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1 Introduction

Affine Toda models are a well-known class of (1+1)-dimensional quantum field theories,
describing r bosonic scalar fields ϕ = (ϕ1, . . . , ϕr) interacting through a Lagrangian

L = 1
2∂νϕa∂νϕa − µ2

β2

r∑
i=0

nie
βαa

i ϕa , (1.1)

which are known to be classically integrable [2, 3]. The quantities µ and β are real constants
setting the mass and the interaction scales of the model, while the vectors αi (i = 1, . . . , r)
are the simple roots of a rank r Lie algebra, and α0 is the lowest root defined through the
linear combination

α0 = −
r∑

i=1
niαi.

The integers ni depend on the Lie algebra considered, and we set n0 = 1. In this paper, we
focus on simply-laced affine Toda theories, i.e. models based on Lie algebras belonging to
the ADE series. Moreover, we assume the length common to all the roots (including α0) to
be

√
2. The additional root α0 is necessary to obtain a massive model with stable vacuum

ϕ = 0, around which, Taylor-expanding the potential, we can compute scattering processes
using standard perturbation theory. The first non-trivial term that we find expanding the
Lagrangian (1.1) is the mass matrix

M2
ab = µ2

r∑
i=0

niα
a
i αb

i . (1.2)
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All the higher-order couplings can be obtained from an expansion of the potential around
ϕ = 0 after having properly diagonalised (1.2).

There is an interesting correspondence between particles and Coxeter orbits in the root
system, obtained as follows [4, 5]. We can suitably choose r roots γa (a = 1, . . . , r) and to
each of them associate a closed orbit Γa composed of h elements, where h is the Coxeter
number of the Lie algebra considered. Each orbit is obtained by acting up to h−1 times
on the root γa with a Coxeter element w of the Weyl group, which is a composition of
Weyl reflections with respect to the planes orthogonal to the simple roots [6]. The duals of
Feynman diagrams at particular imaginary rapidities of the external momenta for which both
the external particles and the internal propagators are on shell, correspond to projections of
root polytopes onto the eigenplane of w for the eigenvalues exp

(
±2πi

h

)
. Therefore, the space

on which the on-shell interacting particles live is a projection of the root space, generally
known as spin-1 eigenplane of w, and the energy-momentum conservation law is obtained by
projecting the root system onto this plane. The perturbative integrability of these theories
has been recently proved at the tree level [7] and emerges from the underlying geometry,
through which all the Feynman diagrams contributing to inelastic processes sum to zero. An
important property used in the proof in [7] is the fusing rule for the three-point couplings
Cabc [4], which says that

Cabc ̸= 0 iff ∃ α ∈ Γa, β ∈ Γb and γ ∈ Γc with α + β + γ = 0,

where Γa, Γb and Γc are Coxeter orbits obtained by acting on the representative roots
γa, γb and γc with w. Moreover, whenever a 3-point coupling is different from zero in a
simply-laced theory, it is equal to [8, 9]

Cabc =
4β√

h
σabc∆abc with σabc = ±1 , (1.3)

where ∆abc is the area of the triangle with sides equal to the masses of the particles a, b and
c, which is the projection of the triangle composed of the roots α, β and γ onto the spin-1
eigenplane of the Coxeter element. The set of masses and 3-point couplings are sufficient to
identify the Toda theory considered; indeed, all the higher-point couplings can be uniquely
determined in terms of these parameters and can be derived from universal properties of
root systems [10]. Higher-order couplings can also be determined by imposing recursively
the absence of particle production at the tree level [11–13]. A remarkable fact highlighted
in [7] is that, for the class of affine Toda field theories, these two separate constructions
lead to the same set of recursion relations for higher-order couplings. This means that, in
principle, Lie algebra information can be read out from tree-level scattering requirements.

Despite there being some freedom in the choice of the basis adopted to diagonalise (1.2),
not all the signs σabc can be freely chosen. These signs are related to the structure constants
of the Lie algebra and the geometry of the root system in such a way to ensure the
cancellation of all poles appearing in 4-point off-diagonal processes at the tree level. In
the ADE series of Toda models, such cancellations happen between doublets of Feynman
diagram with on-shell propagating particles in pairs of channels: s/t, s/u or t/u. The
procedure under which these copies of poles cancel one another is known as flipping [14],
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since it corresponds to flipping one polygon diagonal in an on-shell dual Feynman diagram
to get another diagonal and therefore a new diagram. In the next sections, we follow
the convention used in [7], where three different types of flips are distinguished according
to the on-shell geometry of the tree-level flipped diagrams.1 It will be shown that the
flipping rule, used in [7] to prove the tree-level integrability of these theories, turns out
to be a fundamental property to understand also the simplification underlying loop-level
Feynman diagrams.

While all the off-diagonal processes a + b → c + d are zero (for {a, b} ≠ {c, d}) this is
not the case if the final particles are equal to the initial ones. In such a case the scattering is
allowed and the two-body S-matrix can be exactly conjectured by imposing, additionally to
unitarity, crossing-symmetry and analyticity, certain bootstrap properties [15, 16]. Following
this axiomatic procedure, exact S-matrices for a variety of Toda models have been found in
the past [4, 8, 17–29]. Among them, the ADE series represent particularly simple theories
since at one loop they preserve all the mass ratios [8] suggesting that the geometrical
structure obtained from the bootstrap is maintained at the quantum level in perturbation
theory. The S-matrix elements for such a class of quantum field theories can be written
in terms of roots and weights of their underlying Lie algebras [4] and take one of the two
following forms [4, 8]:

Sab(θ) =
h−1∏
x=1

step 2

{x}Nab(x)
θ , (1.4a)

Sab(θ) =
h−2∏
x=2

step 2

{x}Nab(x)
θ . (1.4b)

The parameter θ in the expressions above is the difference between the rapidities of the
particles a and b involved in the scattering. The non-negative integer coefficients Nab(x)
are functions of x, depending in addition on the theory and types of particles {a, b}. They
correspond to the multiplicities of the building blocks {x}. These blocks, also named
bricks, are 2πi-periodic functions of θ that automatically satisfy the unitary condition of
the S-matrix. They are defined in terms of hyperbolic functions [8]

{x}θ ≡ (x + 1)θ(x − 1)θ

(x − 1 + B)θ(x + 1− B)θ
(1.5)

with
(x)θ ≡

sinh
(

θ
2 + iπx

2h

)
sinh

(
θ
2 − iπx

2h

) and B ≡ 1
2π

β2

1 + β2

4π

.

The blocks (1.5) can be Taylor-expanded in β2, and at leading order have two simple poles
in θ:

{x}θ = 1 + iβ2

2h

(
− 1

θ − iπ
h (x − 1)

+ 1
θ − iπ

h (x + 1)
+ . . .

)
+ O(β4) . (1.6)

1Note that in [7] the notation Cabc = fabc∆abc was used for the area rule. Clearly, the constants fabc are
connected to the phases σabc in (1.3) through fabc = 4β√

h
σabc.
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The ellipses in (1.6) contain terms that are finite at the pole positions θ = iπ
h (x ± 1). At

higher orders in the coupling expansion both finite and singular terms are contained. In this
paper, continuing the study started in [14], we are interested in the analysis of leading order
singularities arising from the brick structure of the S-matrix. By leading order singularities
we mean that we perform the Laurent expansion of the S-matrix around a pole θ = iθ0
of arbitrary order P and at each order in the expansion in (θ − iθ0) we consider only the
leading order in β2. In other words, we can write the S-matrix around the pole as

Sab(θ) =
P∑

p=0

1
(θ − iθ0)p

(
β2

2h

)p (
ap + bpβ2 + . . .

)
+ O(θ − iθ0). (1.7)

A factor
(

β2

2h

)p
, one for each p, has been introduced for convenience. For each coefficient of

the Laurent series we are interested only in the leading order term in coupling expansion,
therefore a0, a1, . . . , aP , neglecting what is the structure of bp. Universal results for the
coefficients b1, in the case of arbitrary even P , were recently obtained in [1] for the entire
class of ADE affine Toda models.2

It is straightforward to obtain the coefficients ap from the bootstrapped results by
substituting the building block expansion (1.6) into (1.4). A pole of order P at θ = iθ0 = iπ

h x,
with P = M + N , arises by terms in the S-matrix of the form

{x − 1}M{x + 1}N ∼
(
1 + iβ2

2h

1
θ − iπ

h x

)M(
1− iβ2

2h

1
θ − iπ

h x

)N

. (1.8)

Each term obtained by expanding (1.8) corresponds to a leading order coefficient of (1.7).
Since the multiplicity of adjacent bricks can only differ by 0 or ±1 [24] the leading order
contributions to the Laurent expansion around the pole iθ0 can be written as

S
(l)
ab (θ) =

N∑
n=0

(
N

n

)(
β2

2h

)2n 1
(θ − iθ0)2n

+ ν
N∑

n=0

(
N

n

)(
β2

2h

)2n+1 1
(θ − iθ0)2n+1 , (1.9)

where the superscript l attached to the S-matrix element stands for ‘leading’. The expansion
has been truncated so as to contain only singular contributions at the pole location. The
coefficient ν is equal to zero if two bricks of the same multiplicity N touch each other,
generating a pole of even order P = 2N . Otherwise, ν = +i/ − i when there is a jump
from a brick of multiplicity N + 1/N on the left to a brick of multiplicity N/N + 1 on the
right. The poles are odd-order singularities since P = 2N + 1. The different situations are
depicted in figure 1.

The main purpose of this paper is to understand the origin of the universal formula (1.9)
using perturbation theory. The n = 0 contributions in (1.9) are naturally interpreted as the
identity (i.e. free propagators), in the first sum, and a bound state particle propagating
at the tree level in the forward/crossed channel (ν = +i/ − i), in the second sum. From
n = 1 onwards, loop contributions begin. These higher-order singularities can be explained

2Previous results for b1 were known from some years [30], but were obtained for the only A
(1)
r affine Toda

theories and P = 2.
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{x − 1}N {x + 1}N

ν = 0

{x − 1}N+1 {x + 1}N

ν = i

{x − 1}N {x + 1}N+1

ν = −i

Figure 1. Higher order singularities at θ = i πx
h . Working from left to right the pictures show a pole

of order 2N , and forward and crossed channel poles of order 2N + 1. The assignment of forward
and crossed channels is in line with the ‘uphill/downhill’ rule mentioned in [24]. All the situations
are encoded in equation (1.9) substituting the corresponding values of ν.

in perturbation theory in terms of the Coleman-Thun mechanism [31]: they are anomalous
thresholds coming from Feynman diagrams in which all the internal propagators, within
the integration loops, can go simultaneously on-shell for particular choices of the external
kinematics. Following the technique adopted in [14] we draw closed networks of singular
on-shell Feynman diagrams connected by flipping internal propagators. Then, based on
observations highlighted in [1], we explain how each multiple-loop diagram, evaluated at the
pole, can be decomposed into a sum of products of tree-level graphs obtained by cutting
some of its propagators. From this perspective, we call the loop diagrams entering the
network ‘molecules’ while we call their smaller constituents, the products of tree diagrams
obtained by cutting their propagators, ‘atoms’. Not all the Feynman diagrams composing
the network contribute to the result: many of the atoms cancel between one another in a
way that can be traced back to tree-level properties of the model. The only relevant terms
come from some particular cuts of the diagrams, that in the cases considered are located at
the boundary of the network.

In the next sections this analysis will be carried out for second- and third-order poles
(which is P = 2 and P = 3 in (1.7)) in diagonal scattering processes. In all the cases the
coefficient ap of each term of the Laurent expansion (1.7) are computed, displaying perfect
agreement with the bootstrapped formula (1.9). In [14] poles of order P = 2 and P = 3
were studied, finding in both cases the coefficient aP of the maximal singularity in (1.7).
While the results found matched the bootstrap expectations, the underlying mechanism
that led to the answer was not completely clear, particularly for P = 3. In that case, the
Feynman diagrams contributing to the pole generated a collection of complicated numbers
which, only after the sum, collapsed to the correct residue expected from the bootstrap.
We will highlight better the reason why this happens using the cut method of [1]. Other
aspects of higher-order singularities are also covered in this paper, and even though we have
not yet achieved the computation of all the leading coefficients ap of the Laurent expansion
at arbitrary P , due to the huge number of singular Feynman diagrams arising at higher
loops, we do see some signs of how a general proof might be achieved.

