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ABSTRACT: We develop in detail the holographic framework for an N’ = 2 pure AdS su-
pergravity model in four dimensions, including all the contributions from the fermionic
fields and adopting the Fefferman-Graham parametrization. We work in the first order
formalism, where the full superconformal structure can be kept manifest in principle, even
if only a part of it is realized as a symmetry on the boundary, while the remainder has a
non-linear realization. Our study generalizes the results presented in antecedent literature
and includes a general discussion of the gauge-fixing conditions on the bulk fields which
yield the asymptotic symmetries at the boundary. We construct the corresponding super-
conformal currents and show that they satisfy the related Ward identities when the bulk
equations of motion are imposed. Consistency of the holographic setup requires the super-
AdS curvatures to vanish at the boundary. This determines, in particular, the expression
of the super-Schouten tensor of the boundary theory, which generalizes the purely bosonic
Schouten tensor of standard gravity by including gravitini bilinears. The same applies to
the superpartner of the super-Schouten tensor, the conformino. Furthermore, the vanish-
ing of the supertorsion poses general constraints on the sources of the three-dimensional
boundary conformal field theory and requires that the super-Schouten tensor is endowed
with an antisymmetric part proportional to a gravitino-squared term.
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1 Introduction

Since its inception, the anti-de Sitter (AdS)/Conformal Field Theory (CFT) holographic
correspondence [1-3] has provided an important tool to investigate the strong coupling
regime of field theories on a fixed background using classical supergravity on asymptotically
anti-de Sitter (AAdS) spacetimes in one dimension higher. This is a powerful framework
since, being an intrinsically non-perturbative strong/weak coupling duality, it opens a
window on aspects of the gauge theory which are otherwise not accessible.

In its original formulation, the duality was conjectured as a correspondence between
the full type IIB superstring theory on its AdSs x S° solution and N = 4 four-dimensional



Super Yang-Mills theory on the boundary of the AdS5 spacetime. In the limit in which the
classical effective low-energy description of the (super)gravity side can be trusted, the cor-
responding regime of the dual theory is strongly coupled. The holographic correspondence
has been extended to more general backgrounds of the form AdSp x Miy, possibly with
less supersymmetry, which can be embedded in other string theories or M-theory, such as
the maximally supersymmetric AdS; x S7 and AdS7 x S* solutions of D = 11 supergravity
and variants thereof. A valuable approach to the study of holography on a background of
the form AdSp X My is to restrict to an effective D-dimensional low-energy supergravity
originating from superstring/M-theory compactified on the internal manifold My;. This
supergravity admits the AdSp part of the higher dimensional background as a vacuum and
typically is of gauged type. The geometry of M, determines the amount of supersymme-
try preserved by this AdSp vacuum and the general features of the effective theory. In this
setting, the AdS/CFT conjecture can be restated as a holographic relation between the
AdSp supergravity and a d = (D — 1)-dimensional superconformal field theory (SCFT) at
the boundary of the AdS geometry.! Most interestingly, the duality has been extended, on
the gravity side, from global AdS to backgrounds which have an AAdS geometry, reproduc-
ing the renormalization group flow of the dual theory to an infrared (IR) conformal fixed
point, the energy scale being fixed by the radial coordinate on the D-dimensional space-
time. Indeed, the essential ingredient for this correspondence is the conformal structure of
the boundary of AAdS spaces. These are spacetimes with negative curvature and whose
metric has a pole of order two in the asymptotic region or, more precisely, conformally
compact manifolds [4, 5]. Supergravity solutions that are asymptotically (locally) AdS can
be interpreted holographically generically either as explicit deformations of SCFTs or as
models in which the superconformal symmetry is spontaneously broken.

Several important results have been obtained in the holographic study of strongly cou-
pled quantum field theories, within the so-called bottom-up approach. This latter consists
in crafting an appropriate D-dimensional AAdS gravity background of a suitably chosen
gravity theory, which can reproduce interesting non-perturbative phenomena of a boundary
field theory, with some given general properties. In this approach emphasis is not given
to the higher-dimensional ultraviolet (UV) completion of the (super)gravity theory, which
typically has a minimal amount of supersymmetry, if any. Moreover, only certain features
of the dual field theory are known, which are suitably fixed by the chosen background
through the holographic correspondence.

As opposed to the bottom-up one, the so-called top-down approach is restricted to
gravity theories whose higher-dimensional UV completions in superstring or M-theory are
known. This has the advantage that the dual CFT is often known. In most cases supergrav-
ity models considered in this setting feature, in particular, an extended amount of super-
symmetry (i.e. no less than eight supercharges), which makes them more constrained in field
content and interactions and, therefore, more predictive.? Generally inspired by the latter
approach, the purpose of the present investigation is to generalize the holographic analysis

The spectrum of the fields in the D-dimensional supergravity theory corresponds only to a sector of
the operators on the dual field theory side.
2For a discussion on bottom-up versus top-down approaches see, e.g., [5].



of [6] to an extended supergravity, namely to a pure N' = 2 model. Some aspects of the
minimal N = 2 gauged supergravity in the context of holography have been discussed in [7].
From a formal point of view, the AdS;,1/CFT, correspondence states that the CFTy
partition function is equal to the gravitational partition function in AAdS space in one

dimension higher [2, 3],
Zal® — ¥()] = Zapr[T = ()] (L.1)

In the above formula, Zg [Cf)(o)] is the quantum partition function of the gravity theory in
AAdS space, as a function of the boundary value ® ) of the bulk field ®, while Zcpr[J]
is the quantum partition function of the corresponding CF'T, in which the source J of a
local operator O(z) dual to ® is identified with @(0).

Let us recall the definition of the quantum effective action W[J7] for a d-dimensional
CFT on OM in terms of the partition function Zcpr[J]

Zepr[J) = W = /qu IO [5 472 00)-T (1.2)

where the symbol ¢(z) collectively denotes the fundamental fields of the CFT on which
the functional integration is performed. The action I[¢] should already be renormalized,
that is, finite in the UV region. Even though W is a (non-local) function of the external

source J(z), the physical information of the theory is contained in the n-point functions
of the operators O(¢(z)),

§"Zcrr[J]
10T (x1) 10T (xn) | 7—g

(O(z1) - O(xn))opr = Zgpr|0] (1.3)
In particular, different correlators are related by Ward identities which express the sym-
metries in the CFT at the quantum level.

Let us expand on the identification (1.1) in the special case of a pure AdS gravity
theory in which the only bulk field is the metric gy (x) defined on the AAdS spacetime, to
be denoted by M9*t!. In this case the gravitational partition function has the form

/DA 1Iren[g Ne on shell[g(O)] (14)

Up to a conformal transformation, g(g),, is the value at the conformal boundary of the bulk
= 0. The

gravitational action I;en[g] has to be consistent with the boundary conditions and has to be

field gup(z), on which Dirichlet boundary conditions are imposed: 6g(o)u

finite in the asymptotic (IR) region. In equation (1.4) the classical approximation, for weak
gravitational couplings, is performed, in which the partition function can be evaluated on
the classical solution, by a saddle point approximation, giving rise to the on-shell action
Ton-shell [g(o)]. The boundary metric g(g),,, becomes the source in the boundary CFT.

The AdS/CFT correspondence in the classical approximation of gravity identifies the
quantum effective action W as

Wig(o)] = Ion-shen[g(0)] - (1.5)



where the boundary metric becomes a background field in the CFT, so that the energy-
momentum tensor operator T (¢, g(o)) also depends on it. The expectation value of the
latter can be calculated as the 1-point function from the effective theory,

2 6lonshen[9(o)]
‘9(0) | i 59(0)““

(T")cpr = =, (1.6)

and 7" is the holographic stress tensor in the gravity side.
The conformal Ward identities in the CFT have the form

V(O) ™ =0, ™ =A, (1.7)

I3 I3

where A is the Weyl anomaly [8]. This quantum result can, therefore, be obtained in the
classical regime of AdS gravity.

For the above formalism to be well-defined, a field theory has to be finite at short
distances. However, a general feature of quantum field theory is that UV (and IR) diver-
gences can appear at quantum level in the correlation functions. In order to guarantee the
consistency of the theory, these unphysical effects are usually removed through the proce-
dure of renormalization. In the framework of the AdS/CFT correspondence, which is in
fact a UV/IR duality, i.e. the ultraviolet regime of the field theory is related to the infrared
one of the gravity side and vice versa, it is natural to think that the UV poles of CFT
n-point functions (1.3) could be cancelled holographically, by adding appropriate boundary
counterterms in the dual theory. Indeed, a first systematic method in this direction was
implemented at the beginning of the century [9, 10] and was then applied to various bosonic
theories, in particular to gravitational actions coupled to bosonic matter fields.? Briefly,
the procedure consists in regulating the bulk on-shell supergravity action by introducing
a cut-off on the radial coordinate, adding appropriate boundary counterterms in order to
eliminate the divergences, and then removing the cut-off.

In the subsequent years, the holographic renormalization scheme was implemented
also for actions including fermionic fields. In [6] the authors studied the case of N' =1
D = 4 supergravity including contributions from the gravitini, while in [7] the boundary
counterterms for the minimal N' = 2 gauged supergravities in D = 4 and D = 5 have been
analysed, restricting to quadratic order in fermions in the action, by using a Hamiltonian
approach. Five-dimensional supersymmetric holographic renormalization has also been
considered in [13].

A different approach to the holographic renormalization was developed in [14], where it
was named topological regularization. It was proven to give the same results as the standard
procedure in pure gravity, having however the quality of giving a topological meaning to the
resummation of the holographic counterterms series expansion. A detailed comparison of
both counterterm series has been developed in pure AdS gravity in any dimension in [15]. In

3A very good review of the subject can be found in [4].

“For completeness, let us mention that Gibbons and Hawking had already proposed to add a boundary
contribution in 1977, namely the Gibbons-Hawking(-York) term, in order to have a well-defined variational
principle for gravity theories [11, 12].



particular, the topological counterterm needed to regularize four-dimensional gravity turns
out to be the Gauss-Bonnet term and it is also able to restore the diffeomorphisms invari-
ance, broken by the presence of the boundary [16-18]. Moreover, the addition of this con-
tribution allows to express the renormalized action in the MacDowell-Mansouri form [19].

The above papers treat gravity in the second order formalism. However, an alternative
formulation to the latter is the first order formalism, where the spin connection is consid-
ered as an independent field from the vielbein [20-25]. In this approach, the powerful tool of
exterior calculus and the differential form language can be employed, yielding a geometrical
description of gravity. The same approach was used in [27] to extend the results of [16-18]
to supergravity and to find the counterterms needed to restore the local supersymmetry,
broken by the presence of a boundary, for the cases of pure N' =1 and N' = 2 AdS, super-
gravities. The boundary terms found in [27] to restore supersymmetry (that is diffeomor-
phisms in the fermionic directions of superspace) are in fact the supersymmetric extension
of the Gauss-Bonnet term, which was necessary to restore diffeomorphisms invariance in
the case of gravity. Correspondingly, those boundary terms were precisely the ones needed
to rewrite the total supergravity action in a supersymmetric MacDowell-Mansouri form.

However, while the topological regularization was shown to be able to renormalize the
bulk action for the pure gravity case, the same has not been proven yet for its super-
symmetric extension, in particular for the N' = 2 AdS, supergravity. The present paper
proceeds from the foregoing works to achieve this goal but, in contrast to [7], we consider
the full contribution from the gravitini and start from a rather general setup in view of
possible future developments. In order to do it, we show that the Ward identities of the
dual field theory are satisfied, as expected for a SCF'T in three dimensions.

It still remains as an open problem the question of rendering the AdS supergravity
action finite in the presence of matter multiplets by adding topological bulk terms.

From a different, but complementary, point of view, we explore a relation between the
classical local symmetries of an AdS gravity defined on the bulk manifold MP” and the
quantum symmetries in a field theory defined on OM. The latter match the asymptotic
symmetries, at radial infinity, of the gravitational background. In our approach, they
appear as resitdual symmetries left over after the gauge fixing of bulk local symmetries and
whose parameters take value on M. This matching of symmetries is justified from the
group theoretical point of view. Namely (we restrict here, for simplicity, the discussion to
the bosonic sector, but its supersymmetric extension will be considered in the body of the
paper) the isometries of the AdS vacuum in D = (d 4 1)-dimensional asymptotically AdS
spaces are described by the SO(2,d) group whose generators are Jgp, Jo. It is important
to emphasize that gravity with negative cosmological constant is not invariant under local
SO(2,d) transformations. Instead, general coordinate transformations, combined with a
field-dependent local Lorentz transformations, acquire a locally gauge-covariant form.

The d-dimensional boundary breaks the bulk local symmetries in the z¢ (radial) direc-
tion that naturally leads to the d + 1 decomposition of the Lorentz indices into a = (i, d).
In that way, the bulk isometry group is isomorphic to the conformal group® with gener-

SFor explicit construction of this conformal algebra in the context of AdS/CFT in pure AdS gravity,
see [21].



ators J;;, P; = J; + Jiq, K; = J; — Jiq, D = J4. Therefore, choosing suitable boundary
conditions for the AdS gravity fields in D-dimensional bulk, which are & (along J;) and
%V“ (along J,), we can identify its d-dimensional boundary field content that should be
the one of the CFT. Using the isomorphism, the boundary background fields, i.e. sources
J = {wY,E’ B,S'} associated with the conformal generators, have the form

Jij o wY e~ Y,

<

~

P: B~ Vi, (04 V),
D: B~ VY,

K Sevie ) (wiov),

where ‘~’ means that the identifications are valid only up to a global rescaling on the
boundary, allowed in CFT. This near-boundary rescaling is the first step in removing the
long-distance divergences present in (super)gravity theory in asymptotically AdS spaces,
equivalent to renormalization of the holographic CFT. From this discussion, we draw the
following conclusions. First, a full linearly realized conformal group on the boundary can
be made manifest only in first order formalism, where the spin connection is an independent
field. Second, the conformal structure on the boundary naturally introduces two geometric
quantities in d dimensions, a dilatation gauge field B and the Schouten tensor S*. They will
play an important role in the analysis of symmetries of this holographic correspondence.

As far as the asymptotic symmetries and the gauge-fixing conditions defining them are
concerned, we shall keep our analysis as general as possible. More precisely, we shall be
taking a “cautious approach”, only imposing gauge-fixing conditions which appear to be
strictly necessary for the consistent definition of the asymptotic symmetries. The reason for
this relies on one of the motivations which have inspired the present analysis, namely the
application of the AdS,/CFTj3 holographic approach to the study of the model, originally
constructed in [28] (to be referred to as the AVZ model), which features unconventional
supersymmetry. The latter has been eventually embedded, as a boundary theory, in pure
N = 2 AdS, supergravity in [29], although a fully fledged holographic correspondence
has not been developed yet. The present work represents a preliminary investigation in
this direction. Having this in mind, we avoid imposing the constraint +*1, = 0 on the
gravitino field at the boundary since, in the AVZ model, this condition has to be relaxed,
as the dynamical fermion of the theory is identified with the contraction v#%), itself. This
fermion satisfies a Dirac equation and was shown to be well-suited for the description of
the electronic properties of graphene-like materials [28, 30]. Holographically embedding the
AVZ model in N = 2 AdS, supergravity and eventually in A/ > 2 theories paves the way
for a top-down approach to the study of this condensed-matter system. In this direction,
in [31], a possible relationship between the construction in [30] and a generalization of
the d = 3 interface model of Gaiotto and Witten [32] was presented. This hints towards
the definition of the dual conformal class of theories, which will be the object of a future
investigation.



The rest of this work is organized as follows: in section 2 we review the asymptotic
symmetries in Einstein AdSy gravity for purpose of introducing the first order formalism
and in section 3 we summarize the geometric approach to pure N' = 2 AdS, supergravity,
in the presence of a boundary. Section 4 is devoted to the near-boundary analysis of super-
gravity fields and local parameters. Then, in section 5, we write out the superconformal
currents and Ward identities, proving that the latter are indeed satisfied off-shell on the
curved background when the bulk equations of motion are imposed. We conclude the pa-
per with some final remarks. Useful formulas and conventions are gathered in appendix A,
while details on calculations are collected in appendix B and appendix C.

2 Asymptotic symmetries in Einstein AdS, gravity

We start our discussion with a review of the results in pure AdS gravity and then reformu-
lating them in first order framework.

Asymptotically AdS spaces MP in D = d + 1 dimensions are conformally com-
pact Einstein spaces that can be described by local coordinates z# = (z*,z?%), where 2*
(u=0,...d — 1) are local coordinates on the boundary OM and z = z? is the radial coordi-
nate with the asymptotic AdS boundary located at z = 0. In a neighborhood of z = 0, they
admit a metric gz, (with a mostly negative signature) in the Fefferman-Graham (FG) form,"

PO 0?2
ds® = ggp dafda” = = < —dz? + g (7, 2) dm“dx”) , (2.1)
where / is the AdS radius, g, is regular on the boundary and it admits a power expansion
in the radial coordinate =z,
52
uv = g((])pw(x) + ﬁ g(Z)yu(x) o (2'2)

Only even powers in z appear in the series, until the order z?~!. This is particular to pure
AdS gravity. In general, addition of matter fields, as is the case in supergravity, requires
more general powers in the z-expansion of the metric, depending on the value of the AdS
mass of the field. By solving order by order the Einstein equations, the corresponding co-
efficients in the expansion are determined as local functions of g(g),,. For example, g(2),,
depends linearly on the curvature in a combination that produces the boundary Schouten
tensor Sy (9(0));

0 1 o
2 2
92)ur = ¢ S,uu =/ (R,uz/ - mg(omu R) ) (2'3)

where R* 2o (9(0)) 18 the boundary Riemann curvature and 703,“, and R are the corresponding

Ricci tensor and Ricci scalar, respectively. The conventions we adopt on curvatures can be
found in appendix A.1. On top of this, only in odd spacetime dimensions D, there is a term

®The most general asymptotically AdS metric contains also the subleading §., terms, in particular
Gzn = O(2) in three dimensions [33] and §., = O(2?) in four dimensions [34]. They can always be set to
zero by choosing FG coordinate frame on a patch near the boundary.



2%1og z. In contrast, the mode 9 cannot be fully resolved from the equations of motion

d)uv
(only its local part), as it is propor)‘clzonal to the holographic stress tensor of the theory [4, 9].
The FG form of the metric (2.1) is obtained by gauge fixing of spacetime coordinate
frame. The invariance of (2.1) under radial diffeomorphisms leads to the Penrose-Brown-
Henneaux (PBH) transformations [35]. The full set of residual symmetries includes, apart
from the PBH transformations, also the boundary (transversal) diffeomorphisms. They
have the form of asymptotic symmetries, that is, their parameters take value on dM. The
AdS gravity is invariant under the action of these transformations at asymptotic infinity.

In an explicit form, using the Lie derivative §gu, = £ égﬂ,; for diffeomorphisms gener-

ated by parameters éﬂ, the FG gauge fixing implies

00.. =0 = & =z0(x),
2
N s 2%,
00u-=0 = &= (x)+ Y] gﬁ))ﬁya + (’)(24) , (2.4)

where £#(z) and o(x) are arbitrary local parameters on the boundary. From 6§, = ﬁ—z 3G
we obtain the transformation law of first terms in the asymptotic expansion of (2.2) as

59(0)w/ = ££g(0)w/ — 20 goyuv >
0) (0
59(2)NV = £§g(2)wj - KVEM)Vg))U . (2.5)
From the first equation it is clear that radial diffeomorphisms induce Weyl transforma-
tions on the boundary described by the parameter o(x). This purely kinematic treatment
allows to determine the local part of the coefficients in the series (2.2) without resorting
to the asymptotic resolution of the field equations. This is done by integrating the Weyl
parameter from the transformation law above. This PBH approach, although a powerful
tool to match symmetries in a holographic field theory, is not an alternative to holographic
renormalization.

The asymptotic symmetries produce conservation laws which are mapped into holo-
graphic Ward identities for the boundary CFT.

