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Implications of supersymmetrizing the clockwork axions are studied. Supersymmetry ensures that the
saxions and axinos have the same pattern of the coupling hierarchy as the clockwork axions. If we assume
supersymmetry breaking is universal over the clockwork sites, the coupling structure is preserved, while the
mass orderings of the saxions and axinos can differ depending on the supersymmetry breaking scale. While
the massive saxions and axions quickly decay, the lightest axino can be stable and, thus, a dark matter
candidate. The relic abundance of the axino dark matter from thermal production is mostly determined by
decays of the heavier axinos in the normal mass ordering. This exponentially enhances the thermal yield
compared to the conventional axino scenarios. Some cosmological issues are discussed.
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I. INTRODUCTION

One of the strongest beliefs in particle physics is that
there exist extended sectors of new physics beyond the
standard model (SM). In theoretical aspects, it is invoked to
resolve fine-tuning problems residing in the SM. In
practical aspects, the SM does not contain physics for
essential phenomena such as neutrino oscillation, matter-
antimatter asymmetry, and dark matter (DM). A widely
accepted notion of extensions of the SM is to introduce
“dark” sectors which communicate with the SM via feeble
interactions, leading to rational explanations to those
phenomena.
A prominent fine-tuning problem in the SM is the strong

CP problem. It can be solved by introducing a sponta-
neously broken Peccei-Quinn symmetry [1] which involves
the QCD axion [2,3]. The axion couples to the gluon field
strength and dynamically relaxes the QCD θ term to zero.
Astrophysical observations constrain axion-gauge boson
couplings (including the axion-gluon coupling) [4–7] so
that the axion couplings are required to be suppressed by an
intermediate-scale dynamics. While such a large scale can
be induced by exotic heavy quarks [8,9] or tiny coupling
with Higgs doublets [10,11], the origin of the hierarchical
structure of new physics still remains unanswered.

The clockwork theory presents a plausible mechanism to
build hierarchical mass spectra and interactions from a
series of multiple nonhierarchical ones. An early form of
the clockwork structure was studied to achieve a trans-
Planckian field excursion from two sub-Planckian fields in
a natural inflation [12]. In further studies, it was shown that
a number of axions with similar decay constants can
produce an exponentially large effective scale [13–15]. It
has been argued that the same mechanism is applicable for
more general systems with various spins, scales, and
couplings [16]. In particular, the clockwork mechanism
is able to construct an intermediate-scale (≳109 GeV)
axion decay constant from dynamics near the electroweak
scale [17].
In the case of the clockwork axion, a global Uð1ÞNþ1

symmetry spontaneously breaks at scale f and conse-
quently results in (N þ 1) Goldstone bosons. The global
symmetry is explicitly but softly broken by N mass terms
with clockwork structure. This specific structure leaves
unbroken Uð1Þ and a corresponding massless degree of
freedom. If the SM sector couples to one end of (N þ 1)
axions (clockwork gears), interactions of the massless
mode are exponentially suppressed compared to those
from the tangible symmetry breaking scale f. Therefore,
one can identify the massless degree with the QCD axion,
and it provides a neat explanation why the axion decay
constant is much larger than the electroweak scale. In this
case, the massless degree becomes a good candidate of dark
matter as the usual QCD axion, while the massive degrees
quickly decay into visible particles in that they have
nonsuppressed couplings with the visible sector.
Intriguing phenomena in the dark sector (here axion

sector) arise if one considers a supersymmetric model of the
clockwork axion. Supersymmetry (SUSY) itself is also an
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elegant solution to the gauge hierarchy problem, which is
another fine-tuning problem in the SM. All pseudo-Nambu-
Goldstone bosons (pNGBs)1 corresponding to Uð1ÞNþ1

accompany their fermion partners, which we call axinos in
this context. The supersymmetry dictates the same clock-
work pattern to axinos and leads to clockwork fermions.
There are more interesting phenomena in the clockwork
axinos. The R parity, if it is preserved, prevents the heavy
axinos from decaying into only the SM particles. For
example, if all the SUSY partners in the SM sector are
heavy and only the axinos are R-parity-odd particles near or
below the electroweak scale, axinos can decay only into
another axinos with axions. It leads inter-dark-sector
transitions, which make all the axino states produced from
thermal bath contribute to dark matter number density.
In this paper, we consider a simple model of the

