles as well
as the chiral extrapolations are summarised in Table 5, which
will be discussed in Sect. 4.2.

9 As discussed in Ref. [15], the temporal extent of our lattices is odd,
so there is no central time-slice.
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Table 5 Summary of results for
am and ZS/ZP from different
Ward identity determinations,
labelled by WI(abcd). The
Ward identity linear
combinations L1 and L2 are
defined in Eqs. (32) and (33). In
all Ward identities the mass
terms with two pseudoscalar
insertions in the bulk have been
included; cf. eq. (11). The errors
quoted for the individual
ensembles are statistical; the
uncertainty on the values at the
chiral point stem from the
orthogonal distance regression
procedure of Ref. [36]

ID am WI(1468) WI(1245) L1 WI(4488) L2

A1k1 − 0.00282(62) 1.550(28) 1.554(46) 1.662(53) 2.320(493) 1.688(76)

A1k3 0.00127(91) 1.513(50) 1.469(48) 1.863(86) 1.439(814) 1.570(130)

A1k4 − 0.00113(34) 1.510(39) 1.519(62) 2.120(147) 2.712(348) 1.685(47)

0.0 1.514(32) 1.495(34) 1.863(83) 2.244(453) 1.644(63)

E1k1 0.00269(20) 1.359(14) 1.337(16) 1.527(33) 1.679(216) 1.450(39)

E1k2 − 0.00017(17) 1.333(14) 1.323(17) 1.497(38) 1.937(184) 1.452(32)

0.0 1.334(13) 1.324(16) 1.498(36) 1.922(175) 1.452(30)

B1k1 0.00554(20) 1.257(10) 1.259(14) 1.346(17) 1.456(148) 1.267(26)

B1k2 0.00444(31) 1.249(17) 1.236(22) 1.352(29) 1.088(242) 1.234(36)

B1k3 0.00110(21) 1.272(13) 1.272(14) 1.337(20) 1.374(150) 1.314(32)

B1k4 − 0.00056(16) 1.250(9) 1.248(11) 1.312(24) 1.667(162) 1.327(27)

0.0 1.255(8) 1.255(9) 1.323(17) 1.528(117) 1.320(21)

C1k1 0.01320(17) 1.182(6) 1.176(7) 1.191(8) 0.793(124) 1.150(32)

C1k2 0.00601(12) 1.174(7) 1.172(10) 1.200(12) 1.250(140) 1.171(21)

C1k3 − 0.00112(12) 1.178(11) 1.178(12) 1.198(17) 1.190(129) 1.166(15)

0.0 1.174(8) 1.176(10) 1.200(13) 1.236(109) 1.167(13)

D1k2 0.00074(22) 1.145(25) 1.149(24) 1.157(20) 1.202(322) 1.147(41)

D1k4 − 0.00007(4) 1.143(2) 1.143(6) 1.148(6) 1.147(31) 1.144(5)

0.0 1.143(3) 1.144(5) 1.148(6) 1.152(39) 1.144(6)
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Fig. 4 Dependence of ZS/ZP on the gauge coupling g2
0 . Results are

obtained from the 11 Ward identity classes listed in Table 3. Open
symbols are used for the Ward identity classes with connected-quark
diagrams only; closed symbols denote Ward identity classes with both
connected- and disconnected-quark diagrams. Closely related Ward
identities (which are separated by a single horizontal line in Table 2) are
shown with the same symbol. Data from WI(1144) are shown at their
exact abscissa position, while the others have been slightly displaced in
the g2

0-direction, in order to improve visibility

4.2 Scaling

In Table 3 we have listed 11 classes of distinct Ward iden-
tities; each of them is a different relation between correlation
function differences Δk (k = 1, 3, 5, 7, 8) and FS;1, from
which ZS/ZP may be obtained. In Fig. 4 we show these
determinations in the chiral limit as functions of the gauge

coupling g2
0. It is evident, as argued in Sect. 3, that there

are very strong correlations between results obtained on the
same configuration ensembles from “similar” Ward identity
classes, as grouped in Table 2.

We are thus led to select, from the plethora of Ward
identities, four representative determinations of ZS/ZP. Two
of these involve only quark connected diagrams. These are
WI(1245) and the linear combination L1, leading to Eq. (32).
The other two determinations involve both quark connected
and disconnected diagrams and are therefore numerically
more challenging. Here we chose WI(4488), and the linear
combination L2, leading to Eq. (33). The results for each
ensemble and in the chiral limit are shown in Table 5.

To evaluate the relative cutoff effects among our differ-
ent results, we form ratios of ZS/ZP, obtained from each
of the four determinations described above, to ZS/ZP from
our preferred identity WI(1468). We investigate the lattice
spacing dependence of each of these four ratios which, in
our Symanzik-improved setup, consists of powers of a2 and
higher. The ratios are known to tend to unity in the contin-
uum limit. We therefore fit them with polynomials in the
lattice spacing, constrained to be 1 at the origin. Results
are displayed in Fig. 5. The top panel of the figure displays
results from the first two determinations, without quark dis-
connected contributions.

