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Abstract

The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-
shell amplitudes (amputated Green’s functions) are Möbius invariant, and have the same momentum poles 
as the on-shell amplitudes. The working principles which drive the modifications to the scattering equa-
tions are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same 
technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge 
formula which is Möbius invariant is proposed, but its true nature awaits further study.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

S-matrix theory was very popular in the late 1950s and early 1960s. It sought to deal more 
directly with physical observables, and to avoid ultraviolet divergences by staying away from 
local space-time interactions. Unfortunately, it never got too far because dynamics could not 
be fully introduced without a Lorentz-invariant interaction Lagrangian density. This problem 
is now nicely circumvented by the Cachazo–He–Yuan (CHY) scattering theory [1–6], where 
local Lorentz invariance is supplemented by Möbius invariance of the scattering amplitude in an 
underlying complex plane. Since its inception, there have been many other papers discussing the 
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properties of the scattering equations [7–16], calculations of the amplitude [17–21], its relation 
to string theory [22–24], the soft and collinear limits [25], and generalization to include massive 
and/or other particles [20,26–29]. The CHY formula, in its original form, is a tree amplitude for 
massless particles. In order to implement unitarity, generalization to loop amplitudes [30–37]
is required. To facilitate such a generalization and to understand better its connection with local 
quantum field theory, it is necessary to study the off-shell behavior of these scattering amplitudes. 
This is what we propose to do in this paper. In Sec. 2, we will extend the CHY on-shell scalar 
amplitude off-shell to get the amputated Green’s functions. We will also use the same technique 
to extend massless amplitudes to massive scalar amplitudes in Sec. 3, on-shell and off-shell. The 
on-shell version agrees with the result obtained previously by Dolan and Goddard [20]. The same 
consideration also yields an off-shell extension of the CHY gauge amplitude, which is Möbius 
invariant, but the implication of such an extension requires more study as we shall discuss in 
Sec. 4. Some of the illustrative details are contained in the three appendices.

2. Off-shell massless scalar amplitude

Consider a set of scalar fields φia in which the first index is in the adjoint representation of 
some Lie algebra and the second index is in another. If they interact tri-linearly through

Lint = 1

3!fijkgabcφ
iaφjbφkc, (1)

f ’s and g’s being the structure constants in the Lie algebras, then the Green’s function for n
particle with momenta ki, i = 1 · · ·n at the tree level will be a function of products of propagators 

1
si1i2 ···im

with 2 ≤ m ≤ n − 2 and si1i2···im ≡ (ki1 + ki2 + · · · + kim)2. The coefficients will be a 
product Ci of n − 2 f ’s of the first Lie algebra and another product Da of n − 2 g’s of the other. 
For some subsets of indices, they satisfy the Jacobi identities

Ci + Cj + Ck = 0, Da + Db + Dc = 0. (2)

Because of this and because of f and g being totally antisymmetric, only (n − 2)! of the C’s and 
(n − 2)! of the D’s are independent. We can choose an independent set, such that C’s are of the 
form fi1j2j3 · · ·fjn−2jn−1in and D’s ga1b2b3 · · ·gbn−2bn−1an . The n-particle Green’s function will be 
given as

〈(φi1a1(k1)φ
i2a2(k2) · · ·φinan(kn))〉 ≈ 〈C|M|D〉, (3)

irrespective of whether ki are on-shell or not. Here 〈C| is a vector formed from the independent 
set just mentioned and so is the vector |D〉. M is the (n − 2)! × (n − 2)! symmetric propagating 
matrix given by CHY formula when all the k2

i = 0. Explicit expressions for n = 4, 5 were given 
earlier by Vaman and Yao [38]. In the next two sections, we shall explicitly solve for the modi-
fications to the scattering functions fi in the CHY formulas such that M takes exactly the same 
form even when k2

i �= 0 for n = 4, 5. Generalization to any n will then be given in what follows.

2.1. Four particles

When all the particles are on shell, the amplitudes are given by [1–6]

M1234 1ij4 = − 1
∮

dσ3 σ 2
124 , (4)
2πi f3 σ1234σ1ij4
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with

σi1i2i3···im ≡ σi1i2σi2i3 · · ·σimi1, σij = σi − σj , (5)

and the scattering function fi is defined in (30). The integrals are to be evaluated at the pole due 
to f3 = 0, with σij = σi − σj , σ1 = 0, σ2 = 1 and σ4 → ∞. We need to evaluate the integrals 
for these configurations only, because from Bose statistics, we are required to obtain

M1324 1324 = M1234, 1234|2↔3, M1324 1234 = M1234, 1324|2↔3. (6)