supersymmetric clockwork axion, which consists of
(N þ 1) chiral superfields containing axions, axinos, and
also saxions (scalar partners of axions). In the SUSY
preserving limit, all three components have the same
clockwork structure for masses and couplings. Once the
SUSY is broken, all three components receive SUSY
breaking masses, and, thus, masses of saxions and axinos
deviate from the axion masses, while the couplings remain
the same clockwork structure. In a mass spectrum in which
the axinos are much lighter than the saxions and axions
(except the zero mode axion), the axinos are dominantly
produced via the gluon scattering mediated by gluinos. The
heavy axinos eventually decay into the lightest axino,
which is the dark matter in this model. Furthermore, due
to the clockwork structure, the axino DM number density is
determined by much more enhanced strengths than its
actual interactions with the SM sector but is independent of
details of the clockwork gears (clockwork parameter and
number of gears).
This paper is organized as follows. In Sec. II, we briefly

review a clockwork axion model to show essential elements
of the theory. In Sec. III, we consider a SUSYextension and
the mass spectrum for axions, saxions, and axinos. In
Sec. IV, we present a complete list of processes for axino
production and the axino abundance in a simple spectrum.
In Sec. V, we discuss some cosmological issues related to
the model. In Sec. VI, we conclude this paper.

II. REVIEW OF CLOCKWORK AXION

In this section, we briefly review a clockwork axion
model to elucidate essential features of the clockwork
theory. In the next section, we will supersymmetrize the
clockwork axion and see what appears in the model. We
follow a simple formulation shown in Refs. [15,16], but the
basic structure is the same as another formulations in
Refs. [13,14,17].

Let us consider N þ 1 pNGBs originating from a broken
global Uð1ÞNþ1 symmetry. Below the energy scale f,
where all N þ 1 Uð1Þ symmetries are broken, Goldstone
fields are expressed by

Uj ¼ feiϕj=ð
ffiffi
2

p
fÞ: ð1Þ

The Lagrangian is given by

L ¼ f2
XN
j¼0

∂μUj∂μUj þm2f2
XN−1

j¼0

ðU†
jU

q
jþ1 þ H:c:Þ þ � � �

¼ 1

2

XN
j¼0

∂μϕj∂μϕj − VðϕjÞ; ð2Þ

where the ellipsis denotes higher-order terms. The potential
of ϕ fields are given up to the quadratic order by

VðϕjÞ ¼ −m2f2
XN−1

j¼0

e−iðϕj−qϕjþ1Þ=
ffiffi
2

p
f þ H:c:

¼ 1

2
m2

XN−1

j¼0

ðϕj − qϕjþ1Þ2 þ � � �

¼ 1

2
m2

XN
i;j¼0

MCWijϕiϕj þ � � � ; ð3Þ

where a matrix MCW which we call here the clockwork
matrix is given by

MCW ¼

0
BBBBBBBBBB@

1 −q 0 � � � 0

−q 1þ q2 −q � � � 0

0 −q 1þ q2 � � � 0

..

. ..
. ..

. . .
. ..

.

1þ q2 −q
0 0 0 � � � −q q2

1
CCCCCCCCCCA
:

ð4Þ

The matrix is real and symmetric and, thus, is diagonalized
by an orthogonal matrix O. Hence, the mass eigenstate aj
satisfies the relation

ϕj ¼ Ojkak ð5Þ

with mass eigenvalues given by

OTMCWO ¼ diagðλ0;…; λkÞ: ð6Þ

The eigenvalues and mixing matrix components are given,
respectively, by

1The zero mode also becomes a pseudo-Nambu-Goldstone
boson once one introduces the interaction with the QCD.
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λ0 ¼ 0; λk ¼ q2 þ 1 − 2q cos

�
kπ

N þ 1

�
; ð7Þ

Oj0 ¼
N 0

qj
; Ojk ¼ N k

�
q sin

jkπ
N þ 1

− sin
ðjþ 1Þkπ
N þ 1

�
;

for j ¼ 0;…; N; k ¼ 1;…; N; ð8Þ

where

N 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

q2 − q−2N

s
; N k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðN þ 1Þλk

s
: ð9Þ

The axion masses are thus given by m2
aj ¼ m2λj. One can

see that one degree remains massless, and it corresponds to
the Uð1Þ not broken by mass terms in Eq. (2).
Suppose that the Nth field couples to the SM sector via

topological terms, i.e.,

L ¼
�

g2s
32π2

Gb
μνG̃

bμν þ g21CaYY

16π2
BμνB̃μν

�
ϕN

f
; ð10Þ

where gs and g1 are SUð3Þc and Uð1ÞY gauge coupling
constants, Gb

μν, Bμν, G̃
b
μν, and B̃μν are corresponding gauge

field strengths and their duals, respectively, and CaYY is a
model-dependent constant of order unity. After clockwork-
ing, the above terms lead to interactions between all axions
and the SM gauge bosons:

L ¼
�

g2s
32π2

Gb
μνG̃

bμν þ g21CaYY

16π2
BμνB̃μν

�

×
1

f

�
N 0

qN
a0 −

XN
k¼1

ð−1ÞkN kq sin
kπ

N þ 1
ak

�
: ð11Þ

One can easily see that the coupling of the zero mode axion
is exponentially suppressed compared to that from the
actual symmetry breaking scale f while the others are
scaled by only 1=N3=2 for large N. For q ¼ 2 and N ¼ 20,
the exponential factor is around 106, so one can achieve a
good QCD axion even from f ¼ 1 TeV.
If the zero mode is the QCD axion, it finally becomes

massive by the chiral symmetry breaking in the strong
sector of the SM, but the mass is still tiny. As is well known,
the QCD axion has very long lifetime, so it could be a dark
matter component. On the other hand, massive states are
rather strongly coupled to the SM sector. One can obtain
decay widths of the massive modes to the photon pair as

Γak→γγ ¼
C2
aγγα

2
em

256π3
N 2

kq
2sin2

kπ
N þ 1

m3
ak

f2

∼ ð10−7 sÞ−1
�
20

N

�
3
�
10 TeV

f

�
2
�

m
GeV

�
3

; ð12Þ

whereαem is the fine structure constant andCaγγ is a constant
determined by CaYY and chiral symmetry breaking effect
(e.g., Caγγ ≃ −1.92 for Kim-Shifman-Vainshtein-Zakharov
(KSVZ)model [18]). These states decay before the big bang
nucleosynthesis for f ¼ 10 TeV and m ¼ 1 GeV. In most
cases, therefore, the massive states do not make significant
impacts on the evolution of the universe.

III. A SUPERSYMMETRIC EXTENSION

In this section, we consider a SUSY extension of the
clockwork axion model.

A. A model

Similar to a simple construction in Ref. [15], one can
consider a Kähler potential and a superpotential

K ¼
XN
j¼0

ðX†
jXj þ Y†

jYj þ Z†
jZjÞ; ð13Þ

W ¼
XN
j¼0

κZjðXjYj − v2Þ

þ 1

vq−1
XN−1

j¼0

ðmXjY
q
jþ1 þm0YjX

q
jþ1Þ; ð14Þ

respectively, where charge assignment of Zj, Xj, and Yj
under Uð1Þj is ð0;þ1;−1Þ. The first term reflects the
spontaneous breaking of Uð1Þ global symmetry near v,
while the second term corresponds to a small explicit
breaking effect for m, m0 ≪ v. We consider a generic case
for m ≠ m0 leading to hXji ≠ hYji, which is important for
inter-dark-sector couplings in Eq. (42). The fields are
stabilized at

hZji¼−
qþ1

κ

ffiffiffiffiffiffiffiffiffi
mm0p

; hXji¼ x; hYji¼ y; ð15Þ

where2

xy ¼ v2; x ¼
�
m
m0

�
1=½2ðq−1Þ�

v: ð16Þ

Below the spontaneous Uð1Þ symmetry breaking scale, this
theory can be described by chiral superfields containing
pNGBs:

Φj ¼
1ffiffiffi
2

p ðσj þ iϕjÞ þ
ffiffiffi
2

p
θψ j þ θ2Fj; ð17Þ

2Here we can take a field basis where all parameters are taken
to be real and positive except κ. In this basis, the supersymmetric
effective action for the axion supermultiplets does not involve any
complex parameter as we will see below.
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where σj and ψ j are scalar and fermion partners, respec-
tively, of ϕj. One can write

Xj ¼ xeΦj=v0 ; Yj ¼ ye−Φj=v0 ; ð18Þ

where v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The effective Kähler potential and

superpotential become

Keff ¼v20
XN
j¼0

�
cosh

�ΦjþΦ†
j

v0

�
þξsinh

�ΦjþΦ†
j

v0

��
; ð19Þ

Weff ¼ mΦv20
XN−1

j¼0

cosh

�
Φj − qΦjþ1

v0

�
; ð20Þ

respectively, where ξ ¼ ðx2 − y2Þ=v20 and

mΦ ≡ 2
ffiffiffiffiffiffiffiffiffi
mm0p �

v
v0

�
2

: ð21Þ

In the Kähler potential, we have omitted Z†Z since it is
irrelevant in the low-energy dynamics. The above super-
potential shows that the supersymmetric minimum is
achieved for hΦj − qΦjþ1i ¼ 0 and the supersymmetric
mass term indeed has the clockwork structure proportional
to an overall mass scale mΦ. One can obtain superfields in
the eigenbasis with mixing matrix in Eq. (8):

Φi ¼ OijAj: ð22Þ

Hence, one supermultiplet remains massless after clock-
working.
Similarly to the clockwork axion model, one can

introduce couplings of the Nth superfield to the SM gauge
fields as

L ¼ −
g2s

32π2
CaGG

v0

Z
d2θΦNWbαWb

α þ H:c:

−
g21

16π2
CaYY

v0

Z
d2θΦNWαWα þ H:c:; ð23Þ

where Wb is the gluon superfield, W is the hypercharge
superfield, and CaGG and CaYY are model-dependent
coefficients of the order of unity. After clockworking,
the zero mode superfield has exponentially suppressed
interactions as

L ¼ −
g2s

32π2
CaGG

f0

Z
d2θA0WbαWb

α þ H:c:

−
g21

16π2
CaYY

f0

Z
d2θA0WαWα þ H:c:; ð24Þ

where f0 ¼ qNv0.

