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Given a Wilson action invariant under global chiral transformations, we can construct current
composite operators in terms of the Wilson action. The short-distance singularities in the multiple
products of the current operators are taken care of by the exact renormalization group. The Ward—
Takahashi identity is compatible with the finite momentum cutoff of the Wilson action. The exact
renormalization group and the Ward—Takahashi identity together determine the products. As a
concrete example, we study the Gaussian fixed-point Wilson action of the chiral fermions to
construct the products of current operators.

Subject Index B31, B32

1. Introduction

It is a principle of quantum field theory that the invariance of a theory under a continuous transfor-
mation implies the conservation of a current. When a theory is expressed by a Wilson action with a
finite momentum cutoff, the principle holds for the Wilson action. In Ref. [1] an energy—momentum
tensor was constructed from the invariance of the Wilson action under translations and rotations. In
this paper we would like to consider the Wilson action of chiral fermions with global flavor symmetry
to construct multiple products of the conserved current operator.

To build the Wilson action, we use the exact renormalization group (ERG) formalism (see, for
example, Refs. [2-5] and references therein). The Wilson action satisfies a well-defined differential
equation under the continuous change of scale. We adopt a convention that each time we integrate
more of the high-momentum fluctuations, we introduce a change of scale to restore the same cut-
off function. The continuum limit corresponds to a trajectory parametrized by a logarithmic scale
parameter ¢ so that a fixed point is reached in the limit # — —oo0.

The Wilson action of a theory in the continuum limit has all the short-distance physics incorporated
into the vertices of the action. The full theory is obtained by further integration of the fields with
momenta below the cutoff. The Wilson action is determined by the ERG differential equation whose
solution is parametrized by the relevant variables of the theory.

Composite operators can be considered as infinitesimal changes of the Wilson action, and they
also obey well-defined differential equations under the change of logarithmic scale. The general
properties of products of composite operators have been discussed in Ref. [6]. We follow and extend
the discussions there by considering the multiple products of current operators.

The ERG formalism is good at handling the short-distance singularities via ERG differential
equations. Well-defined ERG differential equations admit only the solutions consistent with locality,
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i.e. the vertices of the action and composite operators must be analytic at zero momenta. This is the
guiding principle we follow throughout the paper.

Though we consider only chiral fermion fields as dynamical fields, our discussion of current
operators is easy to modify in the presence of other dynamical fields, for example in the case of
quantum chromodynamics with massless quarks.

Our subject obviously overlaps with the construction of chiral gauge theories using the ERG
formalism (see, for example, Ref. [7] and references therein). For example, the derivation of the
chiral anomaly using the ERG formalism was done in the context of gauge theory (see, for example,
Sect. 9 of Ref. [4] and Ref. [8]). The multiple products of current operators require a much lighter
formalism.

The paper is organized as follows. In Sect. 2 we introduce a current operator for a generic Wilson
action of chiral fermions under the assumption of global continuous symmetry. In Sect. 3 we introduce
multiple products of current operators and derive the ERG equations satisfied by them. By coupling
the current with an external gauge field, we construct a composite operator in terms of which we can
consider all the products of current operators at once. In Sect. 4 we introduce the Ward—Takahashi
(WT) identity for the multiple products of currents. This amounts to the commutation relation of
currents. The single-current operator, introduced in Sect. 2, satisfies the WT identity by construction.
The corresponding identity for the products is very plausible, but we are unable to derive it solely
from the assumption of global continuous symmetry. We introduce it here as a working hypothesis.
The ERG differential equation and the WT identity thus introduced are mutually consistent, and they
together characterize the products of current operators. In Sect. 5 we discuss the changes to the ERG
equation and the WT identity caused by the short-distance singularities of the operator products.
In Sect. 6 we consider the products of current operators for the free theory. Though this section is
all about one-loop diagrams, the example elucidates the general formalism given in the preceding
sections.

Please note that we use the following condensed notation for momentum integrals:

dD
fp - f e 30 =050, (1)

2. Current composite operators

We consider a theory of chiral fermion fields v/, ¥ satisfying

ary (p) = ¥ (p), Y (—plar = ¥ (—p), (2)
where
1 1 —
ap = J;Vs, 4 = 2)/5 3)

The theory is determined by its Wilson action with a fixed ultraviolet (UV) cutoff. The cutoff is given
in terms of a smooth momentum cutoff function K (p), such as e‘pz, that is 1 at p = 0 and vanishes
as p — 00. We parametrize the Wilson action by a logarithmic scale parameter ¢ and demand that it
obey the ERG differential equation

- A D+1 v
ateSt[lﬂ,W] — / |:<K_((§; + T+ +p-0p— )/t) Y (=p)
p

—
St

e

8V (—p)

2/29



PTEP 2020, 123B03 H. Sonoda

<«
b A D+1
LS ( W) D+ +p-ap—y,>vf<p)

v (p) \K() 2
— <«
) 5, O A(p) — 2y K(p) (1 — K(p))
—Tr — e ag , (4)
U (=p) Y (p) y4
where
A(p) = —p - pK(p), &)

y; is an anomalous dimension of the chiral fermion field, the trace is for both spinor and flavor
indices, and the minus in front of the trace is due to the Fermi statistics.

We assume that the Wilson action S; describes a continuum limit; as we take 1 — —o0, we obtain
a UV fixed point:

lim S, = S* (6)
t——00
All the physics beyond the fixed cutoff scale of 1 has been incorporated into the action. By integrating

the fluctuations of momenta less than 1, we get full correlation functions of the fields.
We define the correlation functions by

(ven - v edv (=g T (=g, = |

i1 K(pz)K(%)
(8_ —>
X 1/f(p1)--~1ﬁ(pn)eXp< /— Phr(p) )1/_/(—(11)'--1/7(—qn)> , (D
< ) 59 (—p) ,
where
1-K(@p)
hr(p) = ag——— (8)
F(p) = ag y

is the high-momentum propagator. The correction involving the cutoff function is a technicality
typical in the ERG formalism. Thanks to the correction, though, the correlation functions satisfy the
simple scaling relation

((w@re=)- v =ane=))

t
— oxp (—n<D (=t + 2 f dr y,) () - =qn)), - ©)
t/

Another technicality is necessary before we move on to discuss symmetry. A composite operator
O;(p) is a functional whose correlation functions are defined by

n

7 1
(0@ v @D - T (=), = [ =—o—
t ’ ,EK@»K(%-)

<~ —>
) _
E<Ot(P) (Wm)---@m( /W( ) K(g)h F(q)(w(_ ))---W(—qn))> , (10)
S
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where the exponentiated differential operator does not act on O;(p). We define O;(p) so that its
correlation functions satisfy the scaling relation

((owe = @ie=) - =g ™))
t

=e " Dexp (—n(D—l)(t—t/)Jrn f dm)((Ot«p):/f(pl)---&(—q,o))ﬂ. (11)
t/

For simplicity we have taken —y, the scale dimension of O,(p), independent of z. For Eq. (11) to be
valid, O;(p) must satisfy the ERG differential equation