Holographic gauge fixing in first order formalism. In what concerns us here, we
work in first order formalism in D = 4 where the independent fields are 1-forms on M*.
Indeed, one has the vielbein V* = VZ(:L’) dz”, stemmed from the metric Jpp = Kab V‘}LV%
(with the Minkowski metric k,p), and the spin connection oW = d)gb(x) dz”. World indices
on four-dimensional spacetime are denoted by hatted Greek letters i,7,...=0,1,2,3 and
the corresponding anholonomic tangent space indices are labeled by Latin letters a,b,... =
0,1,2,3.

Apart from general coordinate transformations da# = —éﬂ, which define local transla-
tions with parameters p® = fﬂV‘z, the theory is now endowed with local Lorentz invariance,
whose parameters are j% = —jb.



The AdS gravity in first order formalism is invariant under the general transformations”

SV =Dp® — jV;, + iy 17,
A 2 \
0u" = Dj* + 55 pl*V + i, R, (2.6)

where D(&) is the Lorentz-covariant derivative, R%(%) is the Lorentz curvature and
7% =DV is the torsion 2-form. We have also introduced the AdS curvature R =
Rab — é% veyt = %ﬁ?g%dxﬂdxﬁ and the contraction operator ipR“b = pCV’Z]%gdeﬂ and
similarly for ¢,7. In the non-supersymmetric case we are discussing in this section, we
will assume that the gravitational field is torsionless, thus ipT“ = 0.

In order to extend the discussion for AAdS spacetimes from the metric formulation
described above to first order formalism, we have to specify the form of V¢ and &%. To
this end, we have 10 local parameters (p?, j“b) at our disposal to gauge fix.

This holographic gauge fixzing has to provide the radial expansion of gauge fields and
parameters. In addition, the residual transformations (which leave invariant that gauge fix-
ing) have to induce boundary Weyl dilatations. It also has to give rise to the transformation
of the boundary fields, which lead to the conservation laws.

In this framework, the radial evolution of gravity considers the radial components of
the gauge fields as Lagrange multipliers, similarly as the lapse and shift functions in the
Arnowitt-Deser-Misner (ADM) formulation of gravity [36]. The simplest choice V% = 0,
@2 = 0 leads to a trivial theory on the boundary. In particular, it does not have an
invertible vielbein.

Radial expansion and holography in gravity in Riemann-Cartan space were developed
in [22] and applied, for example, in three [22-24], four [25], and five [22] bulk dimensions
in different setups. In arbitrary dimension it was discussed in [21].

A suitable gauge fixing for spacetime diffeomorphisms p® and Lorentz transformation
jab is

a ¢ a ~ab
VZ:;53, Wy’ =0. (2.7)

z

These conditions, in principle, are sufficient to determine local symmetries. However, in
AdS space, the vielbein should be chosen so that it reproduces the FG metric (2.1). For
this reason, we assume an adapted frame where the boundary is orthogonal to the radial
coordinate,
3
V,=0. (2.8)

The last condition can be relaxed as long as the fall-off of the field V:Z (x) is consistent
with the behaviour of AAdS spaces. As shown in [21, 26], this field plays a role in the
explicit construction of the gauged conformal algebra for a dual CFT. By setting V:z to
zero, the conformal symmetry of the boundary is still there, but its realization becomes
non-linear, as the associated gauge field turns into a composite field.

As mentioned before, the choice (2.7) is holographic if it produces a radial expansion of
the boundary fields. Let us denote the 3 4+ 1 decomposition of Lorentz indices as a = (i, 3)

"This transformation law is the local Lorentz transformation combined with the Lie derivative
£,A = D (i, A) + i, F valid for any gauge field A and its associated field strength F, where p = £".



(i =0,1,2). We use the following convention for the Levi-Civita tensor on M?* projected
to the boundary OM,
Gijk?’ = —€ijk y 60123 = —€0123 = —1. (2.9)

Then, in AAdS spaces, the vielbein behaves as

i _ b oa
Vi, = ;E u(T,2), (2.10)

where Ei“ is finite at the boundary z = 0, so it can be expanded in a power series in its

vicinity,
s . 22 23
E'y=FEloyut 75 By w5 By u + o). (2.11)
Because of physical implications it would have later, we rename the coefficients as
Eéo) 5= Eiw E%z) p= St , and Eég) 5= Ti#. Then the expansion becomes
A . 22 23
B, =E", + 2 S, + B T, + oY),
~ 22 23
R LURNCUR (2.12)

where E'; is the inverse of the vielbein® Eiu. These tensors project the indices between the
boundary spacetime and its tangent space and we also have
s Ny .
e=det[V}] = g é3, eé3=det[E",], e3=det[E’,]. (2.13)

Notice that we assumed that the linear terms in z are absent in the induced viel-
bein Eiu,

convenient to make use of the residual Lorentz transformations to get S% = Squ“j and

in order to reproduce the result g(;),, = 0 in pure gravity. Furthermore, it is

T = T"#E“j symmetric, namely to set S9! = 0 and 7[¥) = 0 [6]. If the Lorentz parameter
at the boundary is expanded as

Jnt iyt Eie tOE, (2.14)

z

i i

from the Lorentz transformations (2.6) we find jf{) =0 and
0; ), = 0" Ejy, 635", = —07Sju — i3 Biu

§E" = -0 E",, 87 = —0775, — i By

(2.15)

Here 0% () is an asymptotic parameter which will become a holographic symmetry. The
antisymmetric parts are independent of %,

8Strictly speaking, the inverse vielbein (E~"')* = E* has the property E*; = gfg’)m]-Ej,, = E;* following
from the invertibility and symmetry of the metric. It implies that one can overlook the order of the indices
in the vielbein and its inverse. The same argument holds for the bulk vielbein V%, and its inverse V%, but
not for the higher-order terms in the expansion that are not necessarily invertible.
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Therefore, the antisymmetric parts of S and 7% are related only to the subleading Lorentz
transformations and therefore they can always be set to zero,

slid g, il —g. (2.17)

However, we will not assume yet that jg) and jg) vanish because they might not be
independent parameters. We will come back to this issue later, after all independent
asymptotic symmetries have been identified (see eq. (2.51)).

In fact, the above procedure can be extended to make all coefficients in the expansion
of Viu symmetric. Without going into details, it can be shown that #% always decouples

from the transformation of E([:f)} = EHU EE and we can always set E([Z)] =0forn>0. As

I
n)p

f are symmetric tensors,

a net result, all modes E(n)u

EZ =0, n>o0. (2.18)

Thus, the expansion defined by the above considerations is consistent with the FG
frame (2.1) and

g(O);w = EiVEi/j,7
9@ = 25w = S,

9@)ur = 2T - (2.19)

Recalling the fact that in Einstein AdS gravity we know the solution of the coefficients
9y (n > 0) in terms of the source g(o)u, [9, 35], we identify Eiu as the vielbein at the
conformal boundary, Siu = % Si# as proportional to the Schouten tensor, and Ti# as the
holographic stress tensor.

On the other hand, without supersymmetry, the torsion constraint DV = ( determines
the spin-connection to be (see (A.1))

A,

apb =V (=0pVe + D3V - (2.20)
In our notation, fl),‘u is the affine connection in the bulk. In particular, the one appear-
ing in (2.20) is the Levi-Civita connection, that is, symmetric in () and torsionless.
The radial components of the spin-connection are consistent with the gauge fixing (2.7),

assuming (2.18) is satisfied. The boundary components of the spin connection become

G = B (=0, B, + 1), (9)B)) = 9 (2, 2),

M W
o Lpi Ly g 2.2
w“_; #_5 g 9 (1)

where w;‘f(x,O) = wf](E) is the torsionless spin connection on the boundary, F{}M(g) is

the affine Levi-Civita connection at the boundary that depends on z (in contrast to
Ff,‘# = Fﬁu(g)|zzo) and we define the auxiliary tensor

by = 0ugyy = O(2),  0ug™ = —kM . (2.22)
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Both F,))ﬂ(g) and k,, are regular quantities at z = 0. In a more explicit form,

2 3

d)ﬁf:wﬁ(x,z) w:f( )-i— 17 () (S,E)+ 3 (3) (1,E) + O(z"),
. 1 . Z 2z
~13 __ 7 i ~z
where
G ai i i o1/ i i
S,=8,=5,, Tﬂzi(TM—l-?)T#):TN, (2.24)

and the last step is only valid upon imposing the partial Lorentz gauge fixing (2.18).
Thus, in pure AdS gravity, the tensors Siu and %iu can be chosen symmetric and equal
to S, and 7°,. We will see later (in eq. (4.15)) that the group theory definition of the
boundary Schouten tensor is Siu = e% (S pt Siu) and it reduces to e% Sl , only after using
the above equality.

When the bulk torsion vanishes, we obtain at the first two orders (z and z2) near the

boundary that the 1-forms wé) = w(J dz# and similarly for w(] are not arbitrary, but

2)p , , 3)
they can be expressed in terms of §* = S° pdzt and 7" = 7', dat as

Ejnwly =DS',  EjAwl =Dt (2.25)

where D denotes the covariant derivative w With respect to the connection w;‘f (E). These
equations can be explicitly solved in wé), (3) as indicated by (2.23).

Let us finally analyse the fall-off of the curvature. Asymptotically AdS spaces re-
quire the curvature to be asymptotically constant. Direct checkup confirms that the near-

boundary form of the AdS curvature is

o ) N 3z
i3 I 2 i3
R, =-2C", V+(’)(z), Ruz—g—?)T +0(2%),
(2.26)
RYI =W — E[l 7] —1—(’)(22) R = 22 WY —3iw +(9(z3)
pv — Vv g LT v ? i T T Y@u T 3 Yeu ’

where Ct = % Ci ,detAda” = 758i is three-dimensional Cotton tensor. In the above deriva-

tion of R = (DSZ +E; N w(2)> -, the Cotton tensor appears after using (2.25) to
.y ij

eliminate Wizy-

due to the relations (2.24) which involve the derivatives of the vielbein. Similarly, R%

Thls is because S* = S* cannot be assumed directly under the derivative

depends on the tensor 7° 4 27, but it reduces to the above result upon setting 70 = 7.
The Weyl tensor vanishes in three dimensions,

Wi = Rii — 2Bl A ST =0, (2.27)
so that the three-dimensional Bianchi identity can equivalently be written as

Eipncit=o, (2.28)
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yielding that the Cotton tensor is traceless, Ciij = 0. It is also known that, in three dimen-
sions, it is covariantly constant.? For more properties of the Cotton tensor in Riemannian
geometries, see [38].

An important consequence of Wffl, = 0 in three dimensions is that, from (2.26), we get

Rab 0= 0. Since the AdS boundary M is located at constant radius dz = 0,z = 0, in
e

supergravity the last condition can be relaxed to Rab Q00 =
2z=0,z=

The fact that the curvature is constant at the conformal boundary does not guarantee

— only by itself — the regularity of the variation of the action and, therefore, a correct

holographic description of the theory.

Residual symmetries. The gauge fixing adopted above leads to the asymptotic form
of the boundary fields (2.10), (2.12) and (2.23). We seek for transformations which do not
change the frame choice (2.7). From (2.6), it follows

0=0V3=0.p°, (2.29)
0=0V", =0.p" + 5 33, (2.30)
0=206V3 =0up° —&fpi + j" Vi, (2.31)
0=0608 = ; P+ .58 4+ i,RP, (2.32)
0=00Y% = 8,59 +i,RY . (2.33)

In order to solve the above equations, we need the asymptotic expansion of the con-
traction of the AdS curvature (2.26)

i B3 = (3’;7 10 ))

- i3 5 (322 i 3
iplR); = —p ETT +0O(z 5 +p E"CZ L, O],

N 32 i 4
Then egs. (2.29)—(2.33) acquire the form

0=08.p%, (2.35)
| 322

0=0.5"+ - p+£4p7(7'j+@(z)>, (2.36)
A

0=0.p'+ - j", (2.37)

0= 0up® —&pi + 5 Vi, (2.38)
g 323

_ 3 k
0—3zjj+p <_£3E# ( Viale7e /A E'u ( ) —I-O( )) (239)

9The dual of the Cotton tensor appears naturally — at the holographic order — in the parity-odd
sector of the theory. This feature gives rise to a holographic stress tensor/Cotton tensor duality at the
boundary [37] which, in turn, is a consequence of an asymptotic (anti-)self duality condition for the Weyl
tensor [14].
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The first equation (2.35) can be readily solved as
p® = —lo(z), (2.40)

with the boundary parameter o(z) introduced as an integration constant. The next two
ones, (2.36) and (2.37), can be decoupled by eliminating j®® and finding the differential
equation in p’

3z

1 .
0= 0%+ = o' - S0 -

P () +0) . (2.41)

The solution for both parameters reads

2 2
P = ;£%+5bz+2—253ﬂ+0(z3)
1

“le oy 2onLop). (2.42)

where ¢¢(z) and bi(x) are new integration constants. Eq. (2.39) then leads to the solution
for the Lorentz parameter

.. .. 2
i — g 4 %2 £hul, €3 {“w L+ O, (2.43)

with 0%(x) another arbitrary functions on the boundary, identified with the Lorentz
parameter.

The last equation to be solved is the asymptotic condition (2.38) which — with all
solutions plugged in — becomes

2 %
w7V Bt O(?), (2.44)

where the linear terms cancel out. At the leading order, (2.44) implies that the parameter

2 .
3 7
0= 0V, = ~td,0 + 5 &S

b* is not independent, i.e.

0? ;
b = -5 ER9,0 + S7.¢;. (2.45)
Overall, the radial expansion of gauge parameters in absence of fermions has the form
p3 = —60'(.%) )
i 4 % bz 2 J 1 O 3
p—;f()‘f‘ £257j+ (7)),
. 1 z . 222 .
53 _ 3
7= 2 @) = ¥ = T+ 00,
i _ pid 2 i 2 cu i 4
Jj7 =0 ( ) 5 w@)# 6735 w(3)ﬂ + O(Z )a (246)
where b'(o, £) is given by (2 45). It is worth emphasizing that w(2) and wéé) satisfy eq. (2.25).
In particular, from C* = % E; A wg) we find that the component wm) is directly related to
the Cotton tensor, and sunllarly for 7 1u» 50 that the higher-order spin connection compo-
nents fulfill 4
CZuV = 672 (.UEZ) [,LLI/] s D[HT’LV] = EIJ['u w’(%) V] . (247)
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The independent boundary parameters
a(z), £(x), 69(x)

are associated with dilatations, diffeomorphisms, and Lorentz transformations, respectively.
This can be seen from the change of the boundary fields found from the expansion of 5VZ'M,

0B, =Dyt + oE', — 07 Ej,,

i S i i ij & v i
05', =Dyb —USM—HJSjH‘F?g Cops
5Tiu = Zo)u ({%’2) — 207'iu — GijTj,u + 28/1")[1/7_@'”] . (2.48)
In a similar fashion, the spin connection transforms as
oij _ 15 pij vli g 4 i Qj iqy
6 = Db — 28V B 0,0 + 55 (-GBS +€lisT)) (2.49)

This law is consistent with the torsionless boundary, which can be shown using (2.48) and
the fact that the Weyl tensor (2.27) vanishes identically in three dimensions.

In addition, it is straightforward to check that the obtained residual symmetries match
the usual PBH transformations (2.5) in the metric formalism, where the coefficient g(g),,, =
9(3)uv oW transforms homogeneously,

093y = Led3)uw — TIB) v » (2.50)
because it is proportional to the holographic stress tensor. In the proof, one has to use
DB,y =0.

Having the full set of asymptotic parameters (2.45)—(2.46) and the transformation law

I

of the boundary fields (2.48), we are ready to return to the conditions (2.17) and discuss
their consistency with respect to the residual transformations.

As we can see from the expansion (2.43), if we restrict to Lorentz transformations only
(namely we set p’ = 0), then (2.17) implies jg) = jg) = 0 so that, according to eq. (2.43),
our choices S = 0, 7] = 0 are naturally preserved by the Lorentz part of the residual
symmetry group. We need, however, to check the consistency of these conditions against a
generic residual symmetry, including the diffeomorphisms on the boundary, parametrized
by & = Eiu &*. For example, the condition S = 0 changes under these asymptotic
symmetries as

5.5l

iy = ( — 0t Skl 4 g, glkil _ o5 glid) | pin S[J'k}fpugk

R T o i 2
_Ein S[zk}pugk +wg [l ek — j(é) + T cki §k>

Slisl=0

” 302 i
= 3w & = —ScliNg =0, (2.51)

where we have used the general transformation property of S% | see the second of egs. (2.48),
and the identification S¥ = 25% /¢? that holds for S il = 0, in light of which the compo-
ik

nents C*U* of the Cotton tensor are expressed in terms of w(2), as given by eq. (2.47). In
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deriving (2.51), we have also used the expression of jg) as wg) & ¢*, which follows from the
expansion (2.43). Finally, the last equality in eq. (2.51) follows from the property of the
torsion-free Cotton tensor, Cj;,; = 0. As a result, we see that the condition S il = 0 is
consistent with having a generic Cotton tensor because its transformation law is propor-
tional to Cp;j ) which vanishes. A similar analysis can be made for the condition rlil = ¢
and its consistency with the asymptotic symmetries.

In this way we have proven that having symmetric Schouten tensor and identification
Sii = Sii = %Sij could be consistently imposed together with having a generic, non-
vanishing Cotton tensor. This is not the case in A/ = 1 supergravity discussed in [6] where,
for the sake of simplicity, it was imposed jg) = 0 to ensure symmetric Schouten tensor,
which can be consistently implemented only in asymptotically conformally flat spaces.

Conservation law for conformal symmetry. In Riemann-Cartan AdS gravity, the
leading orders of the bulk fields E* o wff remain arbitrary functions on the three-dimensional
boundary: they act as sources in the dual field theory. From (1.5), we can generalize the
quantum effective action to first order formalism,

WI[E,w] = —-ilnZ[E,w], (2.52)

in such a way that the (external) gravitational sources Eiu and wff are coupled to the ex-
ternal currents, namely the energy-momentum tensor J*; and the spin current J j» written
in differential form formalism on OM as

, 1 .
SW = / <5EZ Ait 5 6 A Jij) . (2.53)

Here we have introduced the 2-form currents J = % Juw dx# A dz” and the usual Noether
currents 1-form *J = J, da# are their Hodge star duals
= ATy . (2.54)
2eg

Both in the non-supersymmetric case discussed here and in the supersymmetric case dis-
cussed in the next sections, the spin connection is not an independent source and, therefore,
Jij = 0. Here we assume that taking a variation commutes with setting DE! = 0, since
in [21] it was proven that §&% contributes to the stress tensor so that it becomes the sym-
metric Belinfante-Rosenfeld tensor. In our approach it will be a consequence of Lorentz
symmetry.

Invariance of the action under the transformations (2.48), written in the differential
form language on OM, reads

SE'=DE +oE — 0VE;. (2.55)
After partial integration where the boundary terms are neglected, we get

0=0W = [ |=€"DJi+ (0E = 09E;) A J;| . (2.56)
[[epa ) 23]
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This implies the following classical conservation laws of conformal symmetry in d = 3

&: 0=DJ;, (conserved J,,,)
o: 0=E"AJ;, (traceless J,,) (2.57)
09: 0=FE;ANJj—E;ANJ;. (symmetric J,,)

Note that we have the full Weyl symmetry on the boundary expressed in terms of the
Belinfante-Rosenfeld tensor J';, which is traceless. The field equations lead to J,, =
—(3/€) Ty. The second relation is not modified at the quantum level because there is no
conformal anomaly in three dimensions.