The paper is structured as follows. In section 2 we review the mechanism responsible
for the generation of higher-order poles in perturbation theory. We show that certain
loops, singular for some values of the external momenta, can be cut into sums of particular
products of tree-level Feynman diagrams; each product of tree-level graphs entering these
sums will be called an atom. We explain how the different ways in which the loops can be
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cut are determined by the on-shell geometry of the loops and follow from certain ‘positivity’
conditions. In sections 3 and 4 we use such a cutting technique to simplify large networks
of Feynman diagrams contributing to 2nd- and 3rd-order poles respectively. We show that
many atoms cancel against each other and the residues at the poles are obtained by summing
a few surviving atoms located at the boundary of the network. In this way, we reproduce
the Laurent coefficients of the S-matrix at the poles. In section 5 we discuss some aspects of
higher-order singularities. In particular by extending the argument presented in [1] to odd-
order singularities, we compute the coefficient a2 in equation (1.7) for arbitrary P , showing
that it is indeed equal to the binomial factor

(N
1
)

present in the bootstrapped formula (1.9).
The one-particle reducible part of the S-matrix on a 5th-order pole is computed as well,
returning a universal result not depending on the model considered.

A number of previous papers [32–35] have linked higher-loop S-matrices of integrable
models in 1+1 dimensions to tree-level S-matrices, but using unitarity-like methods. Even
though this type of approach will not be investigated here, it would be interesting to check
whether some of the results discussed in the next sections could be obtained from this
different perspective; in particular, a fascinating direction would be to generate expressions
for higher-order Landau poles in terms of simple poles of tree-level S-matrices by writing
sums of Feynman diagrams in terms of products and integrals of tree-level S-matrices as
discussed in [35].

2 Landau singularities and cut diagrams

In this section, we review the mechanism responsible for the generation of higher-order poles
in perturbation theory following the approach used in [1]. This method, compared with the
technique used in [14], makes it evident how the loops, on the pole position, factorise into
particular products of singular tree-level diagrams. We are interested in finding the leading
order coefficients ap in (1.7). This corresponds to finding on-shell Feynman diagrams with
the maximum number of internal on-shell momenta and carrying the minimum power of β.
Such a situation occurs if the only vertices entering the diagrams are 3-point couplings.

Consider a diagram D contributing to a diagonal process involving the scattering of
two particles of types a and b at L loops, close to a higher-order pole at θ = iθ0. Since there
are two degrees of freedom for each loop, we can always find values of the loop integration
variables for which two momenta inside each loop are on-shell, and satisfy

q2
j − m2

j = 0 (2.1)

where j = 1, . . . , 2L. This is always possible if we are close to the pole θ = iθ0, since actually
at the pole, there is a choice of loop momenta for which all internal lines of the diagram
are on-shell. Then we expand the corresponding momenta entering into the loop integrals
around these values

Qj = qj +
L∑

i=1
λ

(Q)
ji li ≡ qj + k

(Q)
j . (2.2)

The vectors l1, . . . , lL are the L loop integration variables and λ
(Q)
ji are certain real coefficients

whose values are determined by the way that momentum conservation is implemented across
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the diagram. This permits the relevant propagators to be written in the following form

i

Q2
j − m2

j + iϵ
= i

2qj · k
(Q)
j + (k(Q)

j )2 + iϵ
. (2.3)

All the loop integration variables are contained in the vectors k
(Q)
j . If we define I to be

the total number of propagators then the remaining I − 2L momenta (those that are not
expanded around their on-shell values when θ ̸= θ0) are given by

Pj = pj +
L∑

i=1
λ

(P )
ji li ≡ pj + k

(P )
j . (2.4)

The momenta pj around which the Pj are expanded are fixed, since we have already used
all the loop freedom to set the momenta qj on-shell in (2.1). Unlike the qj , the values pj

are generally off-shell and go on-shell only at the pole position θ = iθ0. Labelling by s0 the
value of the Mandelstam variable s = (pa + pb)2 at the pole, we can expand p2

j in (s − s0)
as follows

p2
j − m2

j =
dp2

j

ds

∣∣∣
s=s0

(s − s0) + . . . (2.5)

Therefore up to extra multiplicative factors, irrelevant to the purpose of the discussion, the
value of the Feynman diagram in the neighbourhood of s0 can be written as

∫ L∏
i=1

d2li
(2π)2

2L∏
j=1

1
2qj · k

(Q)
j + (k(Q)

j )2 + iϵ

I−2L∏
j=1

1
dp2

j

ds

∣∣∣
s=s0

(s − s0) + 2pj · k
(P )
j + (k(P )

j )2 + iϵ

(2.6)
where the k

(Q)
j and k

(P )
j are linear functions of the loop momenta li. Scaling the integration

variables in the following manner
li = (s − s0)l̃i (2.7)

and omitting subleading terms in s − s0 we can isolate the singular part of (2.6) at the pole
position, which we denote by ID:

ID = 1
(s − s0)I−2L

∫ L∏
i=1

d2 l̃i
(2π)2

2L∏
j=1

1
2qj · k̃

(Q)
j + iϵ

I−2L∏
j=1

1
dp2

j

ds

∣∣∣
s=s0

+2pj · k̃
(P )
j + iϵ

. (2.8)

Clearly the order of the pole is equal to p = I − 2L where, as already specified, I is the
total number of propagators in the diagram and L is the total number of loops. Since all
the denominators in the propagators of (2.8) are linear functions of the loop variables, the
integrations can be simply performed by closing a contour in the complex plane and using
Cauchy’s theorem. Depending on the choice of variables adopted when we perform the
integral the number of poles in the integration contour can change and the same result can
be written as sums over different residues. Each one of these sums is a sum over different
products of tree-level diagrams where each propagator with respect to which we take the
residue is cut. We will show this explicitly in section 2.1 with an example.

– 7 –
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To obtain the singular part of the Feynman diagram at the pole, which we will denote
by DD, we need to multiply the result of the integral by the following factors, which were
omitted in (2.8):

for each vertex: − iCabc ;
for each propagator: i.

(2.9)

After summing over all Feynman diagrams contributing to the Landau singularity, we
express s − s0 in terms of the rapidity at the pole

s − s0 = 2mamb

(
cosh θ − cosh iθ0

)
= 4i∆ab(θ − iθ0) + O((θ − iθ0)2), (2.10)

where ∆ab is the area of the triangle formed by the vectors pa, pb at the pole position. In
the last equality we have expanded cosh θ around θ = iθ0 and used ∆ab = 1

2mamb sin θ0. If
we do so we find the singular part of the amplitude, expressed as a function of the rapidity,
at the leading order in the coupling. To obtain the coefficient in the expansion (1.7) of the
associated S-matrix element we need to multiply the result by

1
4mamb sinh iθ0

= 1
8i∆ab

. (2.11)

This factor comes by expressing the overall energy-momentum conservation delta function
(2π)2δ(2)(pin

a + pin
b − pout

a − pout
b ) in terms of the rapidities at the pole position and inserting

a normalization factor 1√
4π

for each external particle.
Once we understand which residues to take, the difficult part in the evaluation of

the integral (2.8) is computing the derivatives of propagators at the pole position, which
are the terms on the r.h.s. of (2.5). The rapidity values at which poles can appear are
purely imaginary, and so Feynman diagrams at l1 = l2 = . . . = lL = (0, 0) (the point at
which all loop propagators are singular simultaneously) can be represented as geometrical
figures in Euclidean space. Then evaluating the propagator derivatives amounts to a
geometrical problem, best formulated in terms of the dual diagrams to be discussed in
the next section. The following lemma, used in [7] to evaluate the residues of tree-level
diagrams, will be useful:

Lemma 1. Let x0, x1, x2, x3 be 4 points in R2, and set Xij = ∥xi − xj∥2 for 0 ≤ i, j ≤ 3.
Then the following identity holds:∑

i ̸=j ̸=k ̸=n

dXij εij(k, n) ∆kni∆knj = 0. (2.12)

εij(k, n) = +1/ − 1 according to whether xi and xj lie on the same / opposite sides of the
line identified by the diagonal connecting the points xk and xn.

In lemma 1 we used the conventions of appendix A of [7] and labelled by ∆ijk the area
of the triangle having vertices defined by the vectors xi, xj , xk. In this paper, we will
instead label triangles using their sides (corresponding in dual diagrams to propagating
particles) rather than vertices. Lemma 1 is straightforwardly adapted to such situations

– 8 –
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with little change of notations. We can also define the oriented area of the triangle identified
by a pair of vectors A, B in R2 as the determinant

〈
AB

〉
≡ 1

2

∣∣∣∣∣ Ax Bx

Ay By

∣∣∣∣∣ . (2.13)

It will sometimes be necessary to write vectors in a non-orthogonal basis. To do this the
following identity can be used〈

AB
〉

D+
〈
BD

〉
A+

〈
DA

〉
B = 0 (2.14)

on any triplet of vectors A, B and D in R2. Performing the vector product with a fourth
element C we obtain the Plücker relation connecting areas of different triangles〈

AB
〉〈

CD
〉
+
〈
BD

〉〈
CA

〉
+
〈
DA

〉〈
CB

〉
= 0. (2.15)

2.1 An example: the box integral

We show an example of a Feynman diagram in which the Coleman-Thun mechanism [31] for
the generation of Landau singularities is manifest. The example is simple and already well
known but it contains some subtleties that are also characteristic of more difficult cases and
it is worth explaining them here. Consider the box diagram in figure 2. The l.h.s. shows
the box diagram at the singularity: the directions of the momenta are the imaginary values
of the rapidities at the pole and for this reason, we refer to this diagram as an on-shell
diagram. The r.h.s. shows its dual. The dual diagram is a tiled parallelogram, composed
of vectors in the complex plane having lengths and arguments equal to the masses and
imaginary rapidities of the associated particles respectively. From the dual diagram the
associated on-shell diagram is easily obtained: for each triangle ∆ABC in the dual diagram,
draw a vertex with the vectors A, B and C attached, each rotated by 90◦ in a clockwise
direction. Even though the directions of the momenta are different in the on-shell diagram
and its dual, they are related by a Lorentz rotation with an imaginary angle and the values
of the two pictures are the same; this should be clear by the fact that all the fusing angles
remain unchanged by an overall rotation. We stress that in figure 2 the dual diagram on
the r.h.s. contains more information than the on-shell diagram on the l.h.s. Indeed, in the
dual diagram, the sides have lengths equal to the values of the associated masses and as
vectors they match the on-shell momenta at the pole l = (0, 0). Instead, the vectors in the
on-shell diagram are not equal to the (rotated) on-shell momenta since their lengths do
not correspond to the masses of the propagating particles. For this reason, in the following
discussion, the on-shell momenta should always be read from the dual diagram and not
from the on-shell Feynman diagram.

Note that the masses involved are such that B′ and C ′ are negative linear combinations
of B and C at this point. With a small abuse of notation, we use the letters B, C, B′,
and C ′ for both the on-shell vectors and the particle labels. As explained previously, since
the loop carries two degrees of freedom, even away from the singularity we can shift l so
that two momenta, say B and C, are on-shell at l = (0, 0) which means that at this point
we have

B2 − m2
B = 0 , C2 − m2

C = 0. (2.16)
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Figure 2. On-shell (box) diagram on the left and its dual on the right.

Even though we can choose any pair of momenta to be on-shell at l = (0, 0) this choice will
be particularly convenient for the computation of the residue since, as just mentioned, both
B′ and C ′ are negative linear combinations of the chosen momenta B and C on the pole.
We will return to this point later. On the other hand for a general choice of the external
kinematics, B′ and C ′ are off-shell at l = (0, 0) and their propagators diverge there only at
the special point s = s0 where the box diagram is singular. If we expand the lengths of
vectors B′ and C ′ around s0 we obtain

B′2 − m2
B′ =

dB′2

ds

∣∣∣
B,C

(s − s0) + . . .

C ′2 − m2
C′ =

dC ′2

ds

∣∣∣
B,C

(s − s0) + . . .

(2.17)

where the ellipses contain higher powers of (s − s0). The subscripts B and C in the
derivatives indicate that we are differentiating B′2 and C ′2 with respect to s keeping the
lengths of B and C fixed at their on-shell values. The situation is shown in figure 3 where
on the l.h.s. we see that near the pole position only B and C are on-shell (the black internal
propagators) while the red momenta B′ and C ′ are off-shell; indeed their lengths do not
correspond to the values of their masses. We perform the integral in this position and
then we take the limit s → s0 (r.h.s. part of figure 3) at which the Feynman diagram
becomes singular. Expanding the loop around the values in (2.16), (2.17) and scaling the
loop variable l = (s − s0)l̃ we obtain

I□ = 1
(s − s0)2

∫
d2 l̃

(2π)2
1

2B · l̃ + iϵ

1
2C · l̃ + iϵ

1
dB′2

ds

∣∣∣
B,C

+2B′ · l̃ + iϵ

1
dC′2

ds

∣∣∣
B,C

+2C ′ · l̃ + iϵ
.