(3t+y +p'ap_Dt) Oip) =0, (12)

where Dy, acting on functionals, is defined by

%
A(qg) +1 ) i, F
DO = _— 0 —q) - — O
; /[(K(q) > vi+q- Y (—q) 57 ()

e
§ (Alg , D+1 )
0] B »
@ (K(q) 5 ~vitadg ) v(@)
5 (AW <
S — 2K (q)h _ O
@ (“R K@ F<q>) P
K3 —
5 (A ) ;
0 —2y,K(g)h BLE
U@ (“R y R @he@ ) eSS
T (o ko) o) (13)
Y T si e v
The simplest example of a composite operator is
_ o
I p— he(o)— s, .
Koyl s p) ]’
1 < .
Vep =g [VP+S hr () |- 14b
(=p) = Ko | V(=p) + t(w/(p) F(P)_ (14b)

Though they are composite operators, they have the same correlation functions as the elementary

fields v (p), ¥ (—p):

(Y@EDY @) - ¥ (=an)), = (@D - ¥ (=aqn)), . (15)
((l/f(pl) Tt 1r/_/(_qn—l)qj(_QM)»t = ((1#(191) Tt l;&(_qn)))t . (16)

We are now ready to discuss symmetry. We assume that the correlation functions have global
symmetry:

((ve@n - vs@n T an" T =ant")) = (WED - v ¥ a0 T (=an)).
th)
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where U is an arbitrary unitary matrix that acts on the flavor indices of 1 and . (U may be a U(N)
matrix if we have N flavors.) For infinitesimal transformations we obtain

n

(@) TY@) T (=q1) - U (—qn)),

i=1

+((v @)Y @IV (=q1) - Y (—=g)T - d (—gqn))),) =0, (18)
where 7 are Hermitian matrices normalized by
Tr 797" = §% (19)
and satisfying the commutation relation
[T“, Tb] =iy febere, (20)

(We will omit the summation symbol for the repeated indices ¢ from now on.)
To express Eq. (17) as an operator equation, we introduce an equation-of-motion composite
operator by

% e

8 . 8
£l E—Sf/K Tr | — (- T9%) — (5 T —, 21
P =e ) (@) r[w(_q)( (=g +p)T%) — (e (q+p))8w(q)} (21)

where W, W are defined by Eq. (14). £% is a total derivative of the exponentiated Wilson action, and
it has correlation functions

(E“@v@D - v @EDT(—q1) - ¥ (—qw))),
=Y [~ {w@) - TY@+p) - ¥ @V (=q1) - F(=qn))),
i=1

(v @D Y@V (—qD T @ —a) T P (=g)),]- (22)
The symmetry in Eq. (17) is equivalent to
Ep =0)=0. (23)

In fact, this is equivalent to what we usually consider as the invariance of the action

5 s
b (—p)T*—=——S; — S, T¢ =0. 24
/p(w DTS = S wp)) 4)

In Appendix A we show that this is equivalent to Eq. (23).

Since £%(p) is a local operator, it must be proportional to the momentum:

D) = pul, D), (25)

where the current Jj; (p) must be a local composite operator. Unless there is a local operator ji; (p)
orthogonal to p,,,

Puy (@) =0, (26)
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Eq. (25) defines the current J;;(p) unambiguously. Since £“(p) has scale dimension 0, J/(p) must
have scale dimension —1. In coordinate space J Ij‘{ x) = fp erxJ g (p) has scale dimension D — 1.
As an example, let us consider the Gaussian fixed-point theory

1 -
Sg=— | —U(— , 27
o /,)K(pf/’( PRy (o) @7)
for which
Y(p) =v(p), U(—p) = ¥ (—p). (28)
We find
—8> <
Em = [ K —U(— 79— S+ S T
®) (q)[ V(=g +pT3 - TS 5@ llf(q+p)}

(V(—q +p)Tapq¥ (@) — ¥ (—q)aggT*¥(q + p))

U (—q) T agpyr(q + p). (29)

Il
S

This implies that
() = f F— T yarvr(q +p). (30)
q

3. Products of current operators

We wish to define multiple products of currents. The product of two currents is defined as
i@t @] = T @ + Pie.a), (31)

where P is a local counterterm necessary to make the product a composite operator; the bare product
Jy (p)Jf (g) is not a composite operator in the sense introduced in the previous section. P also takes
care of the short-distance singularity occurring when the two currents come close together. For the
product to be a composite operator of scale dimension —2, it must satisfy

(0 +p-8p+4-9,+2-D) [Jip))@] =0, (32)
where D; is given by Eq. (13). This implies

(B +p-d+q- 9 +2—D)) P (p,q)

<~ —
IR A@) 5, . 5
- / [JM@)W (aR7 —~ ZV;K(r)hF(V)> ST @t (Ju(p) o Jt (q)):| . 33)

Similarly, we define the product of three currents as
[V @3 ()5 03)] = T3 013 (p2) 5 (p3)
+ Pl (p1,p2)J5 (p3) + P23k (02, p3)J 1) (01) + P35l (3. p1)J 2 (p2)
+ P P1.P2,P3), (34)
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and so on for the higher-order products. We note that P\ (p1, . . .,pn) gives the short-distance
singularity due to all the » currents coming together simultaneously, and it is proportional to the
delta function in momentum space,

Pate @155 pn) <8 (Zm) , (335)
i=1

unless there is a composite operator of scale dimension —# or less available. (That means scale
dimension D — n or less in coordinate space.) The ERG equation for P, 1,5 (91, p2,p3) is given by

3
(at +Y pidp+3- Dt) PLIDE (p1,p2.p3)
i=1

e 9
/ [77‘““2 (»1,p2) ( 2@ _ 2y K (q)hF(q)) ’ o (p3)
. W12 SV (q) Y 51/,( q) “3
—
A(Q) _ 8 paia
+ (4 other terms)]. (36)

The ERG equations for the higher-order counterterms are given similarly.
To consider all the local products of current operators simultaneously, we introduce a classical
gauge field coupled to the current,

0
I
AV /,, A =PI+ — / A% (=p1) -+ A% (—p) PA9 (1, upa), (3T)
n=2 "
so that its exponential

=3 /p AD (=p1) - Al (—pa) [T 1) - T8 )] (38)

is a composite operator. We assign the scale dimension —D + 1 to the source field 47, so that el

becomes a composite operator of scale dimension 0, satisfying the ERG equation

8
a+/ —p-8,—D+1)4%p) - — D, | " =, (39)
(f (0 PR Sy~
where Dy is defined by Eq. (13).