B. SUSY breaking effects and mass spectrum

Once the SUSY is broken, the mass spectrum for each
component alters. The pNGBs and scalar partners would
receive mass contributions from SUSY breaking in the
superpotential as

L ¼
Z

dθ2ð1þmsθ
2ÞW þ H:c:

→ V ¼ −mΦjmsjv20

×
XN−1

j¼0

�
eðσj−qσjþ1Þ=

ffiffi
2

p
v0 cos

�
ϕj − qϕjþ1ffiffiffi

2
p

v0
þ δs

�

þ e−ðσj−qσjþ1Þ=
ffiffi
2

p
v0 cos

�
ϕj − qϕjþ1ffiffiffi

2
p

v0
− δs

��
; ð25Þ

where δs is the complex phase ofms. For simplicity, we will
focus on parameter space where vacuum field configuration
is close to the supersymmetric minimum point hΦj−
qΦjþ1i ¼ 0. Near the point, the above potential becomes
approximately

Vσ ≃ −2mΦjmsjv20 cos δs
XN−1

j¼0

cosh

�
σj − qσjþ1ffiffiffi

2
p

v0

�
; ð26Þ

Vϕ ≃ −2mΦjmsjv20 cos δs
XN−1

j¼0

cos

�
ϕj − qϕjþ1ffiffiffi

2
p

v0

�
ð27Þ

along the scalar and pNGB directions, respectively. It
contributes to squared masses with the clockwork structure
for the pNGBs and their scalar partners. The mass scale for
this contribution is determined by

m2
sb ≡mΦjmsj cos δs: ð28Þ

If SUSY breaking effects also arise in the Kähler potential
in Eq. (19), scalars and fermions acquire additional masses
which are diagonal in the basis of chiral superfields. We
writemK

σ andmK
ψ , respectively, for the scalars and fermions.

We further assume these terms are the same for all j’s, and,
thus, the mass matrices from this contribution are propor-
tional to the identity matrix. While it is expected to have
mK

σ ∼mK
ψ in generic cases, it is possible to have mK

σ ≫ mK
ψ

in some cases.3

Mass spectra for the pNGBs, scalars, and fermions are
summarized, respectively, as

M2
ϕ ¼ m2

ΦM
2
CW þm2

sbMCW; ð29Þ

3We refer readers to Refs. [19–22] for a general discussion for
the mass generation and Refs. [23,24] for explicit models with
mK

σ ≫ mK
ψ .
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M2
σ ¼ m2

ΦM
2
CW −m2

sbMCW þ ðmK
σ Þ2I; ð30Þ

Mψ ¼ mΦMCW þmK
ψ I: ð31Þ

The ðN þ 1Þ × ðN þ 1Þ identity matrix is denoted by I. We
emphasize that all the mass matrices are diagonalized by
the same mixing matrix in Eq. (8). Hence, we write mass
eigenstates

ϕj ¼ Ojkak; ð32Þ

σj ¼ Ojksk; ð33Þ

ψ j ¼ Ojkãk; ð34Þ

with mass eigenvalues

m2
ak ¼ m2

Φλ
2
k þm2

sbλk; ð35Þ

m2
sk ¼ m2

Φλ
2
k −m2

sbλk þ ðmK
σ Þ2; ð36Þ

mãk ¼ mΦλk þmK
ψ ; ð37Þ

and call these states axions, saxions, and axinos, respec-
tively. While the zero mode axion a0 is massless in that the
mass term is determined only by λ0, both s0 and ã0 become
massive due to the SUSY breaking effect in the Kähler
potential. Whilem2

Φ is always positive by definition,m2
sb >

−m2
Φðq − 1Þ2 is required not to destabilize axion directions.