(2.18)
Equality (2.18) is a particular case of the general formula (2.8). The residue at the pole
is isolated in the integral expression above and can be easily computed using Cauchy’s
theorem. With the purpose of using the scalar products 2B · l̃ and 2C · l̃ as integration
variables we express all the momenta in (2.18) as linear combinations of B and C. This is
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s → s0

Figure 3. Loop expansion around the on-shell values B2 = m2
B and C2 = m2

C . The remaining
momenta B′ and C ′ (drawn in red in the figure) are not on-shell for general external kinematics (on
the l.h.s.) and go on-shell only on the pole position s = s0 (on the r.h.s.).

easily done by using (2.14)

B′ = −∆B′C

∆BC
B − ∆B′B

∆BC
C , C ′ = −∆C′C

∆BC
B − ∆C′B

∆BC
C. (2.19)

In these expressions ∆XY denotes the area of the triangle having the two vectors X and
Y as sides, which means, referring to definition (2.13), ∆XY =

√
⟨XY ⟩2. We note that

all the coefficients of the linear combinations in (2.19) are negative numbers. This can be
understood pictorially if we look at the right-hand part of figure 2. There we see that both
B′ and C ′ belong to the section of the plane spanned by positive linear combinations of the
vectors −B and −C, since the oriented lines identifying their directions are contained in
the angle formed between the arrows of B and C. If we write the integral (2.18) in terms
of the integration variables

u = 2B · l̃ , v = 2C · l̃

we obtain

I□=
1

(s−s0)2
1

(2π)28i∆BC

∫
du dv

1
u+iϵ︸ ︷︷ ︸

B

1
v+iϵ︸ ︷︷ ︸

C

1
dB′2

ds

∣∣∣
B,C

−∆B′C
∆BC

u−∆B′B
∆BC

v+iϵ︸ ︷︷ ︸
B′

1
dC′2

ds

∣∣∣
B,C

−∆C′C
∆BC

u−∆C′B
∆BC

v+iϵ︸ ︷︷ ︸
C′

,

(2.20)

where the factor in front of the integral comes from the Jacobian associated with the change
of variables

d2 l̃ = 1
8i∆BC

du dv.

Each term in the integral (2.20) corresponds to a particular propagator whose particle label
is indicated under it. The different ways in which we can close the u/v-contours in the
complex plane to write the result as sums over different residues correspond to different
possible decompositions of the loop as sums over products of tree-level graphs. Let us
consider the simplest situation in which we close both the u- and v- contours in the lower
half complex plane with semicircles of infinite radius. Using Cauchy’s theorem the result is
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simply given by
I□ = i

(s − s0)2
1

8∆BC

1
dB′2

ds

∣∣∣
B,C︸ ︷︷ ︸

B′

1
dC′2

ds

∣∣∣
B,C︸ ︷︷ ︸

C′

. (2.21)

The propagators corresponding to the B and C particles are removed when we take the
residues since they have simple poles in the lower half plane. On the other hand, propagators
corresponding to B′ and C ′ survive since their poles are not contained in the integration
contour. These surviving propagators are evaluated at fixed on-shell lengths of the external
momenta and fixed on-shell values of B and C. This implies that the loop integral is
reduced to a tree-level diagram in which B and C play the role of external on-shell particles.
After multiplying by the remaining factors in (2.9), the box diagram can be written as a
single atom which we denote as D(B, C) (as already specified in the introduction, we refer
to the various cut diagrams into which a loop can be decomposed as atoms):

D□ = D(B, C) = 1
8i∆BC

X1 × X2 , (2.22)

where

X1 ≡ (−iCaBC̄),

X2 ≡ (−iCCbB̄′)
i

dB′2

ds (s − s0)
(−iCB′āC̄′)

i
dC′2

ds (s − s0)
(−iCC′b̄B̄).

(2.23)

The quantities X1 and X2 are two tree-level Feynman diagrams with three and five external
legs respectively, evaluated in the neighbourhoods of the points where all their internal
propagators are singular. However, it is important to remark that we are following a
particular direction to reach these singular points, something which is left implicit in
the notation. Note that a diagram with five external legs has two degrees of freedom in
general: two rapidities of the external particles are fixed by the overall energy-momentum
conservation and one rapidity can be removed by Lorentz invariance. Therefore, among the
five external rapidities of the particles involved in a five-point amplitude, two are actual
degrees of freedom of the amplitude. A natural question would then be why in the second
line of (2.23) the expansion of the denominators is performed with respect to a single degree
of freedom s. The reason is that we are moving to the pole position s = s0, where all the
propagators in X2 are on-shell, keeping the difference between the rapidities of the particles
on the lines that have been cut, that is B and C, fixed. In this way, there is only one degree
of freedom left (s) and the denominators in the second equality in (2.23) correspond to
the leading order expansions of B′2 − m2

B′ and C ′2 − m2
C′ with respect to this degree of

freedom. X2 can then be written as

X2 = (−iCCbB̄′)
i

B′2 − m2
B′

(−iCB′āC̄′)
i

C ′2 − m2
C′

(−iCC′b̄B̄) + O((s − s0)−1) , (2.24)

where it is understood that B′2 and C ′2 are both functions of a single parameter s for the
reason just explained. A pictorial representation of (2.22) is given by the first equality in
figures 4 and 5, where the cut of the diagram and the associated dual are reported.
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Figure 4. Box integral at the pole written as sums of different atoms depending on the way we
close the integration path. The single contribution on the r.h.s. of the first equality corresponds to
closing both the u and v contours on the lower half complex plane. The sum over the two terms in
the second (third) row corresponds to closing u in the lower (upper) half plane and v in the upper
(lower) half plane.

At this point, the problem reduces to finding the derivatives of B′2 and C ′2 with respect
to the Mandelstam variable s. We focus on the triangle ∆bC on the r.h.s. of figure 2 with
sides pb, C and B′, and on the triangle ∆ab with sides pa, pb and pa + pb corresponding to
half of the parallelogram on the r.h.s. of figure 2. The values of B′2 and s are given by

B′2 = m2
b + m2

C − 2mbmC cos ŪbC , s = m2
a + m2

b − 2mamb cos Ūab (2.25)

where ŪXY is the angle between sides X and Y . Since the momenta pa, B and C defining
the thin triangle ∆aBC are on-shell, the angle ŪaC is fixed along the direction we follow to
take the limit s → s0 and the following variations correspond

dŪbC = dŪab.

Thanks to this fact the derivative of B′2 respect to s can be written as

dB′2

ds
=

dB′2

dŪbC

ds
dŪab

= ∆bC

∆ab
.

The last equality in the relation above has been obtained using the expressions in (2.25).
Similarly, it is possible to show that

dC ′2

ds
= −∆bB

∆ab
.
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Plugging the values of these derivatives into (2.23) and using the area rule (1.3) the equality
in (2.22) becomes

D□ = D(B, C) = ∆2
ab

8i(s − s0)2∆B′C′

( 4β√
h

)4
σBaC̄σCbB̄′σB′āC̄′σC′b̄B̄. (2.26)

By substituting the values of the signs σ defined in (1.3) into (2.26) we obtain the residue
of the diagram at the pole.

Now we discuss what happens if we choose a different integration contour when we
use Cauchy’s theorem. We perform the integral (2.20) in two steps. First we integrate the
u-variable closing as before its contour with a semicircle in the lower half complex plane.
We obtain

I□ = 1
(s − s0)2

2πi

(2π)28i∆BC

∫
dv

1
v + iϵ︸ ︷︷ ︸

C

1
dB′2

ds

∣∣∣
B,C

−∆B′B
∆BC

v + iϵ︸ ︷︷ ︸
B′

1
dC′2

ds

∣∣∣
B,C

−∆C′B
∆BC

v + iϵ︸ ︷︷ ︸
C′

.

(2.27)

The B-propagator has disappeared from the integral, i.e. it has been cut. At this point,
instead of also closing the v-path in the region below the real axis (generating only one
residue), we close the path in the upper half complex plane where the terms B′ and C ′

in (2.27) both have simple poles. The final result is a sum over two residues, one for each
propagator having a pole in the region enclosed in the integration path:

I□ = 1
(s − s0)2

i

8

[ 1
∆BB′

1
∆BC
∆B′B

dB′2

ds

∣∣∣
B,C︸ ︷︷ ︸

C

1
dC′2

ds

∣∣∣
B,C

−∆C′B
∆B′B

dB′2

ds

∣∣∣
B,C︸ ︷︷ ︸

C′

+

1
∆C′B

1
∆BC
∆C′B

dC′2

ds

∣∣∣
B,C︸ ︷︷ ︸

C

1
dB′2

ds

∣∣∣
B,C

−∆B′B
∆C′B

dC′2

ds

∣∣∣
B,C︸ ︷︷ ︸

B′

]
.

(2.28)

The factor 1
∆XY

in front of each term in the sum above is a Jacobian depending on which
variables have been used in the integration; it can be used as a pointer indicating which
propagators X, Y have been cut. In the first term for example we read 1

∆BB′
indicating

that the propagators B and B′ have been cut, indeed we take the residues with respect
to their poles, and such propagators disappear in the final result. The remaining terms
C and C ′ are related to propagators evaluated close to their on-shell values making the
diagram singular.

Making use of lemma 1 it is not difficult to check that each combination of derivatives in
the denominators of (2.28) can be written in a simpler form and the result for the singular
diagram is given by

I□ = 1
(s − s0)2

i

8

[ 1
∆BB′

1
dC2

ds

∣∣∣
B,B′

1
dC′2

ds

∣∣∣
B,B′

+ 1
∆C′B

1
dC2

ds

∣∣∣
C′,B

1
dB′2

ds

∣∣∣
C′,B

]
.
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Figure 5. Dual depictions of the atoms shown in figure 4.

In the first term the particles B and B′ are on-shell and the derivatives are taken at fixed
values p2

a = m2
a, p2

b = m2
b , B2 = m2

B, B′2 = m2
B′ , in the second term the vectors having

fixed lengths are instead pa, pb, C ′ and B.
Multiplying by the usual vertex and propagator factors in (2.9), we can write the result

for the diagram as a sum of two atoms

D□ = D(B, B′) + D(B, C ′) = 1
8i∆BB′

X3 × X4 +
1

8i∆BC′
X5 × X6. (2.29)

The quantities X3, X4, X5 and X6 are defined as follows

X3 ≡ (−iCaBC̄)
i

dC2

ds (s − s0)
(−iCCbB̄′) ∼ (−iCaBC̄)

i

C2 − m2
C

(−iCCbB̄′), (2.30a)

X4 ≡ (−iCB′āC̄′)
i

dC′2

ds (s − s0)
(−iCC′b̄B̄) ∼ (−iCB′āC̄′)

i

C ′2 − m2
C′

(−iCC′b̄B̄), (2.30b)

X5 ≡ −iCC′b̄B̄, (2.30c)

X6 = (−iCBaC̄)
i

dC2

ds (s − s0)
(−iCCbB̄′)

i
dB′2

ds (s − s0)
(−iCB′āC̄′)

∼ (−iCBaC̄)
i

C2 − m2
C

(−iCCbB̄′)
i

B′2 − m2
B′

(−iCB′āC̄′).
(2.30d)

In some of the relations above we use the symbol ∼ instead of = to represent the fact that
the equality is valid only at the leading order in s − s0 (or equivalently in θ − iθ0). We will
keep using this symbol also in the next sections. Using the area rule (1.3) and computing
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the derivatives of the squared of the momenta appearing in the propagators we obtain

D□ = D(B, B′) + D(B, C ′)

= ∆2
ab

8i(s − s0)2 (∆BB′ +∆B′C)
( 4β√

h

)4
σBaC̄σCbB̄′σB′āC̄′σC′b̄B̄. (2.31)

To verify that the two results in (2.31) and (2.26) are equal we write the triangle areas in
terms of vector products and note that〈

B′B
〉
+
〈
CB′〉 = 〈

(C − B)B′〉 = 〈
paB′〉.

The box integral at the Landau singularity can be written both as a single term, D(B, C),
given by cutting the internal propagators B, C and multiplying by the Jacobian factor

1
8i∆BC

, or as a sum over two terms. Each one of these two terms, D(B, B′) and D(B, C ′),
corresponds to a particular atom. This second way of writing the singularity is shown in
the second row of figures 4 and 5.