The deviations from 1 in the ratio WI(1245)/WI(1468)
are very mild and can be described by a single term quadratic
in the lattice spacing with χ2/d.o.f = 0.474. For the ratio
L1/WI(1468) the deviation from 1 as well as the statistical
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Fig. 5 Lattice spacing dependence of the ratio of different ZS/ZP
determinations to ZS/ZP from WI(1468). The top panel depicts results
from Ward identities which involve quark-connected diagrams only,
while the bottom panel shows results from Ward identities which also
involve quark-disconnected diagrams

uncertainties are larger. A glance at Fig. 5 should convince the
reader that the data cannot be described by a single-parameter
fit with a quadratic term. Fitting with 1+ c2a2 + c3a3 results
to c2 = −9.3(4.3), c3 = 303(71) and χ2/d.o.f = 0.138.
A one-parameter fit with a term proportional to a3 gives
c3 = 169(22) with χ2/d.o.f = 0.775; this is the curve shown
in Fig. 5. The bottom panel of Fig. 5 displays results from
the determinations with quark disconnected contributions.
Again it is obvious that none of the data displays a pure
a2-dependence. Fitting the ratio WI(4488)/WI(1468) with
1+c2a2 +c3a3 results to c2 = −26(28), c3 = 911(410) and
χ2/d.o.f = 0.494; note that c2 is compatible with zero. Fit-
ting by 1+c3a3 gives c3 = 567(131) and χ2/d.o.f = 0.511;
this is the fit shown in the Figure. For the ratio L2/WI(1468)
we again fit with two parameters, one quadratic and one
cubic in the lattice spacing, obtaining c2 = −7.8(4.6),
c3 = 211(68) and χ2/d.o.f = 1.719. The relatively large
value for χ2/d.o.f can be traced to the data point at the coars-
est lattice spacing. All four cases conform with the theoretical
expectation of O(a2) ambiguities or higher. We did not find

any evidence for O(a) cutoff effects; trying to fit an addi-
tional term proportional to a gives coefficients which are
zero within errors.

4.3 Interpolation formula

To facilitate the use of our ZS/ZP results in large volume sim-
ulations, we provide an interpolation formula for lattice spac-
ings 0.04 fm � a � 0.1 fm. Having tried several fit ansätze,
we opt for a Padé interpolation constrained by the 1-loop
value [37] of the form

(
ZS

ZP

)
(g2

0) = 1 + 0.020164 g2
0 × 1 − Z (0)

SP g
2
0 + Z (1)

SP g
4
0

1 − Z (2)
SP g

2
0

, (34a)

Z (0)
SP = −0.5357 , Z (1)

SP = 0.2883 , Z (2)
SP = −0.5117 ,

(34b)

with the covariance matrix

cov(Z (i)
SP, Z ( j)

SP )

=
⎛
⎝+2.0195e − 01 −1.3844e − 01 −4.1248e − 03

−1.3844e − 01 +9.5121e − 02 +2.8754e − 03
−4.1248e − 03 +2.8754e − 03 +9.6128e − 05

⎞
⎠ ,

(34c)

and χ2/d.o.f. = 0.169.
As the functional form in the non-perturbative coupling

region is in principle unknown, we investigated the signifi-
cance of systematic effects by also experimenting with alter-
native forms of interpolating functions (such as higher-order
Padés, exponentials and polynomials), constrained to mono-
tonically approach the 1-loop perturbation theory result.
However, among those describing our results reliably (as sig-
naled by an acceptable χ2/d.o.f.) practically coincide with
the interpolation (34) in the fitted range of couplings, so that
the associated systematic errors are negligible compared to
the statistical ones. Therefore, we only account for system-
atic uncertainties when extrapolating with Eq. (34) to values
slightly outside the fitted range by adding a systematic error
of 50% of the size of the statistical one in quadrature. This
prescription is applied at β = 3.85, which corresponds to the
finest lattice spacing simulated by the CLS effort.

The WI(1468) results with the interpolation are shown in
Fig. 6, where they are also compared to the prediction of 1-
loop perturbation theory. The vertical dashed lines mark the
bare couplings used in CLS simulations, to which we want
to interpolate our results. Results for ZS/ZP at the g2

0-values
used in Nf = 2 + 1 CLS simulations are given in Table 6.

4.4 Comparison with previous works

We are not aware of any direct determinations of ZS/ZP

in our specific setup, but we can compare our findings,
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Fig. 6 ZS/ZP results from WI(1468), extrapolated to the chiral point,
plotted against the bare gauge coupling g2

0 . The Padé interpolation for-
mula (34), shown with errorband, is used to propagate the statistical
uncertainty. The 1-loop perturbative result from Ref. [37] is shown for
comparison. The vertical dashed lines indicate the CLS couplings of
Refs. [18,20,21]

Table 6 ZS/ZP results from WI(1468) (second column) and from
Ref. [23] for two lines of constant physics (LCP), specified there. The
inverse gauge couplings β are those used in Nf = 2 + 1 CLS simu-
lations [18,20,21]. The error of the WI(1468) results is the statistical
uncertainty propagated from the interpolation formula (34) except for
β = 3.85 where we added a systematic uncertainty, 50% of the size of
the statistical one, in quadrature. For the results of the two LCP columns
we combine the errors of Z (from Ref. [23]) and ZA (from Ref. [22])
in quadrature

β WI(1468) [23] LCP-0 [23] LCP-1

3.85 1.1343(25) 1.1437(33) 1.1441(24)

3.7 1.1709(23) 1.2047(34) 1.2023(25)

3.55 1.2317(48) 1.3073(72) 1.2971(51)

3.46 1.2914(64) 1.409(10) 1.3866(70)

3.4 1.3497(83) 1.509(12) 1.4720(77)