Once this condition is satisfied, the mass difference δm2
ak ≃

m2
akþ1

−m2
ak is given by

δm2
ak > 2qm2

Φ

�
λkþ1

�
1 − cos

ðkþ 1Þπ
N þ 1

�

− λk

�
1 − cos

kπ
N þ 1

��
: ð38Þ

Since λkþ1 > λk and the cosine is monotonically decreas-
ing, δm2

ak is always positive. Thus, the ordering of axion
mass eigenvalues is the same as that in Eq. (6), although
mass differences alter. On the other hand, the ordering of
eigenvalues can be different for the saxions and axinos. If
m2

sb ≫ m2
Φ (i.e., jmsj cos δs ≫ mΦ), the λk-dependent part

becomes negative so as to destabilize the supersymmetric
vacuum. Yet, if ðmK

σ Þ2 is large enough, the supersymmetric
vacuum can be maintained. In this case, the largest
eigenvalue is m2

s0 , while the smallest one is m2
sN . The mass

ordering of the saxions is inverted when being compared to
that of the axions. The same thing happens for the axinos. If
mK

ψ < 0, ã0 may not be the lightest mode. In the case
jmK

ψ j > mΦλN with negative mK
ψ , the mass ordering of the

axinos is inverted. The ordering may be even not mono-
tonic if jmK

ψ j < mΦλN . Nevertheless, we consider the
“normal” hierarchy, i.e., m2

s0 < � � � < m2
sN and mã0 < � � � <

mãN in a later discussion.
Some comments are in order about conditions to get the

clockwork mixing pattern in Eqs. (32)–(34), which is
crucial for exponential coupling hierarchy. In the limit of
m;m0 → 0, the global Uð1ÞNþ1 symmetry is preserved,
and, thus, there exist N þ 1 chiral superfields, Φj, corre-
sponding to N þ 1 flat directions, XjYj ¼ v2. Once m and
m0 are turned on, the global Uð1ÞNþ1 symmetry is broken
down to Uð1Þ. The remaining Uð1Þ symmetry leaves one
flat direction, while the others become massive. It can be
explicitly seen by the fact that the superpotential does not
change under

Φj → Φj þ q−jα ð39Þ

with a constant α. This ensures the superfield correspond-
ing to the remaining flat direction to have exponentially
small couplings. The SUSY breaking in the superpotential
(25) also respects it, so the flat direction remains. On the
other hand, the SUSY breaking in the Kähler potential
develops masses of the scalars and fermions, while the
masses do not respect the above symmetry. This means
that, except the axion, the saxion and axino may not get
small couplings if the SUSY breaking effect in the Kähler
potential is significant. More quantitatively, those SUSY
breaking contributions for their mass matrices ðmK

σ Þij and
ðmK

ψ Þij have to be sufficiently small compared tomΦ ormsb

or closely proportional to the identity matrix as in Eqs. (30)
and (31) in order to preserve the clockwork coupling
hierarchy. The hierarchy would be spoiled if departure
from being proportional to the identity matrix is of the order
of mΦ or msb. This argument is valid even when the
supersymmetric parameters κ, v, m, and m0 in (14) and the
SUSY breaking parameterms in (25) are dependent on sites
j. Such dependency makes a difference only on mass
eigenvalues in Eqs. (35)–(37) without qualitatively chang-
ing our results.
Let us finally make a remark for a benchmark spectrum.

If we want to identify the zero mode axion a0 as a QCD
axion with an intermediate scale decay constant, v0 can be
as low as Oð1Þ TeV for N ≲ 20. Effective descriptions in
Eqs. (19), (20), and (25) are valid only for m, m0,ms ≪ v0.
Hence, all states are expected to be near or below the
weak scale.

C. Interactions

The axions have the same interactions as in the case of
the non-SUSY model in Eq. (11). The saxions also have
similar interactions from the SUSY coupling term in
Eq. (23). The saxion-gauge boson interactions are given by
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Lsax ¼
�
g2sCaGG

32π2
Gb

μνGbμνþg21CaYY

16π2
BμνBμν

�

×
1ffiffiffi
2

p
v0

�
N 0

qN
s0−

XN
k¼1

ð−1ÞkN kqsin
kπ

Nþ1
sk

�
: ð40Þ

We neglect axion-gluino, saxion-gluino, and saxion-squark
interactions derived from Eq. (23), since they are irrelevant
in the later discussion. The axino interactions are derived in
the same way:

Laxn¼
1ffiffiffi
2

p
v0

�
N 0

qN
¯̃a0−

XN
k¼1

ð−1ÞkN kqsin
kπ

Nþ1
¯̃ak

�

×

�
g2sCaGG

32π2
Gb

μνσ
μνγ5g̃bþg21CaYY

16π2
Bμνσ

μνγ5B̃

�
; ð41Þ

where σμν ≡ i
2
½γμ; γν�. The gluino and bino are denoted by g̃

and B̃, respectively. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
In addition, the Kähler potential in Eq. (19) generates

qubic (and also higher-order) interactions between the
axions, saxions, and axinos:

K ⊃
ξ

3!
v20

XN
j¼0

�Φj þΦ†
j

v0

�3

→ Lnml ¼
ξffiffiffi
2

p
v0

XN
j

OjnOjmOjl

× ½snð∂μamÞð∂μalÞ þ snð∂μsmÞð∂μslÞ
þ isn ¯̃amγμ∂μãl − ð∂μanÞ ¯̃amγ5γμãl�: ð42Þ

From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj ¼ 0 for all j’s.