In summary, we have seen that the threshold singularity of the box integral can be
written as different sums of residues. Each residue is associated with a Feynman diagram
decomposition in which propagators having poles inside the integration contour disappear,
i.e. they are cut. In this manner, the diagram behaves as a tree-level graph with more
external on-shell particles. The different ways in which the full diagram, or molecule, can be
broken into sums of these atoms are dictated by the dual description of the diagram. In the
case considered the choice of B and C to define the integration variables is special in that it
leads to just a single atom. This is a result of the fact that all the other momenta (B′ and
C ′) are linear combinations of B and C with negative coefficients. No matter what singular
box integral we are considering, to find the two special momenta in terms of which all the
other vectors are written as negative linear combinations we need to search for the triangle
which contained in two concave quadrilaterals. In the example considered the vectors B

and C form a triangle ∆aBC which is contained both in the concave quadrilateral defined
by the sides B, B′, pb-incoming, pa-incoming and in the concave quadrilateral defined by
C, C ′, pb-outgoing, pa-incoming. Looking at the right hand part of figure 2, this is not
true for any other triangle. For example the triangle ∆bB′C is contained in the concave
quadrilateral having for sides B, B′, pb-incoming, pa-incoming but it is also contained in
the convex quadrilateral defined by sides C, C ′, pa-outgoing, pb-incoming and having B′

for diagonal. Once we find such special vectors, we have found the two propagators with
respect to which taking the residues we generate the complete result as a single atom. On
the other hand, we can write the box singularity as a sum over two different residues: we
need to cut one among the two special vectors (B or C in this case) and sum over the cuts
of the other two sides. We write below some of the different sums over atoms through which
the leading box singularity can be written

D□ = D(B, C) = D(B, B′) + D(B, C ′) = D(B′, C) + D(C ′, C). (2.32)

The first equality in this expression is given by closing both the u and v contours in (2.20)
in the lower half plane. In this way, we obtain a single term generated by cutting the
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propagators associated with momenta B and C, i.e. the special vectors with respect to which
all the other momenta are negative linear combinations. The second equality corresponds
to closing the u-contour in (2.20) in the lower half plane (there is a single pole in the
integration path due to the B-propagator) and the v-contour in the upper half-plane. Since
now there are two poles in the integration v-contour we have a sum over two different cuts,
associated with B′ and C ′. On the other hand on the r.h.s. of the third equality in (2.32)
we have performed the integration over v first, closing the integration path in the lower
half complex plane. The v-contour encloses a single pole of the propagator associated with
the particle C, and therefore we obtain a single residue corresponding to the cut of the
C-propagator. Then closing the u-contour in the upper half plane we obtain a sum over
two residues, one corresponding to cutting the propagator B′ and the other corresponding
to cutting the propagator C ′.

In the next sections, we will study networks of Feynman diagrams contributing to some
higher-order singularities. In this context it is important to understand how to decompose
each molecule of the network cleverly, to make the simplifications between different atoms
manifest. We will show how special decompositions of diagrams connected by flipping
internal propagators sum to zero and the total result is given by a few surviving atoms. We
start by studying this phenomenon for 2nd-order poles and then move to 3rd-order poles.

Even though we identify universal structures common to all the ADE series of affine
Toda models, our results are based on a case-by-case study. For a fixed p in (1.7), we
observe that the coefficients ap of different affine Toda models are generated by networks
sharing the same topology and the same atomic decomposition. However, the reason why
this happens is unclear. It would be interesting to find a universal explanation of how the
networks simplify, for example using common properties of the underlying root systems.

3 Second-order poles

Second-order poles appear when the bootstrapped S-matrix (1.4) contains the product of
two building blocks {x − 1}{x + 1}. These are even order singularities with N = 1 and
ν = 0, for which the leading order contribution (1.9) to the Laurent expansion about the
pole becomes

S
(l)
ab (θ) = 1 +

(
β2

2h

)2 1
(θ − iθ0)2 . (3.1)

This singular part of the S-matrix was computed using perturbation theory in [14]. However
this paper did not discuss why Feynman diagrams connected by flipping internal propagators,
that cancel at tree level in 4-point non-diagonal processes, do not sum to zero at loop level.
In this section, following the approach used in [1], we show that this fact is related to how
the loop diagrams are cut into atoms. In addition we highlight that cancellations between
different atoms in the network of singular diagrams are nevertheless possible, and we show
which atoms do not cancel and contribute to the final result.

There are in total four Feynman diagrams contributing to the pole. They are connected
by flips of type II, according to the convention introduced in [14] and reviewed in [7]. The
full network of on-shell Feynman diagrams, together with their duals, is shown in figure 6.
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Figure 6. Network of on-shell Feynman diagrams (on the left) and their duals (on the right)
contributing to a second-order pole.

The external shape of each on-shell diagram entering the network is always the same: it is a
parallelogram with sides equal to the masses of the scattered particles and angles determined
by their rapidities. Internally the parallelogram is tiled by triangles, representing 3-point
vertices, having as sides the masses of the propagating particles. In addition diagrams (2)
and (4) on the r.h.s. of figure 6 have an internal empty space, corresponding to on-shell
propagators that cross each other. Starting from any diagram of the network we can
generate all the others by flipping internal propagators. For example, to move from diagram
(1) to diagram (2) on the r.h.s. of figure 6 we exchange the positions of the vectors B and
B′ and we flip C ′, transforming it into C. As explained in [7] this is a flip of type II and
it does not change the product of the 3-point couplings entering in the diagram. This is
a requirement to avoid non-diagonal processes at the tree level. The same type of flip
connects the remaining diagrams of the network to one another. Since diagrams (2) and
(4) contain products of 3-point couplings that are necessarily positive, being the absolute
values squared of certain phases, and the product of the 3-point couplings after each flip
does not change sign, we have

σBaC̄σCbB̄′σB′āC̄′σC′b̄B̄ =︸︷︷︸
(1)→(2)

|σBaC̄ |
2|σCbB̄′ |2 =︸︷︷︸

(2)→(3)

σBbC̄′σC′aB̄′σB′b̄C̄σCāB̄

=︸︷︷︸
(3)→(4)

|σBaC̄ |
2|σBbC̄′ |2 = 1.

Using this result combined with (2.31), the first diagram of the network, labelled (1) in
figure 6, can be written as

D(1) = D(1)(B, B′) + D(1)(B, C ′) = −32i

(
β√
h

)4 ∆2
ab

(s − s0)2 (∆B′C +∆B′B) (3.2)

where, as explained in the previous section, the two pieces in the sum (3.2) represent two
different cuts of the box.

The values associated with the other diagrams are straightforwardly obtained in the
same way. Diagram (3) is similar to diagram (1); in this case we write its value by summing
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Figure 7. Feynman diagram decompositions into sums of products of tree-level graphs.

the atoms D(3)(C, B′) and D(3)(C, C ′). It is given by

D(3) = D(3)(C, B′) + D(3)(C, C ′) = −32i

(
β√
h

)4 ∆2
ab

(s − s0)2 (∆C′B +∆C′C).

The remaining diagrams (2) and (4) are also simple; their integrals are

I(2) = 1
(s − s0)2

1
(2π)28i∆BB′

∫
dudv

1
u + iϵ︸ ︷︷ ︸

B

1
v + iϵ︸ ︷︷ ︸

B′

1(
dC2

ds

∣∣∣
B,B′

−∆CB′
∆BB′

u − ∆CB
∆BB′

v + iϵ

)2

︸ ︷︷ ︸
C

,

I(4) = 1
(s − s0)2

1
(2π)28i∆CC′

∫
dudv

1
u + iϵ︸ ︷︷ ︸

C

1
v + iϵ︸ ︷︷ ︸

C′

1(
dB2

ds

∣∣∣
C,C′

−∆BC′
∆CC′

u − ∆BC
∆CC′

v + iϵ

)2

︸ ︷︷ ︸
B

.

Each of these results is given by a single atom, which is D(2)(B, B′) in the case of diagram
(2) and D(4)(C, C ′) in the case of diagram (4):

D(2)(B, B′) = −32i

(
β√
h

)4 ∆2
ab

(s − s0)2 × (−∆B′B),

D(4)(C, C ′) = −32i

(
β√
h

)4 ∆2
ab

(s − s0)2 × (−∆C′C).

– 19 –



J
H
E
P
1
0
(
2
0
2
3
)
1
7
7

+

∆B′C ∆BB′

(1)

−∆BB′

(2)

∆CC′

+

∆BC′
(3)

−∆CC′

(4)

Figure 8. On-shell decomposition of diagrams into (sums of) products of tree-level graphs. Atoms
differing by the presence of two 4-point inelastic Feynman diagrams connected by flipping one
propagator cancel in the final sum. Near each diagram, its value contributing to the double pole
residue is reported. A overall factor −32i

(
β√
h

)4 ∆2
ab

(s−s0)2 common to each diagram has been omitted
and needs to be introduced after the sum.

The full network of on-shell diagrams, each one decomposed into tree-level atoms, is shown
in figure 7, while figure 8 shows their dual descriptions. Atoms that differ by a 4-point
inelastic tree-level diagram in which one propagator is flipped are plotted in the same colour.
For example, the two blue atoms coming from diagram (1) and (2) can be written as

D(1)(B, B′) = 1
8i∆BB′

X3 × X4

and

D(2)(B, B′) = 1
8i∆BB′

X3 × X
(flipped)
4

(3.3)

respectively. The expressions for X3 and X4 are written in (2.30) while X
(flipped)
4 is given by

X
(flipped)
4 = (−iCBāC̄)

i
dC2

ds (s − s0)
(−iCCb̄B̄′) ∼ (−iCBāC̄)

i

C2 − m2
C

(−iCCb̄B̄′). (3.4)

These atoms share a common tree-level diagram (X3) and differ by a pair of flipped tree-
level diagrams (X4 and X

(flipped)
4 ) in which a particle propagating in the t-channel and a

particle propagating in the u-channel are simultaneously on-shell. A fundamental property,
necessary for the absence of inelastic processes at tree level, is that the singular parts of
flipped diagrams contributing to two-to-two inelastic processes sum to zero. The fact that
this does hold follows from the area rule (1.3) together with certain properties of structure
constants and can be easily proven, as was done for example in [7, 36]. For this reason,
we have

X4 + X
(flipped)
4 = finite

and the sum of the two blue atoms does not contribute to the second order singularity.

– 20 –



J
H
E
P
1
0
(
2
0
2
3
)
1
7
7

The effect is that only two among the six atoms in figure 8 contribute to the final result;
they are the two black graphs having values

D(1)(B, C ′) = −32i

(
β√
h

)4 ∆2
ab

(s − s0)2∆B′C (3.5)

and
D(3)(B′, C) = −32i

(
β√
h

)4 ∆2
ab

(s − s0)2∆C′B. (3.6)

Noting that ∆B′C +∆BC′ = ∆ab,3 we obtain

D(1)(B, C ′) + D(3)(B′, C) = −32i

(
β√
h

)4 ∆3
ab

(s − s0)2 . (3.7)

Before comparing this result with the residue of the singularity in (3.1) we need to perform
the substitution (2.10) and multiply by the overall factor in (2.11). If we do so we obtain(

β2

2h

)2 1
(s − s0)2 ,

which matches perfectly with the leading order part of the second order singularity in the
bootstrapped S-matrix. It is worth mentioning that the cut decomposition represented in
figure 8 is not unique. There is another legitimate choice, which is decomposing D(1) into
D(1)(C, C ′) + D(1)(C, B′) and D(3) into D(3)(B, B′) + D(3)(B, C ′). In this case we would
have observed atomic cancellations between diagrams (1) and (4), and between diagrams
(2) and (3).

This result has been obtained by noting that some atoms in the network differ from
each other by the presence of a pair of 4-point tree-level inelastic diagrams connected by
flipping an internal propagator. Such atoms cancel in the final sum so that only two atoms
remain and contain the information necessary to obtain the S-matrix at the pole position.
The problem of evaluating all the Feynman diagrams at their threshold singularity reduces
therefore to a decomposition problem, in which the only relevant thing is to understand how
the loop needs to be cut. Then, without evaluating every single atom, we know which ones
cancel in the sum and we reproduce the final result by evaluating only those that survive.

We conclude the section by pointing out that, as noted in [37], in some degenerate cases
B and B′ may be parallel. In these cases, the area ∆BB′ of the triangle associated with
the two aligned vectors is equal to zero and diagram (2) (proportional to ∆BB′) has a null
residue at the second order singularity. These are situations in which the atoms coloured
blue in figure 8 are null and diagram (2) can simply be omitted. A similar situation occurs
when C and C ′ are parallel: in this case, it is diagram (3) to be zero and the atoms coloured
red are separately null. This observation confirms that the atomic decomposition shown in
figure 8 is general, and also includes such degenerate situations. It is also worth noting that
even when atoms coming from non-planar graphs are non-null, they are completely cancelled
in the final sum. This turns out also to be true for the 3rd-order pole networks considered
in the next section; whether it generalises to higher-order networks is at present unknown.