3.34 1.435(15) 1.662(19) 1.595(11)

using existing results for the quark mass renormalisation con-
stant Z ≡ ZP/(ZSZA). The idea is to compute ZS/ZP =
(Z ZA)−1, with Z from either Ref. [20] or Ref. [23], and ZA

from Ref. [22]. In Ref. [20], Z has been computed on large-
volume CLS ensembles, from the relation between PCAC
quark masses mi j and subtracted quark masses mq,i j (see
Sect. 5 and Appendix C for these mass definitions). The Z -
results in Ref. [23] were obtained on almost the same gauge
ensembles used in this work10 at small volumes and nearly-
chiral sea quark masses. The method of Ref. [23] is based on
suitable combinations of renormalised quark masses, defined
both through the PCAC relation and the subtracted bare mass,
evaluated in the O(a) improved theory with non-degenerate
valence quarks, including all necessary counterterms. Results

10 We additionally use ensemble C1k1.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

a3 in fm3

1.00

1.05

1.10

1.15

1.20
(ZAZ)−1 /WI(1468), LCP-0

(ZAZ)−1 /WI(1468), LCP-1

(ZAZ)−1 /WI(1468), Bali et al.

Fig. 7 Scaling behaviour of the ratio of ZS/ZP deduced from results
in Refs. [20,23] to ZS/ZP from WI(1468)

are quoted for two different lines of constant physics labeled
LCP-0 and LCP-1, which differ by the values at which the
quark masses in the valence sector are kept fixed as g0 is
varied.

We compute the ratio of 1/(Z ZA) from Refs. [20] and
[23] to ZS/ZP from our preferred WI(1468). We investigate
the lattice spacing dependence of this ratio, which consists of
powers of a2 and higher, and tends to unity in the continuum
limit. The results are plotted in Fig. 7. Polynomial fits are
performed on the LCP-0 and LCP-1 ratios, excluding the
data of the coarsest ensembles, which display poor scaling
behaviour and large errors. A two-parameter fit of the form
1+c2a2 +c3a3 results to χ2/d.o.f = 0.281, c2 = −2.5(3.7)

and c3 = 242(57) for LCP-0, and χ2/d.o.f = 0.166, c2 =
1.5(2.8) and c3 = 148(45) for LCP-1, in both cases c2 is
consistent with zero. We thus prefer to plot the results as
functions of a3 in Fig. 7, where we also show a one-parameter
fit of the form 1+ c3a3; for this ansatz we obtain χ2/d.o.f =
0.300, c3 = 206(14) for LCP-0 and χ2/d.o.f = 0.170, c3 =
169(12) for LCP-1.11 We interpret this as confirmation that
the two methods are compatible w.r.t. the expected lattice
spacing ambiguities and that the effects of O(a2) are sub-
dominant compared to the next higher order.

Let us briefly comment on the possible benefits of the
respective results on ZS/ZP collected in Table 6, originating
from the different approaches underlying Ref. [23] and this
work. First, one observes comparable uncertainties between
the two. While the method of that reference involves com-
binations of simpler and thus typically less noisy correlation
functions (i.e., with only one operator insertion in the bulk)
as well as an accurate computation of the valence quark mass
dependence prior to the chiral extrapolations, our estimates
on ZS/ZP from the more direct Ward identity approach fol-

11 Since we neglect correlations between our results and those of
Ref. [23], the error in their ratio is probably overestimated. This explains
the small values of χ2/d.o.f.
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lowed here exhibit an overall flatter and, at larger couplings,
less steep g2

0-dependence. This points to generically smaller
cutoff effects so that continuum extrapolations of quantities
where it enters may be expected to become better controlled
and more precise in the long run, because they are also less
affected by unpleasantly significant admixtures of higher-
order cutoff effects.

The results for Z presented in [20], stemming from large-
volume calculations on a subset of the CLS ensembles, are
only available at two values of the bare coupling, which do
not coincide with the couplings investigated in this work.
In order to compare with our results we make use of the
interpolation formula Eq. (34). Although the estimates for Z
from Ref. [20] are only available at two values of the bare
coupling and we hence do not attempt a fit in this case, we
notice that they are compatible with LCP-0.

In summary, comparison with earlier works is consistent
with the expectation that all ambiguities between different
determinations of ZS/ZP show a scaling according to O(a2)

or higher. However, the size of these ambiguities is quite
large and may still have a relevant impact on applications as
described in the next Section.

5 Application: quark mass computations with Wilson
fermions

We will now discuss a method of computing quark masses
with Wilson fermions which uses the ratio ZS/ZP.

First we review the well-established “PCAC quark mass
method”. It is the conventional ALPHA Collaboration
approach, which relies on the PCAC definition of quark
masses mi j of Eq. (C.7). These bare current masses are com-
puted on large physical volumes12 and for a range of cou-
plings typical of hadronic, low-energy scales μhad ∼ �QCD.
Although we keep our notation as general as possible, for
concreteness we consider a theory with Nf = 2 + 1 dynam-
ical fermions; i.e. the two lightest flavours are degenerate in
mass while the third flavour is heavier (mq,1 = mq,2 < mq,3).

We see from Eq. (C.8) that the renormalised light mass is
given by

m1,R = m2,R = ZA

ZP
m12

×
[
1 + (bA − bP)amq,12 + (b̄A − b̄P)a Tr(Mq)

]
+ O(a2) .

(35)

12 The ALPHA Collaboration has performed these calculations for
quenched QCD with Schrödinger functional boundary conditions; see
Ref. [38]. The CLS effort determined quark masses for Nf = 2 QCD
with periodic boundary conditions [39,40] and for Nf = 2 + 1 QCD
with open boundary conditions [25,41].