4. Commutation relation: The Ward-Takahashi identity

We now wish to consider the “commutation relation” of two currents. The quotation marks are there
because it needs to be explained. Our commutation relation is an operator equation,

P [T @] = I+ @)+ E0) * T @), (40)

which amounts to the WT identity

pul([F @7t @ v @D v =an)) =i P+ oven - T (=a),
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+ Z (~{(r@ven- 1@ +p) - T=a))
i=1

+{{(#@w @D de—aT i =an)) ). (41

We wish to explain the above and its generalization to higher-order products in this section.
We define an equation-of-motion composite operator by

Ep)xJy ()= e / KTt [ K ([¥r+pTsi@]e)

5% (=)
5
(5 [rwig+ @) W} , “2)
where
3
[P i) = Bnsi@ + I ke o) (43)
—_—
b — b 8 b
[P @] = YL@ + )5 @ (44)

are the composite operators satisfying

(w0 F g [Fri@])) = ((@v e d=g0ien)) . @)
([voria] v b)) = ({E@vewen-v=aw)) . @0
Hence, we obtain
(e @« 2@ v D v (=an))
= (< {pr@ven - e+ po- B0,
i=1
+{{@ven - Te—a1P=qn)) ). (47)
This gives the second term on the right-hand side of Eq. (41).
Let
0L +q) =p [JL L@ ]| - E°0) + T @) (48)
Equation (41) then amounts to
0L +q) = if "I+ 9). (49)

This equality is plausible but not obvious, and it needs an explanation. We will check this later
explicitly for the Gaussian theory, but we have not been able to derive it on the basis of the global
symmetry in Eq. (17). Here we satisfy ourselves by checking the consistency of Eq. (49) with Bose
symmetry of the current operator, which requires the product

Pty [JE @)} @) ]
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to be symmetric under the interchange. The product may depend on which divergence we calculate
first. Calculating p,,J); (p) first, Eq. (48) gives

Puqv [J,‘j 1% (q)] = 0L P+ q) + E°P) * 0,7 (q)
= 0.0% (@ +q) + E(p) x E4(9). (50)

Calculating quf (g) first, we obtain

Puy [JEDIE@ | = O+ ) + E°@) % pud )

=puO% (0 + ) + E(q) x ). (51)
Hence, for consistency, we must find
PO P+ q) — 400 (0 + q) = E°(p) x E°(g) — EP(q) » E“(p). (52)

To compute the right-hand side, we consider correlation functions:

(@ =@ w0 -y @ (= - F=qn))
-y (@ v e +p-)) +((E@ o —arT- ) ]
i=1

:g[<(...Tarbw+q+pi>...)>,+<(.W+q—qi>rw---)>,

n

Y (- rve+r - da—ar ) +{( Tva+) - Te a0t ) )

J=1
2 (- rverp v ) (P01 G g1 ) ) }
J#i )
Hence, we obtain
Ep) * E2(q) — EP(q) x E4(p) = —if " E°(p + 9. (54)

Then, the consistency condition in Eq. (52) gives

PO P+ @) — 4,00 (p+ @) = —if "E P+ q) = (=i "Vp+DuJp+9),  (55)

which is indeed satisfied by Eq. (49).
We have thus checked at least that Eq. (40) is consistent with the Bose symmetry of the current.
We adopt Eq. (40) and its generalization to higher orders as our working hypothesis:

k
P @I ) T o] = 3 i [Ji 0 - Ih o+ ) -k |

i=1

+Ep) [ (p) - Tk i) ] - (56)
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For the correlation functions, this gives

Pul[VE@E @1 T W (@) - Y gV (=) - T (=),

N ([ @D st i+ p - s ] v@) - v @b - F=m))
i=1

2 sen s eo] - Tv g +p) -,
j=1

+(([Jﬁi 1) - JZ’;E(Pk)] e &(_T’j +p)7°-- )>t} . (57)
The WT identity in Eq. (56) we just introduced is compactly expressed in terms of the composite
operator el a5

/(pﬂgabg(p _ q) + l_faCbAZ(_q +p)> eWr[A] — ga(p) *eWt[A]‘ (58)
q

545, (—q)

Expanding this in powers of the external source A, we can easily check the equivalence to Eq. (56).
Multiplying an infinitesimal €(—p) and integrating over p, we can rewrite this as

Sl = AT _ Mild] / “(—p)&°(p) » "M, (59)
p
where
(4°), (=p) = 45, (=p) + pue®(=p) + if /Aﬁ(q —pe‘(—q) (60)
q

is an infinitesimal gauge transformation.

5. Corrections to the ERG equation and the WT identity

We have identified two important properties of e”/[4]. One is the ERG differential equation, Eq. (39),
and the other is the gauge invariance, Eq. (59). Both may receive corrections due to short-distance
singularities. Since the nature of singularities depends on the space dimension D, we specify D = 4
in the following discussion.

We first consider possible corrections to the ERG equation. The product of # current operators has
scale dimension —n, and it can mix with operators of the same scale dimension. As for the mixing
with the delta function § (Zl pi), we only need to consider

[ewnsgon].  [enbeasien ], [enbeasies es],

which mix with the delta function 8(_, p;) with appropriate powers (quadratic, linear, none) of
momenta. This gives a new ERG differential equation:

Cp s @y O Wf[A]_/D . WilA]
(at+/p(p dp — D+ 1) 45 (p) ST ) D,>e = | d°xf(t;Ax)) e (61)

where f is a linear combination of the products of two 4’s with two derivatives, three 4’s with one
derivative, and four 4’s with no derivative. Consistency with Eq. (59) gives the gauge invariance of
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f. Hence, we obtain
ft:4) = b(t)% Tr (0pAp — Opde — ildar45])", (62)
where
Ay = T4, (63)
In fact, the gauge invariance in Eq. (59) itself may also get corrected as
SeeMl = AT _ Wil — / €(—p) (E%(p) * +F(p; A)) "1, (64)

P

where F%(p; A) is a polynomial of 4 with scale dimension —4. This is the familiar chiral anomaly
[9,10]. Please note that we have used gauge invariance to derive Egs. (61) and (62). For Eq. (64)
to be consistent with Eq. (61), F*(p; A) must be independent of ¢z, i.e. the anomaly must be scale
independent. In other words the #-dependence of W;[A4] is still gauge invariant, as is given by Eq. (61).

The algebraic structure of the anomaly is well known [11]. For completeness, let us derive it using
the ERG formalism. By definition of 3., we must obtain

(8y8c — 8c8y) M) = gy, AL, (65)

where
[n,€] = 77aeb |:Ta’ Tb] — l-fabcnaech. (66)
Using Eq. (64) twice, we obtain

(8e8y — 8y8¢) €M) = /Ga(—p) / 1P (—=q) (=i)f P E(p + q) x "]
p q

+ / (9(=p)SyFa(p; A) — 1 (—p)S Faps A)) P41, (67)
P

where we have used Eq. (54). Hence, Eq. (65) gives the desired algebraic constraint:
f (€ (=P)8yF(ps 4) — 0 (=p)SeF*(p; D) = —if ™ | “(=pIn" (—)F (p+q:4).  (68)
P P

A well-known nontrivial solution to this is given by [12]
1
/ €“(—p)F“(p) = const X €upys / d*x Tr dye - <AﬁayA5 + ?AﬁAyAg) : (69)
b i

(A trivial solution is 8. of a polynomial of 4.)