3It can be checked that, given a point inside a parallelogram and its corresponding subdivision into four
triangles, the sum of the areas of the two triangles on the opposite sides of the point is always equal to half
the area of the whole parallelogram.
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pc = pa + pb

B′ 

A′ 

C′ 

Figure 9. Triangle diagram (on the left) and its on-shell representation (on the right).

4 Third-order poles

We now turn to the origin of third-order poles in perturbation theory. We restrict our
analysis to the s-channel since poles in the t-channel can be obtained by sending θ → iπ − θ

through crossing symmetry. Therefore, as shown in figure 1, we consider a general S-matrix
containing the following product of building blocks: {x − 1}2{x + 1}. In this case, the
Laurent expansion of the bootstrapped S-matrix around the pole θ = iθ0 = iπx

h , at the
leading order in β, is

S
(l)
ab (θ) = 1 + i

(
β2

2h

)
1

(θ − iθ0)
+
(

β2

2h

)2 1
(θ − iθ0)2 + i

(
β2

2h

)3 1
(θ − iθ0)3 , (4.1)

where the relation above is obtained by substituting N = 1 and ν = i in (1.9). In this
section we will reproduce the different terms of (4.1) using perturbation theory. The identity
is of course the non-interacting part of the S-matrix while the contribution i

(
β2

2h

)
1

(θ−iθ0)
comes from a tree-level diagram in which an intermediate bound state is propagating in the
direct channel. Since a detailed study of tree-level scattering has already been performed
in [7], we focus here only on the last two contributions in (4.1), having poles of order two
and three respectively.

4.1 Vertex corrections contributing to third-order singularities

Before moving on to the study of the S-matrix we focus on possible singular vertex corrections.
These corrections are due to diagrams of the form shown in figure 9, when there exists
a value of the loop integration variables (l0, l1) at which all the internal propagators are
on-shell simultaneously. We focus first on the problem of determining the sign of the
product of the 3-point couplings appearing in the diagram. Let us consider the following
inelastic process

a + b → A′ + B̄′. (4.2)

The process is well reproduced on the r.h.s. of figure 9, where pc and C ′ correspond to
a copy of particles propagating in the direct and crossed channels in a pair of tree-level
Feynman diagrams contributing to the process (4.2). Since the two channels are connected
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by a flip of type III, according to the conventions used in [7], we know that the product of
the couplings entering the two different channels changes sign after the flip. We have

σB′aC̄′σC′bĀ′ = −σabc̄σĀ′cB′ .

Multiplying both the right and the left hand side part of the expression above by σA′c̄B̄′ =
σ∗

Ā′cB′ we obtain
σB′aC̄′σC′bĀ′σA′c̄B̄′ = −σabc̄. (4.3)

This universal formula, already noticed in [14], connects the product of the signs entering a
singular vertex correction to the sign of the tree-level vertex.

Now we derive the pole residue at (pa + pb)2 = m2
c ≡ s0. Referring to figure 9 we

parametrise the internal loop momenta in the following way

(A′ + l)2 − m2
A′ + iϵ = 2A′ · l + l2 + iϵ

(B′ + l)2 − m2
B′ + iϵ = 2B′ · l + l2 + iϵ

(C ′ + l)2 − m2
C′ + iϵ = dC ′2

ds

∣∣∣
A′,B′

(s − s0) + 2C ′ · l + l2 + iϵ

(4.4)

where A′ and B′ are on-shell at l = (0, 0). Using formula (2.8) we obtain

I△′ = 1
s − s0

∫
d2 l̃

(2π)2
1

2A′ · l̃ + iϵ

1
2B′ · l̃ + iϵ

1
dC′2

ds

∣∣∣
A′,B′

+2C ′ · l̃ + iϵ
. (4.5)

We adopt the usual choice of integration variables

u = 2A′ · l̃, v = 2B′ · l̃. (4.6)

The relation in (2.14) allows to express C ′ as a negative linear combination of A′ and B′

leading to the following expression for the integral

I△′ = 1
s−s0

1
(2π)28i∆A′B′

∫
dudv

1
u+iϵ

1
v+iϵ

1
dC′2

ds

∣∣∣
A′,B′

−∆C′B′
∆A′B′

u−∆C′A′
∆A′B′

v+iϵ
. (4.7)

As for the box, the integral can be easily computed by closing both the u and v contours in
the lower half plane. Using Cauchy’s theorem the result is

I△′ = i

8∆A′B′

1
dC′2

ds

∣∣∣
A′,B′

1
s − s0

= i

8
∆ab

∆B′C′∆A′C′

1
s − s0

. (4.8)

The derivative of C ′2 respect to s has been taken keeping the lengths of A′ and B′ fixed at
their mass-shell values. The last equality in (4.8) can be checked by using relation (2.12).
Multiplying (4.8) by the extra vertex and propagator factors, as written in (2.9), we obtain

D△′ = i

8
∆ab∆A′B′

s − s0

( 4β√
h

)3
σA′c̄B̄′σB′aC̄′σC′bĀ′ ∼ −2

(
β√
h

)3
σabc̄

∆A′B′

θ − iθ0
(4.9)

where in the second equality we used (4.3) and we wrote s − s0 in terms of θ, the difference
between the rapidities of the a- and b-particles.
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Figure 10. Three types of vertex corrections contributing to a third-order pole.

In all the cases analysed we find exactly three vertex corrections entering Feynman
diagrams contributing to third-order poles. This fact, already noted in [14], still requires an
explanation in terms of root system properties. The three different vertex corrections are
shown in figure 10 following an increasing order with respect to the angle formed between pa

and the internal propagator C ′, C and C ′′. Their constituents always satisfy the following
universal relations [14]

∆B′C′ +∆BC +∆B′′C′′ = ∆ab

∆A′C′ +∆AC +∆A′′C′′ = ∆ab

∆A′B′ +∆AB +∆A′′B′′ = ∆ab.

(4.10)

A general proof of these identities is also still missing, though we expect they follow from
universal properties of the Coxeter geometry associated with root systems. Summing the
three vertex corrections and combining (4.9) with the third line in (4.10) we obtain a
universal formula for the leading order singularity of the vertex contributing to a third-order
pole in the S-matrix. It is given by

D△′ + D△ + D△′′ = −2
(

β√
h

)3
σabc̄

∆ab

θ − iθ0
= −β2

2h

Cabc̄

θ − iθ0
. (4.11)

In the next sections, we will use the value of the vertex correction to compute the leading
order expansion of the S-matrix around the pole position.

4.2 One-loop contributions

We compute one loop contributions first; these contributions are responsible for the coefficient
of order (θ − iθ0)−2 in (4.1). To each of the vertex corrections D△′ , D△ and D△′′ three
singular Feynman diagrams are associated, connected by flipping internal propagators.
In figure 11 we show the three diagrams associated with the vertex correction D△′ . We
start considering a one-particle reducible Feynman diagram having on the l.h.s. a vertex
correction of type D△′ , and in which a bound state is propagating on its on-shell value.
Both D△′ and the propagating bound state carries a pole of order one so that their product
generates an order two singularity, matching the order 1

(θ−θ0)2 we intend to analyse. Among
the three different diagrams, two cancel in the sum (the blue ones in figure 11). Indeed when
we compute the loop integral they split into tree-level graphs two of which differ by flipping
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Figure 11. Part of the network of one-loop on-shell diagrams contributing to the second order pole
in (4.1). In the second line cut diagrams are shown. Diagrams coloured blue cancel in the sum since
they differ by a pair of flipped 4-point tree-level graphs.

one internal propagator. The sum of the three graphs in figure 11 is therefore simply given
by a single one-particle reducible graph presenting in order a 3-point vertex (−iCabc̄), an
on-shell bound state propagator i

s−s0
and the one loop vertex correction D△′ . Since we

need to repeat the same analysis for Feynman diagrams obtained by flipping one-particle
reducible graphs containing D△ and D△′′ the final result for the second-order S-matrix
term, after adding the flux factor (2.11), is given by

1
8i∆ab

(−iCabc̄)
i

s − s0
(D△′ + D△ + D△′′).

If we use (4.11) and we express the pole in terms of the rapidity difference we obtain

1
32∆2

ab

β2

2h

|Cabc̄|2

(θ − iθ0)2 =
(

β2

2h

)2 1
(θ − iθ0)2 . (4.12)

This exactly matches the bootstrapped formula (4.1) at order (θ − iθ0)−2.

4.3 Two-loop contributions

The 3rd-order singularity in (4.1) comes from a two-loop computation. The complete
network of Feynman diagrams, together with their values, contributing to such a result was
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Figure 12. Network of Feynman diagrams contributing to the 3rd-order pole in (4.1).

found in [14]. However, in that paper, the authors limited themselves to giving the final
answer and did not identify the simplification between diagrams composing the network.
In this section, we show how the result is generated by summing suitable atoms located
at the boundary of the network while the internal part simplifies. Using the sign rules
for 3-point couplings given in [7] we also explain how to obtain the correct sign of each
Feynman diagram composing the network.
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The full network of singular diagrams is shown in figure 12, taken from [37]. The
network has the topology of a disk. Indeed after six vertical steps along the first column,
the diagrams repeat periodically. The first two columns, together with the three isolated
diagrams (−2), (−1) and (0) are planar. Diagrams (13), (14), . . . , (23) in the centre of the
disk are instead non-planar and gaps are added in their tilings to represent propagators that
cross. Moreover, graphs in the network connected by a line are related by a flipping move.
Again following the convention of [7, 14], the first and second column are connected by a
flip of type I, while in all the other situations (both moving from the second to the third
column, from the third to the fourth column and from the fourth column to the central
diagram (23)) the flip entering in play is of type II.

Among the different graphs, the one-particle reducible ones are particularly simple to
compute. These diagrams are obtained by gluing vertex corrections on the opposite sides
of an on-shell bound state propagator. They are reported in the first column, containing
diagrams (1) . . . (6), and in the isolated sector of the network, containing diagrams (−2),
(−1) and (0). In total there are 9 one-particle reducible diagrams of this type, 3× 3 since
there are three types of vertex corrections (those reported in figure 10). Summing all the
one-particle reducible two-loop diagrams and multiplying by the flux factor (2.11), on the
pole we obtain

1
8i∆ab

(D△′+D△+D△′′) i

s−s0
(D△′+D△+D△′′)=−i

(
β2

2h

)3 1
(θ−iθ0)3 , (4.13)

where in the last equality we used relations (2.10), (4.11) together with the area rule (1.3).
The result in (4.13) is universal and does not depend on the simply-laced Toda model
studied. However, as remarked in [14], it carries a minus sign compared to the third-order
pole in (4.1). We will show now how the remaining diagrams (7), (8), . . . , (23) conspire to
reproduce exactly 2× i

(
β2

2h

)3 1
(θ−iθ0)3 in such a way that summing this new term to (4.13)

we exactly obtain the expected 3rd-order singularity of (4.1).
The contributions necessary to restore the bootstrapped result come from particular

decompositions of diagrams (7), (8), . . . , (12) into atoms. In the following, we first explain
the required cuts, and then show why these cuts are the correct ones. The needed cuts are
obtained by removing respectively the top left and top right vertices or the bottom left and
bottom right vertices from diagrams (7), (8), . . . , (12). The important thing is that once we
choose what vertices to remove, those sitting at the top or the bottom of the graph, we
need to maintain the same choice for all the diagrams in the second column of the network
in figure 12. We decide to locate the cuts at the top of the diagrams, as shown in figure 13
where graph number (8) is considered. The cut is associated with a particular residue that
is picked up when we compute the integral and its result, omitting the additional factors
in (2.9), is

I(8) ⇝
i

8∆BC

i

8∆A′′C′′

1
dA2

ds

1
dB′′2

ds

1
dC′2

ds

1
(s − s0)3

= i

8∆BC

i

8∆A′′C′′

∆ab

∆AC

∆ab

∆B′′C′′

(−∆ab

∆BA′′

) 1
(s − s0)3 .

(4.14)
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Figure 13. Example of double box cut contributing to the final result.

A curly arrow has been used in (4.14) instead of an equality to indicate that we are
neglecting atoms arising from the computation of I(8) that, as will be shown below, cancel
after summing over all Feynman diagrams of the network. The two factors 1

8∆BC
and 1

8∆A′′C′′
,

come from the Jacobians of the choice of variables adopted to perform the integration: in
our case they are 2B · l = ul and 2C · l = vl for the box on the l.h.s. part of the diagram
and 2A′′ · k = uk and 2C ′′ · k = vk for the box on the r.h.s.