The ratio of the heavy to light renormalised masses is also
derived from the above expression:

m3,R

m1,R

= 2
m13

m12

[
1 + (bA − bP)

(amq,3 − amq,2)

2

]
− 1 + O(a2) .

(36)

Knowing the renormalised light mass from Eq. (35), and
the ratio of the heavy and light renormalised masses from
Eq. (36), the up/down and strange masses are obtained [19,
25]. So in principle this method requires:

1. The axial current normalisation ZA(g2
0) and the renor-

malisation constant ZP(g2
0, μhad) of the non-singlet pseu-

doscalar density; the latter carries the renormalisation
scheme and scale dependence of the continuum quark
mass. In our Nf = 3 setup, these may be found in
Refs. [22] and [42], respectively.

2. The Symanzik-improvement coefficients (bA − bP) and
(b̄A − b̄P). Non-perturbative (bA − bP)-estimates in our
setup may be found in Ref. [23]. Note that in perturbation
theory (b̄A − b̄P) ∼ O(g4

0), so that the term proportional
to this coefficient is habitually dropped.

3. It is also noteworthy that Eq. (36) does not require knowl-
edge of κcrit , which is however needed in mq,12 and
Tr(Mq) in Eq. (35). We shall return to this point in
Sect. 5.1.

Based on the results of Ref. [43] for Symanzik-improved
quark masses with Wilson fermions, an alternative approach,
known as the “ratio-difference method”, has been proposed
in Ref. [24]. The renormalised quark mass difference is given
by

m3,R − m1,R = Z−1
S

[
mq,3 − mq,1

]

×
[
1 + a2bm mq,13 + ab̄m Tr(Mq)

]
+ O(a2) .

(37)

Knowing the renormalised mass difference from Eq. (37),
and the ratio of the heavy and light renormalised masses
from Eq. (36), the up/down and strange masses are obtained.
So in principle this method requires:

1. The renormalisation constant ZS(g2
0, μhad) of the non-

singlet scalar density, which carries the renormalisation
scheme and scale dependence of the continuum quark
mass.

2. The Symanzik-improvement coefficients (bA − bP), bm
and b̄m . Non-perturbative estimates of the bm-coefficient
in this setup may be found in Ref. [23].13 Since b̄m ∼

13 In perturbation theory 2bm = −1 + O(g2
0) and the non-perturbative

estimates of Ref. [23] are also numerically sizeable. Thus this Symanzik
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O(g4
0), the term proportional to Tr(Mq) is habitually

dropped.
3. The critical hopping parameter κcrit is needed in mq,13

and Tr(Mq) in Eq. (37). We shall return to this point in
Sect. 5.1.

We have outlined the basic idea behind the PCAC quark
mass method and the ratio-difference method, listing the
renormalisation parameters and improvement coefficients
required by each one. The most crucial difference is that in the
PCAC quark mass method all bare masses are given in terms
of the current masses m12 and m13, which are renormalised
by Z−1

P ZA, while in the ratio-difference method the bare
mass difference is the exactly known [mq,3 −mq,1], which is
renormalised by Z−1

S . It is not possible to determine ZS with a
Schrödinger functional renormalisation condition analogous
to that introduced in Ref. [44] for ZP. The latter involves cor-
relation functions with a pseudoscalar source at the boundary
(see Eq. (A.9)) and the pseudoscalar scalar operator at the
bulk. If we place a scalar operator at the bulk, keeping the
pseudoscalar boundary source, the correlation function van-
ishes due to parity. Nor is it possible to have a scalar source
at the boundary and the scalar density at the bulk, since this
would result in the product P+P− of the projection operators
of the boundary quarks and the vanishing of the correlation
function. An option would be to impose a renormalisation
condition on the correlation function 〈O′a Sb(x)Oc〉, with
the two pseudoscalar boundary sources O′a and Oc and the
scalar operator Sb in the bulk. This would be an acceptable
intermediate scheme of the Schrödinger functional variety,
but different than the one introduced in Ref. [44] for ZP.
Thus, the renormalised quark masses m1R,m3R obtained by
combining Eqs. (35) and (36) (PCAC quark mass method
with ZP) would be in a different scheme than those obtained
from Eqs. (37) and (36) (difference-ratio method with ZS).
Only results obtained for the scheme-independent renormal-
isation group invariant (RGI) masses from the two methods
would be comparable. This comparison would be very useful
but cumbersome, as it requires the computation from scratch
of the step scaling function in the new intermediate scheme,
from ratios of ZS’s at fixed renormalised coupling and two
different renormalisation scales, and for a range of couplings.

Given the above considerations, we are led to define the
scalar operator renormalisation parameter through:

ZS(g2
0, μhad) =

[
ZS(g2

0, μhad)

ZP(g2
0, μhad)

]
ZP(g2

0, μhad) . (38)

This is our definition of the Schrödinger functional renor-
malisation scheme for the scalar non-singlet operator. The

counterterm is expected to remove large O(a) effects, especially in
future computations of heavy flavour quark masses (charm etc.).