IV. THERMAL PRODUCTION OF AXINOS

In this section, we discuss thermal production of axinos
in the early Universe. Since the whole dark sector (i.e.,
axion supermultiplets) communicates with the SM sector
via the interactions in Eq. (23) and clockworking, all the
axions, saxions, and axinos are produced from thermal
plasma after the primordial inflation. In a SUSYextension,
the axinos are odd, while the saxions and axions are even
under the R parity if it is preserved. Therefore, the lightest
axino can be a dark matter candidate if it is the lightest R-
parity-odd particle. The saxions and axions except a0,
however, would normally disappear by decaying into
another light species such as gluons and photons. In this
respect, axino production is more prominent than the
others for dark matter physics. We focus on how axinos
are produced.

The axino production consists of the following channels:
(i) gluino-mediated process, (ii) saxion- or axion-mediated
process, and (iii) production from saxion or axino decay. In
particular, we will consider a relatively low reheat temper-
ature TR below the SUSY breaking scale so that axino
production is mainly from the SM thermal bath. The reason
is that the thermal yield of the lightest axino can easily
saturate the DM abundance enhanced by a certain power of
the clockwork factor qN compared to the conventional
scenarios as we will see.

A. Gluino-mediated process

From the interactions with gauge bosons in Eq. (41),
axinos can be produced from the thermal plasma. If the
temperature is larger than masses of the SUSY particles in
the SM sector, the single-axino production is the dominant
process which includes the other SUSY particles in either
the initial or final state. This scenario has been intensively
studied both for the KSVZ-type model [25–28] and for the
Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)-type model
[29–31]. If the temperature is smaller than masses of the
SUSY particles in the SM sector but still larger than the
axino mass, e.g., mã ≪ T ≪ mg̃ ∼mq̃, the single-axino
production is Boltzmann suppressed. Instead, the axino pair
production becomes more important [32]. By integrating
out the gluino field in Eq. (41), one can obtain an effective
Lagrangian for the axino pair production, i.e., gg → ãnãm:

Lggã ã ¼ −
α2sC2

aGG

1024π2v20mg̃
ONnONm

× ¯̃an½γμ; γν�½γρ; γσ�ãmGb
μνGb

ρσ: ð43Þ

The squared amplitude for this process is given by

jMg̃
nmj2 ¼ α4sC4

aGG

16π4v40m
2
g̃
jONnONmj2s3ð1þ cos θÞ2; ð44Þ

where s is the square of the center of mass energy and θ is
the angle between the incoming gluon and outgoing axino.
Here we have summed over all possible degrees of freedom
for both the initial and final states.

B. Saxion- or axion-mediated process

Another channel for the axino pair production is realized
by the saxion- or axion-mediated processes. The inter-
actions in Eqs. (40) and (42) lead to a scattering process
gg → ðs�l or a�l Þ → ãnãm, and its squared amplitude is
given by

jMs=a
nm j2 ¼ ξ2α2sC2

aGG

2π2v40

����Xl;j
ONlOjlOjnOjm

�
1

s −m2
l

�����2
× ðmãn þmãmÞ2s3; ð45Þ
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where ml is a mass of sl or al. If s ≫ m2
l , the squared

amplitude is further simplified, so one can find

jMs=a
nm j2 ≃ ξ2α2sC2

aGG

2π2v40
jONnONmj2ðmãn þmãmÞ2s; ð46Þ

where we have used an identity

X
l;j

ONlOjlOjnOjm ¼ ONnONm: ð47Þ

If s≪m2
l , the squared amplitude is approximately given by

jMs=a
nm j2 ≃ ξ2α2sC2

aGG

2π2v40m
4
s=a

jONnONmj2ðmãn þmãmÞ2s3; ð48Þ

where we have assumed ml ∼ms=a for all l; i.e., all masses
are of the same order. In this argument, we have also
neglected the zero mode axion contribution, since its
coupling is exponentially suppressed.