Then there are the propagators that have not been cut, and close to the pole are given
by 1

A2−m2
A

∼ 1
dA2
ds

(s−s0)
, 1

B′′2−m2
B′′

∼ 1
dB′′2

ds
(s−s0)

, 1
C′2−m2

C′
∼ 1

dC′2
ds

(s−s0)
. The derivatives in

the first line of (4.14) are performed keeping fixed the lengths of the momenta associated
to the cut propagators and their values are explicitly written on the second line (4.14). At
this point we still need to multiply the expression in (4.14) by the remaining quantities
in (2.9), and express the pole in terms of the rapidity. To this end we start by computing
the product of the signs σ entering the 3-point vertices of diagrams (7)− (12).

The flip used to move from the double-vertex graphs (1), . . . , (6) in the first column to
the double-box diagrams (7)− (12) in the second column of figure 12 is of type I and, as
discussed in [7], does not change the sign of the product of the 3-point couplings. Therefore,
if we use relation (4.3), the product of the signs entering the different graphs in the second
column of the network is always given by∏

σijk = (−σabc̄)× (−σāb̄c) = 1. (4.15)

Using this fact and multiplying the expression (4.14) by the remaining terms in (2.9) the
cut of diagram (8) can be written in terms of the rapidity difference as

D(8) ⇝ −
(

β√
h

)6 ∆AB′′

(θ − iθ0)3 . (4.16)

The result for this atom is proportional to the area ∆AB′′ of the triangle in the central
bottom part of the graph. At this point, we note that diagram (8) admits an equivalent
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diagram, (11), which is diagram (8) rotated by π. If we decide to cut such a diagram in the
same way, i.e. we remove the top left and the top right vertices, the associated atom is

D(11) ⇝ −
(

β√
h

)6 ∆BA′′

(θ − iθ0)3 . (4.17)

Noting that ∆AB′′ +∆BA′′ = ∆AB +∆A′′B′′ the sum of (4.16) and (4.17) is

D(8) + D(11) ⇝ −
(

β√
h

)6 1
(θ − iθ0)3 (∆AB +∆A′′B′′).

The same analysis can be repeated for the copy of diagrams (7) and (10), which again
are related by a rotation by π. In this case, we obtain that the sum is proportional to
∆A′B′ +∆A′′B′′ . Finally, summing the results obtained by cutting the 3-point vertices on
the top of diagrams (9) and (12) generates ∆AB +∆A′B′ . Therefore, the sum of the six
atoms obtained by cutting the diagrams in the second column of the network in the way
just explained returns

1
8i∆ab

12∑
n=7

D(n)⇝ i

(
β√
2h

)6 2(∆AB+∆A′B′+∆A′′B′′)
∆ab

1
(θ−iθ0)3 =2i

(
β√
2h

)6 1
(θ−iθ0)3 .

(4.18)
In the expression above we divided by the flux factor (2.11) and we used the third identity
in (4.10). Both formulas (4.13) and (4.18) are universal: they do not depend by the particular
simply-laced Toda theory considered and their sum returns the correct bootstrapped result.
Two questions arise at this point. First of all, we did not explain why the atoms that we
considered for the double-box integrals reproduce the right answer. Secondly, we still need
to explain why we are not considering the non-planar graphs in the centre of the network
in figure 12. In the remaining part of this section, we will answer these questions.

Let us consider the computation of diagram (8) in more detail. Looking at figure 13 we
see that such a Feynman diagram is composed of two boxes: one on the r.h.s. containing
momenta C̄ ′, B′′, C ′′ and A′′ and one on the l.h.s. containing momenta C, A, C̄ ′ and B. In
the on-shell diagram in figure 13 we have reversed the direction of the C ′-vector compared
to the vertex correction in figure 10 to keep the same flow of the propagators in each of the
two one-loop boxes. This is consistent if at the same time we change the particle label C ′ to
its antiparticle C̄ ′ as we did in figure 13. In other words, we can see the C ′-propagator as a
particle propagating from left to right, or as an antiparticle propagating from right to left.
We use this second convention. Each momentum carries then a loop integration variable,
say l for the momenta flowing in the l.h.s. box and k for the momenta flowing in the r.h.s.
one, with C̄ ′ containing both l and k since it belongs to both the boxes. If all the l.h.s.
momenta are translated by l with propagators 1

(C+l)2−m2
C+iϵ

, 1
(A+l)2−m2

A+iϵ
, 1

(B+l)2−m2
B+iϵ

and similarly the r.h.s. propagators are translated by k, then C̄ ′ is translated by l + k.
The double-box integral can then be performed by computing the single-box integrals one
at a time, first the one on the r.h.s. and then the one on the l.h.s. of the graph. If we
integrate the loop variable k first, we note that both B′′ and C̄ ′ can be written as negative
linear combinations of A′′ and C ′′, so the box on the r.h.s. can be broken by cutting the
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Figure 14. Atoms contributing to the third-order pole coefficient of the S-matrix (coloured black)
and additional terms (having different colours) which cancel against the internal part of the network.
This internal part is depicted in figure 15 below.

propagators associated to the particles A′′ and C ′′ which generate a single term as explained
in the previous section. Similarly, on the l.h.s. box, we see that the two vectors with respect
to which all the others are negative linear combinations are A and C. Indeed both C̄ ′ and
B can be written as linear combinations of them with negative coefficients. Integrating over
l we can write the sum over residues of the l.h.s. box equivalently as a single cut of (A, C)
or as a sum of two cuts (B, C) and (B, C ′) exactly as we did in expression (2.32). In this
case, we obtain

D(8) = D(8)(A, C, A′′, C ′′) = D(8)(B, C, A′′, C ′′) + D(8)(C ′, C, A′′, C ′′) . (4.19)
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In the first equality, we have written the complete third-order singularity of diagram (8).
It corresponds to a single atom in which the propagators A, C, A′′ and C ′′ have been cut.
However, as in the one-loop case, it is possible to write the result as a sum over different
atoms, corresponding to different choices of residues when we use Cauchy’s theorem. In this
respect D(8)(B, C, A′′, C ′′) returns the desired atom contributing to the bootstrapped result
while the remaining atom D(8)(C ′, C, A′′, C ′′) is a piece that will be cancelled by the bulk
contributions of the network. Figure 14 shows all the atoms associated with the boundary
of the network; the atom D(8)(C ′, C, A′′, C ′′) just mentioned corresponds to the green cut
box on the figure. The black pieces are the atoms contributing to the final result expected
from the bootstrapped S-matrix, while the coloured atoms turn out to cancel with atoms
coming from the interior (or bulk) of the network. This cancellation mechanism is shown in
figure 15. Apart from diagram (7), which only contributes to the boundary and generates a
zero bulk contribution, all the other diagrams (8), . . . , (12) are split into multiple pieces,
some contributing to the bootstrapped answer, the others cancelling diagrams (13), . . . , (23)
in the central part of the network. The cancellation mechanism happens in different sectors,
which we depicted with different colours in figure 15. There are in total nine pairs of cut
diagrams composed of graphs differing by a single flipped four-point tree-level diagram. If
we look for example at the green atoms associated with diagrams (8) and (13) in figure 15
we see they are equivalent but for a singular 4-point tree-level graph that is flipped moving
from (8) to (13). Since the sum of such a pair of 4-point tree-level diagrams is zero, the sum
of the two green atoms is null. In addition to these pairs of cancelling atoms, there are six
atoms (coloured blue) coming from diagrams (10), (15), (16), (20), (21), (23) which cancel
in a way not seen before: they are equal with respect to their 3- and 4-point tree-level
diagrams but contain different 5-point tree-level diagrams connected by flipping propagators.
All these 5-point diagrams contribute to the singular part of a 5-point scattering process at
the tree level and therefore they have to sum to zero.

To explain this last point in more detail we follow the discussion in appendix C of [38]
which shows how diagrams contributing to five-point processes can be arranged on the
vertices of certain planar polygons, as depicted in figure 16, where each side of the polygon
corresponds to the flip of a propagator. As explained in [38], for a given tree-level 5-point
diagram we can replace the product of its 3-point couplings by

3∏
j=1

C
(3)
j = λ(a1 − a2) (4.20)

(j is a label for the three couplings in the 5-point diagram) and its two propagators by

P1 = 1
(s − s0)(x + a1)

, P2 = 1
(s − s0)(x + a2)

. (4.21)

Here the parameter s = (pa + pb)2 is the usual Mandelstam variable associated with the
momenta of the external particles entering the two-loop Landau diagram and each s − s0 is
proportional to the displacement of the square of a momentum flowing in a propagator of
an associated tree-level diagram from its on-shell value. The quantities (x+a1) and (x+a2)
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Figure 15. Cancellation between atoms in centre of the network. Atoms of the same colour differ
by tree-level diagrams contributing to inelastic processes and sum to zero due to the tree-level
integrability of the model.

correspond to the derivatives of the momenta squared of the propagators with respect to s,
as shown for example in (2.17). If we label this diagram by D(I) then we can write

D(I) = λ

(s − s0)2
a1 − a2

(x + a1)(x + a2)
. (4.22)

So far nothing special happened: we just decided to parameterise the product of the
couplings and the derivatives of the squared of the propagator momenta in terms of a1, a2,
λ and x. Once this parameterization is chosen for D(I), a diagram D(II) connected to D(I)

by flipping the propagator P1 (and sharing with D(I) the common propagator P2) will be
given by

D(II) = λ

(s − s0)2
a2 − a3

(x + a2)(x + a3)
. (4.23)
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C′ ′ C
C′ 

pa pb

C′ ′ 
C

C′ 

pa pb

C′ ′ 
CC′ 

pa pb

C′ C
C′ ′ 

pa pb

C′ 

C

C′ ′ 

pa pb

C′ 
C′ ′ 

pa pb

C

C′ ′ 
C

C′ 

pa pb

C′ ′ C C′ 

pa pb

C′ ′ C′ 
C

pbpa

C′ ′ CC′ 

pa pb

C′ CC′ ′ 
pa pb

C′ C′ ′ C

pbpa

Figure 16. The network of simultaneously singular Feynman diagrams contributing to a tree-level
5-point process (on the left) and their duals (on the right). We use different colours to distinguish
different propagators. For the case at hand, pa and pb should be identified with the external momenta
of the two-loop Landau diagrams under discussion, while C, C ′ and C ′′ are the momenta of the
internal loop propagators after the atomic decomposition is realised.

The reason for the structure of D(II) is the following: in the expression above we parame-
terised the new propagator after the flip by

P3 = 1
(s − s0)(x + a3)

. (4.24)

With this parameterization, the product of the 3-point couplings entering diagram D(II)

has to be equal to λ(a2 − a3). Indeed, if we consider the limit in which P2 diverges more
quickly than P1 and P3 (i.e. for x ∼ −a2) then the residue of D(I) + D(II) at x = a2 has to
be null: this residue is indeed proportional to the sum of two flipped diagrams contributing
to the same two-to-two tree-level inelastic process. Repeating the same argument for all
the diagrams composing the hexagon in figure 16 we obtain that the tree-level 5-point
amplitude at the leading-order singularity is given by

M
(0)
5 = λ

(s − s0)2

(
a1 − a2

(x + a1)(x + a2)
+ a2 − a3

(x + a2)(x + a3)
+ · · ·+ a6 − a1

(x + a6)(x + a1)

)
= λ

(s − s0)2

(
− 1

x + a1
+ 1

x + a2
− 1

x + a2
+ 1

x + a3
− · · · − 1

x + a6
+ 1

x + a1

)
= 0 .

(4.25)

Diagrams that are connected by a flipping move share a common propagator and the sum
of all diagrams vanishes. We remark that in the sum of the blue atoms in the network in
figure 15 x is a fixed number set by the direction we follow when we approach the double
pole generated by the five-point diagrams. However, the sum in (4.25) is null no matter the
value of x.

Even though the residue obtained through the Landau analysis is expected from the
bootstrap, the way that it comes about is striking. The pole structure of the bootstrapped S-
matrix emerges in perturbation theory from an underlying simplification which is explained
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using tree-level properties of the model. A subset of the atoms for the original Feynman
diagrams yields the expected answer, through contributions entirely located at the boundary
of the network. However, how the diagrams need to be cut into atoms to observe such a
simplification is still an empirical fact, not always evident from the on-shell structure of the
Feynman diagrams. The most difficult situations occur when we try to split the diagram
into more than two atoms, as happens for diagrams (10), (16) and (21). In the computation,
a fundamental role is played by the fusing angles associated with the on-shell geometry
of the Feynman diagrams that determine which cuts are allowed and which are forbidden.
These angles are determined by the root system associated with the theory and a deeper
understanding of our observations is likely to be found by using some universal properties
of this underlying Coxeter geometry.

5 Some universal features of higher-order singularities

In this section, we present general features of higher-order singularities starting by reviewing
some empirical properties of the geometry of the tiled parallelograms, as first discovered
in [14]. We show the relevance of these properties in the computation of certain Laurent
coefficients of the S-matrix expansion, extending the discussion started in [1] also to
odd-order singularities.