ZS/ZP-ratio on the r.h.s. is scale independent, being deter-
mined from Ward identities. Clearly, scalar and pseudoscalar
densities have the same renormalisation group running prop-
erties (i.e., the same anomalous dimensions, the same step
scaling functions in the continuum, etc.). So knowledge of
the ZS/ZP ratio enables us to obtain the light and heavy quark
masses in the usual Schrödinger functional scheme [44], but
with a different method based on mass differences (and ZS)
combined with scale-independent PCAC mass ratios. The
novel renormalisation and improvement patterns provide an
important handle for the control and reduction of system-
atic effects related to the non-perturbative determination of
renormalisation parameters and discretisation errors.14 What
is common in both methods is the renormalisation group
running that takes us non-perturbatively from renormalised
masses at low energy scales μhad to masses at large, perturba-
tive scales μPT ∼ MW, as described in Ref. [44]. For recent
results on the running of quark masses in Nf = 3 QCD see
Ref. [42].

5.1 Subtracted masses, PCAC masses, and redefined
Symanzik counterterms

We will close this section by reviewing how, in both meth-
ods, we can circumvent the need to use κcrit in the Symanzik
counterterms of Eqs. (35) and (37), which feature subtracted
masses amq,i j and Tr[aMq]. This can be avoided by sub-
stituting these subtracted masses with current quark masses.
Their relation is given by [43],

mi j = Z

[
mq,i j + (rm − 1)

Tr[Mq]
Nf

]
+ O(a) , (39)

where Z(g2
0) ≡ ZP/(ZSZA) and rm ≡ ZS/ZS0 are finite

normalisations (ZS0 is the renormalisation parameter of the
singlet scalar density). In the above we neglect O(a) terms,
as they only contribute to O(a2) in the b-counterterms of
Eqs. (35) and (37). Substituting amq,i j → ami j in these
expressions, we obtain respectively

m1,R = m2R = ZA

ZP
m12

×
[

1 + (b̃A − b̃P)am12 +
{
(b̃A − b̃P)

1 − rm
rm

+ (b̄A − b̄P)
Nf

Zrm

}
aMsum

Nf

]
+ O(a2) ,

(40)

and

m3,R − m1,R = Z−1
S

[
mq,3 − mq,1

]

14 This could be crucial in computations of heavier quark masses
(charm etc.), where the discretisation errors become dominant.
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×
[

1 + 2b̃m am13

+
{

2b̃m
1 − rm
rm

+ b̄m
Nf

Zrm

}
aMsum

Nf

]
+ O(a2) , (41)

where we define

b̃A − b̃P ≡ bA − bP

Z
, b̃m ≡ bm

Z
, (42)

Msum ≡ m12 + m23 + · · · + m(Nf−1)Nf + mNf 1

= ZrmTr[Mq] + O(a) . (43)

Thus, amq,i j and κcrit in Eqs. (35) and (37) have been
traded off for mi j , Z , and rm . Accurate non-perturbative
estimates of Z , (bA − bP), and bm in our Nf = 3 setup
have been reported in Ref. [23]. The term multiplying Msum

contains (1−rm)/rm and (b̄A − b̄P). To leading order in per-
turbation theory rm = 1 + 0.001158CF Nf g4

0 [20,45]; thus
(1 − rm)/rm ∼ O(g4

0). A first non-perturbative study of the
coefficients b̄A, b̄P, and b̄m produced noisy results with 100%
errors [46]. Since in perturbation theory (b̄A − b̄P), b̄m ∼
O(g4

0) [43], the terms proportional to Msum are habitually
dropped.

For completeness we also discuss a slightly different way
to write the bm-counterterm of the renormalised quark mass
difference of Eq. (37), in close analogy to what is done in
Ref. [24]. The term in question is written as follows:

abm[mq,3 + mq,1] = abm[mq,3 + mq,1]
[
mq,3 − mq,1

mq,3 − mq,1

]

= abm

[
mq,3 − mq,1

]
[
m33′

m12
+ 1

]
+ 2(1 − rm)

rm

Msum

m12[
m33′

m12
− 1

] .

(44)

We arrive at the second expression using Eq. (39) and intro-
ducing the PCAC mass m33′ , which consists of two degen-
erate but distinct heavy valence flavours. Neglecting the
term proportional to Msum in Eq. (44), we conclude that
in this approximation the difference-ratio method is based
on Eqs. (36) and (37), which depend on the exactly known
subtracted quark mass difference [mq,3 −mq,1] and suitable
PCAC quark mass ratios, but not on subtracted quark mass
averages mq,i j and κcrit .

6 Conclusions

In the present study we have addressed, for the first time
within the finite-volume Schrödinger functional setup, the
non-perturbative determination of the ratio of the scalar to

pseudoscalar non-singlet renormalisation constants ZS/ZP

in Wilson’s lattice QCD, exploiting suitable massive chiral
Ward identities. We have shown that in lattice QCD with three
flavours of Wilson-Clover quarks (with non-perturbative
csw [47]) and tree-level Symanzik-improved gauge action,
the Ward identities are restored up to O(a2) at finite lat-
tice spacing. In order to ensure a smooth dependence of the
renormalisation constant ratio on the bare gauge coupling,
we have enforced a constant physics condition by working
with an approximately fixed physical volume of spatial extent
L ≈ 1.2 fm and T/L ≈ 3/2.

Our main results are the parameterisation of ZS/ZP in
Eq. (34), valid for bare couplings 1.55 � g2

0 � 1.85 (i.e.,
lattice spacings 0.042 fm � a � 0.105 fm), as well as the
values for ZS/ZP, given in Table 6, at the bare couplings
typically employed in the large-volume Nf = 2 + 1 CLS
ensembles [18–21]. On the technical level, we had to treat
properly the topology freezing encountered in our simula-
tions, principally at the finest lattice spacing, which may
prevent a trustworthy estimation of the statistical error. The
operator character of Ward identities ensures their validity in
sectors of fixed topological charge. Thus we have projected
the correlation functions entering the Ward identities onto
the trivial topological sector throughout our analysis.