Concluding this section, we have explained that the ERG equation for /4] can be modified to
Egs. (61) and (62), and that the WT identity can get an anomaly Eq. (64) where F is given by
Eq. (69). Differentiating these with respect to the source 4, we can get the ERG equation and WT
identity satisfied by the products of the current operators. Since their expressions are lengthy, we

WilA

give them in Appendix C.
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6. FreetheoryinD =4

As a concrete example, we construct W [A4] for the Gaussian fixed-point theory in D = 4:

1
Wi4) = f AP +Y f 4D (“pp) - A% (—p) PO oy ). (T0)
p n=2 " YP1 n

.....

The construction of " is guided by two equations. One is the ERG differential equation,

g

' _p
; 544 (p) )

= g/d“xTr (0udp — dpAq — i [Aa,4g])°, (71)

(f(—p.ap—DJrl)A;‘;(p)-

where b is a constant and D is defined by

— <~
D+1 - 1) é D+1
po= || (2221 0 )v—q) —> 040 -a
/q[( g q>w( 0550 Wq)( L q)w(cn

— <«
A(q)(soa}

—Tra (72)

4 s~ W@

The other is the WT identity with anomaly,

1
Sl = [ / €“(—p)EX(p) x +A€upys / d*x Tr dye - (AﬂayAa + EAﬂAyA(;)] A (73)
D 1

where A is a constant. Both b and A are determined as we construct P} 57 (p1, ..., py) fromn = 2

to higher »; b is determined by locality. Locality implies the analyticity of P’s at zero momenta. We
must choose b appropriately to guarantee that Eq. (71) admits a solution satisfying locality. Similarly,
the coefficient A of the chiral anomaly is determined by locality. The solution to Eq. (71) admits
a couple of free parameters consistent with locality. We tune them to satisfy Eq. (73) as much as
possible. What is left is the anomaly.

At the end of Sect. 2 the current was derived as

Jip) = / Y (=) T yuary (q + p). (74)
q
The counterterms P are quadratic in fields, and we can write them in the form

Pt @, pn) = / V(= D1y P =4, g P+ p) V(@ P+ pa)
q

n
+di T (1) 8 (Zpl) : (75)
i=1
where

o D1y Pns =4, 9 +p1+ -+ pa)

= Z T9%® ... T%my, hr(q + Do) Ve hF (@ + Po1) + Po@)

oES,
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Vit "F (@ + Doty + -+ Do(i=1) Vi) (76)
Po(1) o)
oeS,
The sum is taken over all the permutations of 1,. .., .

Similarly, we can write

dzllizln (pl: .. 7pn)

— Z Tr (Tal T4 ... Tan(n—l)Tdn(n)) . dMlMa(Z)"'H«a(n)(pl’pa(z)’ .. 9p0'(l’l))a (77)
geS;—1
where the sum is taken over all the permutations of 2, . . ., n. The d satisfy the ERG equations

n
(Zpl- Oy, 1 — 4) daya, (P12 Pn)
i=1

=(—) / Trf2 (@) [Yar he (@ + P Ve =+ Ve hE(@ 4+ D1+ - + Pue1) Ve,
q

+YarhE(q + D) Ve -+ Ve hE G + P2+ -+ Pa) Ve + -+ ] (78)
where
hp) = 5P, (79)
fp)=@-0p+2Dhp) = Ap—(f), (79b)
fr(p) =/ Qlagy = an A;’). (79)

For n > 5, the solutions are given by the finite loop integrals:

dﬂl"'“n(pl’ LY ,pn)

=(-) / Tr [ hr (@ + PO Yohr(q +p1 4 p2) -+ he(q — pr) Vi, hr(@)] (30)
q

For n = 2,3,4, however, the above loop integrals are UV divergent, and we must define the d’s
as solutions of Eq. (78). We emphasize that there is no need to introduce an additional UV cutoff
to regularize the loop integrals. In fact, we need to modify Eq. (78) first, by adding local terms
proportional to the coefficient b so that the solutions become analytic at zero momenta. ERG then
determines d> up to t-independent terms quadratic in momenta, d3 up to terms linear in momenta,
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and d4 up to a constant. To remove the ambiguities we can resort to the WT identity, which would
be given by

pladaaz---cxn(pl, .. 7pn) = dotz---an(pl +p2;p37 T 9pn) - daz---ocn (pz: e 9pn—19pl’l +p1)

+ /K(q)Tr [hF(q — PO)Yarhr (@ +p2) -+ hr(g +p2+ -+ + Pue1)Va,
q

—hi(q + P Yarhr (G +p1 +p2) - he(qg+p1+ -+ Pne1) Vo, | (81)

if there were no anomaly. This is satisfied by Eq. (80) for n > 5, but is corrected for n = 3,4 by
the anomaly, proportional to .A. We can obtain .A by expanding the WT identity in powers of small
momenta. This is a straightforward calculation.

In the following we sketch the calculation of dy, ..., for n = 2,3, 4. The case n = 2 is sufficient
to determine the coefficient b, but we need the case n = 3 to determine .A. We calculate the case
n = 4 for completeness and to check our formalism. The essential steps are expansions of the d’s in
small momenta. The calculations are all straightforward, and thanks to the presence of a finite cutoff
there is no hidden subtlety. Perhaps we could have condensed this section into a smaller number of
pages, but we have decided to give all the details for the reader unfamiliar with calculations with
cutoff functions. The more experienced reader may skip what seems trivial or redundant.

6.1. Product of two, n = 2
dgg(pl, D2) = Sapdap(p, —p) satisfies the ERG equation,

(P “0p — 2) dap (P, —P)

=(-) / Tr fr(q) (Yahr(q + P)vg + veher(q — P)Va) + b(p*8ap — Papp), (82)
q
and the Ward identity,
Padap(p, —p) = / K(q)Tr [hr(q — p)vp — hr(q + p)ys] - (83)
q

The analyticity of dyg(p, —p) at p = 0 demands that the right-hand side of Eq. (82) be free of
quadratic terms in p. (If there were any, we would obtain a nonlocal p? In p dependence.) To expand
the integral on the right-hand side of Eq. (82) in powers of p, we use

Tr agabed = 2 [(ab)(cd) + (ad)(bc) — (ac)(bd) + €apysaabpcyds]., (84)

where €1234 = 1, and
1
h(g +p) = h(g) + 2(gp) + PN (@) + 5<2<qp>)2h”<q> +0(?), (85)

where /' (q) = #h(q), etc. We obtain
(=) [ Tefi @) (rabrta + 2275 + vahr @ ~ pive)
q

P20 25 / F@ODP = b20*5as — paps), (86)
q
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where

4

(4m)23 &7

by = —4 / f (q)( 1 () + q4h”(q))

The integrand is a total derivative, and the value of the integral is independent of the choice of the
cutoff function K (p). (See Appendix B.3 for the calculation.)
Hence, with the choice

_p 1 4 (88)
27 4m)23
the general solution of Eq. (82) is given by
dup (02 —p) = S / F@MF
q
0
+ / di e [(—) / Tt/ (@) (vahi (@ + peyys + yshe(q — pe')yve)
. .
+ / Tt fr (@) (Yahr(@)vp + (@ < B)) + 4b (0*6ap — Papp) er]
q