In the region of purely imaginary rapidities, we can always associate to a n-point
scattering process a dual n-gon having as sides the masses of the interacting particles.
Following [14], we identify the depth of such a polygon with the number of elementary
triangles necessary to tile it completely. By elementary triangles we mean triangles which
cannot be tiled into smaller constituents, so in particular they have unit depth. For example,
the parallelogram corresponding to the second-order pole in figure 6 has a depth equal to 4
since it can be tiled by four elementary triangles. Similarly, the fusing triangle in figure 10
has a depth 3 since it can be tiled in three smaller triangles having unit depth. From this
definition it is clear that the depth is an additive quantity and any figure composed by N
constituents has a depth equal to

d =
N∑

i=1
di (5.1)

where di is the depth of each constituent. This is the same as the definition introduced
in [14]. If all the constituents we are looking at are elementary triangles then all of them
have unit depth and d = N .

Under some circumstances, it may be interesting to look not at the complete tilings
of a polygon but only at some of its partial tilings. An example is provided by figure 11
where to compute the second-order coefficient of the Laurent expansion of the S-matrix
around a third-order singularity we had to tile only partially the parallelogram, contrarily to
what happens in the network in figure 12 where the full tiles need to be taken into account.
This example easily generalises as follows: we say that a tiling of a polygon of depth d by
d̃ < d triangles, where some of these triangles must therefore be non-elementary, has partial
depth equal to d̃. We use this concept to explain the different coefficients ap of the Laurent
expansion (1.7). A parallelogram of depth d = 2P is associated with any pole of order P of
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the S-matrix. Then the coefficient aP in (1.7) is generated by summing Feynman diagrams
corresponding to complete tilings of the parallelogram. All the lower order coefficients ap

with p < P are instead obtained by summing over tilings of partial depth 2p. This is exactly
what we did to obtain the coefficients a2 and a3 of the expansion around the third-order
pole: we summed over tilings of partial depth 4, and depth 6, respectively (see figures 11
and 12). This is not surprising if we think that we are summing over Feynman diagrams
with only 3-point vertices.4 If we label the number of vertices by V , the number of loops by
L and the number of propagators by I the topology of such diagrams imposes the relation
V = 2I − 4L which is exactly equal to 2p, two times the order of the pole as shown in (2.8).
Since the number of vertices is exactly equal to the number of constituents composing the
tiling, and therefore to the partial (total) depth considered, this agrees with our previous
claim that the partial (total) depths of the tilings contributing to the different coefficients
ap are equal to 2p.

We now distinguish two different situations depending on whether the order P of the
maximal singular contribution is even or odd.

Even-order poles. If the maximal singular contribution at the pole is even, say P = 2N

(i.e. the bootstrapped S-matrix contains two bricks of the form {x − 1}N{x + 1}N ), then
the parallelogram corresponding to the process has a depth 4N and it turns out that there
exist N copies of the network in figure 6 in which the internal constituents can be further
tiled. In [1] this observation allowed for the computation of the coefficients a2 and b1 of the
S-matrix expansion. We will focus here only on the coefficient a2. The derivation is the
following. Each of the N copies of the network is composed of tilings of partial depth 4 and
can be computed separately. It carries a contribution (3.7) so that the result given by the
sum over all the N copies is simply N times the result of a single network:

−32iN

(
β√
h

)4 ∆3
ab

(s − s0)2 . (5.2)

After performing the substitution (2.10) and multiplying by (2.11) we obtain

N

(
β2

2h

)2 1
(θ − iθ0)2 . (5.3)

This result is in agreement with the bootstrapped S-matrix (1.9) where the a2 coefficient of
the expansion around the 2N th-order pole is the binomial factor

(N
1
)
.

As an example in figure 17 we show the two networks contributing to the second-order
coefficient around a 4th-order pole. In the image, we see that the two networks at this
depth level are disjoint and are not connected by any flip. Each one contributes separately
to the final result. This is no longer the case if we start searching for tilings with a depth
higher than 4, which in this case can be 6 or 8. The latter case corresponds to the search
for Feynman diagrams contributing to the a4 coefficient at the pole. The number of such
diagrams is huge. The graphs containing two vertices of depth 3 in figure 17 contribute

4Diagrams with higher-point vertices can contribute to the sub-leading coefficients bp in (1.7) but they
never contribute to the coefficients ap.
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: m1

: m2

: m3

: m4

: m5

: m6

: m7

: m8

3
3

4

3
3

3
3

3
3

3

3

3
3

4

Figure 17. Pair of networks contributing to the a2 coefficient (see (1.7)) of the Laurent expansion
of the S-matrix around a 4th-order pole. The example has been taken from the e

(1)
8 affine Toda

model and its masses are reported with different colours following the order m1 < m2 < · · · < m8.
Inside the different tiles (apart from those with unit depth) their depth is reported.

with 9 Feynman diagrams (3× 3 since each vertex of depth 3 counts 3 possible corrections
of the form in figure 10) while the graphs containing a depth-four parallelogram contribute
with 4 diagrams (those coming from the second-order pole network). In total there are 62
diagrams contributing to the a4 coefficient to which we should add all the graphs obtained
by them through the flipping move. The fact that such a big number of diagrams should
reproduce the simple result that we observe in the bootstrapped S-matrix suggests that
probably, as it happens for third-order poles, the computation is reproduced by only a
small number of cuts. It would be very interesting to investigate the space of Feynman
diagrams contributing to such a simple result. On the other hand, there exist also Feynman
diagrams with partial depth equal to six. These are two-loop diagrams contributing to the
a3 coefficient of the Laurent expansion around the pole. We expect a zero result for this
number. Indeed it is evident from the expression (1.9) that all the odd-order coefficients of
the expansion around a generic even-order singularity are zero. Once again we do not have a
motivation for why this happens, but it is probably due to an underlying simplification that
can be obtained by cutting the different diagrams inside a network. A universal explanation,
based on diagrammatic computations, of the absence of all the odd-order terms in the
expansion (1.9) around a generic even-order pole would be very interesting.

Odd-order poles. If P in (1.7) is odd, then we have an odd-order singularity in the
S-matrix. In this case, the parallelogram associated with the diagonal process can be split
into two triangles each one of depth P . In the known examples coming from affine Toda
field theories, P can be any odd number from 1 up to and including 11.

Based on empirical observations we note that each triangle of depth P = 2N + 1 can
be tiled by three subtriangles in 3N ways, as was remarked in [14]. We further note that
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these 3N tilings can be grouped into N triplets

(∆(1),∆(2),∆(3)), . . . , (∆(3N−2),∆(3N−1),∆(3N)) ,

such that the relations in (4.10) apply separately to each of these N triplets. If we associate
the labels ∆a, ∆b and ∆c to the triangles constructed over the sides pa, pb and pc respectively,
then we have

3∑
i=1

∆(3n−3+i)
a =

3∑
i=1

∆(3n−3+i)
b =

3∑
i=1

∆(3n−3+i)
c = ∆ab (5.4)

for each triplet n = 1, . . . , N . At the moment we do not have a general way to specify these
triplets apart from the observation that they can be chosen so as to satisfy (5.4). This
observation is stronger than the one highlighted in [14], where it was noted that the sum
over all the triangles composing the 3N different tilings respects

3N∑
i=1

∆(i)
a =

3N∑
i=1

∆(i)
b =

3N∑
i=1

∆(i)
c = N∆ab.

The sign rule (4.3) is applied to each one of the 3N different tilings. Labelling by
(σ(i)

a , σ
(i)
b , σ

(i)
c ) the three phases entering the 3-point couplings constructed over the sides a,

b and c in the i-th tiling, with i = 1, . . . , 3N , we have for each i

σ(i)
a σ

(i)
b σ(i)

c = −σabc̄. (5.5)

At this point, it is easy to explain the origin of the coefficient a2 =
(N

1
)

in the S-matrix
expansion (1.9). It comes by performing N times the computation reproduced in section 4.2,
one for each triplet of vertex corrections; the final result is therefore given by multiplying
the result in (4.12) by N .

As for even-order singularities, to study the higher-order coefficients of the Laurent
expansion a3, a4, . . . we need to keep into account depths of higher order. The N triplets of
vertex corrections, that are disconnected at one loop, by considering nested tilings start
to become connected by flipping internal propagators. We show an example of vertex
corrections contributing to a 5th-order pole in the next subsection.

We conclude this discussion of the properties of higher-order poles by noting that
the relation (5.5) can be iterated, a fact that was already noted in [14]. We have already
explained that a triangle of total depth 2N + 1 can be tiled in three subtriangles exactly
in 3N ways. Then the triangles composing each one of these 3N tilings can be further
tiled in triangles and so on. By looking to more and more nested tilings we end up with a
configuration composed of 2N + 1 pieces. By iterating relation (5.5), the product of all the
phases for each of these maximal depth nested tilings is given by

2N+1∏
k=1

σ
(j)
k = (−1)N σabc̄ (5.6)

where j = 1, . . . , M labels the different nested tilings. As remarked in [14], the number M

of such tilings (which are themselves a subset of all possible tilings) grows rapidly with N .
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5.1 Two-loop vertex corrections and 5th-order poles

We compute the maximal leading order singularity of a 3-point vertex having depth 5, and
contributing therefore to a 5th-order pole in the S-matrix. Also in this case we show that
the result is universal and does not depend on the affine Toda theory considered.

The triangle in question can be divided into three sub-triangles in 6 different ways.
We identify two triplets of tilings at one loop, [(1, •), (2, •), (3, •)] and [(4, •), (5, •), (6, •)],
satisfying separately relation (5.4) (with N = 2). In this case, we have

∆(1,•)
c +∆(2,•)

c +∆(3,•)
c = ∆ab and ∆(4,•)

c +∆(5,•)
c +∆(6,•)

c = ∆ab. (5.7)

We used the subscript c to indicate that we are summing, within the same triplet, all
the triangles constructed on the side c. The same relation is valid summing the triangles
constructed on the a- and b-side as we pointed out in (5.4).

Each of these six different tilings is composed of two triangles having a depth of 1 and
one triangle having a depth of 3; the latter can therefore be tiled in three different ways.
The total depth, given by summing all the elementary constituents of a single tiling, is
then 5. To take into account such a nested level of tiles we use a second index, that is
absent in (5.7) and substituted with a bullet. Since for a given one-loop tiling we identify
3 additional nested tilings this second index takes values in {1, 2, 3}. Then the pair of
numbers (j, k), running from 1 to 6 and 1 to 3 respectively, label the complete tiling. For
example, the pair (1, 2) indicates the tiling number one at the depth level 3, and (among the
three different possibilities to further divide one of its constituents) the sub-tiling number
two at the depth level 5. We did not identify a preferred order to arrange these tilings; we
follow the enumeration shown in figure 18. Three non-planar vertex corrections (7, 1), (7, 2)
and (7, 3) are also present, but they completely cancel with certain atoms generated by
cutting the planar diagrams, as shown in figure 18. Apart from these non-planar diagrams,
the tilings are arranged in two blocks of 9 diagrams each. The six different rows label the
main tiling, while the three columns provide a label for the nested tilings. We then use the
convention of labelling by ∆(j,•)

c the triangle constructed over the side c in the one-loop
configuration j while we label by ∆(j,k)

c the triangle constructed over the side c in the nested
tiling (j, k). To give an example, ∆(3,•)

c corresponds to the triangle ∆ce′′m′′ reported in any
of the configurations (3, 1), (3, 2) and (3, 3) in figure 18 while ∆(3,1)

c corresponds to ∆cd′′o

that is one of the components of the configuration (3, 1).
The two blocks of diagrams

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

and
{(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 3)}

in figure 18 are connected by flipping internal propagators. Starting from a generic diagram
of the first block we can generate a diagram of the second block acting with a finite number
of flips. In figure 18 we identified with the same capital letters diagrams connected by flips.
Sometimes a single type I flip is enough to connect the two diagrams in the different blocks;
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(1, 1) : A [i, h, f, e]
∆dgh∆cdf