Finally, let us comment that the boundary 1-forms E? and S* transform under the
d = 3 diffeomorphisms as Lie derivatives £§Ei and £§Si, respectively. They are also
Lorentz vectors. Using the identity from footnote 7 and reabsorbing a part igo‘b"j of the
Lie derivative into the local Lorentz transformation 6%, the transversal diffeomorphisms
in £¢E' acquire the form of local AdS translations Zc)fi, with ¢ = i¢E’, plus the term
i¢T" = 0 that vanishes on-shell. As a result, we obtain (£¢ + dg) E* = D (ieE") — 09 E},
that is exactly the first line in (2.48) restricted to a subgroup with ¢ = 0. Similarly, in
the second equation in (2.6) we recognize the Lie derivative combined with a local Lorentz
transformation, (£¢ -+ dg) S° = Db — 09S; + %z’gci, where now the Cotton tensor C°
naturally appears as a term analogous to the contraction of the torsion for the bulk fields
and b = ¢S, Thus, the transformation law of the Schouten tensor in (2.48) is expected
to have the Cotton tensor contribution. Another way to see it is by using the group theory
argument presented in the Introduction, where the d = 3 Schouten tensor as a gauge field
comes from V* u= %(6&)5’ — VZM) in the asymptotic sector, thus it involves both 5(3)5’ and
oV",. Performing the expansion explicitly again gives rise to i¢C".

It is also interesting to observe that there is the full non-linearly realized conformal
group on the boundary, where w® and S = % S’ are composite fields and the dilatation
gauge field B = 1 V3 pdz# is vanishing (and it transforms as (2.44)). We can go back to
its linear realization by treating those three fields as independent. Then we have to add
the special conformal current J(); and the dilatation current Jp) in the variation of the
action (2.53) via the respective couplings 6S* A J(xyi and 0B A J(py and also treat b* as an
independent parameter.

As a result, we will obtain the generalized transformation laws (2.57) in the form

fi: 'DJZ'ZB/\Ji+Sj/\Jij+€Si/\J(D),
o: ng(D):—Ei/\Ji—FSi/\J(K)Z‘,
07 :  DJij =2E; AJjy+28; Ay (2.58)

bl DJ(K)z =E A Jij — L E; A J(D) — BA J(K)i:

where D is the covariant derivative with respect to the Lorentz connection w% = &% —
2Bli A EJ). The torsion constraint in a local Weyl theory involves the dilatation field and it
has the form D[#Eiy} = Ei[ uB”]' The expressions (2.58) reduce to the previous conservation
laws (2.57) after setting J;; = 0, J(k); = 0 and J(p) = 0, because these currents correspond
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to w¥, S* and B which are not independent sources any longer, but composite fields. Thus,
the full conformal symmetry is encoded in the previous conservation law (2.57), as also
observed in [21]. An extension of the FG formalism and enhancement of the boundary
theory to include the Weyl current has been analysed in [26]. The superconformal group
approach to the holographic currents problem in d = 3 is discussed in subsection 5.1.

In the following sections, we will extend the above analysis to the supersymmetric case.

3 Pure N = 2 AdS, supergravity

Pure N = 2 supergravity in four-dimensional spacetime has a field content that, when
expressed in terms of spacetime quantities, is given by the vielbein V‘lll, the gravitino W4
(we generally omit the spinor indices), the SO(1, 3) spin connection (fjgb and the graviphoton
flﬂ. The Latin (a, b, ...) and Greek (fi, 7, .. .) indices are the same as beforeand A,... =1,2
refers to indices in the fundamental representation of the R-symmetry group. Let us recall
that the R-symmetry group is U(2) for the ungauged theory, but the Fayet-Iliopoulos term,
which depends on the AdS radius ¢ as P o« 1/¢ in the SU(2) sector, explicitly breaks the R-
symmetry to SO(2) for AdS, supergravity. The graviphoton is an Abelian gauge field and
gravitini are Majorana spinors. The conventions on fermions can be found in appendix A.2.

A geometric formulation of the theory in N' = 2 superspace, in the presence of a
negative cosmological constant and allowing for non-trivial boundary conditions, was given
in [27].19 In that setting, the field content is expressed in terms of 1-forms in superspace
MA*2 that is, by the supervielbein 1-form (V*, Wy), defining an orthonormal basis of
N = 2 superspace, the Lorentz spin connection 1-form &% and the 1-form graviphoton
gauge connection A.

Let us remark that the whole analysis in the present paper is presented within a
spacetime approach to supergravity and not in superspace. However, to make contact with
the results of [27], to which we generally refer for the description of the bulk setting, in
this section we will first present the results in the geometric superspace approach and then
translate them into the spacetime approach.

In the geometric approach [39, 40], the action is written as an integral of the Lagrangian
4-form over a bosonic subspace M?* c M*2, that is

- / c. (3.1)
MACMAZ

This is because, in the geometric framework of [39, 40|, the Lagrangian 4-form is invariant
under general coordinate transformations in superspace and supersymmetry transforma-

10We shall adopt the notation of [27] where, in particular, the metric is mostly minus. With respect to that
paper, however, here we made some changes which make the formulas more transparent and better adapted
to match the notation in three dimensions. More precisely, the four-dimensional Lorentz spin connection

and curvature are defined with different symbols and extra minus signs: w® — —%, R® — —R% and
1
V2
four as well in three dimensions and redefine the constants appearing in the quoted paper as L = % and

% =2e= % =4/ —%, where A is the cosmological constant and ¢ is the AdS4 radius.

the graviphoton gauge connection with a prefactor, A — — A. We will use Majorana spinors both in
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tions on spacetime, which are associated, as we are going to discuss below, with diffeo-
morphisms in the fermionic directions of superspace; one can thus exploit “general super-
coordinate transformations” to freely choose, as the bosonic submanifold of integration
in superspace, any M* C M*? (see also [41] for details on this point and [42, 43] for a
geometric formulation of supergravity based on integral forms which allows to write the
superspace action as an integral on a supermanifold).

The bulk Lagrangian 4-form for the pure N’ = 2 theory is given by!! [27, 44]

1 _ 1 _
L0 = SRV egeq + T TalspaV + 5 (F +5 0wl AB) TTs0Pecp

i —A aysb 1 ay/by ey d

_ - 3.2
Y, v Fab].“5\I/AV %4 852 Vevevey €abed ( )
1/= A 1 -~ =

+ 1 (chvava _ ﬁ ,FlmFlmVavach) €abed

where we will generally omit writing of the wedge product in long expressions to lighten
the notation. This Lagrangian is written in a first order approach for the gauge field A.

A consistent definition of the action in the presence of non-trivial boundary conditions
requires the full Lagrangian to include a boundary contribution [11, 45], that is

L= ﬁbulk + ﬁboundary ) (33)

The boundary term has to ensure both a well-defined action principle (for suitable
AAdS boundary conditions) and the regularity of the full action in the asymptotic region.
Holographic techniques renormalize a gravity theory in a covariant way by cutting of the
spacetime at the finite radius z. The variation of the action is expressible in terms of the
variation of the sources at the conformal boundary. Due to the asymptotic behaviour of the
fields, the variational problem on the boundary sources induces infinities which have to be
cancelled by the introduction of counterterms. Asymptotic regularity, then, is dictated by a
well-posed variational principle [46]. Holographic renormalization was first introduced in [8]
and further developed in [4, 9, 10], while the counterterms for Einstein-Hilbert AdS gravity
were obtained in [47-50].!2 The prescription has been applied to supergravity theories, as
well, in particular for computation of the superconformal anomaly [7] (for computations in
the field theory side see, e.g., [51, 52]).

In our context, it is more convenient to adopt a geometric approach to the renormal-
ization problem, originally formulated in [16-18], which considers the addition of the topo-
logical Euler-Gauss-Bonnet term to the bulk gravity action. The corresponding coupling
is fixed by demanding the vanishing of the AdS curvature on the boundary. In [14, 15]
it was shown that adding this topological term in four dimensions is equivalent to the
holographic renormalization program.'® Since the method is deeply rooted in first order

"'The precise definition of the hatted and tilded quantities in (3.2) can be found in equations (3.7)
and (3.14).

2However, the counterterm prescription given in these references does not deal with the logarithmic
divergence coming from the bulk action.

13This renormalization procedure also allows to make contact with the concept of Renormalized Volume
for asymptotically hyperbolic spaces in a more mathematical framework [53].

~19 —



formulation, clearly it is particularly suitable for embedding holographic renormalization
in supergravity and specially within the geometrical approach in superspace.

A generalization of the approach to the supersymmetric case was given in [27] and
analogous results for the ' = 1 case were previously obtained in [6]. The supersymmetric
extension of the Euler-Gauss-Bonnet term is unique for a given theory with N supersym-
metries, and it is a total derivative, corresponding to a boundary term taking values in the
fermionic directions of superspace. It is still an open question whether there is a topologi-
cal index in the superspace associated to this invariant. A useful tool to face this problem
could be the integral form approach in superspace developed in [42, 43].

For the case at hand, the boundary Lagrangian is given by the supersymmetric gener-
alization of the Euler-Gauss-Bonnet term,

(s i i -
[houndary _ - (R“bRCdeabcd n %ﬁAF5ﬁ A ?lnabqﬁ‘rabmp At g—;dA T 0B AB) .
(3.4)
The supercurvatures appearing in (3.2) and (3.4) are defined by
R™ = do™ + &% A @, (3.5)
. 1 - 1 1 -
pa =D,y — 2714@43 ATB =0, + Zrabw“b ATy — ?EAEAB ATB (3.6)
F=dA— 3" A0Beyp. (3.7)

Most notably, the same full Lagrangian can be equivalently rewritten in terms of the
OSp(2]4) curvatures, which are defined as

N A 1 1 —
Rab — Rab - Vavb = (SAB\I’AFab\I/B ,

2 20
R — PYe — %@Ara\y A, (3.8)
i
Pa=pa— 5 SapT,WBVe,
F=F.

When expressed in terms of the supercurvatures (3.8), apart from subtleties related
to the extension of the action integral to superspace (see [42, 43]), the full Lagrangian
acquires the following form & la MacDowell-Mansouri [19], that is quadratic in the super
AdS curvatures FA = (f{a, R, DA, ﬁ’),

2 . . 1. .
L= ng“b A R ped — MﬁArg, ANpa+ ZF AN*F
1
= 5FA AnasF~. (3.9)

The quantity *F' denotes the Hodge-dual on spacetime of the field strength F, namely

“fr= *Fﬂ,; dz? A dz” = €L po fPo dz” A dz” , (3.10)

N | =
=~ o
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and the 4-form Lagrangian (3.9) depends on the fields ®* = (V, &%, W 4, A) only through
their field strengths F*. The matrix n,y, in the last line of (3.9), can be schematically
written as nyy = diag(0, —% €abed — 210CT'5,* ) and it is a Lorentz invariant (but not
OSp(2]4) invariant) tensor.

It is worthwhile emphasizing that, because of this (as observed in [19] for the case of
AdS, gravity), the action (3.9) is not invariant under local OSp(2|4) transformations, even
though the super AdS curvatures (3.8) are covariant with respect to that supergroup. This
is in fact the supersymmetric extension of what was found for AdS, gravity in [14], where
the topologically renormalized action including the Euler-Gauss-Bonnet term was cast in
the MacDowell-Mansouri form [19].

The super AdS curvatures (3.8) satisfy on-shell the Bianchi “identities”

. 2 a1
DR® — E—V[“Rb] + Z\I/AfabﬁA,
DR = RV + 0" ra ,
’ pa (3.11)

. 1 1. 1
Dt = = AcABpy — LTV 4 SRy, — S PAPY, + T uA R
Pr= AT P gtV Rl A = ST

dF = 26480 4 p .

Let us recall, here, some basic facts about the geometric approach to supergravity intro-
duced in [39, 40], also known as “rheonomic approach” to supergravity. First of all, it
is a superspace approach, which means that the fundamental forms are given in terms of
superfields that are functions of all the coordinates of superspace /\/l4|2(xﬂ,90“4), where
2" are commuting bosonic coordinates while §%4 are fermionic Grassmann coordinates

(e =1,...,4 denoting spinor indices), namely
Ve(z,0) = V% (x,0)da’ + V4 4 (x,0)d0**
&®(x,0) = &% (x,0)da’ + Oy (x,0)d6" (3.12)
Ui (x,0) = Uiy (x, 0)da + U (2, 6)d677
A(x,0) = Ay(x,0)da” + Aya(x,0)dO°4 .

They are related to the corresponding spacetime quantities
R . R . A A N R R R
Vi(z) =V (z)dz, o%(z) = wgb(a:)dx“, U (z) = VUi (r)da", A(z) = Ap(z)dzt,
by the restrictions

= V,0)lg=ap—0 = V(z,0)da"
™ (2,0)]p=a0—0 = & (x,0)da’ |

= U(z,0)|g=a0—0 = ¥} (x,0)da’,
= A(z,0)|g=a9=0 = Ap(x,0)da? .

(3.13)

Given the above setting, the theory on superspace can in principle contain extra dynamic
information with respect to its projection on spacetime.
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For the theory extended to superspace to have the same physical content as the theory
on spacetime, some constraints have to be imposed on the superspace supercurvatures.
This is what in [39, 40] was named a set of rheonomic constraints to be imposed on the
parametrization of the supercurvatures.

To clarify this point, let us first emphasize that, since the supersymmetry algebra
closes only on-shell on the supergravity multiplet (we are not including auxiliary fields in
the supermultiplet), then the Bianchi identities (3.11) are not, in fact, identities, but have
instead to be understood as relations among the superfields and their curvatures, which are
satisfied on-shell. This is realized by requiring that the supercurvatures, which are defined
off-shell by (3.8), have to be identified on-shell as particular 2-forms on superspace, i.e. they
get a parametrization on a basis of 2-forms in superspace, whose expression is uniquely
determined by requiring that the relations (3.11) are satisfied. In the expansion of the
curvature 2-forms in superspace along the supervielbein basis, the rheonomic prescription
requires that the outer components of the supercurvatures must be expressed, on-shell, as
linear tensor combinations of the inner components (the “outer” components are defined
as those having at least one index along the ¥4 direction of superspace while, when the
only non-vanishing components are along the bosonic vielbein, they are called “inner”).
From the physical point of view, this means that the outer components do not contain
extra degrees of freedom besides those already present in the spacetime description. The
constraints discussed above turn out to be physically equivalent to the on-shell constraints,
that is to say, to the equations of motion. This is the way in which the on-shell closure
of the supersymmetry algebra is implemented within this approach through the Bianchi
identities.

Let us emphasize that in this approach, which is the one adopted in [27], it turns
out, as shown in [39, 40|, that the supersymmetry transformations on spacetime of the
fields correspond to diffeomorphisms in the fermionic directions of superspace, which can
be expressed through Lie derivatives in those directions (a very nice recent review of the
geometric approach to supergravity can be found in [41]). In the explicit evaluation, one
should keep in mind that the expressions for the curvatures which hold on-shell, where su-
persymmetry is realized as a symmetry of the theory, are the (rheonomic) parametrizations.
A short account of the prescriptions on the supercurvatures in the geometric approach can
also be found in appendix A of [27].

In the case at hand, the on-shell (rheonomic) parametrization of the supercurva-
tures (3.8) results to be given by the following expressions,

A

R?=0,
F = F,Vove,
: i ) ]
pt=pAvevt - %F“\IIBVbFabeAB — §F5ra\vab *FupeP (3.14)

A ~ — 1— ~ 1 ~
R = RAGVVE - 0% WAV~ 5 a¥peapF - %\I’Al“g,\IlBeAB * frab

where the spinor-tensor @fgb “is given by eq. (C.5).
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Note that the quantities Rcd, ﬁfb and Fy, appearing in the parametrizations (3.14),
are the so-called supercovariant field strengths and they differ in general from the spacetime
projections of the supercurvatures, that is R 0 #F 2R ViV, ﬁﬁy #* 2pab Ve Vb However,
since in the present case the parametrization of F takes contrlbutlon only from the 2-bosonic
vielbein sector, we have f‘ﬂ,; = 2Fab V‘}LV%.

Taking the above discussion into account, the transformation laws of the bulk fields
with respect to the symmetries of the action, which are diffeomorphisms, local Lorentz
transformations, supersymmetry and U(1) gauge transformations, whose corresponding
parameters are p®, 7%, ¢4 and X respectively, read

SV = Dp" — 'abvb +ieal*w?,
5@0]) D]ab + = E [avb] + 2Rab dpch + @AlchApc + = ; AFab\I’A
— ®A| AVe 4+ eABFab\IIAeB +ielB *Fab\I/AI‘5eB ,

1 ~
o = — 2 T 0 — 27 LU + 250"V + 5 F“\IJprFabeAB

~

1 A N
+ §F5F“\IJB “FopPef + Z eABUp 4 Ded — A AB ¢

20 20
~ 1 ~
2% T,edve — %EABFabeF“eB -3 AB*F DT %pV?
SA=d\+ 2B p + 2 Fyp?V?0. (3.15)

The latter generalizes to the supersymmetric case the transformation laws (2.6).

In this framework, the supersymmetry invariance of the Lagrangian is expressed by
the vanishing of the Lie derivative of the Lagrangian for infinitesimal diffeomorphisms in
the fermionic directions, that is, 6.L = £.£ = 1.dL + d(2£) = 0. When the spacetime
geometry has a non-trivial boundary dM where the superfields do not vanish, then the
condition L]y = 0 is non-trivial and determines the precise expression of the boundary
contributions to the Lagrangian necessary to preserve supersymmetry invariance.

Let us finally write out the equations of motion of the theory. They can be derived
equivalently from the bulk Lagrangian (3.2) or from the full one (3.9), the two expressions
differing by the Bianchi relations (3.11) which are satisfied on-shell.

Using the bulk Lagrangian (3.2) for the variations, one finds

00" V'Repea=0 = R*=0,

1 . — . PO e
I T, Tspa + *Fop VO — o5 FTE VIV eqpa = 0,
SO . 20, VTspa — eapWB*F +ieap FT508 =0, (3.16)
SA: d*F —2ieBU T5pp = 0.
Considering instead the variation of the Lagrangian (3.9), which includes the boundary
contributions, the Euler-Lagrange equations formally read

Y s oL OFF
SPA OF>  pdA

. ) or
= D(Fe)50 1 d ( aed 5@2) (3.17)
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where D denotes the OSp(2|4)-covariant derivative (not only Lorentz and gauge one),

that is
oL

_ (A= 2 A 5% _
51 = /D(F ax) 60° + /aFE 567 — 0. (3.18)
M4 oM

Invariance of the action implies, in all the bulk superspace, the field equations

. [ OL LS
D <8FA) = D(Fnpg) =0, (3.19)

together with the boundary conditions

oL

SFS §0%|gpg = F npx 69 |op = 0. (3.20)

Explicitly, as far as the bulk field equations (3.19) are concerned, we find that the equations
of motion for the vielbein and the gauge field have the same expressions given in (3.16)
as before, while the ones for the spin connection and for the gravitino get replaced by the
(equivalent) expressions

1 ~ ~ _
S - —§DRCdeabcd+i\IlAFabF5ﬁA:0, (3.21)

_ V4 A . ~ .

T 1ra”qf AR e pod—2UT5Dpa+iTs Ae o ppB+T,VoTspa—eapUB* F=0. (3.22)
In our case, on the boundary we have in general 6<i>z|a M # 0 and the boundary conditions
resulting from (3.20), when expressed in terms of four-dimensional superfields and their

derivatives, look like Neumann boundary conditions on the supercurvatures (3.8),
ﬁab‘aM:O, ﬁA‘aMZO, ﬁ‘|8/v[:07 ﬁabM:O. (3.23)

However, let us recall that we have Dirichlet boundary conditions for the holographic fields
which, because of spacetime being asymptotically AdS and given the fall-off of other bulk
quantities, also implies the vanishing of the supercurvatures.

Thus, to preserve supersymmetry, the OSp(2|4) supercurvatures (3.8) are constrained
on OM to their vacuum values (3.23), which are indeed the Maurer-Cartan equations
of a rigid OSp(2]4) background. Note that OSp(2|4) is also the supergroup of global
superconformal transformations on A/ = 2 three-dimensional superspace, so that the above
relations can be understood from the boundary point of view, in light of the AdS/CFT
duality, as the conditions for superconformal invariance of the theory at the asymptotic
boundary.