+ Ap*Sap + B (papp — P*8up) » (39)

where A and B are free parameters. The subtractions make the integrand of order ¢* as t — —o0,
and the integral is convergent.
We can fix 4 using the WT identity in Eq. (83). First, note that

—0
Padap(p,—p) “=> —pudap(0,0) + A p*pg. (90)

To determine A4 we compute the right-hand side of Eq. (83):
/K(q)Tr (hr(q —p)yg — hr(qg +p)yp) = —2/qK(q)h(q +p)Tr (4 +p) vpar
20 pp(—4) / K@ (h(q) " qzh/@)
+PPpp(—4) /q K(g) {h’(q) T+ PH (@) + éqw(q)} . 1)
Consistency with Eq. (90) demands
/q [ @h@q* = /q K(q) (4h(q) +24°H (9)) (92)

and
1
A=—4 / K(q) { H(q) + q*h' (q) + gq“h”%q)} : (93)
q
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The first equation must hold since the WT identity is an operator equation consistent with ERG; we
verify it explicitly in Appendix B.5. In Appendix B.4 we also compute

11 94)
C (4m)23
B is left arbitrary.

Let us stop here to examine the asymptotic behavior of dyg(p, —p) for large p. In principle we
could obtain the asymptotic behavior using the solution in Eq. (89). Instead, it is easier to go back

to Egs. (82) and (83), which give

(2 - 8p —2) dop(p, —p) b (P25aﬁ — PaPB) s (95)
Padas(p, —p) "= 0. (96)

Hence, we obtain the asymptotic behavior

du(pe', —pe") T3 bt e (p*Sup — papp) 97)

determined by the constant b. Using this, we can construct the continuum limit as [13]
Dup(p, —p) = lim e~ (dug (pe', —pe') — bte* (p*8ap — Parp)) - (98)
This satisfies
(P 3 —2) Dap(p, —p) = b (p*Sap — pupp) (99)
Since Dy depends on the constant B, we can rewrite this as
(p- 9 — 2+ bdB) Dap(p, —p) = 0. (100)
Dgyg(p, —p) is also transverse:
PaDag(p, —p) = 0. (101)
The two-point function of the current is now obtained as

(Vewp@)) =576+ @) Dupto, ), (102)

which is transverse, and satisfies the scaling relation
(p-3p+q- 3+ 2+ bdp) <(Jg(p)Jg(q))>B —0. (103)

6.2. Product of three, n = 3
dupy (p1,p2,p3) satisfies the ERG equation

3
(Zpi “Op; — 1) dapy (P1,P2,P3)
i=1

= (—)fTrfF(q) [Vahr(q +pD)yshe(q + p1 + p2)yy
q
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+yghr(q + p2)vyhe(q + p2 + p3) Ve + vy he(q + p3)vahr(q + p3 + p1)vg]
+ b [8ap(P1 — P2)y + 8y P2 — P3a + 8yaP3 — P1)] (104)

where b is given by Eq. (88), and the WT identity
Pladapy (P1,p2,p3) = dgy (p1 + p2,p3) — dgy (p2,p3 + P4a)

+ /K(q)Tr [hr(q — pOYhE(q + p2)yy — hi(q + p1)yghe(q + pi + p2)vy ]
q

1
- EAEaﬂyﬁploz (P2 —P3)3 > (105)

where A is to be determined.

Analyticity of dyg, at p; = 0 requires the absence of terms linear in p; from the right-hand side
of Eq. (104) (p; would imply nonlocal p; In p;). Let us check it. Expanding the integral in momenta,
we obtain the linear terms as

(—n/}@mwffpw@n—m»+wm@z—mu+wm@3—mm} (106)
q

The integrand is a total derivative, and we obtain

1 4
(4m)23

-2 [ 1P = - (107)
q

(see Appendix B.1). Hence, Eq. (104) is consistent with locality.
The general solution is given by

dugy (P1,D2,P3)

0
=f wa*ﬂa/nﬁmumm@+m&mmm+@rwm&w
q

—00

+yphr(q + p2e) vy hr(q + 02 + p3)e) Yo + vy hr(q + p3e) vahr (g + (3 + pr)e)ys}
— b {8ap(P1 — P2)y + 88y (P2 — P3a + Sya (3 — P1)g} et]

+ CapysP1s + CpyasP2s + CyapsD3s (108)

where cyg, 5 are arbitrary constants, not determined by Eq. (104). We note that the integrand behaves
as ¢’ as t — —o0, and the integral is convergent. The particular form of the linear terms is required
by the cyclic symmetry

dupy (P1,02,P3) = dgya(P2,P3,P1) = dyap (3,1, 02). (109)
The most general form of cygy s is given by
Capys = S5a/35y5 + t5ay5,35 + u5a58/3y, (110)

where s, ¢, u are constants.!

! Cyclic symmetry allows a term proportional to €445, but it does not contribute to d,g, . Similarly, cys,s
does not change if we change s, ¢, u by the same amount. So, we could set u to zero.
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We now wish to show that we can choose s, ¢, u, and A so that Eq. (105) is valid. Since Eq. (105)
is consistent with Eq. (104), we only need to check the terms quadratic in momenta. Using

—0
das (0 —p) P23 —805 / F@MODE + Ap*Sas + B (paps — 150p) (111)
q

we obtain

p,‘—)o
dgy (p1 + p2,p3) — dgy (P2, p3 +p1) —
A3 — p5)dsy + Blp3gpsy — P3dpy — pagpay +P38py ). (112)

where 4 is given by Eq. (94).
We next consider the small-momentum behavior of the integral on the right-and side of Eq. (105):

/K(q)Tr [he(q — p1)yvshe(q + p2) — he(q + p)yshe(q — p3)] vy
q
_ / K(@)Tr [heq + p)vs (eq — p2) — he(q — p3) vy ]

q

= /K(q) [h(q +p)h(g — p)Trar(g +p ) vsd — Py
q

—h(q +p)hqg — p3)Trar(g +» ) ved —p3)vy]

2 (“2eapsyprap2 = p3)s = 2% = pD3gy) f K() (h(@)* +h(@)g*H ()
q

+ (paﬁps;/ —p§5ﬂy — P2pP2y +P§5ﬁy)
4 2
« / K@ (—4h(q>2 ~ 6hg)gH (@) — 5 (K (@) §h<q>q4h”<q>), (113)
q

where the first integral, whose integrand is a total derivative, can be calculated as

1 1

2 277 _ -
fq K@ (1@ + h@)PH @) = 5 (114)

(see Appendix B.2). Hence, we obtain the right-hand side of Eq. (105) as
p,‘—)o
RHS "= (p3pp3y — P38py — P2pp2y +130py)