We shall make changes for f3 in eq. (4) to give correct M1234,1234, and M1234, 1324 off-shell. The 
other configurations will be given by the substitutions of eq. (6). To avoid confusion, we will use 
f̂3 to denote the modified f3. The modifications we propose are

f̂3 = s31 + x31

σ31
+ s32 + x32

σ32
, (7)

in which x31 and x32 are independent of σ ’s. This assumption of σ independence is predicated 
by our preference not having to solve a high order algebraic equation for the poles embedded in 
f3 otherwise. As we shall see, with this assumption, Möbius covariance and energy momentum 
conservation for off-shell kinematics will lead to the determination of xij . However, we shall 
obtain x31 and x32 here directly by demanding that the Green’s functions from eq. (4) should be 
the same as those given by the double-color field theory. We postpone to Appendix A to show 
that such modifications will abide by Mobius invariance, which allows us to set the three σ ’s to 
the values we gave. The pole is at

σ31 = σ3 = s31 + x31

s31 + s32 + x31 + x32
, (8)

and therefore

σ32 = σ3 − 1 = − s32 + x32

s31 + s32 + x31 + x32
. (9)

These give

M1234, 1234 = 1

s31 + s32 + x31 + x32

(
s31 + x31

s32 + x32

)
. (10)

Using the off-shell kinematics

s31 + s32 + s12 =
4∑

i=1

k2
i , s32 = s14, (11)

we obtain

M1234, 1234 = 1

s14 + x32
+ 1

s12 − ∑4
i=1 k2

i − (x31 + x32)
. (12)

To coincide with the field theory result M1234, 1234 = 1
s14

+ 1
s12

, we need

x31 = −
4∑

k2
i , x32 = 0. (13)
i=1
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With these, it is easy to obtain

M1234, 1324 = − 1

s14
. (14)

If we are to use these xij for f̂3 and assume that M1324,1324 is given by eq. (4), with σ1234σ1ij4

replaced by σ1324σ1324, we would obtain M1324,1324 = 1
s32

+ 1
s31+x31

, which is not what field 
theory gives. Instead, we should use eq. (6)

M1324, 1324 = 1

s13
+ 1

s14
, M1324, 1234 = − 1

s14
. (15)

We have not been able to find one single universal f̂3, which can produce all the results we 
want for all configurations for off-shell Green’s functions. This color dependence of the off-shell 
scattering function is a new feature that will be further discussed in Sec. 2.3.

2.2. Five particles

The amplitudes are given by [1–6]

M12345, 1ijk5 =
( −1

2πi

)2 ∮
dσ2dσ4

f2f4

σ 2
135

σ12345σ1ijk5
, (16)

in which i, j, k = 2, 3, 4 or their permutations, and σ1,3,5 can take on any fixed values. The 
scattering functions fi are defined in (30). We shall obtain the other configurations M1lmn5, 1ijk5

by appropriately relabeling indices of the results from eq. (16), e.g.

M13425, 14235 = M12345, 13425|3→4,4→2,2→3. (17)

The integrals are to be evaluated at the poles due to f2 = 0 and f4 = 0 simultaneously.
In this case, let us assume that to obtain the Green’s function, the modifications are

f̂2 = ŝ21

σ21
+ ŝ23

σ23
+ ŝ24

σ24
+ ŝ25

σ25
, (18)

and

f̂4 = ŝ41

σ41
+ ŝ42

σ42
+ ŝ43

σ43
+ ŝ45

σ45
, (19)

in which ŝij = sij + xij and xij = xji are assumed to be independent of σ .
Then, for the Green’s function M12345, 12345, the expected result from field theory is [38]

M12345, 12345|exp = 1

s15s34
+ 1

s15s23
+ 1

s12s45
+ 1

s23s45
+ 1

s12s34
. (20)

From Appendix B, we find that

M12345, 12345 = 1

ŝ23 + ŝ34 + ŝ24
(

1

ŝ34
+ 1

ŝ23
) + 1

ŝ12ŝ45
+ 1

ŝ23ŝ45
+ 1

ŝ12ŝ34
. (21)

Comparing the two equations above, we conclude that

s12 = ŝ12, s45 = ŝ45, s23 = ŝ23, s34 = ŝ34, (22)

which gives

x12 = x23 = x34 = x45 = 0. (23)
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Furthermore, we have

ŝ23 + ŝ34 + ŝ24 = s23 + s34 + s24 + x24 = s15. (24)

Upon using kinematics

s23 + s34 + s24 = s15 + k2
2 + k2

3 + k2
4, (25)

we arrive at

x24 = −(k2
2 + k2

3 + k2
4). (26)

Picking other pairs of f̂i , f̂j to evaluate M12345, 12345, we also obtain

x15 = 0, x14 = −(k2
1 + k2

4 + k2
5), x13 = −(k2

1 + k2
2 + k2

3), (27)

x25 = −(k2
1 + k2

2 + k2
5), x35 = −(k2

3 + k2
4 + k2

5). (28)

2.3. Any number of particles

The CHY on-shell amplitude for n scalar particles is [1–6]

Mα,β =
(

− 1

2πi

)n−3 ∮
�

σ 2
rst

⎛
⎝ n∏

i=1, i �=r,s,t

dσi

fi

⎞
⎠ 1

σασβ

, (29)

where σr, σs, σt are three Möbius constants which will be left arbitrary, α = [α1α2 · · ·αn]
and β = [β1β2 · · ·βn] are the two configurations of colors, with σα = ∏n

a=1 σαaαa+1, σβ =∏n
b=1 σβbβb+1 , and n + 1 ≡ 1. The contour � encloses the (n − 3)! zeros of fi anti-clockwise, 

and the on-shell scattering functions are

fi =
n∑

j=1,j �=i

2ki · kj

σij

, (1 ≤ i ≤ n). (30)