Several checks have been performed, in order to guarantee
the stability of the analysis and a careful assessment of the
statistical as well as the systematic errors. In particular, we
have verified that results on ZS/ZP from the different classes
of Ward identities at our disposal are perfectly consistent with
each other as expected, i.e., up to ambiguities of O(a2) or
even higher. Among the various estimators for [ZS/ZP](g2

0),
our preferred choice, advocated in Eq. (34), was guided by the
structural simplicity of the underlying chiral Ward identity,
its numerical precision, and its robustness against systematic
effects.

Since the range of couplings covered in this work matches
those of the large-volume gauge field configurations gen-
erated by CLS with the same lattice action, our result for
[ZS/ZP](g2

0), combined with the scale dependent renormal-
isation factor ZP from [42], can be used in the computation
of quark masses as outlined in Sect. 5. Work in this direction,
extending the (2 + 1)-flavour computations of light, strange
and charm quark masses on the CLS ensembles reported in
refs. [25,41], is in progress.
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Appendix A: Basic definitions

We define non-singlet vector and axial vector currents in
QCD with Nf quarks as

V a
μ(x) = iψ̄(x)γμT

aψ(x) , (A.1)

Aa
μ(x) = iψ̄(x)γμγ5T

aψ(x) , (A.2)

with a = 1, . . . , (N 2
f − 1) an SU (Nf) flavour index. See

Appendix B for our conventions regarding SU (Nf) groups
and su(Nf ) Lie algebras. Analogously, non-singlet scalar and
pseudoscalar densities are given by

Sa(x) = iψ̄(x)T aψ(x) , (A.3)

Pa(x) = iψ̄(x)γ5T
aψ(x) . (A.4)

Axial transformations of the fermion fields are defined as:

ψ(x) → ψ ′(x) = exp
[
iεa(x)T aγ5

]
ψ(x) , (A.5)

ψ̄(x) → ψ̄ ′(x) = ψ̄(x) exp
[
iεa(x)T aγ5

]
. (A.6)

Small axial field variations are obtained by expanding the
above up to O(ε):

δAψ(x) = εa(x)δaAψ(x) ≈ iεa(x)T aγ5ψ(x) , (A.7)

δAψ̄(x) = εa(x)δaAψ̄(x) ≈ iεa(x)ψ̄(x)T aγ5 . (A.8)

Note that in general these transformations are defined to be
local (i.e., εa depends on space-time). Their global coun-
terparts are related to symmetries of the continuum theory
(vector and chiral).

In the Schrödinger functional framework, standard zero-
momentum sources are defined as follows15:

Oa ≡ ia6
∑
u,v

ζ̄ (u)γ5T
aζ(v) ,

O′a ≡ ia6
∑
u′,v′

ζ̄ ′(u′)γ5T
aζ ′(v′) ,

(A.9)

where ζ and ζ ′ are the quark fields at the Schrödinger func-
tional boundaries x0 = 0 and x0 = T , respectively.

Appendix B: Properties of su(Nf ) Lie algebra generators

Our conventions for the su(Nf) Lie Algebra are those of
Appendix A.3. of Ref. [2]. In general, the anti-Hermitean
generators of the algebra satisfy

[
T a, T b] = f abcT c . (B.1)

We work in the fundamental representation, with the gener-
ators normalised so that

Tr
[
T aT b] = −1

2
δab . (B.2)

The anticommutator of these generators is given by

{
T a, T b} = −idabcT c − δab

Nf
INf , (B.3)

where INf is the dimension-Nf unit matrix. The structure con-
stants f abc are real and totally antisymmetric tensors, while
dabc are real and totally symmetric. Two useful identities are

Tr[T aT bT c] = 1

4

[
idabc − f abc

]
, (B.4)

Tr[T aT bT cT d ] = 1

4Nf
δabδcd

+ 1

8

[
dabe + i f abe

] [
dcde + i f cde

]

=1

8

{ 2

Nf
δabδcd + dabedcde − f abe f cde

+ i
[
dabe f cde + dcde f abe

] }
. (B.5)

For Nf = 2 we have T a = τ a/(2i) (τ a are the Pauli
matrices), f abc = εabc (the Levi-Civita symbol) and dabc =
0.

15 In practice, instead of the sourcesOa andO′a defined in Eq. (A.9), we
use pseudoscalar smeared sources with wavefunctions at the boundaries,
as explained in [29].
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For Nf = 3 we have T a = λa/(2i) (λa are the Gell-Mann
matrices). The non-vanishing structure constants are

f 123 = 1 ,

f 147 = f 246 = f 257 = f 345 = 1

2
,

f 156 = f 367 = −1

2
,

f 458 = f 678 =
√

3

2
,

(B.6)

and their anti-symmetric counterparts. The non-vanishing
symmetric constants are

d118 = d228 = d338 = 1√
3

,

d888 = − 1√
3

,

d448 = d558 = d668 = d778 = − 1

2
√

3
,

d146 = d157 = d256 = d344 = d355 = 1

2
,

d247 = d366 = d377 = −1

2
,

(B.7)

and their symmetric counterparts.
Two useful properties are straightforward consequences

of Eqs. (B.6) and (B.7):

– Property A: For any pair of indices a, b, there is at most
one value of a third index c for which dabc 	= 0.