4 2
x [B - / K (4/12 + 6hg*h + 5(qyzh/)2 + ghq“h//)]
q

(Ll (2= p3) (115)
———-—=-A]e - .
(471)2 3 5 apysPla\P2 — P3)s
We next compute the small-momentum behavior of the left-hand side of Eq. (105). From
dopy (P1,P2,P3)
i—0
e Sap(sp1 +1tp2 +up3)y +8py (up1 +sp2 +tp3)a +8ya(tpr +upr +sp3)g,  (116)

we obtain

pi—>0
Pladagy (P1,P2:P3) — Pia (CapysPis + Cpyasp2s + Cyapsp3s)
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= (p2pp2y — 8pyp3) (s — w) + (p3pp3, — P38py) (t —w)
+ (s +t — 2u) (p2pp3y — Sy (P2p3)) - (117)

Matching this with Eq,. (115), we obtain
1
MZE(S+t), (1183)

1 4 2
S=0=-B+ / K(q) (4h2 + 6hg*h + 5(q2h/)2 + 5hqf*h’/) , (118b)
q

which determine the low-momentum behavior,
pi—>0 1
dupy (P1,02,P3) —> E(S — 1) (8ap(P1 — P2)y + 88y (P2 — P3)a + 8y (P3 —P1)g) - (119)

We also obtain the coefficient of the anomaly as?

1 2

= @3 (120)

Let us stop here to examine the asymptotic behavior of dyg,, (p1, p2, p3) for large momenta. Instead
of taking the asymptotic limit of Eq. (108), we go back to Eqgs. (104) and (105). For large momenta,
Eq. (104) gives

3
(Zpi c O — 1) dopy (P1,P2,P3) iy [8ap (01 — P2)y + 88y (P2 — P3)a + 8ya(P3 — P1)g],
i=1
(121)

and Eq. (105) gives
i—> 00 1
Pladapy (P1,P2,P3) = dgy (—=p3,p3) — dgy (P2, —p2) — EAea,Byépla(pZ — D3)s- (122)
Equation (121) gives the dominant asymptotic behavior,

day (p1€',p2e’, p3e’) ZZbre [8ap(®1 — P2)y + 88y P2 — P3)a + 8yap3 —p1)p],  (123)

which is proportional to the coefficient . Hence, we can construct the continuum limit as
D, ,p2,p3) = lim eil[d e',pre’, pse’
w8y P1,D02,P3) Jim wpy (1€ ,p2€ ., p3e’)

— bte' {8up(p1 — p2)y + 88y (P2 — P3)a + Sya (P3 — P1)g } ] (124)

This satisfies the scaling relation

3
(Zpl : api - 1) D(Xﬁy(pl;p?»p?))
i=1

= b {8ap(P1 — P2)y + 8y (P2 — P3)a + Sy (P3 — P1)p}

2 It was first pointed out in Ref. [14] that the chiral anomaly comes from the short-distance singularity of
three currents. The calculation following this suggestion was completed in coordinate space in Ref. [15].
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= —bdpDagy (P1,p2.P3) (125)

and the WT identity

1
P1aDapy (P1,p2,03) = Dpyy (—=p3,p3) — Dgy (P2, —p2) — EAeaﬁyépla P2 —Dp3)s - (126)

The continuum limit of the connected three-point function defined by

conn

([ewnpensswen))

B

=5(p1 +p2+p3) [Tr T“T"T Dygy (1. pa.p3) + Tr TTT? Dayﬂ(plap3’p2):| (127)
satisfies the scaling relation

3 a b c conn
> pi- 0y 43+ bog ) ({F @005 2)) =0 (128)
i=1

and the WT identity

conn

P (VACOYACSYAES))

B
conn

— jfabd <(Jg,(p1 +p2)J]f(p3))>;0nn +ifed <(J5(P2)J;1(P1 +P3))>

B

1
— EATY ¢ {Tb, TC} €apysPla(P2 — P3)s 8(P1 + p2 + p3). (129)

6.3. Product of four, n = 4
dupys(P1,P2,P3,p4) must satisfy the ERG equation

4
Zpi * Op; dapys(P1,P2,P3,P4)
i=1

=(-) / Tr f7(q) [Yahr (g + p1)yghe(q + p1 + p2) vy he(q + p1+ p2 + p3)vs
q

+ yphr(q + p2)vyhr(q + p2 + p3)vshr(qg + p2 + p3 + Pa)Va
+ vy hr(q + p3)vshr(q + p3 + pa)Yehr(q + p3 +pa +p1)ys
+yshr(q + pa)vahr(q + pa + p1)vshe(q + pa + p1 + p2)vy ]
+ b (8ap8ys + 88y 8as — 284y 8ps), (130)

where b is given by Eq. (88), and the WT identity
Pladapys(P1,02,03,P4) = dgys(p1 + p2,p3,p4) — dgys(P2,p3,p4 + P1)
+ /qK(q)Tr [hr(q — pVYshr(q + p2)yyhr(q + p2 + p3)
—hp(q +p1)yghr(q +p1 +p2) vy hr(g 4+ p1+p2 +p3)] vs

1
- §J4p1a€aﬂy8, (131)
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where A is given by Eq. (120).

We would like to check two things. As for Eq. (130), we would like to check the vanishing of the
right-hand side at zero momenta (a constant would imply nonlocal In p). As for Eq. (131), we would
like to check its validity at the first order in momenta.

The right-hand side of Eq. (130) gives

i—0 1
(RHS) 2= [(—)g /f(q)h(q)3q4 x 16 + b] (8apdys + 8y das — 284, 8ps) - (132)
q
The integrand is a total derivative, and we obtain
8 4
e ha)q* = — = 133
Jremerdt = (133)

(see Appendix B.1). Hence, the right-hand side vanishes at zero momenta as desired.

We now wish to check Eq. (131) to first order in momenta. Equation (130) determines only the
momentum dependence of dyg,, 5, but its value at p; = 0 is left undetermined. The most general form,
consistent with cyclic symmetry, is

dapys(0,0,0,0) = 54 (8updys + 88y 05a) + 4 8aySps, (134)
where s4, t4 are constants such that

Pladapys(0,0,0,0) = s4 (p188ys + P158sy ) + tap1y Sps. (135)

To compare this with the right-hand side, we first compute
dgys(p1 + p2,p3,p4) — dpys(2,p3.p4 + P1) e %(s — 1) (p158py +P188ys — 2p1y8p5) , (136)
where we have used Eq. (119), and %(s — t) is given by Eq. (118b). We next compute
/qK(q)Tr [hr(q — pV)Yshe(q + p2)yyhr(q + p2 + p3)
—hr(q + p)yphr(q + p1 + p2)vyhe(q + p1 + p2 +p3) ] vs
= | Kt Lita —pi)htq + pa)itg +p2 + )T o~ Dyt )40 3 405

— h(g +p0)h(g + p1 + p2)h(q + p1 + p2 + p3)
<Tr (g +p )veld + 7, +2)vy W +p, 7, +03)] vsar
pi—>0

— plaeaﬂy54/K(q)h(q)2q2 (h(q) + ¢*H (9))
q
4
+ (P188ys + P1558y) f K(@)q*h(g)? (zh@ + ngh%q))
q