To get an off-shell amplitude, we assume the only change needed is to replace fi by an off-
shell version given by

f̂i =
n∑

j=1,j �=i

ŝij

σij

, (1 ≤ i ≤ n),

ŝij = sij + xij = 2ki · kj + k2
i + k2

j + xij , (31)

where xij = xji is assumed to be σ -independent. We also assume that the contour � is replaced 
by �̂ to enclose f̂i = 0 (i �= r, s, t) anti-clockwise. Since xii do not appear, we may and will 
set them equal to zero. The rest of the parameters xij = xji are determined by requiring the 
off-shell amplitudes to be Möbius invariant, and to have propagators identical to those given by 
field theory.

Under a Möbius transformation σj → (ασj + β)/(γ σj + δ), with αδ − βγ = 1, the off-shell 
amplitude is invariant if f̂i → f̂i (γ σi + δ)2. A simple calculation shows that this is fulfilled if∑

ŝij = 0, (32)

j �=i
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which, by using momentum conservation, implies

n∑
j=1

xij = −(n − 4)k2
i −

n∑
j=1

k2
j . (33)

There are many solutions to this equation, so Möbius invariance alone is too general to fix 
the off-shell amplitude, and that is where the propagator requirement mentioned two paragraphs 
above comes in. First consider the case α = β = [123 · · ·n]. Then any (
 + 1) (1 ≤ 
 ≤ n − 3)

consecutive lines may form a propagator, with an inverse factor

si,i+1,i+2,···,i+
 =
i+
−1∑
r=i

i+
∑
t=r+1

srt − (
 − 1)

i+
∑
r=i

k2
r , (34)

for some i and some 
. Here and after the line indices are understood to be mod n. For on-shell 
amplitudes, the inverse propagators 

∑
r<t 2kr · kt can be obtained by carrying out the integration 

of eq. (29). For off-shell amplitudes, the only change is to replace fi in eq. (29) by f̂i , namely, 
by replacing 2kr · kt by ŝrt , hence the inverse propagator is 

∑
r<t ŝrt . Equating this with eq. (34), 

we get

i+
−1∑
r=i

i+
∑
t=r+1

srt − (
 − 1)

i+
∑
r=i

k2
r =

i+
−1∑
r=i

i+
∑
t=r+1

(srt + xrt ), (35)

or equivalently,

i+
−1∑
r=i

i+
∑
t=r+1

xrt = −(
 − 1)Xi+

i , Xi+


i =
i+
∑
r=i

k2
r , (1 ≤ 
 ≤ n − 3). (36)

In particular, if 
 = 1, then

xi,i+1 = 0, (37)

and

xi,i+n−1 = xi+n−1,i+n = xi−1,i = 0. (38)

To obtain solutions for other xij , subtract eq. (36) from the same equation with 
 replaced by 

 − 1 to get

i+
−1∑
r=i

xr,i+
 = −(
 − 1)Xi+

i + (
 − 2)Xi+
−1

i , (2 ≤ 
 ≤ n − 3). (39)

For 
 = 2, it gives

xi,i+2 = −Xi+2
i = −(k2

i + k2
i+1 + k2

i+2), (n ≥ 5), (40)

and

xi,i+n−2 = xi+n−2,i = xi+n−2,i+n = xi−2,i = Xi+n
i+n−2 = −(k2

i+n−2 + k2
i+n−1 + k2

i+n),

(n ≥ 5). (41)
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The restriction n ≥ 5 comes about because the requirement that 2 = 
 ≤ n − 3. In case n = 4, 
eqs. (40) and (41) are no longer valid. They would be replaced by a relation obtained from 
eqs. (33) and (37) to be

xi,i+2 = −
4∑

r=1

k2
r , (n = 4). (42)

This agrees with the result (13) obtained previously by direct calculation.
For 
 ≥ 3, the solution can be obtained by subtracting (39) from the same equation with (i, 
)

replaced by (i + 1, 
 − 1) to get

xi,i+
 = −(
 − 1)Xi+

i + (
 − 2)Xi+
−1

i + (
 − 2)Xi+

i+1 − (
 − 3)Xi+
−1

i+1

= −(k2
i + k2

i+
), (3 ≤ 
 ≤ n − 3). (43)

To summarize, the solutions are

xij =
⎧⎨
⎩

0 if |j − i| = 0 or 1
−(k2

i + k2
m + k2

j ) if |j − i| = 2
−(k2

i + k2
j ) if |j − i| ≥ 3

⎫⎬
⎭ , α = β = (123 · · ·n), (44)

where m in the middle equation is the line between i and j . These solutions are symmetric in i
and j , as they should be, and automatically satisfy the gauge-covariant condition eq. (33) because