∆ade

a

b
c

d

e

f

g

hi

(1, 2) : B [n, m, f, e] + [n, m, f, l]
∆dlm∆cdf

∆ade

a

b
c

d

e
f

l

m
n

(1, 3) : C [p, q, f, e] + [p, q, f, o]
∆dop∆cdf

∆ade

a

b
c

d

e

f

o

p
q

(2, 1) : D [o, e′, r, m′]
∆

d′′′ou
∆

cd′′′r
∆

bd′′′m′

a

b
c

d′′′

e′

o

r
m′

u

(2, 2) : E [z′, n, r, m′] + [z′, n, r, t]
∆

d′′′tz′ ∆
cd′′′r

∆
bd′′′m′

a

b
c

d′′′

r
m′

z′

n t

(2, 3) : F [z, k, r, m′] + [z, k, r, h]
∆

d′′′hz
∆

cd′′′r
∆

bd′′′m′

a

b
c

d′′′

r
m′

k
h

z

(3, 1) : G [m′′, v, o, y]

a

b
c

m′′
y d′′

e′′

o

v

(3, 2) : H [e′′, v, w, h]

a

b
c

d′

hm′′

v

e′′

w

(3, 3) : I [e′′, v, x, j] + [n, v, x, j]
∆

jm′′n
∆cjx

∆aj

a

b
ce′′

m′′

n
v j

x

(4, 1) : D [m′, r, o, e′]
∆

d′′ru
∆

cd′′o
∆

ae′d′′

a

b
c

d′′

e′

o

r
m′

u

(4, 2) : G [m′′, v, o, e′] + [m′′, v, o, y]
∆

d′′m′′y
∆

cd′′o
∆

ae′d′′

a

b
c

d′′

e′

o

yv
m′′

(4, 3) : C [p, q, o, e′]
∆

d′′fp
∆

cd′′o
∆

ae′d′′

a

b
c

d′′

e′

o

f

p
q

(5, 1) : A [e, f, i, h]
∆

d′fg
∆

cd′h
∆

bd′i

a

b
c

d′

e

f

g

hi

(5, 2) : H [e′′, v, i, h] + [e′′, v, w, h]
∆

d′e′′w
∆

cd′h
∆

bd′i

a

b
c

d′

hi
v

w

e′′

(5, 3) : F [z, k, i, h]
∆

d′rz
∆

cd′h
∆

bd′i

a

b
c

d′

hi
k r

z

(6, 1) : B [n, m, f, l]

a

b
c

d

z′ f

l

m
n

(6, 2) : E [r, t, z′, n]

a

b
c

z′

m
n

t

r

d′′′

(6, 3) : I [n, z′, x, j]
∆jmv∆cjx

∆aj

a

b
c

z′

m
n

v

j

x

(7, 1) : C [p, q, f, o]

a

b
c

d
e′

f

o

o

f

p
q

(7, 2) : F [z, k, r, h]

a

b
c

d′′′

r
k

h

z

h
i
r

(7, 3) : I [n, v, x, j]

a

b
cz′

m′′

n
v j

x

v
n

Figure 18. Two-loop vertex corrections contributing to a pole of leading order 5 in the S-matrix.
Graphs with the same capital letter (A, B, C, D, E, F, G, H, I) are connected by flipping one diagonal.
Under each graph its atomic decomposition is reported: lists of letters in square brackets indicate
propagators that are cut and represent atoms. Coloured lists correspond to atoms that cancel in the
sum while black lists correspond to the non-cancelling atoms. The values of these non-cancelling
atoms are written in terms of triangle areas omitting a common factor i

(
β√
h

)5 σabc̄

(θ−iθ0)2 .
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examples are the tilings (1, 1) and (5, 1). According to the convention previously explained
the little triangle ∆aih common to both the tilings, can be equivalently labelled by ∆(1,1)

a or
∆(5,•)

a . In some other situations we need two flips of type II to connect the pair of diagrams.
This second case is represented by the pair of graphs (2, 3) and (5, 3). To pass from the
first diagram to the second one we need to pass from an intermediate non-planar diagram
(7, 2) acting with two flips of type II: (2, 3) → (7, 2) → (5, 3).

For each diagram in figure 18 we write its cut decomposition under it, representing with
different colours the cuts that cancel in pairs. The values of the non-cancelling black atoms
are reported under the diagrams omitting a multiplicative factor i

(
β√
h

)5
σabc̄

(θ−iθ0)2 coming by
performing the integration with the additional relation (5.6). It holds that

3∑
i=1

D(1,i) ⇝ i

(
β√
h

)5 σabc̄

(θ − iθ0)2∆
(1,•)
c ,

3∑
i=1

D(2,i) ⇝ i

(
β√
h

)5 σabc̄

(θ − iθ0)2∆
(2,•)
c ,

3∑
i=1

D(4,i) ⇝ i

(
β√
h

)5 σabc̄

(θ − iθ0)2∆
(4,•)
c ,

3∑
i=1

D(5,i) ⇝ i

(
β√
h

)5 σabc̄

(θ − iθ0)2∆
(5,•)
c .

(5.8)

As above, we use curly arrows instead of equalities in the relations in (5.8), since in the
sums we are omitting the contributions of the atoms that cancel between the two sums.

We also notice that

D(3,3)+D(6,3)⇝ i

(
β√
h

)5 σabc̄

(θ−iθ0)2

(
∆jm′′n+∆jmv

∆aj
∆cjx

)
= i

(
β√
h

)5 σabc̄

(θ−iθ0)2∆cjx

= i

(
β√
h

)5 σabc̄

(θ−iθ0)2∆
(3,3)
c

= i

(
β√
h

)5 σabc̄

(θ−iθ0)2∆
(6,3)
c .

(5.9)

The sum of (5.8) and (5.9) is easily performed noting that ∆(4,•)
c = ∆(3,1)

c and ∆(5,•)
c = ∆(3,2)

c ,
so that

(5.8) + (5.9) = i

(
β√
h

)5 σabc̄

(θ − iθ0)2

(
∆(1,•)

c +∆(2,•)
c +∆(3,3)

c +∆(4,•)
c +∆(5,•)

c

)
= i

(
β√
h

)5 σabc̄

(θ − iθ0)2

(
∆(1,•)

c +∆(2,•)
c +∆(3,•)

c

)
= i

(
β√
h

)5 σabc̄

(θ − iθ0)2∆ab,

where in the second equality we used

∆(3,1)
c +∆(3,2)

c +∆(3,3)
c = ∆(3,•)

c .

A similar simplification could have been obtained by using the fact that

∆(6,1)
c +∆(6,2)

c +∆(6,3)
c = ∆(6,•)

c .

In this second case we obtain

(5.8) + (5.9) = ∆(1,•)
c +∆(2,•)

c +∆(6,3)
c +∆(4,•)

c +∆(5,•)
c = ∆(4,•)

c +∆(5,•)
c +∆(6,•)

c = ∆ab.
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The leading order singularity of the vertex contributing to a 5th-order pole in the S-matrix
is therefore given by

6∑
i=1

3∑
j=1

D(i,j) ⇝ i

(
β√
h

)5 σabc̄

(θ − iθ0)2∆ab = i

(
β2

2h

)2
Cabc̄

(θ − iθ0)2 . (5.10)

Unlike the one-loop vertex correction found in (4.11), the residue of (5.10) is purely
imaginary. This implies that the one-particle reducible part of the S-matrix on the 5th-order
pole acquires a different sign compared to the 3rd-order pole S-matrix (4.13). In this case
we have

1
8i∆ab

i

(
β2

2h

)2
Cabc̄

(θ − iθ0)2
i

s − s0
i

(
β2

2h

)2
Cabc̄

(θ − iθ0)2 = i

(
β2

2h

)5 1
(θ − iθ0)5 , (5.11)

that exactly matches the Laurent coefficient of order (θ − iθ0)−5 expected from the boot-
strapped relation (1.9) for N = 2 and ν = i. Surprisingly the one-particle reducible
diagrams reproduce the result expected from the bootstrap. In total there are 21× 21 = 441
such diagrams, since there are in general 21 different tilings of the vertex, as reported in
figure 18. Analogously to what happened for the 3rd-order pole, we can then start applying
flips on each of the one-particle reducible diagrams to generate a network of Feynman
diagrams contributing to the 5th-order pole. The boundary of the 3rd-order pole network
was composed of 9 one-particle reducible diagrams (6 on the boundary of the disk plus the 3
separate diagrams D(−2), D(−1) and D(0) in figure 12); similarly here we expect a boundary
composed by ∼ 441 different diagrams. Therefore, the internal part of the network contains
a tremendous number of graphs. It is remarkable that all the one-particle irreducible graphs
internal to the network have to cancel one another and do not contribute to the final answer.
We expect the simplification will work in a similar way to that seen in figure 15 and will
again be reminiscent of Gauss’s theorem in the space of Feynman diagrams. However, due
to the huge amount of graphs, we did not manage to make such simplification manifest and
we leave the problem open for future investigation.

6 Conclusions

We have revisited the Coleman-Thun mechanism for the generation of higher-order poles [31]
in the ADE series of affine Toda field theories. Even though some of the results discussed
in this paper were already known from [14], the underlying simplification between loop
diagrams to reproduce universal residues was not explained in that paper and has been
the main focus of our study. As observed in [14], Feynman diagrams contributing to
higher-order poles are connected by flipping their internal propagators and can be arranged
inside networks. A naive guess could be that the leading singularity obtained by summing
a pair of diagrams connected by flipping an internal propagator cancels. This is what we
might expect from an analogy with Feynman diagrams appearing in two-to-two tree-level
processes: in that case, the cancellation between pairs of flipped diagrams is responsible for
the absence of singularities in inelastic tree-level amplitudes, and is a necessary condition
for these amplitudes to vanish. However, this guess turns out to be wrong at the loop level
where the cancellation mechanism between diagrams is more subtle.
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Adopting the technique highlighted in [1], we showed that, in the neighbourhood of a
Landau singularity, a loop diagram can be written as different sums of products of singular
tree-level graphs. The different ways in which the cuts can be taken depend on the on-shell
geometry of the loop, which is determined by the masses of the interacting particles, together
with the contour chosen to perform the integral with Cauchy’s theorem. Only after suitably
cutting these loop diagrams into smaller constituents, which we called atoms, were we
able to identify an underlying simplification structure: we organised the atoms within sets
(depicted with different colours in figure 15) characterised by a common piece but differing
by tree-level diagrams connected by flipping internal propagators. Most of these sets are
composed of pairs of atoms; however, in the network in figure 15 we observe also a big set
composed of six atoms (coloured blue). Sums of atoms cancel separately in the different sets
due to the tree-level perturbative integrability of affine Toda field theories. In the end, only
a small number of surviving atoms, that for 3rd-order poles are located at the boundary of
the network, reproduce the expected value of the bootstrapped S-matrix on the pole.

How integrability reveals itself in perturbation theory through the simplification of
big networks into small numbers of fundamental atoms is fascinating. Even though we
have been able to identify this underlying simplification, we based this on a case-by-case
investigation performed over different processes and different theories. Many features of
these models remain unclear. In particular, a universal explanation of what we observe is
missing: at the moment we do not have an algorithm to generate networks of diagrams
contributing to singularities of leading orders bigger than three. Moreover, we do not have
a clever procedure to cut diagrams into atoms for generic networks. It would be interesting
if a theorem existed proving that the internal part of generic networks contributing to
higher-order Landau singularities cancel; in this manner it would be possible to compute
the results for the residues at the poles just by looking at the boundaries of these networks.

For 3rd-order poles, the simplification between atoms is reminiscent of a sort of flatness
property of the network. Indeed in figure 15 we identified six blue atoms differing by
diagrams contributing to a five-point tree-level process: these diagrams can be arranged on
the vertices of a hexagon (see figure 16) and cancel within a closed path. Going further,
while processes with 5 external particles have collections of cancelling diagrams arranged on
the vertices of planar polygons, it has to be possible to arrange tree-level diagrams with 6
external particles on the vertices of polyhedra: even in this case, the singular part of the sum
of all Feynman diagrams comprising this polyhedron has to be null. This discussion extends
to tree-level processes with multiple external legs where collections of maximally singular
diagrams have to lie on the vertices of polytopes, and just as the hexagon in figure 16
is embedded in the network depicted in figure 15, it is reasonable to expect that these
polytopes will be embedded in collections of cancelling atoms in network decompositions of
higher-order Landau singularities. It would be very interesting to understand this underlying
simplification for Landau singularities of arbitrary order.

A natural first step is to study Landau singularities of order five. We have shown that
the residue of the S-matrix at a 5th-order pole expected from the bootstrap can be obtained
by summing over only one-particle reducible diagrams: these diagrams are obtained by two
vertex corrections of the form shown in figure 18 connected by an on-shell bound state. To
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complete our study, it will be important to find the full network of graphs contributing
to such poles and prove that the internal part of the network, composed of one-particle
irreducible graphs, cancels. This would also require greater precision as to what constitutes
the boundary of the network, which at the moment remains unresolved for higher-order
poles. Finally, we reiterate that a better connection with the underlying root system and
Coxeter geometry should be fundamental to explaining this cancellation mechanism in a
universal way and ultimately understanding perturbative integrability at the quantum level.
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