4
+p3ps3 [ K@h@g'H q) (137)
q
Hence, the right-hand side of Eq. (131) is

i—0 1
RHSIZ) E(S —1) (p1ﬂ5y5 +p158ﬂy - 2p1)/855)
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4
+ (P188ys + P158py) /K(q)h(q)2q2 <2h(q) + ngh/(q)>
q

4
+P1ydps3 / K(@Qh(@)*q*H (q)
q

1
+ Pla€apys (4f1<(61)h(q)2q2 (h(@) + ¢*H (@) — 5“4) : (138)
q
The last term vanishes because
2.2 277 _ 1 i
/q K@haP (h) + 41 (@) = 515 (139)

(see Appendix B.2.) We can make Eq. (138) match Eq. (135) by choosing
1 4
s4=5—0+ / K(@h(q)’q’ (2h(q> + §q2h/<q)) (140a)
q
4 2 4
=-B+ f K (4h2 + 6hg*h + g(q,zh’)2 + ghq“h” +213¢% + §h2q4h/> ,
q

4 2 447
4 = —(s—t)+§/K(q)h(q) q (g
q

1

a3 (140b)

= 254 + 4 / K@h(@)*q* (h(q) + ¢*1 (9)) = —2s4 +
q

We have thus checked the validity of Eq. (131).
Finally, we examine the asymptotic behavior of dyg,5(P1,p2,p3,p4) for large momenta. Equa-
tions (130) and (131) give

4
i—> 00
Zpi : ap,-daﬁya(PI,PZ,P3ap4) Pl) b (505,357/8 + 5,8)/5058 - 250{}/5/38)7 (141)

i=1
pPi— 0
Pladapys(P1,02,03,04) —> dpys(—p3 — pa,p3,pa) — dgys(p2,p3, —P2 — P3)
1
- EAplaEaﬁyS- (142)
The first equation gives the asymptotic behavior

t
dupys(pre'spae', pae’, pae’) =3 bt (85,5 + 8pySus — 284y 8p5) - (143)

Hence, a continuum limit is obtained as

Daogys(p1,p2,03,P4)
= lim [dupys(pie’,pae’, p3e’, pae’) — bt (8apdys + 8py8as — 2841 885)] . (144)

t—+00
which satisfies the scaling relation

4
Zpi : ap,- DaﬁyS(plaPZ,p3aP4) =b (5aﬁ8y6 + 5,3)/5(18 - 25ay558)

i=1

= —bdgDapys(p1,p2,P35P4) (145)
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and the WT identity
P1aDapys(P1,p2,p3,p4) = Dgys(—p3 — pa,p3,pa) — Dgys(p2,p3, —p2 — p3)
1
- E-Aplaéaﬂyﬁ- (146)

Hence, the connected four-point function defined by

conn

(@b eI @) ™ =81 +p2 +p3 +po) [T T TP T T Dy o1, p2. 93 p)

B
+Te T TP T Dagsy (pr,p2,pasps) + - | (147)
satisfies the scaling relation
4 a b c d conn

> pi-p 4+ bog ) ({F @0 0I5 03 en)) T =0 (148)

i=1
and the WT identity

a b c d conn . rabe e c d conn
e (e e @) T = i ({50 + ps e en)) T+

1 X X :
— SAP1a€apys Sp1 +p2+ps +pa) x T T (TUT, )+ TUT, T + 19117, 777
(149)

6.4. Recapitulation

WA]

Let us recapitulate the results of this section by writing down equations for ¢” !, a composite

operator of scale dimension 0. The ERG differential equation is given by

. _ a . $ _ W1A]
(/p( p -0y —D+1) 45 (p) 51, p) D)e

1 41
T @n)y23 Z/d4XTr (8udp — 9pda — ilda,Ap]) (dadp — dpda — ilda, Agl) M. (150)

The WT identity is given by

é
5.l E/(_ a4 abc/Ab 4 )l (— > N
e A Pue(p) +if } P+ Qe (—q) (SAZ(p)e

a a 1 2 4 1 WA
- [/pe (-p)E (p)*+(4ﬂ)2§/d X €apysTr dy€ (AﬂayAs —~ IEAﬁAyAg)] el

(151)
WA] is determined uniquely by the above two equations up to a constant multiple of the gauge
invariant
L[4 . .
2] dxT (0udp — 3pAa — i[Aa,Apl) (dudp — dpAq — i[Aa, Ap]) .
If we define

1
WelAl = —%/d“xTr (00Ap — 0gAa — i[Aa, Ag]) (dudp — 0pAa — i[Aa,Apl) + WIA], (152)
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we can rewrite the ERG equation as

s aoy .0 el _
(ﬂ(g)8g+/p(1? =D+ DA s D)e 0, (153)

where

4

B = _(47t)2§

(154)

is the one-loop beta function.

7. Conclusions

We have discussed the multiple products of current operators using the exact renormalization group
formalism. The multiple products are characterized by two mutually consistent equations: one is
the ERG differential equation and the other is the Ward—Takahashi identity. We have argued that
these two equations suffer changes due to the short-distance singularities of the products, and the
revised equations are given by Eq. (61) for ERG and Eq. (64) for the WT identity. In Sect 6 we
have calculated the multiple products explicitly by solving these equations for the Gaussian fixed
point. The guiding principle in these calculations is the locality of the operators. Since the momenta
below the cutoff have not been integrated, the coefficient functions for the products of the current
are analytic at zero momenta.

There are some future directions we can consider. We may consider a theory such as quantum
chromodynamics with fields other than the chiral fermions. Or we may consider a more nontriv-
ial fixed-point Wilson action. We also think it interesting to study the multiple products of other
composite operators such as the energy—momentum tensor.
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Appendix A. Invariance of the Wilson action

Given a Wilson action S[, V], its invariance under global flavor transformations is most
straightforwardly given by

_ 3 5
/p [W(—p)T“w(_p)S, — S,(W/(p) T“w(p)} =0. (A.1)
We wish to show that this is equal to Eq. (23), which is
F s
EN0) = e fp K (p)Tr [&ﬁ(—p) (U (—p)T9e%) — (5T (p)) W} =0, (A.2)
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where
9
Yo =0 (WH F@)Sw(_) ) (A32)
1 <—
V(—p) = Ko (w(—p)+ taw(p)hF(p)> (A.3b)

Substituting Eq. (A.3) into Eq. (A.2), we obtain

N F
EX0 :/ —\v(=p) +S h T¢— S,
0) p|: (W( p) t51ﬂ(p) F(P)) 51#(—]?) t

<~ —>
)
Sy h
50 <w<p>+ F<p>6w(_ ) )}

f Tr [8(0)T* — 5(0)T“]
p

e 3 e 3
+ f Tr[ 0 S ()T — Thp(p)———S, }
14

+

Sy (=p) Y (p) Sy (=p) Y (p)

5 s
— il (— Ta _ Ta = 0’ A4
/p Y (—p) 5% (—p) S+ S t51,0(p) W(p):| (A4)

which is Eq. (A.1).