Let us finally mention that, in the geometric approach, in order to obtain the space-
time Lagrangian, one has to project the 4-form Lagrangian from superspace to spacetime
(defined by the 6 = 0, df = 0 hypersurface M*), namely, to restrict all the superfields, in-
cluding the bosonic vielbein V* and the gravitino W, 4, to their lowest (#“4 = 0, d§*4 = 0)
components.

In the rest of this paper, we will restrict our analysis to spacetime.
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4 Near-boundary analysis of the supergravity fields and local parameters

In the present section, we are going to apply the holographic techniques combined with
the topological terms, outlined in section 2, to the 4D supergravity theory presented in
section 3.

Given the pure, N’ = 2 supergravity theory, we can deduce the symmetries of its holo-
graphically dual QFT in a similar fashion as described in section 2 for AdSy gravity. The
laws (3.15) now depend on the local parameters p®, j. X and €4 and we will use this
freedom to fix the Lagrange multipliers associated with the radial components of the fields.
For the Maxwell field, A, is not a multiplier, but a non-dynamic variable. Keeping in mind
that the A/ = 2 pure supergravity should, in principle, be able to describe holographically
both the standard SCFT and the holographene-like unconventional supersymmetric sys-
tems [28-30], we will fix the multipliers as generally as possible, focusing on our particular
case only starting from subsection 4.2.

We have to choose a suitable gauge that generalizes (2.7). The asymptotic behaviour
of the vielbein in the supergravity extensions remains the same as for gravity because it is
determined solely by the metric (2.1). Since the gravitini source the torsion field, we can
evaluate the asymptotic behaviour of the spin connection in supergravity from the vanishing
supertorsion condition in (3.16), as explicitly worked out in appendix B.1. Similarly, the
gravitini also act as a source for the electromagnetic field, which determines the fall-off of
the graviphoton connection, that was discussed in appendix B.3.

It remains, thus, to analyse the asymptotic behaviour of the gravitini. To this end, it
is convenient to express them in terms of chiral components with respect to the matrix I'3:
U = W, + U_, where the eigenstates U of the matrix I'® are defined by eq. (A.17). The
conventions of gamma matrices are given in appendix A.2.

The asymptotic behaviour of the gravitini is determined by the supertorsion con-
straints, associated with supersymmetry both in four- and three-dimensional spacetimes.
As a consequence, we are interested in gravitini whose fall-off is ¥, = (’)(zﬂ/ 2) and
U, = O(z*/2), as introduced in [29]. From a group theoretical point of view, the same
result is obtained from to the request of covariance with respect to the OSp(2|4) group
(which describes superisometries of the bulk supergravity and superconformal transforma-
tions on the boundary), which in particular implies, as we will discuss in general terms
in subsection 5.1, a definite scaling (£1/2) under the subgroup SO(1,1) C OSp(2|4) that
parametrizes radial rescalings in the bulk and dilations on the boundary. This is better
written as

z $% z +3
Ve = (3) oasle ), Wi = (5) panen), (11)

where the Majorana fermions ¢ 4,4+ and p4.+ are regular functions at the boundary and
can be expanded as power series in z. The second relation in (4.1) is consistent with the
condition that singles out the spin 3/2 components in the gravitini,

T, VA, =0, (4.2)
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that in the FG frame (2.1) reads
(D'%a,), V¥ + (T304) VFy = 0. (4.3)

We do not use the above equation in our calculations. If we relax it, though, then more
general asymptotics for the gravitini components ¥ 4,4+ can in principle be considered. An
exploration in this direction could be relevant in view of our interest in unconventional
supersymmetry in a holographic SCFT.

Since W4,+ and the transformed field W 4,4+ + 6. W 4,4, given by (3.15), have to be of
the same order in z, we have that 6. ¥ 4,4+ ~ @#eAi ~ €4+ are of the same order,

€A+ = (;)jFé Hat(z,2), (4.4)

where again the Majorana spinor H 44 (z, z) is regular on the boundary.

Regarding the bosonic fields, @/ and A have scaling zero with respect to SO(1,1) C
OSp(2[4), while V%, &% do not have a definite scaling. To make this manifest in the super-
symmetric theory, it is convenient to define also bosonic quantities with definite SO(1,1)
scaling near the boundary. They are

Vi, = % (e £ V1), (4.5)

where Vj has scaling +1 and V? scaling —1. They behave asymptotically as

i AN
V:tu = (g) E:I:u(mvz)7 (46)

where the regular functions E% have the following power expansion in z,

2 Qi _ Qi 3 i _9xi
ZS#SHzT”QT

Bl = By + o “ho g o T 0,
i 02 i zTi + 271
E', = —ESLL—Z%—FO(ZZ). (4.7)

Unless stated differently, all regular functions on the boundary that appear here,
f={w!, w, PAut+, PAz+, Hax, ...}, are generically expanded in a power series

e’} n 2
f@2) =Y (3) fw@ = fo@ + 3 @+ S @+ (43)
n=0

Using these conventions, the asymptotic expansion of the spin connection is computed
in appendix B.1. It is found (see egs. (B.7)) that a suitable gauge fixing which includes
gravitini has @% # 0, but it is still subleading on the boundary. We choose arbitrary
functions @2 = w'(z, z) and @Y = 2 w"(z,z) in such a way that they are consistent with
the vanishing supertorsion condition, but we treat them off-shell as independent variables

in first order formulation of supergravity.
In order to ensure that the gauge fixing of A, is consistent with the supergravity

dynamics imposed later, it has to satisfy the radial component of the graviphoton equation
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in (3.16), which is shown in appendix B.3. It turns out that having two independent
components ¥ 4,4 is too restrictive in the context of holography because it would not allow
the components of the gravitini on OM, 90’;‘#, to be the only source of the electromagnetic
field, 7 = dA on OM, which would be a behaviour similar to the one in Einstein-Maxwell
gravity,

IAT‘W =0 = Fu =4eaB @ﬁwpi,] , (4.9)

and have the U(1) gauge parameter finite on M, namely A= O(1). Then, as explained
in appendix B.3, the leading order of the component flz, denoted by EA(_I)Z’ is related
to the leading order of the component W_ 4., that is the function ¢_4.(). The general
solution given by eq. (B.49) requires that either both functions vanish, or A(_1). to be
constant and ¢(g)— 4. determined in terms of it.

If we are interested in a theory consistent with supersymmetry on the boundary, we
have two options. The first one is to relax the gauge fixing of ¥4, by imposing the
stronger condition

Uy, =0. (4.10)

The second one is to change the asymptotic structure of the U(1) sector, allowing for a
divergent leading contribution in A..

In sum, the results of appendix B.1 and B.3 show that the holographic gauge-fixing
conditions on the local parameters p®, j%, X, e4 in AdS space have the form

3 ¢ i3 . z i%
Vz = > w; - wz(xaz)v Vig, = (€> (P:tAz(x;Z),
< ) (4.11)
i nij _ F g A z 3
Ve, =0, wy :ij(x,z), AZ:;A(,l)z(:z)—l—zA(l)z(:c)—f-O(z ),
where we can distinguish particular cases
Ve 420 = A, =0(1/2), w'=0Q1), w’=0(1),
U, =0 = A, =0(), =00z, v/ =00), (4.12)
U..=0 = A, =0(), w' =0, w = O(1)

Because now the gauge-fixing functions also depend on the radial and boundary coordi-
nates, they can be power-expanded using eq. (4.8), and for the fermions we use the notation

z A 2 (¢4
\1le = \/;goﬁz(x,z) = [<¢az> + 7 <<J62> + @(22)1 ,
N O s

It is important to emphasize that we assume that the gauge-fixing functions \I/f(m) and

|

=
RS
(S
w0
—
\’R
N
S—
!
N |

A, (z) do not transform under local transformations. This is equivalent to the statement
that their transformation law can always be reabsorbed in higher-order terms of the asymp-
totic transformations. In contrast, the quantities w’(x) and w® (x) introduced in (4.11) do
transform, because on-shell they have to allow for the vanishing supertorsion condition.
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However, in first order formalism we treat them off-shell, thus they enter at the same foot-
ing as other gauge-fixing functions, with the only difference that we do not require them
to be invariant under residual transformations. Indeed, using explicit expressions given by
egs. (B.6) and (B.7) of appendix B, it is straightforward to check by varying the supertor-
sion that dw’, Sw” # 0 and that we can always set w’ = 0 consistently (with dw’ = 0), but
if w’ # 0, then dw’ # 0 as well, otherwise imposing it would break all asymptotic symme-
tries. The same is true for w”. Nonetheless, dw’ and Jw¥ always appear at higher-order
and they do not influence the near-boundary expressions.

The conditions (4.11) produce the following generic asymptotic behaviour of the bound-

ary fields,

i o 2 i 2 i 3

VM:;EN+ZSN+E7TM+O(Z)7

. 1 . 2z o~ 22’2 .

A3 7 7 ~1 3

wﬂ—;Eu—g—QS“—TSTH—FO(z),

d)ij—wij(ac z)—wij+§wij —|—Z—2wij +O(z3)

wo T a2 Ty (W g2 (2 ’
2

. z z

AM = Au(az, Z) = A,u + Z A(l),u + ﬁ A(z)# + 0(2’3) R (4.14)

A o (A 52 (1A
Ty = és@,ﬁ(wa 2) = \/E ng*) +7 (C*é*) + (Hg+> + (’)(z?’)] :
Vi = \/jwﬁ—@,@ = \/i Ké_) - Z(é_) + O(zQ)] :

where all functions defined on M are finite at z = 0. The fermions acquire a half-
integer power expansion in z because their bilinears, which arise from the supersymmetry
transformation of the bosons, have integer power expansion in z. We also allow for the
linear terms in z, absent in pure AdS gravity, because in principle they could be switched
on by the supersymmetric partners.

Even though the supertorsion is zero, the torsion T does not vanish, so that @Zb cannot
be entirely determined by the bosonic vielbein. In particular, the relation @23 ~ % Vi“ at the
leading order (see appendix B.1) is inherited from the Riemannian geometry (K, ~ % Guv)-

The subleading terms in the expansion S’iu and 7', are different from the Riemannian

0

counterparts Siu and 7 in the supersymmetric case. The boundary Schouten tensor is

m
now defined as

, 1 . .
S, = E(SlujLSZM), (4.15)
which is the gauge field associated with special conformal transformations, as we will
identify at the end of this section. Similarly, we will later see that —(77, 4+27",)/¢ becomes
the holographic stress tensor, up to the fermionic terms.

Notice that now there is an obstruction to symmetrize Si# and the holographic stress

tensor because the terms Siu and 7' are not a priori symmetric in the presence of the

w
gravitini.
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4.1 The Schouten tensor in d = 3 and its superconformal extension

We already saw in previous sections that the Schouten tensor plays an important role in
pure AdS gravity, as it describes the first near-boundary correction of the metric given by
eq. (2.3). From the CFT side, it arises as a component of the superconformal connection,
as shown at the beginning of section 5. In this paragraph, we will focus on its geometric
properties derived in the context of conformal gravity (for a review, see [54]).

Consider a d-dimensional manifold characterized by a metric g,,, and a torsionful affine
connection I"\W = F/’\W - K ’\W, where F;\W is the Levi-Civita connection and K* uv is the
contorsion tensor K /\W = gp’\ (Tpuw + Tpvp — Tywp). Here, TW’\ = F’\[W} is the torsion
tensor. Then the Schouten tensor obtained from the conformal constraint equation on the
conformal curvature components is defined by [54]

1

SLV:RV — 577 aN
! a 2(d —1)

G R, (4.16)
where R, and R are, respectively, the Ricci curvature tensor and the Ricci scalar con-
structed from the torsionful affine connection I‘)‘W. This formula coincides with (2.3) in
pure AdS gravity: in that case the Ricci tensor is symmetric and this implies that S,
is also symmetric. In presence of torsion, the Schouten tensor has both symmetric and
antisymmetric parts,

1
Stuv) = Ry — 5d=1) guw'R,

S[ = R[;w] . (4.17)

]

In particular, in d = 3, we can explicitly evaluate its symmetric and antisymmetric parts as

2 1 ° 1 ~ ~\ ~ ~ ~
Stu) = R = 3 9wR = 5 9w TNT + T,T, + Ty (T b =T, AP) — T,
1 77 1 A A =
- §guuT/\po (2 Tre + T a'p) - V(MTZ,) + 2V)\T(N V)
S[uu} =7 (Tuz\u + T;w/\ - Tu,\u) + QTAP[VTM)W + V)‘TIW)\ + V[MTV] , (4.18)

where we have also exploited the trace decomposition of the torsion tensor 7},,"” = o Ty +
T,,”, with Ty and T’y ,~ 1ts trace and traceless parts, respectively. Here, V = V(I") denotes
the derivative with respect to the Levi-Civita affine connection and 7°€W and R are the
Ricci tensor and curvature scalar of the Levi-Civita connection, respectively.

When the torsion is non-vanishing, such as in presence of fermions, in general we have
S # 0 and the symmetric part S(,,) acquires the torsionful term.'* Thus, we expect
that, in the context of supergravity, the “super-Schouten tensor” (4.15) is not symmetric
and that it is a superconformal extension of the expression (4.17).

The equations written above are general, valid for any Riemann-Cartan manifold.
In our particular case, we have the following quantities that arise from the asymptotic

1The antisymmetric contribution is still vanishing in the special case where the torsion contains only
one component, the trace T, which should be also covariantly constant.

~ 99 —



expansion,

Suu = EiuSiy ) Tuv = Ei;ﬂ_iy )
S’/uz = Eiugiy 5 7~'ul/ = Eip,%iu ’ (419)
S = Ei,S', .

It can be shown from eq. (B.6) in appendix B.1 that, when gpé . = 0, the tensors S;w and
Tuw acquire the form

S = Sup = LBy A+ [uP(0)—) T P (0) 4+ L) P{0) 42 »

~ 7_“1/ + 37_11# £

Tw=—"—"7p T3 <_¢A+[u¢éu] + i@i(MFV)QOA—l-z) ; (4.20)

1)
where the last line is relevant for the holographic stress tensor, whose direct relation to
Tuv + 27, will be shown in section 5.

It means that, even if we symmetrize S, and 7,, by suitable gauge fixing of the
residual Lorentz transformations, the fermions 44, become an obstruction to make the
tensors S;w and 7, symmetric for arbitrary 144, because of the following form of their
antisymmetric parts,

& — A
Stu) = S = LP(0) A+[uP(0)—1] »
B 1 l A _ A
Tl = 5 T — 5 (PO)A+1P 0] + P)ALP{0)—11) - (4.21)
Focusing on the Schouten tensor (4.15), we find, for its generalization to the supercon-
formal case, what we will refer to in the following as “super-Schouten”,

2 1_ A 1 A
Sur = 73 Sw) ~ 5 POAHEP0) -] T 5 PO A+ ) P(0)+= (4.22)
which implies
2 i B
Suv) = 72 Stw) T 3P A+ ) P0)+2 5
1_
S = =5 PO A+P0) ] - (4.23)

This result matches eq. (4.18), showing that the symmetric part of the super-Schouten

tensor contains not only the metric term, S but also the fermionic terms. In addition,

uv)>s
the antisymmetric part does not vanish for arbitrary fermions v+ ,. Therefore, we are not

able to symmetrize the super-Schouten tensor, as this procedure would lead to conditions
on the leading terms of the boundary gravitini, which have to remain unconstrained.
Similarly, the term relevant for the holographic stress tensor,

- _ A — A
Tuw + 2T = 3T() + £ (—%0(0>A+W<1>7u1 ~ PO)AHEP(0) -]
A i A %
+ 80y +(uEnlivyars + 1@(0)+(HE1,)FW(1)A+Z) ; (4.24)
is not symmetric in general,

~ _ A — A
T + 27) = =€ (P0) 4418y + Py a+(uP{y-v)) - (4.25)

We will discuss more about symmetry of the holographic stress tensor in section 5.
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4.2 Field transformations and asymptotic symmetries

So far, we have chosen Lagrange multipliers and other non-dynamic variables (4.11) that
generate the asymptotic expansion of the fields (4.14). In this and in the following section,
we will focus on the case with W4, = 0. A stronger condition ¥ 4,1 = 0, referred to as
‘FG gauge’, was considered in [6] in the context of N' =1 AdS, supergravity. An advantage
of having W 4,4+ # 0 is to provide more freedom that could be used to simplify complicated
fermionic expressions. We will see, though, that the presence of this particular field would
not modify the asymptotic behaviour of the theory.

Boundary conditions on the curvatures. The OSp(2|4) supercurvatures vanish at the
boundary in asymptotically AdS space, as expressed by the conditions (3.23). In particular,
the supertorsion vanishes exactly and its consequences are discussed in appendix B.1. The
other supercurvature conditions at the boundary, whose explicit expressions are given by
eq. (5.3) in subsection 5.1, boil down to the following constraints on OM,

A )
DE' — S 2 A bar =0,

. , 21— .
R”—2EVAsﬂ—Z¢£A¢wm_:o,
i

;B A =0, (4.26)

Vi +
where R is the Riemann curvature tensor 2-form at the boundary and S? is the boundary
super-Schouten 1-form defined in (4.15).

The first equation ensures the vanishing boundary supertorsion, by fixing the boundary
torsion T = DE’ in terms of the gravitini. The second equation involves the boundary
Weyl tensor W% = R — 2 Eli A 89 and it can be interpreted as the super Weyl tensor
that vanishes on the boundary.

All three equations can be explicitly solved in the boundary fields w¥, S* and ¥A4.
While the spin connection has been solved in appendix B.1, here we focus on the other
two composite fields. Using the gamma matrix relation v,, = v,7, — guv, from the third
of (4.26) we get the conformino,

Y4
w—Au - _% 6AVp7A7uvuw+Ap ; (427)

while from the second one we solve the super-Schouten tensor,

1 1 /— — 1 —
SW =Ruw—~ guwR— 7 (¢+Ap7puw—z4u _w-f—Au’Ypuw—Ap D) 9#V¢+Ap7p)\w14>\) . (4-28)

4
We see that the above tensor is indeed a superconformal extension of the expression (4.17).
This result implies that the super-Schouten tensor Siu and its superpartner, the con-
formino v_ 4 ,, are not independent sources on dM, since they can be expressed in terms
of the supervielbein (Eiu, Y44 ,) and their curvatures.
At the end, let us comment that, at first sight, it looks like we are dealing with
several different expressions for the Schouten tensor. Its definition (4.15) has a geometric
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origin, as explained in subsection 5.1, and it is a component of the d = 3 superconformal
field associated with the conformal boosts. From the point of view of the D = 4 bulk
fields, it comes from the vielbein and the spin-connection combined in the negative grading
quantity with respect to O(1,1) C SO(2,4) dilations. The vanishing supertorsion condition
leads to the R-independent kinematic relation between the super-Schouten tensor (4.22)
and S,y in the superconformal case. In contrast, the asymptotically AdS condition and
the vanishing supercuvatures on the boundary (4.26) lead to the R-dependent Schouten
tensor (4.28). Matching these two formulas expresses S(,,) in terms of the boundary
curvature R, plus the fermion bilinears, that has to be fulfilled on-shell. In pure AdS
gravity, for instance, it comes down to the known relation S§,, = e% Sw =Ruw — %gm,R
obtained by solving the Einstein equations near the boundary. Thus, two equations have
different origin, but they have to be consistent on-shell.

On the other hand, the definition of the Schouten tensor (4.16) is the one usually found
in the literature [54], obtained from the conformal constraint equation. The superconformal
version of this constraint leads to the super-Schouten tensor (4.28) found in our case,
together with its superpartner (4.27).

Rheonomic parametrizations. The transformation laws (3.15) depend explicitly on
the contractions of the supercurvature. A proper way to account for all contributions
requires to know the near-boundary behaviour of the rheonomic parametrizations that
appear in egs. (3.15).