– Property B: There is no combination of flavour indices
a, b, c for which f abc 	= 0 and dabc 	= 0. In other words,
when f abc 	= 0, then dabc = 0, and when dabc 	= 0, then
f abc = 0.

Appendix C: Renormalisation and improvement

All operators of interest are flavour non-singlets and, unless
otherwise stated, quark masses are degenerate. For Wilson
fermions, with O(a) Symanzik improvement, we know that
the improved current

(AI)
a
μ = Aa

μ + acA∂μP
a , (C.1)

is correctly normalised a follows:

(AR)aμ = ZA [1 + bAamq + b̄AaTrMq](AI)
a
μ . (C.2)

The renormalised and Symanzik-improved scalar and pseu-
doscalar densities are given by

SaR = ZS[1 + bSamq + b̄SaTrMq]Sa , (C.3)

Pa
R = ZP[1 + bPamq + b̄PaTrMq]Pa , (C.4)

with amq = 1/(2κ) − 1/(2κcrit) the subtracted bare mass;
here κ is the Wilson hopping parameter and κcrit its criti-
cal value (chiral limit). The mass matrix of subtracted quark
masses is denoted by Mq. The current (bare) quark mass,
which appears in the chiral Ward identities of the present
paper, is defined by the PCAC relation

m = ∂0〈(AI)
a
0(x) Oa〉

2 〈Pa(x)Oa〉 . (C.5)

The renormalised quark mass mR is given in terms of the
current mass m by

mR = ZA

ZP

[1 + bAamq + b̄AaTrMq]
[1 + bPamq + b̄PaTrMq]

m . (C.6)

For two distinct flavours i, j , the subtracted quark masses
are amq,i = 1/(2κi ) − 1/(2κcrit) and similarly for amq, j .
The PCAC mass is defined as

mi j = ∂0〈(AI)
i j
0 (x) O j i 〉

2 〈Pi j (x)O j i 〉 , (C.7)

and the renormalised quark mass average is expressed in
terms of mi j as follows:

mi,R + m j,R

2
= ZA

ZP
mi j

[
1 + (bA − bP)amq,i j

+ (b̄A − b̄P)a TrMq

]
+ O(a2) ,

(C.8)

where mq,i j ≡ (mq,i + mq, j )/2. This reduces to Eq. (C.6)
for two degenerate masses mq,i = mq, j .

In practice for the divergence of the improved axial current
we use ∂μ(AI)

a
μ ≡ ∂̃μAa

μ + acA∂∗
μ∂μPa , where ∂̃μ denotes

the average of the usual forward and backward derivatives
defined as a∂μ f (x) ≡ f (x + aμ̂) − f (x) and a∂∗

μ f (x) ≡
f (x) − f (x − aμ̂).

Appendix D: Charge conjugation, γ5-Hermiticity, and
correlation functions

Wilson quark propagators in lattices with Schrödinger
functional boundary conditions, on a fixed background
gauge field, are standard ones, denoted as [ψ(y) ψ̄(x)]F, or
boundary-to-bulk ones like [ζ(v)ψ̄(x)]F.16 They all obey the
γ5-Hermiticity property; e.g.

[ψ(x) ψ̄(y)]†
F = γ5 [ψ(y) ψ̄(x)]F γ5 ,

[ζ(v) ψ̄(x)]†
F = γ5 [ψ(x)ζ̄ (v)]F γ5 .

(D.1)

16 See Ref. [28] for their definitions.
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Under charge conjugation,17 the quark bilinear operators of
interest transform as follows:

ψ̄(x)T aγ5ψ(y) → ψ̄(y)[T a]T γ5ψ(x) ,

ψ̄(x)T aγ0γ5ψ(y) → ψ̄(y)[T a]T γ0γ5ψ(x) ,
(D.2)

with [T a]T the transpose of [T a]. The time-boundary oper-
ators ζ̄ (u)γ5T aζ(v) and ζ̄ ′(u′)γ5T aζ ′(v′) satisfy analogous
properties. Note that in Eqs. (D.1), Wick-contracted fermion
fields are same-flavour functions, while in Eqs. (D.2) they
are vectors in flavour space.

We now concentrate on the r.h.s. of WI (11), and in par-
ticular on Eq. (12) and the traces FS;1 and FS;2 of Table 1.
Using the γ5-Hermiticity properties of Eqs. (D.1), it can be
easily shown that FS;2(y0) = FS;1(y0)

†. On the other hand,
the traces of three flavour matrices T dea and T aed are given
by Eq. (B.4). Putting everything together, the r.h.s. of the
Ward identity (11) becomes

WI r.h.s. = −a15

2
ZSd

bce
[
dadeRe

{
FS;1(y0)

}

+ i f adeIm
{
FS;1(y0)

}]
.

(D.3)

Next we apply charge conjugation to the correlation function
〈O′a Se(y) Od〉. We see from Eq. (D.2) that the transforma-
tion only affects the flavour matrices; instead of Tr(T aT eT d)

we have Tr(T aT T eT T dT ) = Tr(T dT eT a) and instead of
Tr(T dT eT a) we have Tr(T dT T eT T aT ) = Tr(T aT eT d).
Thus, under a charge conjugation transformation,

WI r.h.s. → −a15

2
ZSd

bce
[
dadeRe

{
FS;1(y0)

}

− i f adeIm
{
FS;1(y0)

}]
.