Appendix B. Universal cutoff integrals

We give four integrals involving a cutoff function K (p). The values of these integrals are universal
in the sense that they do not depend on the choice of K(p) as long as K(0) = 1 and K (p) vanishes
asymptotically as p> — oo. The functions / and f are defined by

h(p) = 1_[2«1)), (B.1a)
F@) = (-0 +2)hp) = 22 (B.1b)
AQp) = —p- K@) (B.1¢)

Appendix B.1. [ f(@)h(g) (¢°h(g))"

Forn=0,1,2,..., we obtain

n+1

/ f@h(q) (¢*h@)" =
q

/
_ f Lq-a, { (4*h@)"" }

n—+2

_ ot oo d (@h(g))""
B (277)4/0 1 dq? n+2

1
(g3, +2)h(g) - 72 (4°h(9))
q
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1 2

= el (B.2)
Appendix B.2. [ K(@)h(q) (¢°h(@)" (h(q) + ¢*H (@)
Forn=0,1,2,..., we obtain
" d
/ K(@h@q) (¢*h@)" (h(q) + ¢*H (@) = / (1 — (@) h(@) (¢*h(@)" — e 5 (4°h(9))
q q
1 ntl d
= / = (1 = h@) (@)™ = (h@)
q9 dq
1 / * 2 (@h@))"™ (Ph@)"
= — q —_— p—
@m)? ), dq? n+2 n+3
1 1
(B.3)

T @mIn+2)(n+3)
Appendix B.3. qu(q) ( 20 (q) —l— 4h”(q))

ff()(zh’<)+ 4h”()> : food f(x) (i+12d—2)h<)
P\IHDTZAND) =G Jy 0 L2 Va5 )"
=2(x%+1)h(x)

2 o0 d d 1 d?
:—(471)2/0 dxx <1—|—xd—) h(x) - x(d 3 e 2)h(x)

_L > i 13 / S ApreN2
—(47_[)2/0 dxdx (3x h(x)h(x)+6xh(x))

2 1oy 11 B4
T (4n)? <_§ + 8) T @n)23 (B4)

Appendix B4. [ K(q) (W(q) +¢*h" (@) + ¢4*h" (@)

1
/ K(q) (h/(q) + ¢ (q) + —q4h”’(q)>
q

/ dq* ¢°K (q) (h (@) +¢*H'(9) + h”(g))

(47r)2
- / Tap L [—lq“K(q)K”(q) - (cf‘—K’(q)2 — K@K @ ) + K@)
(4m)? Jo dg? | 6 6\" 2 12
__ 11 B.S
T @n)212 (B.5)
Appendix B.5. Check of Eq. (92)
We wish to check Eq. (92) in Sect. 6, which can be written as
[ t@nad - k@@na @) =o. (B.6)
q
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The integrand is a total derivative:

(q- 34 +4) K(@h(@) = —A@h(q) + K(@)f (9) + 2K (9)h(q)
= —¢*f (Ph(@) + K(q) (@) +1(q)). (B.7)

Since K (¢)h(q) vanishes at g*> = 0, 0o, the integral vanishes.

Appendix C. Corrections to the ERG equation and the WT identity

Differentiating Egs. (61) and (64) with respect to the source 4, we obtain the ERG equation and the
WT identity for the products of current operators.

Appendix C.1. Product of two
The ERG differential equation is

(8 +p1-0p, +p2-0p, +2— D) [Jg(Pl)Jg(pz)] = b (p1 +p2) 8 (Prap1p — Pidap) - (C.1)
The WT identity has no anomaly:

Po [JE@ED] = i T5 0+ p1) + E9w) * T 1), (C.2)

Appendix C.2. Product of three
The ERG differential equation is

3
(Zpl— Oy +3 - u) [J5<p1)J,?<pz)J; (173)]

i=1

3
= b(1) [s (Zpl-) Te 7 [ 70, 7°) {8up 1 = 2Dy + 85y (P2 = P3)a + 8P — P1)g)

i=1

- {5(171 +2) (Prapip — Pidap) SGbJﬁ(m) + 82 +p3) (p2pp2y — P38y ) 87TE(p1)
+8(p3 + p1) (PSyp3oz —P§5ya) (Scajg(p2)} ] (C.3)
The WT identity can be anomalous:
Po [JEDE@IE )| = i [ I + s ) | + i [Sp @t o+ )
+ &)+ [Jh@E ()]
A a b pc
~ S8 +g+nTT {78, 7) eapyopata =15 (CH)

Appendix C.3. Product of four
The ERG differential equation is

4
(sz- 4 D,> EACY (CAYIRYoN)

i=1
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= b(t)[a(m +p2+p3+pa) [Tr TUTPTT? (Supdys + 8y 85 — 28ay Sp5)
+ Tr TOTPTITC (8updsy + 8ps8ya — 28asdpy ) + Tt T*TTPT? (80,855 + 85850 — 26a88ys)
+ Tr TOTTOT? (8uy 8sp + Sy88p — 28asbyp) + Tr TOTITOTC (84585) + 8sp8ya — 28p8sy )
FTe TTTT (asSyp + S5y 0 — 260035 |
+ 81 +p2+p)Te T T2, T [ {8ap (01 — p2)y + 88y (2 — P3)a + 8ya(p3 — p1) } IS (D4)
+8(p1 +p2+pa)Te 7| TP, T4 {8081 — P2)s + 885 (P2 — P4)a + S50 (P4 —pl)ﬂ}J}f(m)

+ 81 +p3 +p)Te T T, T\ {80y (01 — P3)s + 8y (P3 — P4)a + 50 (P4 —pl)y}Jg(Pz)

+ 82+ py + T TP [ T6,79) {85, (02— p3)s + 870 = pa)g + S35 (s — 2), } S P1)
+ 81 +p2) (PF0a — P1ap1) 6 [T (0315 o) |
+ 81 +p3) (P1ay — Prap1y) 6% [ T2 (o) |
+ 81+ pa) (PT8as — Prap1s) 8% :J;[?(Pz)J,f(pz):
+ 8(p2 + p3) (P38ps — pappas) 87 :Jo‘f(pl)Jf(m):

+8(p2 + pa) (P30ps — P2pp2s) 8™ | T4 (p1)T5 (pa)

+ 5(p3 + pa) (p%S),g —p3yp35) sed :J(ff(Pl)Jg(Pz): :| (C.5)
The WT identity can be anomalous:
POV OYAGY D)
= if [ I+ pIEOI @) | + i [Th@as e+ pIf O | + i [ Th @I s s+ p)
+ &) * [ @I )]
'A a C C C
_ E[S(p g+ 7+ ) PlacapysTr T <Tb [T , Td] 4T [T”’, Tb] 477 [Tb, T ])
+ 8+ g+ T T 10,7 eapyepala = 1edi )
+ 8+ g+ 9T T T2, 7| eapsepa(q = 9T ()

+8(p+r+ )T T {TC, T"} €aysePa(r — s)eJé’(q)]. (C.0)
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