The simplest way to proceed is to project the expressions (3.14) for the rheonomic para-
metrization of the supercurvatures on the spacetime manifold and identify their asymptotic
behaviour with the one of the spacetime projections of the supercurvatures (3.7). One can
start from the U(1) field strength, whose parametrization in (3.14) in the case at hand takes
value on the 2-vielbein component only. One then proceeds to find ﬁg‘b from the curvature
of the gravitino, which can be further used to compute @Zﬁc and Rabcd in the last of (3.14).

Following this procedure, we determine the asymptotic behaviour of all the superco-
variant field strengths, whose derivation is fully carried out in appendix C. The asymptotic
expansion of F, and ﬁg‘b leads to

[ = 1 /2\?
Fyj = 0(z%), Fa= =5 (5) AwnBt +0G),
3
Z 7 L (z)2 4.29
,023'_,_ = O(z5/2)’ pg—i— — fﬂ (£> E;‘q?_i_ + 0(25/2)’ ( )
ph_ =0, pA = 0(?).

In order to find a radial power expansion of R, one needs the @%"c coefficients, which are
found by inserting (4.29) into the definition (C.5), as shown in appendix C. After lengthy
but straightforward calculation, one obtains

~ i z 2 v A i i
R Sjk = BYi (E) EGEk]¢u+ ('Y CAvy + 'YZCAPJrElVE p) + 0(33)’

o —— 2E“ wi g yliEie + O(23)
k3= "5\ 7 E\“Mu pt Av+ )
RPj3=0("), RV =0(z"). (4.30)
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It is worthwhile noticing that all expansions (4.29) and (4.30) are subleading in z and,
when they are slower than O(z%), this is due to the presence of wé{)u and Cﬁ‘+. We will
show below that the higher-order residual symmetries can be used to cancel out such linear
terms, similarly as in pure AdS gravity.

Residual symmetries. We look for the residual symmetries of the form (3.15) that leave
the gauge fixing unaltered on the boundary,

VL =0, 67 =0(z2), 608 =0(:?), 064,=0, Ui, =0. (4.31)

The non-dynamic fields in (4.11) are functions of the boundary coordinates through w?,
w", o, 4, and A,. In (4.31), we assume that flz(:v) and ¥ 4.(z) do not change under
general coordinate transformations, even though they depend on z#. We will show that
this assumption will not break the boundary symmetries, but only modify subleading pa-
rameters. On the other hand, the functions w*(z) and w% (z) change under the coordinate
transformations because, on-shell, they have to satisfy the supertorsion constraint. In
fact, it would have been more natural to allow all xz*#-dependent quantities to transform
non-trivially under boundary coordinate transformations, but we do not account it for
simplicity. Allowing the fields A, and W, 4, to transform might be related to the uncon-
ventional supersymmetry on the boundary discussed in [28, 29], where a spinor x(x*) arises
from the gauge fixing of the gravitini [31].

The corresponding parameters can be expanded as in eq. (4.8), where we keep the
same notation for the leading orders of the bosonic parameters as in (2.46),

i Lz 2 i 3
P —;f + 5Pyt 53 Ploy + O7),

14 Iz
3 Z 3 2 3 2 3 4
p :—£0+Zp(1)—|—?2p(2)+?3p(3)—I—O(z ),
:ij ij | % id 2 2 i 4
]j:9]"‘?]({)+£*2J(%)+€*3](?),)+O(Z);

. L, 24 22 .
13225 +2J(i’)+€7](§)+0(23)7

A= 242 a) + 0(2),

z z( 0 2\ 2 0
N N e

In the above expansion, the first subleading Lorentz parameter can be consistently set
to zero,
ity =0. (4.33)
As a first step in finding the asymptotic symmetries, we will analyse the linear terms
in the transformation laws. The equation d&% = 0 from (4.31) leads to a simple expression
i

qj L ij Loy 7A puli g viing
0= = 5 €y, = €V B g + B Gy + 0(2) =0, (4.34)
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which, taken at the leading order, amounts to solving the algebraic equation

.. . . 7A . .
gy, =i (1 = € ) By (4.35)
Since £ and nﬁ are arbitrary and we also know that w;"j is the composite field (explicitly

computed in appendix B.1) that does not contain the linear terms, wzjl)u = 0, we can choose

a particular solution for (4,4 that vanishes, with the result

Wiy =0, Capr =0. (4.36)

This choice has also been made in [6] in A/ = 1 supergravity. In our case, when N = 2 it
becomes the unique solution both when ¥_, = (0 and W_, # 0 if one imposes the stronger
gauge-fixing condition (B.46) (for more detailed discussion, see eq. (B.44) in appendix B.3).
It is crucial that these fields remain zero after a generic local transformation, namely
6wé{)u =0 and 6C4,+ = 0, as we discuss in the next paragraph.

Another constraint on the parameters arises from the fact that the FG coordinate
frame (2.1) does not admit the finite terms in the expansions of Viu and cf)ff’. Local invari-
ance preserves this frame only if

i L 3 3
0 =4V, = ~7 E'ply = piy=0. (4.37)
Then, using the expansion of the rheonomic parametrizations given in appendix C, we find
that 5&2%3)# = —E% Ei“ p?l) = 0 is satisfied as well.
On the other hand, the invariance of ¥4, under (4.31) yields at the leading order

order\/g 1

0=owd, "= 0= (nhy - eGh) | (4.38)
ordery /% 1 i

0=06u4, :\>/; 0=- (né),—f“q?_) +47€ABA(1)W“ B+ — & VBu+),

1
which can be solved using eq. (4.36) as

i 14
Ué)+ =0, Ué)_ = 6“4;?7—1 GABA(l)u”YM B+ — §"YBu4) - (4.39)
In addition, the transformation law of the radial component of the graviphoton implies
. 1 1 i
0=0A, = 7 )\(1) 7 A(l)#E“lg +0(z2) = )\(1) = A(l)ug“. (4.40)

Finally, let us require 6&% = 0 and 6V% = 0 in eqs. (4.31). At the finite order, they
have the form

j i i L ij cm A
0= 06V, = €800, = ifh) + 7P+ wigy & +17ay’ vl . (4.41)

There are two unknown parameters, namely pél) and jg)), and only one equation, that
leads to an arbitrary vector K'(z) in the solution, associated with the special conformal
transformations on O M, as we will prove later. The solution for the first order parameters is
A o2
Py = fm' + 5 K'=Vb, (4.42)
4 .2 .
Ej(zzf) =/m' — 5K’ =-b,
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where m'(x) is a function that depends on the gauge fixing,
; Lo i A
m'(z) = —5 (winy &+t vazy ) - (4.43)
At the linear order in z, we get
z 2 % %
0= 0Viy: = dia) + 5 Ply + 10
A1 -7 1 7 )
0 =000}, = 2i(3 + 7Pt (4.44)
where we denoted
n'(x) = wii)& +inean’ ¢
7 _lu ~\1 s = i A epvi,g A sep i A
S (Jj) - g (T - 47—) +1 nN+A7Y <-|—z g E 11Z}+A/.L<—y lg 1/}-‘—14;147 C+z
i
gyEVZEAB¢N+7 vl Agy, + BM (4€A37”¢fuz‘1(1)p + CA—u> - (4.45)

The function fwzjl) can be determined from the vanishing supertorsion equation (B.14) in

appendix B.2,
. 2 T A
wly = —7 (7= A 1B 0 (4.46)

The solution for the second order parameters pZ@ and jg’) is unique,

o= (4]

. 0, 4
3~ i %
64 = 5 (n' —2s") . (4.47)
In our computations, we will need only the following combination of the parameters,
fjfg’) - p?z) =1 (nZ ) = —¢M(T+27)", + CEHE )y a,C2, (4.48)
i/ ;i —A i v
+ 1 guEWEABwM+'7pwVB+A(1)p — EEWn:\_ (4 EABY wqu(l)u + CA—,u) .

After all the above considerations and writing only first few terms, the residual local
parameters can be written as

pd = —lo + C’)(z2) ,

i L7 ZQi
p 225 +*b +€7P(2)+0(23)7
1

52
= *52 bl 7l 3(2) +0(z )
§9 =i 4 @( 2), (4.49)
A=A +y A s+ 0(2 2),

A
6+ = /< <7I+> 1/2) ’

0
0

- i) +oen.
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where the pl('Q) and jfg’) contributions will play a role in cancellation of terms in the next
step, but they will not influence the transformation law of the holographic fields. We also
expect that the conservation laws do not depend on m’ because it is a gauge-fixing function.
Without the gravitini, we have b = b= % K* w% =0, and the result coincides with the
pure AdS case (2.46).

Therefore, the independent residual parameters in A’ = 2 AdS, supergravity are

o(x), &(@), 07(x), A=), ni(x)
and they are associated, respectively, with the dilatations, diffeomorphisms, Lorentz,
Abelian, and supersymmetry transformations in the holographically dual theory.
The parameters b* and b have not been taken into account because b* — bt = 20m’
is non-physical and b 4+ b* = ¢2K" is not independent due to the last condition (2.8). Its
invariance implies

0=0V3 = —8,0 — (E' K; + 168", + Nayth—ay — Ta_tyan+ O(2). (4.50)
The finite part of the above equation can be solved in K = (b° 4 b*) /% as
R P = _
K= B (00,0 + 06 8%, + Ty b, —Ta 1) | (4.51)

confirming that it is not an independent local parameter. This analysis completes the
radial expansion of the asymptotic parameters up to the relevant order.

Transformation law of the holographic fields. It remains to determine the trans-
formation law of the boundary fields. This is fundamental for their identification with the
sources in the boundary CFT.

The bulk fields (4.14) can be cast in the form

i o ? i 2 i 3
V#:;EH+ZS#+£727H+O(Z)’

. 1 . Z = 222 .

~13 i i ~1 3
wu—;Eu—ﬁsu—gTTu‘f’O(Z),

S i P 3
wu:wﬂ—i-ﬁw(z)u—k@(z),

A z 22 3

A# = A# + ZA(l)M + ng A(Q)N + O(Z ), (452)

o E[§)2(%) 0]
- [(8)+3(2) 0]

Directly from (3.15) and writing the boundary 1-forms in the basis (4.52) on OM, we
find for the transformation law of the bosonic fields

SE' =DE + 0E — 09E; +in{y'tsa ,

g g .y 1 g 1 g
o't = DOV 426087 + 2 KVEN 4 Gty a5 s,

0A = A\ + 24 T + 2e4p AV (4.53)
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and for the gravitino

i i 1
0thya =Dnay + ZEZ%'UA— — z?%lﬁ—A +3 oYy

1
— Aeapn? . (4.54)

1
—deap PP — 57

1 ..
2~
1V iipAt + B,
The super-Schouten tensor and its superpartner conformino are the composite fields that
appear at the subleading order of egs. (3.15), and they transform as
6S' = DK' — 08" — 0S; +

P s,

il 14 1
0t)—a=Dna- + 9 51’W7A+ — KZ’Yﬂ/JJrA -z 01/17,4

— iﬂij%jgp,/;—{— 2—6)\6,43@[)_ — 2—€A6AB77 +X4. (4.55)
Egs. (4.53)—(4.55), together with the transformation law of B = Vidx“ given by eq. (4.50),
define the full set of N' = 2 superconformal transformations of the boundary 1-forms E?,
B, 8 w9, A, 114. The ¢ factors ensure dimensional consistency of the equations with
Vil = L0 (8] = L72 W) = L7, [¢M = [¢] = L and [n] = L'/>.

Similarly as the Cotton tensor appear in the transformation law of the pure AdS gravity
arising from the Lie derivative, as discussed at the end of section 2, here we have the tensor
&= Siu dz* that comes from the linear in z terms!® and the spinor £4 = Ef} da* appearing

at the order 21/2,

£, =2 R e, +€@<5/2> g (B, -0l &)

24, = 2B, B ( B Sk fyka) ¢E,. (4.56)

To explicitly relate them to the Cotton tensor, we recall that in pure gravity, geometri-
cally, the linear term of Rfy is related to the Cotton tensor through eq. (2.26). Thus, the
N = 2 supersymmetric extension of the Cotton tensor (C* ) and its superpartner, the Cot-
tino (Qﬁ‘l,),
defined by

are the first subleading terms in the corresponding supercurvature expansions,

A3 i 2
RW——ZCW—F(’)(Z ),

R z 0
o 3 o am

giving rise, by means of (3.8), to the expressions

i i 2i—a

C w = QD[HS v] 572 Q,Z)_[“’y I,Z)_Ah,] N (458)
A A . A %

Q/U/ = 2v[p,¢7y] — 1€7i¢+[us vl (459)

15Tn our conventions, the z-expansion coefficients of the 4-spinor-tensor @Zblc are written as the bispinor-
tensors @‘(lsl)ci 4+ Similarly, the 4-spinors 7% have the bispinor coefficients ﬁ?fi) Iy
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An easy way to connect the above quantities to the additional terms in the transformation
law of the super-Schouten tensor and the conformino is using the rheonomic parametriza-
tions of the supercurvatures R’g and p* v 8iven by the last two equations in (3.14), related
but not equal to Ri?’jkV{LV’Z and FLZJ VZuVJV, as discussed in section 3. Taking all the terms
into account, the super-Cotton tensor and the Cottino are evaluated as

i _ N3 _ o Di3 — — ; i3
—/C w = R(l),ul/ = 2R(3)JkEJME = 2¢+A[}LEJV]@(5/2)7AU , (460)
v = P12 = 2P(s )i B w B = 4005 2y Bt B -

The last step makes use of the explicit expressions of appendix C to decompose the spinor-
tensor coefficient 9(5‘/2) 4 Into its symmetric part, —217( p(% /2) A+ and the antisymmetric
part %QA”. As a result, the additional terms in the transformation law (4.55) are rec-
ognized as the contractions of the super-Cotton tensor and Cottino with respect to the

boundary superdiffeomorphism parameters ¢! and nﬁ,
¥4 =04
P | A
& =1l + 7 ( — Vi a€” ) 5/2 _a E (4.61)

Finally, we obtain an expected result for 6S* and 61— 4. The contribution of the symmetric
part of the spinor-tensor 6(5‘/2) 4 is non-physical, as it depends on the gauge-fixing func-
tions 4,4 and A(;).. We can, in principle, further gauge fix the higher-order parameters
such that ﬁg /2) A+ vanishes as a consequence of ﬁé /Dt = 0. However, the result does not
have observable consequences near the boundary, thus we will not proceed in this direction.

Notice that not all contractions of the OSp(2|4) supercurvatures have appeared in
the transformation laws (4.53)—(4.55) of the N' = 2 superconformal algebra osp(2,4), but
only the ones that have origin in the negative grading supercurvatures. This is because,
after imposing eqs (3.23), all the OSp(2[4) supercurvatures vanish on dM, except two,
namely R } and pA uv- Indeed, the conditions (3.23) lead to the weaker condition on two

supercurvatures,
€ijk CZ[,LLI/Ekp] + 2¢+A[[ufijAl/p] =0, (462)

which implies in particular ’y[Mpr} = 0 and, consequently, v" pr =0.

As a matter of fact, non-trivial C* and 24 on M mean that a holographic SCFT is not
invariant under local OSp(2|4) transformations, for the same reason as SO(2, 3) is not a local
symmetry of the bulk gravity — namely, they are only general coordinate transformations
rewritten in a gauge-covariant form. This explains an origin of the contractions of the
supercurvatures in transformation laws and structure functions in the algebra, as also
pointed out in [21] in the bosonic case.

In the gauge V:L = 0, the boundary supersymmetry reduces to super-Weyl transforma-
tions. In the spirit of the analysis in [55, 56], such transformations can be obtained from
gauging the N' = 2 superconformal algebra osp(2|4) within /' = 2 superspace in three
dimensions, whose supervielbein is given by (E*, ¢ 4).

Indeed, if we restrict the set of fields to Ei“, Yy Ap, wZLj, A, and the parameters to

€, nya, 09, X\, we see that Ei# transforms as a boundary vielbein, wzj as a boundary
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spin-connection, and 44, as a boundary gravitino, charged with respect to the SO(2)
R-symmetry connection A,. Correspondingly, the parameters €, mya, 09, and X are asso-
ciated with boundary diffeomorphisms, supersymmetry, Lorentz, and SO(2) gauge trans-
formations, respectively.

On the other hand, the boundary function o, with respect to which all the above fields
have definite weight (1 for Eiw 1/2 for 14 4,, and 0 for waj an A,), is identified with
the local parameter associated with Weyl dilatations because it produces rescaling of the
vielbein and therefore of the metric.

In the same fashion, the superconformal transformation is characterized by the local
parameter 7_ 4, with the corresponding gauge field 1 4_. The parameter K*, although not
independent within the gauge choice V?/’L = 0, corresponds to special conformal transfor-
mations, whose associated gauge connection is the super-Schouten tensor.

Consistency of the subleading gauge fixings. On top of the previous analysis of
the asymptotic parameters, it remains to look for potential inconsistencies in having some
linear terms vanishing, in particular V(gi) u = wg)” = C;?+ = 0. Using the transformation
law of the gauge fields, it is straightforward to find

Vi, = %5“(7 +27) [y + 25”@?@@]_,4 =0,
3y = ﬂC “u€ - 1 Pl >+2ﬁé/2 LB, — l&”A o€ BB (4.63)
4@7 U nem A, B + 57 LM wm(l) By~ 7A< e Pnpy
+ iA(l)u6 Bnp4 — ﬁﬁ eijkfyinB—l—EjuA(l)pEpk =0,

where the first condition holds by virtue of eq. (4.25) and the second one follows from
plugging in the expressions of ﬁf}-, A1) and 77641)_, and by using p?l) = 0. Finally, a variation
of (B.12) enables to solve

i pwiphip sAA i sF ;
dw(ly, = 1BV EN By, 6C a5y, — 2 E 06C ap vy (4.64)
finding that dCa,+ = 0 implies also (5wg)u =0.

5 Superconformal currents in the holographic quantum theory

In the previous section we showed that the asymptotic symmetries of pure N' = 2 AdS, su-
pergravity are given by the three-dimensional superconformal transformations. According
to the AdS/CFT correspondence, these are also asymptotic symmetries of an underlying
superconformal field theory (SCFT).

The superconformal group on a three-dimensional manifold contains Lorentz transfor-
mations (with the local parameter §¥), coordinate transformations (£¢), dilatations (o),
special conformal transformations (K*), supersymmetry trasformations (14, ), special su-
perconformal transformations (n4—) and the R-symmetry (A). Within a gauge theory, the
corresponding gauge fields are the spin connection wfj, the vielbein Ei#, the dilatation
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Transformation Local parameter Source Current
Lorentz 0 wff J ij =0
Translation & E*, J
Dilatation a‘ B, : 0 J”(D) =0
Special conformal K S, J(“K)Z. =0
Abelian R-symmetry A A, JH
Supersymmetry NAL+ YAty T
Superconformal NA— Va—p JH =0

Table 1. Summary of the notation for local parameters, sources and conserved currents corre-
sponding to superconformal transformations.

gauge field B, the super-Schouten tensor Siw the gravitino wjﬂw the conformino wéu and
the graviphoton A,,.

It is useful to present this superconformal structure of the three-dimensional boundary
by listing all the transformations, associated local parameters and gauge fields (sources in
SCFT), and the conserved currents (quantum operators in SCFT) in table 1.

When all sources are independent, the currents are also independent. When one im-
poses the constraints over supercurvatures with a purpose to eliminate non-physical de-
grees of freedom, some parameters result to be realized non-linearly and the corresponding
sources become composite fields, with the associated currents vanishing.

In supergravity, the spin connection is a composite field determined by a constraint
on the translation curvature (supertorsion). The gauge field of special conformal trans-
formations (super-Schouten tensor) and its supersymmetric partner (conformino) are also
composite, obtained from the constraint on the conformal supercurvatures, equations (4.27)
and (4.28). Our particular gauge fixing B, = Vi = 0 eliminates the dilatation gauge field
and the corresponding dilatation current. The inclusion of B, has been discussed in pure
AdS gravity in [21].