(D.4)

This should be equal to the original expression (D.3), because
charge conjugation leaves QCD correlation functions unaf-
fected. Comparing the last two equations we see that this can
only be true if Im

{
FS(1)(y0)

}
vanishes. This proves Eq. (13).

Having shown that the r.h.s. of WI (11) is real, the l.h.s.
must also be real. As a crosscheck we show this explicitly.
The l.h.s. correlation function is given by Eq. (14), with the
traces of flavour matrices given by Eqs. (15)–(20) and the 9
terms FAP;k listed in Table 1. Taking the Hermitean conjugate
of these terms we find that the one-boundary ones are related
pairwise by complex conjugation,

T abcd
2 FAP;2(x0, y0) = [T abcd

1 FAP;1(x0, y0)]∗ ,

T abcd
4 FAP;4(x0, y0) = [T abcd

3 FAP;3(x0, y0)]∗ ,

17 The Dirac matrix conventions used in the present work are those of
Appendix A of Ref. [2]. The charge conjugation conventions are those
of Appendix B of the same reference.

T abcd
6 FAP;6(x0, y0) = [T abcd

5 FAP;5(x0, y0)]∗ . (D.5)

Hermitean conjugation also implies that the quark-discon-
nected contributions are real:

T abcd
7 FAP;7(x0, y0) = [T abcd

7 FAP;7(x0, y0)]∗ ,

T abcd
8 FAP;8(x0, y0) = [T abcd

8 FAP;8(x0, y0)]∗ ,

T abcd
9 FAP;9(x0, y0) = [T abcd

9 FAP;9(x0, y0)]∗ . (D.6)

From these properties it immediately follows that the l.h.s.
of the WI is real.

However we want to go a step further and show the reality
of the traces FAP;1, . . . , FAP;9. For the one-boundary contri-
butions, Eqs. (D.5) imply that

T abcd
1 FAP;1 + T abcd

2 FAP;2
= T abcd

1 FAP;1 + (T abcd
1 FAP;1)∗ = 2Re [T abcd

1 FAP;1]
= 2[Re (T abcd

1 )Re (FAP;1) − Im (T abcd
1 )Im (FAP;1)] ,

(D.7)

with (cf. Eq. (B.5)):

Re (T abcd
1 ) = 1

4Nf
δabδcd + 1

8
[dabedcde − f abe f cde] ,

Im (T abcd
1 ) = 1

8
[dabe f cde + f abedcde] . (D.8)

Applying charge conjugation to the 4-point correlation func-
tion 〈O′a Ab

0(x) P
c(y)Od〉, we find that FAP;1 → FAP;1,

FAP;2 → FAP;2, and T abcd
1 ↔ T abcd

2 . Thus under charge
conjugation Eq. (D.7) transforms as follows:

T abcd
1 FAP;1 + T abcd

2 FAP;2
→ 2[Re (T abcd

2 )Re (FAP;1) − Im (T abcd
2 )Im (FAP;1)] .

(D.9)

But applying Eq. (B.5) to T abcd
2 (cf. also Eq. (D.8)) we

see that Re (T abcd
2 ) = Re (T abcd

1 ) and Im (T abcd
2 ) =

−Im (T abcd
1 ). Thus, under charge conjugation

T abcd
1 FAP;1 + T abcd

2 FAP;2
→ 2[Re (T abcd

1 )Re (FAP;1) + Im (T abcd
1 )Im (FAP;1)] .

(D.10)

Comparing this result to Eq. (D.7) and recalling that QCD
correlation functions remain invariant under charge con-
jugation, we deduce that Im (FAP;1) = 0. Analogously,
FAP;2, . . . , FAP;6 are also real. Concerning one-boundary
contributions, traces T abcd

7 , T abcd
8 , T abcd

9 are easily seen to
be real from Eq. (B.2). The reality of FAP;7, FAP;8, FAP;9
then follows immediately from Eqs. (D.6). This completes
our proof that also the l.h.s. of WI (11) is real.
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Fig. 8 Non-perturbative confirmation of the identities (24), (27) and
(31). In the top panel only quark-connected diagrams contribute to the
results, while in the bottom panel quark-disconnected diagrams also
give contributions

Appendix E: Non-perturbative checks

As additional validation of our method we want to make sure
that the relations (24), (27) and (31) which relate different dia-
grams to one another are fulfilled up to ambiguities of O(a2).
After making sure that the identities are valid at tree-level of
perturbation theory we evaluate them non-perturbatively on
our ensembles. The analysis is analogous to the one for the
ratio ZS/ZP. After evaluating the identities on each lattice
for a given value of β, we perform an extra- or interpolation
to the chiral point linear in the current quark mass. The val-
ues presented here are the results at the chiral point obtained
from this procedure. The clearest evidence comes from iden-
tity (24) which we can rewrite as

Δ5 /Δ1 = 1 + O(a2) . (E.1)

In the top part of Fig. 8 we present the results which show
the expected scaling towards the continuum.

The identities (27) and (31) are more complicated to verify
as they involve quark disconnected contributions. We can

rewrite the identities as follows

Δ7 /Δ8 = 1 + O(a2) , (E.2)

Δ7 /Δ3 = −1 + O(a2) . (E.3)

The numerical results are presented in the bottom part of
Fig. 8. In this case the statistical uncertainties are orders of
magnitudes larger and grow towards the continuum limit.
A possible explanation of this is that the Δi involved here
are vanishing at tree-level in perturbation theory. Despite the
large uncertainties our data still suggest that the identities are
fulfilled up to the expected ambiguities in the lattice spacing.
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