C. Production from saxion and axion decay

Because of the interactions in Eq. (42), saxions and
axions can decay into axino pairs. One can easily find their
partial decay widths:

Γðsl=al → ãnãmÞ ¼
ξ2ml

16πv20
ðmãn þmãmÞ2

×

����X
j

OjlOjmOjn

����2Δnm; ð49Þ

where Δnm ¼ 1 (1=2) for n ≠ m (n ¼ m). Meanwhile,
saxions and axions can also decay into gluon pairs with
the partial decay widths

Γðsl=al → ggÞ ¼ α2sC2
aGGm

3
l

64π3v20
jONlj2: ð50Þ

For mãnþmãm ≪ml, saxions and axions decay dominantly
into gluons.

D. Secluded spectrum

Comparing the gluino-mediated and saxion- or axion-
mediated processes, the relative ratio between squared
amplitudes is given by

R≡ jMg̃
nmj2

jMs=a
nm j2

∼
α2sC2

aGG

8π2ξ2
s2

m2
g̃ðmãn þmãmÞ2

ð51Þ

for s ≫ m2
s=a or

R ∼
α2sC2

aGG

8π2ξ2
m4

s=a

m2
g̃ðmãn þmãmÞ2

ð52Þ

for s ≪ m2
s=a. Thus, for ms=a ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mg̃ðmãn þmãmÞ

p
, the

gluino-mediated process dominates over the saxion- or
axion-mediated process if the reheat temperature TR is
smaller than mg̃. In this respect, we consider a simple
particle mass spectrum with mãn ≪ ms=a ≪ mg̃ and
ms=a ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mg̃ðmãn þmãmÞ

p
. In this spectrum, moreover,

the branching fraction of s=a → ãnãm is highly suppressed
by small axino masses compared to saxion and axion
masses. Because of the supersymmetry, saxions, axions and
axinos are produced with a similar amount in the large TR
limit, so the amount of axinos from saxion and axion
decays is negligible in this case. Hence, axinos are
predominantly produced in pairs via the gluino-dominated
process. We call this a “secluded” spectrum.

E. Thermal yield of axinos

One can obtain the thermal-averaged axino production
cross section from the squared amplitude. For ãnãm pair
production, the thermal-averaged cross section is given by

hσvinm ≃
6α4sC4

aGGT
4

π5½ζð3Þ�2v40m2
g̃
jONnONmj2Δnm; ð53Þ

where T is the plasma temperature and ζ is the zeta
function. The yield of the ãn state, Yãn ≡ nãn=s (nãn ,
number density of ãn; s, entropy density) is then given by

Yãn ≃
�

3
ffiffiffiffiffi
10

p

½gðTRÞ�3=2
�
243α4sC4

aGGMPT5
R

16π12v40m
2
g̃

jONnj2; ð54Þ

where gðTRÞ is the effective degrees of freedom at TR and
MP is the reduced Planck mass. Here we have used an
identity

X
m

jONmj2 ¼ 1: ð55Þ

It is noteworthy that we have included the correction from
the continuous reheating process [33].
In the secluded spectrum, the heavier axinos eventually

decay into the lightest axino, so the final yield of axino dark
matter is determined by the sum of all the axino yields:

YDM
ã ¼

X
n

Yãn ≃
�

3
ffiffiffiffiffi
10

p

½gðTRÞ�3=2
�
243α4sC4

aGGMPT5
R

16π12v40m
2
g̃

; ð56Þ

where we have used the identity in Eq. (55). The axino DM
abundance is thus given by
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Ωãh2 ≃ 2.8 × 105 × YDM
ã

�
mã

MeV

�

≃ 0.13 ×

�
CaGG

1

�
4
�
TeV
v0

�
4
�
10 TeV
mg̃

�
2

×

�
TR

40 GeV

�
5
�

mã

10 keV

�
; ð57Þ

where we have used αs ≃ 0.1 and mã denotes the lightest
axino mass.
In the normal hierarchy, ã0 is the lightest axino state and,

thus, dark matter. Its interaction to the SM sector is highly
suppressed by 1=qN, so most of the DM axinos are
produced via decays of the heavier axinos which have
interactions being mildly scaled by ∼1=N3=2. In other
words, the clockwork mechanism realizes largely enhanced
axino production in spite of the feebly interacting nature of
DM species. Compared to the conventional nonclockwork
scenarios of the same axino coupling to the SM, the DM
abundance is enhanced by the factor ðf0=v0Þ4 ¼ q4N.

V. COSMOLOGICAL ISSUES

A. Heavy axino decays

As discussed in Sec. IV, most of the DM axinos are
produced via decays of the heavier axinos. In the secluded
spectrum, an axino can decay into a lighter axino plus the
zero mode axion, i.e., ãn → ãm þ a0, n > m, due to the
interaction in Eq. (42). The decay width is given by

Γðãn → ãm þ a0Þ ¼
1

16π

ξ2

v20

����XN
j¼0

Oj0OjnOjm

����
2

×m3
ãn

�
1 −

m2
ãm

m2
ãn

�3

: ð58Þ

While the DM axino yield is independent of the decay
path, the phase space distribution of the DM axinos is
highly dependent on the decay path, lifetimes, and mass
differences. Depending on the model parameters N, q, mΦ,
and mK

ψ , the resulting phase space distribution can deviate
from the conventional thermal distribution. Hence, it may
impact on the structure formation [34].