∑
j �=i

xij = −Xi
i−2 − Xi−2

i −
i+n−3∑
j=i+3

(
k2
i + k2

j

)
= (n − 4)k2

i −
n∑

j=1

k2
j . (45)

More generally, if α = β = [α1α2α3 · · ·αn], then the inverse propagators allowed would be 
sαiαi+1αi+2···αi+


, and the solution of xij can be obtained from eq. (44) by a substitution to get

xα,α
αiαj

=
⎧⎨
⎩

0 if |j − i| = 0 or 1
−(k2

αi
+ k2

αm
+ k2

αj
) if |j − i| = 2

−(k2
αi

+ k2
αj

) if |j − i| ≥ 3

⎫⎬
⎭ , α = β = [α1α2α3 · · ·αn], (46)

where the colors are now indicated in the superscripts.
So far we have considered diagonal colors, with β = α. In general, we should take xα,β

ij =
(x

α,α
ij + x

β,β
ij )/2 to ensure Mα,β = Mβ,α . This gives the right answer because when α = β , 

it returns to eq. (46). When α �= β , an (
 + 1)-line pole is present in Mα,β only when 
sαiαi+1αi+2···αi+


= sβiβi+1βi+2···βi+

, which demands the unordered set of momenta {kαi

, kαi+1 ,· · · , kαi+

} to be identical to the unordered set {kβi

, kβi+1 , · · · , kβi+

}. In that case the propagator 

requirement eq. (34) and eq. (36) are automatically satisfied.
It is interesting to note that the on-shell scattering functions fi do not depend on the colors, 

but the off-shell functions f̂i do.

2.4. Off-shell amplitude and off-shell extension of on-shell amplitudes

Take the on-shell amplitude in eq. (29). There is a way to extend Mα,β such that three of the 
particles are off-shell while the rest are on-shell. Let us call r, s, t constant lines and the others 
i �= r, s, t variable lines. As long as all the variable lines are on-shell, i.e., k2

i = 0 for all i �= r, s, t , 
then the amplitude is Möbius invariant no matter whether kr, ks, kt are on-shell or not. In this way 
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we can define a Möbius-invariant amplitude using (29) for up to three off-shell lines. We shall 
refer to this as the off-shell extension of the on-shell amplitude.

What we want to point out is that this off-shell extension is generally different from the off-
shell amplitude considered above, by keeping all but at most three lines on-shell, because the 
off-shell extension amplitude may not satisfy the propagator requirement.

For example, suppose line r is off-shell and a variable line i is next to it in an amplitude with 
diagonal colors. The off-shell amplitude satisfies the propagator requirement and gives rise to a 
propagator 1/sir , whereas the corresponding contribution from the off-shell extension amplitude 
is 1/2ki · kr = 1/(sir − k2

r ).
In the case of diagonal colors, the only time an off-shell extension amplitude coincides with 

an off-shell amplitude is when there is only one off-shell line, say r , shielded on either side of it 
by the other two on-shell constant lines s and t . In this way no variable line can get next to the 
off-shell line to produce a different propagator.

3. Off-shell massive scalar amplitude

We want to explore whether the amplitude of a double-color scalar theory with mass m can 
also be given by eq. (29), with fi replaced by f̂i of eq. (31), but with a different xij than the 
massless case. The general solution is given below in this section, but to make it more concrete 
and easier to understand, explicit evaluations for n = 5 and n = 6 are given in Appendix C.

To be Möbius invariant the condition eq. (33) must be satisfied. For α = β = [123 · · ·n], the 
inverse propagators are si,i+1,i+2,···,i+
 − m2, so eq. (35) should be replaced by

i+
−1∑
r=i

i+
∑
t=r+1

srt − (
 − 1)

i+
∑
r=i

k2
r − m2 =

i+
−1∑
r=i

i+
∑
t=r+1

(srt + xrt ), (47)

and eq. (36) should be replaced by

i+
−1∑
r=i

i+
∑
t=r+1

xrt = −(
 − 1)

i+
∑
r=i

k2
r − m2 := −(
 − 1)Xi+


i − m2, (1 ≤ 
 ≤ n − 3). (48)

Setting 
 = 1, we get

xi,i+1 = xi,i+n−1 = −m2. (49)

Eq. (39) is still valid in the massive case, because subtraction cancels the m2 terms. Setting 
 = 2, 
we get

xi,i+2 = −Xi+2
i − xi,i+1 = −(k2

i + k2
i+1 + k2

i+2) + m2, (n ≥ 5). (50)

Similarly,

xi,i+n−2 = Xi+n
i+n−2 − xi,i+n−1 = −(k2

i+n−2 + k2
i+n−1 + k2

i+n) + m2, (n ≥ 5). (51)

As in the massless case, n = 4 must be treated separately. There, we need to use eq. (33) to get

xi,i+2 = −xi,i+1 − xi,i−1 −
4∑

r=1

k2
r = −

4∑
r=1

k2
r + 2m2, (n = 4). (52)