Before moving on to the explicit analysis of quantum symmetries in a three-dimensional
field theory holographically dual to N' = 2 AdS, supergravity, let us first understand more
precisely its superalgebra structure.

5.1 d = 3 superconformal algebra
The superisometry group OSp(2]4) of the vacuum of the bulk theory is encoded in the
definition of its curvatures R* = {R® R2, pA ¥},

N 1
R = dp™ + 5 Csr™ p® A b, (5.1)

where Csp® are the osp(2]4) structure constants and p® = {&%, V@ W4, A} the Cartan
1-forms. Asymptotic expansions of the supercurvatures RA are given in appendix B.2.
Moreover, o0sp(2]4) also describes the superconformal structure of the boundary. This
is made manifest by decomposing the Cartan 1-forms in irreducible representations with
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respect to the SO(1,1)xSO(2,1) subgroup of OSp(2[4), where SO(2,1) is the (connected
component of) the Lorentz group at the boundary and SO(1,1) is the isometry group
which acts as a rescaling on the coordinate z in the FG parametrization: z — e”z. This
decomposition requires splitting the index a into (i,3), where i = 0,1, 2. Moreover, V* and
&% naturally combine into Vi introduced in eq. (4.5), which have definite scalings with
respect to the SO(1,1) group. Finally, since the spinorial representation of the generator
Tp of the SO(1,1) group is

i
(To)%s = —5 (%)%, (52)
the four-dimensional gravitini naturally split into W14 with definite radial chirality. In

terms of the SO(1,1) x SO(2, 1) irreducible forms &%, Vi, Vi, V3 A, U4, where we recall
the expressions (4.5), the bulk supercurvatures [30] given by eq. (3.8) become

N .. 4 . . 1— ..

Rw:R”w—zvaVzLZ\pﬁAr”\yA,,

~ N 1 . 1 — .
;:DViiFZVi/\V?’qE%\IIi/\F’\I'Ai,

~ 2 . _

R3:dV3—|—ZV}r/\V_¢+\I!é/\\IIA+, (5.3)

B = dA - 2e05 T4 A U5,

i 1 1 N
SVEATUA + —VIATL — — e pAnTE.
¢ ENTTE Ty £ AR T
The right-hand sides of the above equations encode the algebraic structure of the supercon-
formal algebra in d = 3, where V3 is the 1-form associated with the Weyl transformations,
Vj the ones associated with the spacetime translations, V* with the conformal boosts, \I/f

pt=Dud +

with the supersymmetries, ¥4 with the superconformal transformations [57, 58]. The con-
nection components &% correspond to the Lorentz algebra at the boundary. The precise
connection to the Cartan 1-forms of the superconformal algebra in d = 3 is that the leading
order 1-form in the z-expansion of the above bulk quantities are identified with the Cartan
1-forms dual to the corresponding superconformal generators. Let us summarize below the
correspondence between the D = 4 gauge field and d = 3 superconformal field:

O — W Lorentz symmetry ,

V3 B Weyl symmetry ,

Vi — E' spacetime translations,

Vi S conformal boosts,

\I/j? — wf supersymmetry ,

oA A superconformal symmetry ,

A— A SO(2) R-symmetry .

This can also be understood as the boundary conditions set imposed on the bulk fields in
an asymptotically AdS space.

Let us make this connection more precise. To this end, we perform the redefini-
tions (4.1) and (4.6) and define the gauge vector associated with the Weyl rescalings
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as follows,
‘ z

Note that, in order for B to be non-vanishing, we have to generalize the FG parametriza-

B=1 (v3 - edz> = By (z) da* . (5.4)

tion (2.1) to allow for a non-trivial component Vi for the vielbein. After rescaling the
various fields by z/¢ factors according to their O(1, 1) grading, the dz/z term in V3, within
the definitions of the curvature/field strengths, cancel. Next we recall the relation between
the d = 3 super-Schouten tensor and E* given by the second of eqs. (4.7),

s=-2p

5 (5.5)

2=0

Rescaling the field strengths associated with U1 and VZ, in eqgs. (5.3), correspondingly, we
can evaluate the right-hand side at z = 0, dz = 0 and find the following supercurvatures
in the dual field theory (see appendix B.2),

» » A L1 »
R =RV — 2 Eli A 8 — zzpﬁmwm_,

i i i oA
R = DE'+ BAE — S0 Ay'as,
i 2 L i i 1l—-A
CE_Eszps_B/\S_ﬁwf/\’YwA—7
: 1_
R:dB—EZ/\Si-i-zlﬁé/\wAJr,
F = dA— 2054 02, (5.6)

1 i 1
pl =Dyt + S BAYL 4 B A — o eanANE,

1 i 1
QAzp/j:Dwﬁ‘—iBAzpi‘JrgSlA%wﬁ—ﬂeABA/\zp?,

where D is the Lorentz-covariant derivative. Each D always appears in the combination
D + AB of the Weyl-covariant derivative, as naturally expected from a theory with local
Weyl symmetry. The Weyl weight A of the corresponding field is equal to its scaling
dimension, namely A(EL) = 1, A(p4) = £1, A(SY) = —1 and A(w¥) = A(A) =
A(B) = 0. This feature can be used to reconstruct the B-terms in the transformations
laws (4.53)—(4.55), similarly as it was done in the pure AdS gravity case given by egs. (2.58).

Note that, for B = 0, the third and the last of eqgs. (5.6) yield the definitions of C* and
Q4 in egs. (4.58) and (4.59), respectively.

Finally, let us recall once again that, while the boundary theory possesses global
OSp(2]4) isometry, it is not also locally OSp(2|4) invariant, but the transformation law of
the gauge fields is put in an OSp(2]4)-covariant form thanks to the superdiffeomorphisms
written in a suitable way through a field-dependent gauge transformation.

5.2 Superconformal currents

To explore the quantum symmetries in a SCF'T dual to supergravity with \llf, =0, we ap-
ply the AdS/CFT correspondence summarized in section 1 to the case when the boundary
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fields are JA(z) = {E,(x), w(x), Yrau(x), Au(z)}. They become sources for the cor-
responding operators in the dual SCFT. Generalizing eq. (2.52) to the supergravity case,
the bulk action in the classical supergravity approximation is identified with the effective

action of the dual boundary theory as
Lonshen[EY, W, i, Al = WIE?, W, 2, A = —i In(Z[E", W', @2, A)). (5.7)

The sources J* couple to the operators in quantum field theory J4 = {J, T Ty, JH,
which are the energy-momentum tensor, spin current, supercurrent, and U(1)-current,
respectively. The latter are identified with the 1-point functions of the Noether currents in
the presence of arbitrary sources, associated with the residual symmetries of the boundary
action, see section 1 and the above table. However, we shall refrain from writing explicitly
the symbol (- - - ) opp. We will also express the currents in terms of their Hodge-dual 2-forms
in the boundary theory, to be denoted by the same symbol, as defined by eq. (2.54).

The explicit expression of these currents is inferred from the variation of the effective
action with respect to the sources (eq. (2.53) generalized to supergravity),

SW = /6JAAJA _ / (513@' A+ %Wi A i+ T4 N s +J/\5A> . (58)
oM oM

Invariance of the boundary effective action with respect to the residual symmetries of the
boundary theory implies conservation laws to be satisfied by the currents. As we shall
prove, they are satisfied by virtue of the “constraint” equations of motion in the bulk.
Namely, in the radial foliation of spacetime, the bulk equations of motion are divided into
the ones describing the radial “evolution” (that were used to determine radial expansions
of the bulk fields) and the “constraints”, which do not contain radial derivatives 0, and
that should give rise to conservation laws in the holographic QFT.

In the following, we shall first derive the expressions of the currents and the corre-
sponding conservation laws. Eventually, using the bulk equations of motion, we shall show

that these conditions are indeed satisfied at the quantum level and they represent the Ward
identities in the SCFT.

SCFT currents. In this derivation it is somewhat convenient to retain, in the compu-
tation of §W, a four-dimensional notation, writing it in terms of the bulk fields and their
curvatures, keeping in mind that, in the boundary integral, they are meant to be func-
tions of the corresponding boundary values through the supergravity solution. So when we
write 0%, §UA, 5121, we mean the variations of the bulk fields in a supergravity solution,
originating from a variation of the corresponding boundary conditions. Using the compact
form (3.9) of the full supergravity action and using the field equations, we find

on-shell

;. (5.9)
z=dz=0

2 R - 1 R R
W = 81 o—shell = / (i 5P R e o — 21060 Ts pag + 3 5A F)

oM

where we have explicitly indicated that the quantities in the integral are to be computed
on the boundary 0M, namely at z = dz = 0. Using the boundary expansion of the four-
dimensional fields in (4.52), we can write the above variation in the form (5.8) (recall that
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we have set w(;) and Cf to zero) and read off the explicit form of the external current
2-forms on OM,

12 A
Ji = 5 €iji { EIN(TF 4+ 275) + YA |,

2 ¢
Jij =0,
1 .. .
J= - e FBVIAVF
2 z=0
I = 221 EAyi¢h + Ay Aeap v?, (5.10)

where Fj; are the components of the supercovariant field strength associated with the
graviphoton, see eq. (3.14). The current associated with the Lorentz transformation (J;;)
is zero because it corresponds to the field that is composite (wfj), but it has been treated
as independent in first order formulation of gravity. The other composite fields (Szu and
1 a—,) have not been taken into account as sources.

From the above expressions for the conserved current 2-forms, Jj, we can obtain the
Noether currents J} as the Hodge-dual 3-vectors *Jp = Jy, dz# defined by eq. (2.54). The
non-vanishing currents are

1 _ ) P
Ji= =5 (@2 — B 1 27) + e A NiCAp,

2i 1
Jﬁ+ = _% E“Vp’YVCAfp + % P A(I)VEAB wfp )
- 1
M _ %
JH = —9(0) F,, = ﬂg(o) A(l)y, (5.11)
where in the first equation the traces 7%y, 7%, are defined using the vielbein tensor (e.g.

7k, = 7k » E'.). In the last equation we have used the fact that the contribution of A, to

F,,. is subleading in z, while the fermion bilinears do not contribute at z = 0 having set
p_az =0.

In particular, the holographic stress tensor is J,, = JmEiu. Recall that, in the CFTy
dual to pure AdS4, 1 gravity, this tensor is proportional to the (symmetric) metric coefficient
9(d)uvr X T Whose trace is zero. Indeed, the above result in pure gravity with the traceless

" = 7/, reduces to JEe GR — —% Tuv- In the SCEFT3, the relevant bosonic coefficient is

(2
Tuv + 27, and generally it is not symmetric any longer because of 7,,,. Furthermore, the
trace of 7, + 27, is not necessarily zero — it has to be computed from the conservation
law of the local Weyl symmetry.

In supergravity, the holographic stress tensor contains the fermionic contribution.
Which particular fermionic coefficient becomes holographic can be determined by simple
power counting in the variation of the action. Since the on-shell action is always a bound-
ary term, the Jacobian e given by (2.13) expressed in terms of the boundary Jacobian es
has the factor 1/z%, but on the boundary z = const it becomes 1/23. Thus, the holographic
order — the one that contributes to the holographic current — is always the third order
in z of the variation of the Lagrangian density on-shell on the three-dimensional bound-

ary. For the metric, it means the third coefficient in the expansion (7,,). For fermions,
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it means W(3/9)_,, = (. Similarly, the third coefficient on the boundary of the Maxwell
Lagrangian comes from (0, AM)Q, implying that the finite part of (‘3zflu, that is fl(l) > enters
the holographic current. In d dimensions, the respective holographic orders are 7¢, = EE v
V(a/2)—p> and A(4—1)/2),- They are the last terms in the near-boundary power expansion
of the variation of the action which do not vanish when z = 0.

Conservation laws in SCFT. We observe that, in the boundary expansion of the
integrand form in (5.9), the divergent terms vanish by virtue of the conditions (3.23) that,
in components, are given by eqs. (4.26). These conditions therefore guarantee consistency
of the holographic construction. Namely, both the currents and the conservation laws
become finite, confirming that the bulk supergravity has been properly regularized in the
asymptotic region.

Being the leading terms in the boundary expansion of the bulk curvatures zero
by (4.26), from eq. (5.9) it follows that the currents in (5.10) are expressed in terms of
the subleading terms in the same expansions. The reader can check, for instance, that

- 14 o) A
Jij == —62 Eijk Régos) s Jl = —5 Eijk Rgf) s JA+ = -2/ P(1/2) A+ - (512)

Next we seek for the form of conservation laws associated with the residual symmetry
discussed in section 4.2, in case when the quantum effective action is invariant (after that we
will have to check whether the obtained supercurrents indeed satisfy these conservation laws
and since they are quantum, in fact they will give the Ward identities.) The corresponding
transformations are parametrized by &%, 67, X, nﬁ. This means that dW evaluated on
the corresponding symmetry transformations of the fields must vanish and amounts to the
following conservation laws for the Noether currents which are the generalization of the
pure gravity laws (2.57) (we omit the wedge symbol),

A 74
DJ; =8 Jij — J+%1/1A + S*; Jk] Bl — — S] T4y bas

12
l
DJ;j = 2E[z JJ] +71]¢A+ - J 713¢A— )

V4 ) 1— 1-—
0=0, [EM(J”EJ—IJ wm) $E it o Thay - 5 T4,

dJ = E €AB (Jf Vg +J4 wa) :

20
1 . o i _; Lo j
Vs = 27’7”1/%7 Jij +iv Yat Ji — 53 YiJa— +2eapp—J + Z¢A— Jij E?
i
- §wf4_ JB-YiYBy (5.13)

y i 1. i
Yipag Jij+2eap By J — 5 BNy Jag — 7 Yy Jij B+ B Y, JB—vi¥By -

VJa- = — 7

20"
We use the boundary vielbein Eiu and its inverse E'; to project the boundary spacetime
indices (u,v,...) to the boundary Lorentz ones (i,7,...) and vice versa. Note that the
above conservation laws reduce to those in (2.57) in the pure gravity case, namely in the
absence of the fermionic superpartners and of the U(1) gauge field. This is best seen from
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the pure gravity laws (2.58) when the dilatation gauge field is B = 0 and the conformal
current is J(); = 0. Then the dilatation current .Jipy is not independent and can be solved
from the last (algebraic) equation in (2.58), leading to the identities (S;Jp) = Sk B
and (dJpy = 0, (E*"J;; E7). The obtained set of equations matches (5.13) when all spinors
are zero and S;; is symmetric. In addition, it is explicit from (5.13) that the fermions are
sources of the electromagnetic current J.

As a final comment we observe that, in supergravity, invariance of the boundary action
under Weyl transformations is guaranteed by the third of eqs. (5.13) which, taking into
account egs. (5.10), amounts to the condition

. 1 1- 1
EZ/\JZ-:—iJﬁ A¢A++§Jé Atha_ :—Ejﬁ Athay . (5.14)

Let us now use the explicit form of the currents, given in egs. (5.10), to write eq. (5.14)
in components. Using eq. (5.11) we find the trace of the bosonic part of the holographic
stress tensor, namely
27 + 7)) = =T Yt yiCa - (5.15)
Using the properties of the gamma matrices, the reader can verify that the above relation
is consistent with eq. (3.34) of [6].
Notice that neither the holographic stress tensor J,,,, nor its bosonic part 7,,,+27,,, have
vanishing trace as in pure gravity. This does not mean that we have the trace anomaly
because the value of the trace J! A E;, given in (5.14), is fixed by the structure of the

superalgebra. This is consistent with the result in A/ = 1 supergravity [6]. Furthermore,
o

the trace anomaly is a local expression even though all currents, in particular 7, 7 and
Ji; are, in general, non-local tensors. Having a quantum anomaly would mean that J'NE;
is a different expression than the one given in eq. (5.14).

Similarly, J,, and 7, +27,, are not symmetric: the second conservation law in (5.13)
with J;; = 0 and J_ = 0 gives the antisymmetric part as Ej; A Jj = ijyyij ANy, A
reason is that, with our gauge fixing choice, J,, is not, as in pure gravity, the traceless
Belinfante-Rosenfeld stress tensor. However, we know that, in principle, it is possible to use
an ambiguity in definitions of Noether currents to construct a so-called ‘improved’ stress

tensor which would be symmetric and traceless.

5.3 The Ward identities

We now prove that the Ward identities are indeed satisfied by using the explicit form of the
currents and showing that dW = 0. We remind the reader that, although all expressions
are evaluated on-shell in the bulk supergravity, they present off-shell identities in CFT
computed on the curved background. We start by integrating (5.9) by parts,

2 . 22 1 -
SW = / [4jabDRCd6ab0d -7 (EQPGVZ’ - EEAF“b\I’A> R peq + 216e A T5Dp
oM

_ 1 — 1. i
P, + ﬁ)\eAB\IIB - ﬁAeAB)éB — %eArava> Cspa

on-shell

1. ,-4 i
—2il [ =N Ty + —
1 <4.7 ab+2€

1 R R
—5A d*F+eA\IIBeAB*F] (5.16)

z=dz=0
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We now make use of the Bianchi identities (3.11), to obtain

C b= Ard & Cr2 o 1 aa Aed
5W:/ 1.7 vr pAEabcd_Z ?210 Vv +Z€ I'°vy | R €abed
oM

i_

1. 1. 1 .
+2i¢ <%AEAB€AF5ﬁB— — AT p AV“+ZR“5€AF5Fab\IJ e Q—EEABFéAFg,\I/ B)

20
1.,— - 1 1. i
— 21 (4 j“b\IlAFab—i—Q?p“‘I/AFa—I—Q—E)\eAB\II B A es - %ef“rava> Tspa
1 on-shell
—5A d*ﬁ’—i—eA\I/BeAB*IE’] (5.17)
z=dz=0

We are now able to write the Ward identities, in the four-dimensional notation, which
have to hold on-shell. They originate from requiring the vanishing of the coefficient of
the independent symmetry parameters in §W. Let us denote the independent asymptotic
parameters by A(z) = {9” & o mAd, )\}, computed in Subection 4.2 as the radial expansion

of the bulk parameters A(x, z) = {j%, p%, €4, ;\} Since in the quantum effective action all
divergences cancel out and the subleading terms vanish on the boundary, we can identify
the bulk gauge transformations with the boundary ones,

on-shell

SW = 6\W = 6, W (5.18)

2z=dz=0 "

This method makes use of the fact that the quantum effective action has already been
renormalized and enables to prove the invariance of the action (and therefore the validity
of the Ward identities) by looking directly at the bulk parameters A.

Lorentz transformations. We can easily verify that the coefficient of the four-
dimensional Lorentz parameters j% vanishes identically due to the identity (A.6) for four-
dimensional gamma matrices whose properties are given in appendix A.2,

o p=Aed ~ il —A «
Zﬁbqf T A €abed — ggab\p Lapl'spa =0. (5.19)

Translations. As for the terms containing p® one finds, up to terms which vanish in the
z — 0 limit,

1 A —A .
-5 PV R ypeq + p* U T Dspa . (5.20)

The above expression vanishes at the boundary by effect of the Einstein equations in the
bulk (see the second of egs. (3.16)),

1 .\ — 1 PSP BPURN
_ipaVbRCdeabcd + pa\PAFaFSﬁA = ipaeabcdvb (FCdF B 6FefF8fVCVd> ’ (5'21)

since the two terms on the right-hand side are zero at z = 0.
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Supersymmetry. The terms involving the parameter €4 are given by

o il A N
1AeNPe Tspp + e T5TapaVe + %Rab#‘mrabﬁ 4 — VP Fe ;U g

¢ R . .
— f“r“bqj AR egpeq + 1A BepTspa — €T Ts5paVe + e Beyp * F

= eM—20, VT spa + eapUB *F —ie g FT50P) . (5.22)
They vanish as a consequence of the equations of motion of the gravitini (3.16).