B. Axion string-wall network

Since the clockwork axions and saxions have short
lifetimes, their cosmological population from initial mis-
alignment quickly decays without leaving substantial
impacts. However, a network of axion strings and domain
walls formed by the global Uð1ÞNþ1 symmetry breaking
can sizably contribute to the dark radiation [35] and yield
observable gravitational waves [36]. In Ref. [35], it is
argued that the axion DM production from collapse of the
string-wall network of the clockwork gears is negligible

due to the suppressed interactions between the axion and
clockwork gears. Yet relativistic axions produced from the
clockwork gear domain wall contribute to dark radiation at
the recombination epoch as

ΔNeff ≃ 0.1

�
vω
1

�
2
�

mΦ

10 TeV

��
v0

106 GeV

�
2

×

�
g�SðTa0Þ

20

�−4=3� Ta0

0.2 GeV

�
−2
; ð59Þ

where Ta0 is the temperature at which the axion a0 gets a
mass and vω ≤ 1 parametrizes the spectrum of small-scale
perturbations on the domain wall. For Ta0, we use the value
of the QCD axion as the normalization. Observations of the
comic microwave background require ΔNeff ≲ 0.1 [37].
Thus, it sets an upper bound on the quantity mΦv20 for a
given Ta0 . In fact, this quantity corresponds to the domain
wall tension. On the other hand, the violent annihilation of
the clockwork domain walls gives rise to gravitational
waves of frequencies of the order of the Hubble parameter.
It turns out that we have a similar observational constraint
on the domain wall tension [36]. Using the estimation of
Ref. [36], to be consistent with pulsar timing observations
[38–42], our model parameters need to satisfy�

mΦ

10 TeV

��
v0

106 GeV

�
2

≲ 0.1

�
ϵgw
0.7

�
−2=11

�
Ω95

gwh2

2.3 × 10−10

�
4=33

×

�
N
10

�
−4=11

�
g�ðTa0Þ
20

�
1=66

�
Ta0

0.2 GeV

�
28=11

; ð60Þ

where ϵgw ≃ 0.7� 0.4 is an efficiency parameter of the
gravitational wave emission [43] and Ω95

gw is the current
95% confidence upper limit at ν1 yr ≃ 3 × 10−8 Hz [40].
These considerations imply that a small axino coupling
(∼1=v0) requires correspondingly light axions to be com-
patible with the observational data. In our benchmark
parameter choice for the secluded spectrum and thermal
yield of axinos, those constraints are safely satisfied.

VI. CONCLUSIONS

In this paper, we have studied implications of super-
symmetrizing the clockwork axion model. By supersym-
metry, the superpartner axinos have the same clockwork
pattern with respect to the coupling hierarchy. The coupling
hierarchy is not spoiled by SUSY breaking if the SUSY
breaking is universal over the clockwork sites. Even for
nonuniversal SUSY breaking, the coupling hierarchy is
approximately maintained when the SUSY breaking scale
is sufficiently smaller than the clockwork mass scale. In the
universal SUSY breaking case, we find that the clockwork

KYU JUNG BAE and SANG HUI IM PHYS. REV. D 102, 015011 (2020)

015011-8



axino mass spectrum can be inverted in ordering when the
SUSY breaking mass is larger than the clockwork mass
scale. The same happens to the saxion sector. In this work,
we have focused on the normal ordering, because it may
have interesting consequences for axino dark matter. Under
the assumption that axinos are mainly produced from the
SM thermal bath, we find that the thermal yield of the
lightest axino is exponentially enhanced compared to
the nonclockwork axino case with the same coupling to
the SM. This is because the lightest axino production is
dominated by the decay of heavy axinos which interact
with the SM thermal bath with exponentially larger
coupling. Thus, the relevant parameter space for axino
dark matter is significantly different from the conventional
nonclockwork axino scenarios. It generally requires a lower
reheating temperature than the conventional scenarios for
the same mass of axino dark matter. Furthermore, we
expect that the phase space distribution of the axino dark
matter is highly dependent on the detailed clockwork
structure, which may have implications for the structure

formation [34]. Finally, the string-wall network from the
superpartner clockwork axions has interesting cosmologi-
cal consequences on dark radiation and gravitational
waves, imposing an upper bound on the axino coupling
for a given clockwork mass scale. It may be interesting to
examine further cosmological and collider consequences
for supersymmetric clockwork models.
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