For 
 ≥ 3, the solution can be obtained by subtracting (39) from the same equation with (i, 
)
replaced by (i + 1, 
 − 1) to get
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xi,i+
 = −(
 − 1)Xi+

i + (
 − 2)Xi+
−1

i + (
 − 2)Xi+

i+1 − (
 − 3)Xi+
−1

i+1

= −(k2
i + k2

i+
), (3 ≤ 
 ≤ n − 3). (53)

The final solution is therefore

xij =

⎧⎪⎪⎨
⎪⎪⎩

0 if |j − i| = 0
−m2 if |j − i| = 1
−(k2

i + k2
m + k2

j ) + m2 if |j − i| = 2
−(k2

i + k2
j ) if |j − i| ≥ 3

⎫⎪⎪⎬
⎪⎪⎭

, α = β = (123 · · ·n). (54)

It can easily be checked that the Möbius-invariant condition eq. (33) is also automatically satis-
fied. For general colors α and β , the solution can again be obtained from eq. (54) by a substitution 
as in the massless case.

4. An off-shell extension of the gauge amplitude

Similar to (29), the on-shell color-stripped n-gluon scattering amplitude is given by the CHY 
formula [1–6] to be

Mα =
(

− 1

2πi

)n−3 ∮
�

σ 2
rst

⎛
⎝ n∏

a=1,a �=r,s,t

dσa

fa

⎞
⎠ Pf′�

σα

, (55)

with the reduced Pfaffian Pf′� replacing the factor 1/σβ in the scalar theory. The reduced Pfaffian 
is related to the Pfaffian of �ij

ij by

Pf� ′ = 2
(−1)i+j

σij

Pf
(
�

ij
ij

)
, (56)

the matrix �ij
ij is obtained from the matrix � by deleting its ith column and row and its j th 

column and row, and the antisymmetric matrix � is made up of three n × n matrices A, B, C,

� =
(

A −CT

C B

)
. (57)

The non-diagonal elements of these three sub-matrices are

Aab = 2ka · kb

σab

, Bab = εa · εb

σab

, Cab = εa · kb

σab

, 1 ≤ a �= b ≤ n, (58)

where εa is the polarization of the ath gluon, satisfying εa · ka = 0. The diagonal elements of A
and B are zero, and that of C is given by

Caa = −
n∑

b=1

Cab, (59)

so that the column and row sums of C is zero. A similar property is true for A if the scattering 
equations fa = 0 are obeyed, which is the case because the integration contour � encloses these 
zeros anti-clockwise.

Under a Möbius transformation, σb → (ασb + β)/(γ σb + δ), with αδ − βγ = 1, the CHY 
amplitude eq. (55) is Möbius invariant if the momenta are massless and conserved. The gluon 
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amplitude is gauge invariant and independent of the choice of λ and ν if the row sum and column 
sum of the sub-matrices of A and C are zero, as mentioned in (59) and the paragraph below it.

An off-shell extension of (55) can be obtained if we replace fi by f̂i obtained in the previous 
sections, the contour � by �̂ enclosing f̂i = 0, and the elements of A in (58) by

Aij =
∑
j �=i

ŝij

σij

. (60)

The row and column sums of A are still zero because f̂i = 0 and because (32) is satisfied. 
This off-shell extension is Möbius invariant and is independent of the choice of λ, ν as before, 
because all the conditions necessary to prove these properties for the on-shell amplitude have 
been preserved with the change.

These changes are the simplest extensions of the on-shell scattering formula to off-shell, but 
whether it is the amputated Green’s function of an Yang–Mills field theory is not immediately 
clear. The reason is, off-shell Yang–Mills theory is gauge dependent, and in our extension gauges 
do not enter. It is possible that this extension determines a particular ‘CHY gauge’, or that the 
true off-shell extension is much more complicated than what is discussed in order to reflect 
the freedom of gauge choice. It is even possible that field-theoretical off-shell expression is not 
Möbius invariant. Further study is required to know what is the truth.

5. Conclusion

The CHY scattering formulas for massless scalar particles are extended off-shell by changing 
2ki · kj in the scattering function fi to (ki + kj )

2 + xij , where xij = xji is independent of σ . It 
can be determined uniquely from the requirement that off-shell amplitudes are Möbius invariant 
and have exactly the same invariant-momentum poles as the on-shell amplitudes. The same re-
quirements also allow us to extend the formula to massive scalar and vector amplitudes, on-shell 
and off-shell. A simple off-shell extension of the CHY gauge amplitude is also proposed, with 
many nice properties including Möbius invariance and the independence of λ and ν, but the true 
nature of this extension formula requires further study.