Abelian transformations. Finally, we evaluate the terms depending on A and find
A 1 * T . ABY{, A
A —§d F —ie \I/BF5pA , (523)

which vanishes by virtue of the gauge field equation of motion in (3.16).

This proves that, on-shell, /W = 0, namely that the equations (5.13), which were
derived from W = 0 in the three-dimensional notation, are indeed satisfied. This can be
seen as a consequence of the absence of any anomaly, in particular conformal anomaly, in
d = 3. Note that the term in (5.21) which is proportional to p® and which, as we have
shown above, vanishes once the a = 3 component of the Einstein equations in the bulk (the
second of egs. (3.16)) is implemented, coincides, once integrated over the boundary, with
the variation of the generating functional under a dilatation, being p* = —fo at z = 0. Its
vanishing provides the trace Ward identity (5.14).

The above explicit proof can also be seen as following from the general form of the field
equations (3.19) derived from the A/ = 2 bulk Lagrangian (3.9), which is of MacDowell-
Mansouri type. Indeed, being the currents identified with subleading terms in the boundary
expansions of the curvatures, see eq. (5.12), one can view the Ward identities as following
from eq. (3.19), computed at the boundary.

Note that, in the above derivation, we have neglected the curvature-contraction terms
occurring in the general expression of the symmetry variations of the fields (3.15),'® which
one can check to give vanishing contributions at the boundary.

6 Discussion

In the present paper we have developed in detail the holographic framework for an N = 2
pure AdS; supergravity in the first order formalism, including all the contributions in
the fermionic fields. This analysis, which generalizes the one of [6, 7], includes a general
discussion of the gauge-fixing conditions on the bulk fields which yield the asymptotic
symmetries at the boundary. The corresponding currents of the boundary theory are
constructed and shown to satisfy the associated Ward identities, once the field equations
of the bulk theory are imposed.

16These are the terms in the symmetry transformation of the fields which, according to the general
formula given in footnote 7, are expressed in terms of the superspace components of the curvatures along
the anholomic basis (V®, W 4), whose expressions can be found in egs. (3.14).
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Consistency of the holographic setup, in particular the finiteness of the quantum gener-
ating functional of the boundary theory, is shown to require the vanishing of the super-AdS
curvatures computed at the boundary, which was proven in [27] to be a necessary condi-
tion for a consistent definition of the bulk supergravity. In particular, the vanishing of
R lopm determines the general expression of the super-Schouten tensor S* of the bound-
ary theory, which generalizes the more familiar bosonic expression of standard gravity by
the inclusion of gravitini bilinears, see eq. (4.28). The same applies to the superpartner
of 8¢, namely the conformino. Working in the first order formalism, we are able to keep
the full superconformal structure of the theory manifest in principle, even if only a part
of it is realized as a symmetry of the theory on dM, as the rest appears as a non-linear
realization on M. Furthermore, an important role in our analysis is played by the su-
pertorsion constraint R® = 0, where R was defined in eq. (3.8), which determines the
bulk spin connection. In particular, the radial component, R? = 0, of this condition poses
general constraints on the sources of the boundary CFT. In the FG parametrization of the
bulk background, that condition implies a non-vanishing antisymmetric component of the
super-Schouten tensor, proportional to the gravitini bilinear 1) 4 Ay, see eq. (4.23).
This shows that in general the superconformal structure and the conformino field 94—,
pose an obstruction to the symmetrization of S,,. For a special choice of background, for
which Y4, < Yaq,, aAHuwA—V] = 0 and the super-Schouten tensor becomes symmetric,
ie. S A E; = 0. This latter property restricts S* to be proportional to E*. The mani-
fest SCF'T symmetry is then broken to the symmetry of the chosen background which, in
this case, is a maximally symmetric spacetime: AdS;z (S° # 0, ¢4, # 0), dS3 (S* # 0,
Y1, = 0) or Minks (1), = §* = 0), and provides the vacuum of the boundary theory.'”
The three (super)algebras associated with the symmetries of these backgrounds are defined
by suitable projections on the OSp(2|4) asymptotic symmetry group.

As far as the gauge fixing conditions are concerned, we refrain from imposing y*1,, =0
in SCFT, having in mind generalizations of standard holography where this condition is
relaxed in the boundary theory. This has a bearing on the radial gauge fixing condition
on the gauge field. This generalization is needed in particular to apply the holographic
analysis to the AVZ model [28] as boundary field theory, where the only propagating degrees
of freedom are associated with a spin-1/2 field x, which is identified with the contraction
1), itself. This theory is naturally defined on an AdS3 background. In [31] it was shown
that the spinor y is actually the Nakanishi-Lautrup field associated with the covariant
gauge fixing of the odd local symmetries in a three-dimensional Chern-Simons theory with
gauge supergroup OSp(2]2) x SO(2,1). This opens a window on the definition of the dual
field theory of which the AVZ model provides an effective description. We shall pursue
this objective in a future investigation. Other future directions of research would be an
extension of the present analysis to N' > 2 bulk supergravity, along the lines of [30], or the
D > 4 bulk dimensions where, for odd D, quantum anomalies would arise in a boundary
SCFT. Furthermore, a generalization of the present work to the case where the FG choice
of parametrization is relaxed, which would allow the full superconformal symmetry of the
boundary theory to be linearly realized, will also be object of our investigation.

'"The AdS3 and dS3 cases are distinguished by the sign of the proportionality factor between S* and E°.

— 49 —



Acknowledgments

We are grateful to Andrés Anabalén, Riccardo D’Auria, Stefan Theisen and Jorge Zanelli
for many stimulating discussions. This work was funded in part by FONDECYT Grants
N°1190533 (O.M.) and N°1170765 (R.O.), as well as VRIEA-PUCV Grant N°123.764. L.R.
would like to thank the Department of Applied Science and Technology of the Polytechnic
University of Turin and in particular Fabrizio Dolcini and Andrea Gamba, for financial
support.

A Conventions

A.1 Curvature conventions

In our conventions, the bulk local coordinates are denoted by 2# = (z*, z) and the boundary
coordinates by x# (u = 0,...3). In general, the hatted quantities always refer to the bulk
and the non-hatted ones to the boundary placed at z = 0.

As respect to the connection and curvature conventions, apart from the hatted (bulk)
ones {&),f,ﬁ, R, p} and the non-hatted (boundary) ones {w,I', R, R, p}, the circle above
the quantity, {w, I, R}, denotes that it is torsion-free and the bold symbol, {ﬁ, R, p, p}, de-
notes that it is super-covariant. Here {p, p, p, p} correspond to the fermionic components of
the supercurvatures. Similar notation applies for the Abelian supercurvatures {F, f‘, F,F}
where, furthermore, the Maxwell field strength on the boundary is denoted by F.

Explicitly, we have in the bulk the Lorentz curvature 2-form Rab — %fzabﬂﬁ da? A da?

defined in terms of the bulk spin connection d)gb. Using the first vielbein postulate,

0V + GV = TR,V (A1)

it is mapped to the bulk curvature tensor,

R 15 (F) = R (@) VA Vip (A.2)

lf17%

expressed in terms of the bulk affine connection f;\u The bulk AdS curvature 2-form is
denoted by R and the super AdS curvature by R,

On the other hand, on the boundary, the Lorentz curvature 2-form is RY = %RU v
dz# A dz¥, from which we can obtain RAJW(F) = Rijw(w)E)‘iEgj, where F,),‘H and w!/
are the (torsionful) affine and spin connection, respectively. The boundary AdS curvature
2-form is R% and the super AdS curvarure R¥. Similarly, the torsionless quantities on the
boundary are 703’\"#,/ =R WE)‘iE” j» where the corresponding Levi-Civita connections are

A ° i
I';, and w.
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In the following list, we summarize different Lorentz and AdS (super)curvatures and
the places where they appear for the first time in the text.

Pure gravity.
d=3
In (2.3): R*,_ torsionless Lorentz curvature of I'*, = f’lf)\(g(o))

In (2.21): % (g) z-dependent affine Levi-Civita

In (2.27): R torsionless Lorentz curvature of %
D=1
In (2.6): R AdS curvature of &

After (2.6): R Lorentz curvature of &%

In (2.20): f;}u affine connection

Supergravity.

d=3
In (4.16): R" ,  torsionful Lorentz curvature of F/\W
In (4.18): R )\ torsionless Lorentz curvature of lo“)‘w
In (4.26): R¥ torsionful Lorentz curvature of w®
In (4.28): R”,,, torsionful Lorentz curvature of I'
In (5.6): RY boundary AdS supercurvature

D=1

In (3.7): R Lorentz curvature of &%
In (3.8): R% super-AdS curvature

In (4.30): R _; rheonomic parametrization of the supercurvature

A.2 Gamma matrices and spinor conventions

In the present paper we follow the notation of [30]. The four-dimensional 4 x 4 gamma
matrices I'* (a = 0, 1,2, 3) satisfy the Clifford algebra

{ro, 1% =26, k% = diag(+, —, —, —), (A.3)
and the fifth matrix is defined by
[s =iTrir?rs, (A.4)
They have the properties

(r)f =rorr?, ([5)F =T, (A.5)
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and they satisfy the identity

1
5 €abed FCd = iFabFE) s (AG)

where

[l T2an]  for even n,

(A7)
{Tor To2ant = for odd n.

rer-an — pler-an] — {

M= N~

We can also define the charge conjugation matrix C' that determines the symmetry
properties of the gamma matrices,

c=r1°  crwct=—1yr. (A.8)

From this condition, we can derive a general property of the antisymmetric product of &
gamma matrices as
T k(k+1)
(CTH%)" = —(=1)" 2z CT%, (A.9)
Furthermore, the following identity holds for the gamma matrices in any D dimen-
sions [39, 40]

inf(n,m)
FalmanCImcqrcl-ncqblu-bm = Z ck(Q7 n, m) 5[[211 T 61?: Fak+lmanb]k+1-..bm] ’ (AlO)
k=0

where the coefficients reads

(g, n,m) = (—1)29@-D+5k-(-1)"""] (Z) ("Z) q' k! (D " ; met ]‘C) . (A.11)

It is convenient to introduce the 2 x 2 gamma matrices 7* (i = 0,1,2) that are the
elements of the d = 3 Clifford algebra

{7,y =2s7, kY =diag(+,—, ). (A.12)
The D = 4 gamma matrices can be represented in terms of these d = 3 gamma matrices as
I'=o01®7, '=0, 7' =io1, *=ios,

i1
P =io3®1, Iy=iITI T = —0y01= < Pﬂ 1®2> . (A.13)
—it,

An identity often used in the text is
Al = kY i€k 12 =1, (A.14)

that implies

V=i, A=A (A.15)
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Let us now focus on the spinor conventions. The Majorana 4-spinor 1-form ¥ =
v, dz” has Grassmannian components V. Using the symmetry properties of the gamma
matrices (A.8), we obtain the following ones for the fermionic bilinears,

UanVpy = UpyWas, Uals¥py = UpplsWap,
@Aﬂfa\lfgf, = —@BZ;F“\I/A,; , @Aﬂl—‘afg)\I/Bﬁ = @BQFGIB\IJAIQ , (A.16)
U Py = —Up,TW 4, W, Tl W g, = —Ugp DT 4,

In view of the application to the holographic duality, it is convenient to choose a gamma
matrix basis where only Lorentz invariance in d = 3 dimensions is manifest, where the
radial matrix I'® is associated with the generator Tp of the SO(1, 1) group given by eq. (5.2).
Then, for our purposes, it is useful to decompose the four-spinor ¥ in eigenmodes ¥y of
the matrix I'3,

B30, = +iv, (A.17)

where the projectors and the corresponding projections are given by

1 Fil3 .
Py = 21 = Pr¥i=Uy, Vp=U,P:. (A.18)

Furthermore, in order to find chiral components of the fermionic expressions, we list
the following useful identities,

P.I? = +iPy , Pyl =TyPy, (A.19)
Pyl = P+, P4l = +ilP=,
as well as
P+T5 = 5P . (A.20)

When the chiral spinors are involved, the fermionic bilinears have only the following non-
vanishing terms

VDT, =0, T, — iV, T,
@ﬂrij\lfp = W,HF”\I/Q_ + @ﬂ_I‘U\IIH s
U T3, = 10, TV, —i0, TV,
Eﬂl—%\pp = E,[H_I%\I/l)_,_ + @ﬂ_I—%\I/l;_ R
U TsT30, =0, T5V,, — iV, T50,_,
@ﬂI"T@IJ,; = @/Hl“il“g,\llp, -+ @ﬂ,FiI—%\If,;Jr R
U030, = i0, 50, — iV, T'T5¥,_,
VM50, = U, T9T5 W,y + Uy T9T50,
U, T9T5T30, = 0, TYT5 0,y —i0, T30, . (A.21)
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In the context of holography, only the radial decomposition (with respect to I'%) is
relevant and used to define the chiral componets. We do not use the Weyl decomposition
of the four-spinor with respect to I's.

Finally, let us list the three-dimensional Fierz identities used in the main text,

YarCpy = —% dAB (@iCCJr) - %fABECD (@0+CD+)
+ % dAB Vi (%g’YiCC%) + % eape?P @c+7iCD+) ;
Yartp, = —% eape? (@C+¢D+) + %5,43 Vi (@$7i¢c+> ; (A.22)

with the following convention for the SO(2) invariant tensor

B Asymptotic expansions

B.1 Spin connection

In pure AdS, gravity, a spin connection d)gb(x,z) satisfies the torsion constraint T[}V =
D,V% — DI;VEL =0, see eq. (2.21). If we use d’)gb as a reference spin connection on space-

time also in the supersymmetric case, where the vielbein satisfies instead the supertorsion
constraint f{ZV = ZA)ﬂV‘f; — ZA),;V‘}L — i@A[ﬂFa\IJA,;] = 0 given by eq. (3.8), then the contri-
bution of the fermions (gravitini and conformini) in the supertorsion can be taken into

account as contorsion on spacetime,
o =o" 4 C, %= dat (B.1)

We now evaluate how the fermions contribute to the contorsion using the condition of
vanishing supertorsion. From the decomposition ﬁﬂV‘,‘/ = ﬁﬂv% + C%,., we find

Ui

RY, =0 Cyo = LG w B.2
o =0 = Oy = =5 Yal\Wan. (B.2)

The solution is ‘ ‘ ‘

1 =A 1 —A 1 —A
Cspp = B WiTaVap — 5 U, T Wap + 3 UiToWas, (B.3)
which can be restated in the following way

ol = SV UIT Wy — S VT T Wy + S VIV TGI8 (BA)
Note that, since @;‘FC\IJ A= —@’;FC‘IJ Ap, the tensor C“bﬂ is explicitly antisymmetric in [ab].

To determine a radial dependence of the spin connection as it approaches to the bound-
ary, we express each component of the contorsion in terms of the fermionic fields regular
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on OM?* and obtain
i3 _ pi [ —A 24 L 24
O =B Ohupa—s— g Poupats | 5 | Polva—t+ 5 0r.oar: |
. iz At/ . . . AP .
CcY,= ?E”[Z (@ﬁHFJ]SDA—i-z‘{’SOéHFJ]SOA—z)+?£EMZE J (QﬁéMSDA+u_SD.A|.M<PA—V) ;
3 _ 2 pwi(—A A 1z /A i _A i
C= 27E Htopa-u—Phoarn) Y (LI At +P2 T 0a)

_ﬁ EWE (Sp—iA-VFjSDA-FZ +¢éyrj(pz4—z) ) <B5)

2 : 2
.. auli [ — . il . PN . el
c4, =iEMt (sOﬁVF”sDAﬂﬂL 7 soi‘ul“”w—u> +5 B EN By, (soiyf’“www LT WA—A)-

From eq. (2.21), we find for the full spin-connection

S}

2
2= (m +2s0 F)sOA z+€2 ( ¢A1+2¢+ZF)¢A+Z7

of =7 (1s0+[ F”sOA+z+190_[F”s0A + 720 )

A

. A As A i
= ; E w 5 k/u/Em 2£ (Qp—i- PA—u SDiMQOAJrH + 1g0+ZFZ(pA+u
— PN oA + 1A Tipa, — icpfil“u@A—z) : (B-6)

. 2 .

N 0 i ‘7A- . liA . z '7A< . liA -

o =) + 1g0+[11”}g0,4+“ + 5 <,0+’Fu<pf4+ + 7z <1gp[ZI’J]<,0Au + 3 @_ZFH¢34_) .
Therefore the O(1/z) term of the connection is not modified by the fermions. This is

consistent with the asymptotically AdS behaviour of the extrinsic curvature, being propor-

tional to the induced metric thanks to this fact.

The most general gauge fixing, with Wy, # 0, is

@23 = wi(a:, z),
o = Zul(z,2), (B.7)

where w?, w¥ = O(1) and the boundary fields are

) 1 . 222
~13 __ 7 7 ~’L
(JJ'u = ;Eu—ﬁs 63 +O( )
~ij i 20 i 2 4
ol =w + - 791 )+£7 (2)#—%?3&1(3)#—1—0(2 ), (B.8)

where now Si #* S’i#, Ti #* %i and wij #* d’)’j

As partlcular cases, let us notice that When ¥4, =0and U4, # 0, the behaviour (B.6)
yields w’ = O(z?) and all other components remain the same. Furthermore, if we set to
zero both components ¥4, = 0, we have w' = 0 exactly.

This behaviour of w' and w* that we just described is summarized in the table (4.12).
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B.2 The supercurvatures

In this subsection we evaluate, for the most general gauge fixings, the first contributions
in the asymptotic expansion of the super field strengths, decomposing them with respect
to a world-volume basis on the four-dimensional spacetime. Let us generically denote by
RA = {ﬁ“b,f{a, ﬁA,f‘} the supercurvature 2-form field strengths given by eq. (3.8) and
further discussed in eq. (5.1) of subsection 5.1,

ol 1 A A A 1 A A
RA = 5 R}, daf A da” = 3 R, dz# Adz” + RS, da# Adz. (B.9)

We use the following notation for the supercurvature expansion,
oo = n
A N A
Ri,= > <g> Rinyo (B.10)
N=Nmin

where n,;, denotes the minimal power of % in the expansion, that is the order of the most
divergent term. Our covariant derivatives D and D, acting as exterior covariant derivatives,
contain only the spin-connection.