Appendix A. Möbius invariance of the n = 4 and n = 5 amplitudes

One motivating and intriguing feature of the CHY formulas is that the on-shell amplitudes for 
scalar, gauge, and gravitational interactions are all invariant under Möbius transformations

σi = ασ ′
i + β

γ σ ′
i + δ

, αδ − βγ = 1. (A.1)

In our extending the CHY formula to off-shell, it is very natural to ask if such invariance still 
holds. In fact, this is required of us, because if it were not so, then we would not have the freedom 
to fix three of the σ ’s to the values we used in Sections 2.1 and 2.2. Gladly, the answer is in the 
affirmative, although with some restrictions (eq. (6), eq. (17)). Let us begin with the case of four 
double-color scalars. The invariance of the off-shell Green’s functions is intimately tied up with 
the transformation property of the scattering equations. Let us generalize these slightly before 
we fix three of the σ ’s

f̂1(σ ) = s12 + s13 + x13 + s14
,

σ12 σ13 σ14
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f̂2(σ ) = s21

σ21
+ s23

σ23
+ s24 + x31

σ24
,

f̂3(σ ) = s31 + x31

σ31
+ s32

σ32
+ s34

σ34
,

f̂4(σ ) = s41

σ41
+ s42 + x31

σ42
+ s43

σ43
. (A.2)

One can verify that they satisfy

4∑
i=1

f̂i =
4∑

i=1

σif̂i =
4∑

i=1

σ 2
i f̂i = 0, (A.3)

as a result of momentum conservation, and

∑
j �=i

sij =
4∑

j=1

k2
j = −x31 = −x13, (A.4)

which in turn means that only one of the f̂i is independent. Let us take this to be f̂3. Then, we 
find that under Möbius transformation

f̂3(σ ) = γ (γ σ ′
3 + δ)[−(s31 + x13) − s32 − s34] + (γ σ ′

3 + δ)2f̂3(σ
′). (A.5)

The first term vanishes as indicated by eq. (A.4), which makes f̂3 Möbius covariant. Now, we 
also set σ1 = 0, σ2 = 1 and σ4 → ∞. Using

dσ3 = dσ ′
3

(γ σ ′
3 + δ)2

, (A.6)

and

σ124

σ1234σ1ij4
= (γ σ ′

3 + δ)4 σ ′
124

σ ′
1234σ

′
1ij4

, i, j = 2,3, (A.7)

we have∮
dσ3

f̂3(σ )

σ124

σ1234σ1ij4
=

∮
dσ ′

3

f̂3(σ ′)
σ ′

124

σ ′
1234σ

′
1ij4

. (A.8)

The caveat here is that in order to have poles at the correct place, we have committed to the form 
of f̂3 as determined.

For the double-color five particle amplitudes, let us generalize the functions slightly to

f̂1 = s12

σ12
+ s13 + x13

σ13
+ s14 + x14

σ14
+ s15

σ15
,

f̂2 = s21

σ21
+ s23

σ23
+ s24 + x24

σ24
+ s25 + x25

σ25
,

f̂3 = s31 + x31

σ31
+ s32

σ32
+ s34

σ34
+ s35 + x35

σ35
,

f̂4 = s41 + x41

σ41
+ s42 + x42

σ42
+ s43

σ43
+ s45

σ45
,

f̂5 = s51 + s52 + x52 + s53 + x53 + s54
. (A.9)
σ51 σ52 σ53 σ54
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It is easy to check that

5∑
i=1

f̂i =
5∑

i=1

σif̂i =
5∑

i=1

σ 2
i f̂i = 0, (A.10)

because of momentum conservation, similar to eq. (A.4), when we take

x31 = −(k2
1 + k2

2 + k2
3), x41 = −(k2

1 + k2
4 + k2

5), x42 = −(k2
2 + k2

3 + k2
4),

x52 = −(k2
1 + k2

2 + k2
5), x53 = −(k2

3 + k2
4 + k2

5), (A.11)

which implies that only two of the f̂ ′
i s are independent. We choose them to be f̂3 and f̂4, which 

are Möbius covariant, in the sense that

f̂3(σ ) = (γ σ ′
3 + δ)2f̂3(σ

′), f̂4(σ ) = (γ σ ′
4 + δ)2f̂4(σ

′), (A.12)

and we are led to

∮
dσ3dσ4

f̂3(σ )f̂4(σ )

σ 2
125

σ12345σ1ijk5
=

∮
dσ ′

3dσ ′
4

f̂3(σ ′)f̂4(σ ′)
(σ ′

125)
2

σ ′
12345σ

′
1ijk5

. (A.13)

Appendix B. A diagonal element of the n = 5 amplitude

In this note one of n = 5 scalar amplitudes is calculated. The others can be done in a similar 
fashion. For our purpose here, let us consider the most complicated case with diagonal colors, 
say with 1, 3, 5 as the constant lines.

I5 =
( −1

2πi

)2 ∮
�

σ 2
135dσ2dσ4

f2f4σ12345σ12345
, (B.1)

f2 = s21

σ21
+ s23

σ23
+ s24

σ24
+ s25

σ25
,

f4 = s41

σ41
+ s42

σ42
+ s43

σ43
+ s45

σ45
. (B.2)

Poles are from {21}, {23}, {234}, {43}, {45}. We denote contributions from (({21}, {43}), ({21},
{45})), ({23}, {45}), and {234} by I5a, I5b, I5c respectively.

For the first case,

I5a = − 1

2πi

∮
�4

σ 2
135dσ4

f2af4aσ
2
1345

,

f2a = s21,

f4a = s41 + s42

σ41
+ s43

σ43
+ s45

σ45
. (B.3)

In the subsequent σ4 integration, both the σ43 = 0 and the σ45 = 0 poles contribute to give two 
terms. The final result is

I5a = 1
(

1 + 1
)

. (B.4)

s21 s43 s45
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Similarly, for the second case

I5b = 1

s23

1

s45
. (B.5)

As for I5c, there are two regions of contribution. Carry out the change of variables σ23 = sσ ′
23

and σ34 = sσ ′
34, from σ2 and σ4 to s and some linear combination of σ ′

23 and σ ′
34. In the vicinity 

of s = 0, the factor σ 2
12345 becomes s4σ 2

135(σ
′
23σ

′
34)

2, which shows two zeros, the first at σ ′
43 = 0

and the second at σ ′
23 = 0. In the region around the first zero, we fix σ ′

23 = 1, so the integration 
measure becomes dσ2dσ4 = sdsdσ ′

4. After the s integration, we end up with

I5c = − 1

2πi

∮
�4

σ 2
135dσ ′

4

f2cf4cσ
2
135(σ

′
23σ

′
34)

2
,

f2c = s23

σ ′
23

+ s24

σ ′
24

,

f4c = s42

σ ′
42

+ s43

σ ′
43

. (B.6)

The contour �4 forces f4c = 0. With σ ′
23 = 1, this yields σ ′

43 = s43/(s42 + s43), and hence f2c =
s23 + s34 + s24 = s15. Now reverse and distort the σ ′

4 contour to surround the pole at σ ′
43 = 0. In 

this way we get

I 1st
5c = 1

s15s43
. (B.7)

Contribution from the second region is obtained by 2 ↔ 4

I 2nd
5c = 1

s15s23
. (B.8)

Thus I5 = I5a + I5b + I5c consists of 5 terms, corresponding to five Feynman diagrams.

Appendix C. Off-shell scattering equations for n = 5, 6 massive scalars

In the following, we are going to give two examples to illustrate how to construct the scattering 
equations which will give the same amplitudes as from field theory. There, the massive scalar 
propagators are 1

s
i1i2 ···ip−m2

, 2 ≤ p ≤ n − 2, instead of 1
si1i2 ···ip

as in the massless case. Hence, the 

obvious rule is first to replace si1i2···ip with si1i2···ip − m2 in the scattering equations of Section 2. 
Consider the case n = 5, where now eq. (A.2) becomes

f̂1 = s12 − m2

σ12
+ s13 − m2 + x′

13

σ13
+ s14 − m2 + x′

14

σ14
+ s15 − m2

σ15
,

f̂2 = s21 − m2

σ21
+ s23 − m2

σ23
+ s24 − m2 + x′

24

σ24
+ s25 − m2 + x′

25

σ25
,

f̂3 = s31 − m2 + x′
31

σ31
+ s32 − m2

σ32
+ s34 − m2

σ34
+ s35 − m2 + x′

35

σ35
,

f̂4 = s41 − m2 + x′
41

σ41
+ s42 − m2 + x′

42

σ42
+ s43 − m2

σ43
+ s45 − m2

σ45
,

f̂5 = s51 − m2

+ s52 − m2 + x′
52 + s53 − m2 + x′

53 + s54 − m2

, (C.1)

σ51 σ52 σ53 σ54
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where we have written in the notation of Section 3 xij = x′
ij −m2. Modular covariance of f̂1 = 0

gives the condition

(s12 − m2) + (s13 − m2 + x′
13) + (s14 − m2 + x′

14) + (s15 − m2) = 0. (C.2)

Using momentum conservation, we have

s12 + s13 + s14 + s15 =
5∑

i=1

k2
i + k2

1, (C.3)

which results in

x′
13 + x′

14 = −(

5∑
i=1

k2
i + k2

1) + 4m2. (C.4)

Similar consideration gives

x′
24 + x′

25 = −(

5∑
i=1

k2
i + k2

2) + 4m2,

x′
13 + x′

35 = −(

5∑
i=1

k2
i + k2

3) + 4m2,

x′
14 + x′

24 = −(

5∑
i=1

k2
i + k2

4) + 4m2,

x′
25 + x′

35 = −(

5∑
i=1

k2
i + k2

5) + 4m2, (C.5)

which lead to the solution

x′
13 = −(k2

1 + k2
2 + k2

3) + 2m2,

x′
14 = −(k2

1 + k2
4 + k2

5) + 2m2,

x′
24 = −(k2

2 + k2
3 + k2

4) + 2m2,

x′
25 = −(k2

1 + k2
2 + k2

5) + 2m2,

x′
35 = −(k2

3 + k2
4 + k2

5) + 2m2. (C.6)

These shifts will give us the amplitudes M12345, 1ijk5, where i, j, k are any permutations of 
2, 3, 4. Particularly, we have

M12345 12345 = 1

(s15 − m2)(s34 − m2)
+ 1

(s15 − m2)(s23 − m2)
+ 1

(s12 − m2)(s45 − m2)

+ 1

(s23 − m2)(s45 − m2)
+ 1

(s12 − m2)(s34 − m2)
. (C.7)

Let us take note that in the scattering equations eq. (C.1), the set of invariants which do not re-
quire x ′

ij shifts other than −m2 are s12, s23, s34, s45, s51 and they all appear as propagators 

in M12345 12345, whereas the complement set consisting of s13, s14, s24, s25, s35, require non-
trivial shifts. This will prove to be true for all n. With this in mind, we now look at n = 6. The 
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invariants which appear as propagators in M123456,1ijklm6, where i, j, k, l are permutations of 
2, 3, 4, 5, are s12, s23, s34, s45, s56, s61, s123 = s456, s234 = s561, s345 = s612. They come with con-
secutive indices. The complement to this set is s13, s14, s15, s24, s25, s26, s35, s36, s46. Thus the 
modified scattering equations are

f̂1 = s12 − m2

σ12
+ s13 − m2 + x′

13

σ13
+ s14 − m2 + x′

14

σ14
+ s15 − m2 + x′

15

σ15
+ s16 − m2

σ16
,

f̂2 = s21 − m2

σ21
+ s23 − m2

σ23
+ s24 − m2 + x′

24

σ24
+ s25 − m2 + x′

25

σ25
+ s26 − m2 + x′

26

σ26
,

f̂3 = s31 − m2 + x′
31

σ31
+ s32 − m2

σ32
+ s34 − m2

σ34
+ s35 − m2 + x′

35

σ35
+ s36 − m2 + x′

36

σ36
,

f̂4 = s41 − m2 + x′
41

σ41
+ s42 − m2 + x′

42

σ42
+ s43 − m2

σ43
+ s45 − m2

σ45
+ s46 − m2 + x′

46

σ46
,

f̂5 = s51 − m2 + x′
51

σ51
+ s52 − m2 + x′

52

σ52
+ s53 − m2 + x′

53

σ53
+ s54 − m2

σ54
+ s56 − m2

σ56
,

f̂6 = s61 − m2

σ61
+ s62 − m2 + x′

62

σ62
+ s63 − m2 + x′

63

σ63
+ s64 − m2 + x′

64

σ64
+ s65 − m2

σ65
.

(C.8)

The requirement of Möbius covariance leads to

x′
13 + x′

14 + x′
15 = −(

6∑
j=1

k2
i + 2k2

1) + 5m2,

x′
24 + x′

25 + x′
26 = −(

6∑
j=1

k2
i + 2k2

2) + 5m2,

x′
13 + x′

35 + x′
36 = −(

6∑
j=1

k2
i + 2k2

3) + 5m2,

x′
14 + x′

24 + x′
46 = −(

6∑
j=1

k2
i + 2k2

4) + 5m2,

x′
15 + x′

25 + x′
35 = −(

6∑
j=1

k2
i + 2k2

5) + 5m2,

x′
26 + x′

36 + x′
46 = −(

6∑
j=1

k2
i + 2k2

6) + 5m2. (C.9)

Now consider a propagator which involves three momenta, such as 1
s123−m2 . We write

s123 = s12 + s13 + s23 − (k2
1 + k2

2 + k2
3), (C.10)

and acknowledge that the induced dependence on the kinematical invariants in the scattering 
amplitudes due to CHY integrations must be in the form of those combinations sij − m2 + x′

ij

which appear in f̂i of eq. (C.8). Therefore
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s123 − m2 = (s12 − m2) + (s13 − m2 + x′
13) + (s23 − m2). (C.11)

These two equations immediately above give us a consistency condition

x′
13 = −(k2

1 + k2
2 + k2

3) + 2m2. (C.12)

Similar considerations lead to

x′
24 = −(k2

2 + k2
3 + k2

4) + 2m2, x′
35 = −(k2

3 + k2
4 + k2

5) + 2m2,

x′
46 = −(k2

4 + k2
5 + k2

6) + 2m2, x′
15 = −(k2

1 + k2
5 + k2

6) + 2m2,

x′
26 = −(k2

1 + k2
2 + k2

6) + 2m2. (C.13)

Note that we have twelve equations in eqs. (C.9), (C.12), (C.13) for nine x′
ij . In other words, 

there are three consistency checks. The rest of the solution are

x′
14 = −(k2

1 + k2
4) + m2, x′

25 = −(k2
2 + k2

5) + m2, x′
36 = −(k2

3 + k2
6) + m2. (C.14)

When all the particles are on-shell (k2
i = m2, i = 1, 2, · · ·n), we find that all the non-trivial 

x ′
ij = −m2 in eqs. (C.6), (C.12), (C.13), (C.14). This result was obtained earlier by Dolan and 

Goddard [20] for n = 4, 5. We must reiterate that the scattering equations with the general values 
given above for x′

ij should be used only for M12···,n 1i2i3···in−1n, where i2i3 · · · in−1 are permuta-
tions of 2, 3, · · · , n − 1. The other color amplitudes should be obtained from these by appropriate 
relabeling of indices, or by following the rule we gave after eq. (49).
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