From the supertorsion constraint ﬁzu = 275[ﬂV‘§] — i@éf“\ﬂg‘ =0, we get
~ 0 AN
a a
N=Nmin

and find the following expansion coeflicients in terms of the boundary quantities,

Ré—l)w =R, = 2D,E, - iwﬁ[ﬂiw;‘H =0,
Rig),., = 2000, B — 21 Cipn iy = 0, (B.12)
R%UMV =2 D[usiu} +2 Wé%)[qu\u]
-1 (Zi[;ﬂi(ﬁr + Qﬁf[uVWf]JF + @é[u’yilﬁ,ﬁ_) =0,
Riy),, = 2D 7 +2 “é{)[usﬂv] ) wg)[u Ej,
—2i (meiﬂfﬁ + B A, + Zi‘mw;}_) _0,

where we identified Ujﬁu = wé) e Note that the last equation gives the expression for
]

Wiz in the supersymmetric case. The next supertorsion components to be expanded are

R/ . for which we obtain

w2
. 1 /-~ . 1 .
7 _ 7 7 1) .
Rioy: = 55 (5# - sy) — 5wy B
i /— . _ .
— 5 (ParurVase +¥as, 7' Paz) =0, (B.13)

2
5 I i I i— i
R(l),uz = z ( w Tu) - 5 w(jl)EJ,u - 5 (wAJ,-,uﬂY CA+z
+ YAV Cams F Cay ¥ Vars + Casy ¥ bas) = 0. (B.14)
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On the other hand, for the R3 components restricted to dIM* we find

. 2 ~ _

3 .
Ry = ~7 (S[W} - S[W}) —2iauha ) =0,
N 2 . o _
R:(Sl)MV - _Z (T[W’} -2 T[”M) —2i (¢A+[MCA*V} + CA-{-[uwAfu]) =0, (B15)
and projected to dz* A dz we have

S 1 . i —
R 1)u: = 5 WoyBin = 5 Yarutba— =0,
Rioyu: = B wyy Ly — B (¢A+u<A—z + CAW@&A_z) =0,
R 1 1 i
Rl = 5 W) Sin + 5wy Biw — 5 ¥a it
i /— _ _
3 (wA—‘,—,uHA—Z + Cagpla—z + HA+M¢A—Z) =0, (B.16)
where Héz = wé)_z. The last equation gives the expression for w&).
Focusing now on the AdS supersurvature, from R = R + 2% VJ[: Ve I %(Wﬁf"j TA 4
Térij\l/ﬁ> we get
oy ;) g o 2 A .
R%)P«V = ng = QRL]V _ 4E[l[ S]]V _ = w_'u,yljwfy — 0, (B]_?)
N 4 .
ij =gl dl ]
R = 21)[“ i — @ By +27)
] (@—[MWUG}V] + EHMVU&V]) ’

RE] Dz — E[iu W) — ¢+u A
Rty = 215 (- %E[Zu )+l + AT
Ri),. =5 Dufy = gofh, = 'l
- 2% (@fﬂ”ﬁz + P AITA, 4T A, )

Next, from R = Do — £ Vive — L (TLrwd — T2riwA), we find

R 1y =Ry = 0,

R(O)W Ré o = 0, ‘

R{}), = —(Cl = _% DS, + %wéé)[uEM + % (%i‘[ﬂiiﬁéy} - Zf[ﬂigfy]
_Qﬁi[ufyizpfu]) )

R, = 3 Duwlgy + 790,702,

RS .. %Duwﬁ) + Dl -+ 262 (27, +7,) + %wég)sﬂu
+% (Pt + Tiv) (B.18)

where we have also exploited the vanishing supertorsion equations (B.13) and (B.14).
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As regards to the graviphoton super field strength F=dA-2 eABU_ 4 U _p, we obtain

Foyw =Fuw = 20,4, — 4€A3Eﬁ dJB,,] =0, (B.19)
iy =2 a[uA(l — 4 (BB + TP, eas.
1'Aﬂ(—l)uz D) aﬂA(—l)z - $+uw§Z6AB ’
F o)z %%Am)z 57 A = U Cecas
F(l)ﬂz = %3#,14(1)z — %A(g)u - (Efulbfz + @ﬁAMHEZ) €AB -

Furthermore, the gravitini supercurvature py4 = dWV, 4 + Lo, v, 4, — L eABA\II B
. p P+ + 1 J*+ 20 +
+IVIT U4 — 35 Uy 4V3 leads to

« 2i

P(-1/2)+Aur = P+Apy = 2V[M¢ﬁy] + ? ’Y[Mwéy] =0, (BQO)
R p 1 1
P1/2)+ A =2V [, (oA + 7 Vul—av)+ 3 VigW(h) Y+ Av) — 7 A [p¥+Br€AB

R i i

P(=3/2)+Apn= = 55 (’Wﬁ Az 2A(1)z¢+3u6A3> ,

. i 1 1
P(~1/2)+Apz = ?EWMC—AZ+47 <A(O)z¢+B,LL+A(—1)z<+B,u) €AB= 55 CAps

R 1 L i Ui i 1
P12+ Ape =5 Vutsaz— 3 Wiy Yii¥+ant 5 (5 =S #) Yi¥—az— 5 e ay

1
+4€<A(1)zw+Bu+A( DAL But+ A zC-i—Bu)GAB

i i
- Z wzo)%’lp—Au + ﬁ fY[LH—AZ
Finally, using the negatively graded fermionic supercuvature p_4=dW¥_ 4+ %d}"j Ly W_a

2£ eABA\IJ B — fV LiVia+ o \I/ AV3, we are left with
[)(1/2)7A,u1/ = QA;U/ = 2 V[ul/}fAu] - M%T/UrA[uSiy} )

. 1 i 1 4
P3/2)—Aw = Vil — 3 YiCrapsS y] t3 Wiy Y- av)
1

_ ﬂ A(l)[,u,/l/}*BV €EAB + ﬂ (Tl[u + 27:1[#) ’YZT/}+AZI] )

A 1 P
P(-1/2)—Apz = 5 vu"vbfAz + 7 A(—l)z 6ABQ/)fB,u + Z’Y’iw(o)d}JrA,u )
~ 1 i :
P(1/2)- Az = 5 VMC—AZ + = 46 A(o €ABY—Bu + W) Y+Au

C—Au+ gA 1)2C—Bu€AB - (B.21)

We observe that the Ré}z i)y COmMponents of RA = {R% R® pA, F} define the cur-
vatures {R7, R? p4, F,C?, Q4} of the N' = 2 superconformal group OSp(2|4) discussed
in subsection 5.1 and given by eqs. (5.6). We expect naively that they all vanish in the
vacuum with the OSp(2|4) isometries in a superconformal theory on the three-dimensional
boundary. However, we obtain f{é}l D = 0 for all the curvatures except the ones with
the negative grading, RZ3 and p_ 4., where we find instead that the equations (3.23) lead

to the weaker condition (4 62).
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B.3 Equations of motion of the graviphoton

Here we analyse a relation between the gauge fixing and the asymptotic behaviour of the
fields, using radial field equations. In appendix B.1, a similar problem was discussed for
the spin connection using the vanishing supertorsion.

The radial evolution of the graviphoton is given by the respective field equation
in (3.16) that, in components, with the Hodge star dual (3.10), has the form

B = L T8 (B.22)
(&

Using the conventions (2.9) and (2.13), the component fi = p acquires the form
D+ DF = —2 e (2T, T5pf, + TiTsp8B ) e (B.23)
e

For convenience, we factorize the relevant field strength components as

X At W\,
FZ}L = — <£> g'LLUlejy puzj: == (f) ;U':t 9
A 1 (B.24)
N Z A z 2 _4
FH = (£> FrY, P+ = (£> Spvt o
where IAT‘W = F},, and the tensors ]?‘Z#, F., ﬁi and El‘:‘yi have to be expanded in power

series in z. The metric g, (, 2) and its inverse g"” rise and lower the spacetime indices on
OM. Recalling the FG metric (2.1) and the tensor k,, = 0,g,, introduced by eq. (2.22),
as well as using the Christoffel symbols

N 1 1
ng:_;55+§kﬁ’ FM_O_F;U,
R 1 1 R 1 (B.25)
z z
Fuy:_;guu+§kuyy FZZ:_;’
the radial graviphoton equation becomes
k A N
D, F*" — <k;“” 2 gul’> Fo.+ g"0:Fy. (B.26)

i
A (o—A 1. =B AP =B , —Ap =B _A . —B
=5 (274,055, + 222, 152X + . TsED, + BA.TsE) ) ean-

Now we calculate ﬁ‘;m E;‘i and Ef}ui defined in (B.24). Evaluation of the components

fiv — ghd 0B (8 Ay —05A5 - zeAB @f‘\lﬂ?)
1
7

A "
pl“’ 2D[ﬂ\11f/] GABA[H o)~ f F \I][ VV] (B27)
leads to
A A 20 B 2z -
F,.=0,A,-0.A,— ~ €AB (p_fugof_ -7 €AB cpélugof_'_ ,
= gho g’ (J:aﬁ —4deap @fas@i;) =0 (B.28)
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and, by means of the rescalings (4.6), we get

1 /2\'Ft 2\ T 1
=A A A A
St = Du: — (£> w0, — (5) O:0y — 5, €AB Al

i 1 /2\TF! " i /2\TF2
F 5 wll‘igo’:?:“ + 276 <€) €EAB AZSDI:E# + Z <€) E;HFZQO?:Z s
_ 2 1
Epivs = 2D0upl)s £ 5 BipLiglle — 5 ean Apys (B.29)

We also assume that the gauge-fixing functions are

N V4 z
Az =~ A + Az + 5 A+ 0(2%),
A y4 z 22 3
AM = ; A(—l),u + AM + Z A(l)u + ﬁ A(Q)# + O(Z ) ,
z
@_‘?_M = 80240)"_“ + Z @é)'ﬂﬁ + 0(22) y (B30)

in general allowing for the linear terms (in contrast to eq. (4.14) valid in pure gravity),
where E’. expand as (4.7), and we find

—A B
F .= 2 A(*l)u"_; <8MA(*1)Z_26AB 90(0)+M‘P(0)z—> +0(1),
l ; 1 /1
—A A Al A A
:/Hr = @ (A(,l)zg BQDB+N+21E MF“D(O)—Z) +; <2 €EAB A(O)Z@(B;))'Flt_go(l)'ﬂl) +O(1) s
e sl (2L =0(1). (B.31)

Remembering that k,, = O(z), the graviphoton equation (B.26) then yields

l
#5 Acon=0,
¢ . —A 1 oV i —A B
2 OpA(-1)z = | 29(0) 4 — gg(O)W e ENP 0y 4151 | €ABP (D)2
1 A 1
= 0= e 5h s (2 A0 (04 + (ngueAB) , (B.32)

and all other terms are finite. We used the fact that the term @4, I'5¢044» is symmetric

in (v\) so it vanishes when contracted with €”¥*. From the last equation in (B.32), when

A =
D+ =

(Cfgﬂ = 0, which is in agreement with eq. (4.36) obtained in subsection 4.2. This choice
was also taken in [6] in the context of N' = 1 supergravity. We will show below (see (B.44))
that, in fact, this is the only solution only if we assume the stronger condition (B.47) to
hold. Then (B.30) implies

w{})) oy # 0 (and otherwise), we can choose a particular solution A, = 0, ¢

N z
A, =~ A(—l)z + Z A(l)z + O(Zg) )
A~ z 2'2 3
AM = AM + 7 A(l)u + ﬁA(Q)M + O(Z ),
0t = loy 1.+ O (B.33)
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We also conclude that the gauge-fixing functions A_;), and gog))_ , are correlated, which is
consistent with the table (4.12). In addition, the boundary graviphoton does not acquire
divergent terms of the form 1/z even when cp‘(%) . # 0. We have not considered the
logarithmic terms here.

The graviphoton curvature behaves in the following way on the boundary,

~ 14 _ 1
Fyz = ; (auA(—l)z — 2€AB 802%)_;'_#%0(%)_2) — Z A(l)ﬂ + O(Z) ,
FMV = f;u/ —4deap @ﬁ[u@?y} =0. (B34)

This shows that it is possible to have the components P uz 7 0 on the boundary z = 0,dz =
0, with a suitable gauge choice which changes the asymptotics.

B.4 Equations of motion of the gravitini

The equation of motion that describes the dynamics of gravitini (3.16) in components has

the form ]
i

0= et <Vaﬂrar5pAﬁ +5 eABFﬂﬁr5w§> +ecapllFN (B.35)

where the formula (3.10) was applied. The radial expansion of the gravitini is given by the
components 7 = p which, with the conventions (2.9) and (2.13), leads to

0= e (—V3zr3r5pm SOV T pans + g eanfaTswl + leABFZVP5W§>
+eeap (WERH 4wl i) (B.36)

Projecting it by P+ defined by (A.18) and applying the identities (A.19) and (A.20) from
appendix A.2, we find

. ) : R A A
0= e <:F1V37;F5PZFAI/)\ —2V', Lil'spraan + 5 eapF \I5 0%, + 1€ABquF5‘I/§>\)
+eeap (W2 B 4 wF B (B.37)

Now we can use eqs. (B.24), (2.13), (4.11) and (4.52), to obtain the equation expressed in
terms of the auxiliary quantities with known asymptotic behaviour,

AET A i A
0= (€> E‘LLV (:Fl F5EV)\IF + 2.EZ VFiF5E)\:t)

2\ 13
+ () €AB (—if’“’AFW% +e3 g’“’wfz) F,.

J4
z :F% i VA B v B
+ Z €EAB 5 et FV)\F5()0:FZ +e3 F Mgoiy . (B38)

All tensors appearing above are finite, except f‘uz and Ef} . With this at hand, we identify
the leading orders of the z-component of the gravitini equations of motion (looking at the
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two projections separately). By requiring the most divergent terms to vanish (that are
(E/z)‘r’/2 and (6/2)3/2 in the two chiralities), we get

0=¢" (A(—l)z eap il B + 21Fij<ﬂA(0)—z) ;
0= e (15,0, — 2B",TiZ({) ) (B.39)

+ €A (—i e“”’\gofé)H\ + e3(0) g%lgf530g),z) (aVA(—l)z —2eac @E%)JFV@(C(Y))%) )

where we multiplied the equations by I's. Since 9, A(_), is correlated with apé))i . through
the condition (B.32), it can be used in the second equation.

It turns out that we can solve the gauge-fixing functions from the first equation
in (B.39), in terms of the dynamic fields. Contracting it by ey, it acquires an equiv-

alent form

0=—A1).€aB E“[irj]go{g) v+ 2550 400) -2 - (B.40)

We can contract the above equation by I'Y and use the contractions of the gamma matri-
ces (A.10), which in this case become T';I'" = 3, T%T; = 2I'"* and T'¥T';; = —6. As a result,
we obtain a solution which relates the gauge fixing goz%)_ , with the gauge fixing A(_y),,

i

‘P‘(%)—z ~ 6 A(—l)zﬁAB Fi(PB(O)—i-uE“i . (B.41)

Then second equation in (B.32) becomes a linear differential equation in A(_;).. One
possible solution is A(_y), = 0 that, from eq. (B.41), yields gaé))_z = 0. On the other hand,
when A(_y). # 0, we can solve cp{}))_w from the first equation in (B.39) as

AC1)0(0ysp = 2B, Tipf)_€an, (B.42)
and the differential equation becomes
A 1)20uA 1y, = 2 Byl (2F’f T eij’“rg)rij) o). =0, (B.43)

where the last zero is due to antisymmetry of the fermionic bilinears, namely
@‘(%)ﬁl“kcp‘(%)iz = 0 and @%),ZFE,E‘]’SOE%),Z = 0 so that each term in the sum vanishes
independently. The only solution of the above equation is A(_;), = const.
Moreover, as previously shown in the main text, we can choose a particular solution
with
Ya1)y+p =0. (B.44)

Consequently, taking A(_;), = 0 and plugging (B.44) into the last equation in (B.32), we
are left with Ay, = 0. On the other hand, if we take A(_), # 0 and use (B.42) and (B.44)
into the last equation of (B.32), we obtain

A= B’ (o). T ¢y = 0, (B.45)
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which is identically satisfied since @(}))_ZF’“(,O(%)_ ., = 0. In particular, this means that, in
this case, the last equation in (B.32) is solved by (B.42) and (B.44), without forcing A(q).
to vanish.'®

Summing up the results, the following gauge fixings for A, and ¢4, are allowed:

A A
A =0, A= =0, PL)+p = 0, P0)y-z = 0,
1
A1), =0, A:#0, @y, = 3 AP0y u€AB,  Ploy_. =0, (B.49)

i
A(—l)z = COTLSt, A(O)Z # 0, Qpé)Jru = 0, 80(0)7,2 = 6 A(_l)zru@g))+u€A3 ;

where the first line can be seen as a special case of the general solution given in the second
line. If one imposes the condition I'*¥,; = 0 as in [6], then eq. (B.41) implies 1)_, = 0 and
therefore A(_1), = 0 as the only solution.

In this text, we mostly focus on the case goé])f ., = 0. Then the gauge-fixing func-
tion \I!f_‘z becomes subleading and can be safely set to zero at all orders, as suggested by
eq. (B.46).

At the end, let us recall that, in our approach, the gauge-fixing functions are invari-
ant under the gauge transformations (5flz = 0). Thus, the above solutions are consistent
because, since A(_y), is constant, it also implies A4 (_;), = 0 for the asymptotic transfor-

mations.

C The rheonomic parametrizations

In this section we present the asymptotic expansion of the rheonomic parametrizations
R“bcd, ﬁfb and Fj,. The procedure is the one described in the main text and the applied
gauge fixing corresponds to A1), = 0 and 4 =0,

8Note that one could consistently assume that the relation of proportionality between ¢?, and A. given
by eq. (B.41) holds at all orders, in the neighborhood of the boundary, imposing the stronger condition

A i AB i
Qp(n)fz = 6 14(77.71)26 B r Euz PB0)+u Vn: (B46)

that is equivalent to

i i
o, = G AP T B 0p0)ip - (B.47)

One can then prove that, considering the divergent terms in the z/¢ expansion of the outer components

7 = z) of the gravitini equations .35), that is ' iP(—1/2)+av)> = 0 and in particular using . in
T f th itini ti B.35), that i E’[HF (—=1/2)+Av] 0 and I B.46
the equation for p(_1,2y4+ 4, in (B.20), one obtains

IE", (A—1)z€aB — 204B) ¢B(1)4 =0, (B.48)
which enforces the condition (B.44) to hold also in the case A, # 0, W._ # 0. If we now take A(_y, = 0

and plug (B.44) into the last equation of (B.32), we can see that, in this case, Ay, = 0, goé)ﬂt =0 is
actually the only solution to the aforesaid equation.
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We start from the graviphoton field strength
F=dA— U, 0pe48 = F,Vev?h. (C.1)

By expanding both sides of this equation onto the basis dz” A dz”, one can derive the
explicit expression of the rheonomic parametrizations

3
~ z
Fij:<€) E (3 Ay — 2€AB¢H+CV— 2€ABCM+¢V) O(z%),

- 1 2 9 _
o0f,— L <Z> A(l)uEfjt(Z) (8NA(1)Z—ZA(Q)#+26A31/J?+@Z)E_) E'4O(Y), (C2)

where we have used that ﬁ‘uv = 0O(2).

We now focus on the supercurvature of the gravitino and conformino,

1 1
—dUA 4 T wA - L APy, - L uaye
e 20 5o

= pAVeVh - %r“qz BV EyeB — ng)raw pVPFeABe, (C.3)
and expand this relation onto the basis dz# A dz” to obtain

z 1 1
Pf}+ (€> E[l J]( MCV++EEk’Yka_+zwlﬁ)ﬂklwlﬁ—@A(l)MZJWBEAB

i
+ 45Glmn’ylwgu_:,_E;nE’onA(l)pﬁAB) + 0(2’7/2) y

3 5
- 1 /z\2 z\ 2 A 1
2Pé’>+ =7 <€> B} ;1+ + (g) B} <vu¢’z+ 1 (0)%”’%L +5; g BA(l)Z¢Bu+

EH;;) +O(?),
~ z
Pl = (z) By B < w¥i + 3’“ wm) +0("?),

1/2\32 1
2503 = Y <€> 2 (Cf— 1€ Bylppur Aqy E >+O( "2, (C.4)
where we used ﬁﬁy = O(z!/?). This result allows to compute the spinor-tensor
ele = _girlaghle 4 jpepob (C.5)

as an intermediate step necessary to find the remaining parametrizations. In particular,
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we obtain
5
i 2 L S ) . 14
@j‘f i (z) 2 ( zE[Jl‘Ek}V_i_,Y]E[’LMEk}V_i_,ykE[l,U«EJ}V) (vuwAV—+128lu7lwAV+)

+0(z7?),
. 5
i 1 i Z 2 . 'Z/
Oy = _e<e> B (C"‘“ +4€A37k¢ﬂ+ )E’€>_(£) s (V“CA”*
— €rimY U, ELEP A(1)p€AB)

i 1 4 1
+ZEu’YkCAVf+zw(l)u'Ykll/}Aqu_@A(l);ﬂpu+B€ 46

—i—O( 7/2)
5
913\j (ZE] ¢ _|_ € Q;Z) A EY z QE[iMEj}V \vN
E e Ap— 4 ABY Y4+ Al € pnSAv+
— kim0, ELEP A(1)p€AB)

g 1 4 1
‘|‘ZEN’YkCAu—+Zw(l),ﬂkll/fAqu—@A(1)y¢u+36 4€
+0(z7/?),
1/2\2 2\ 3 1 1
3|3 z i i ik B
O, = ~7 <€> Capt+ B + (5) E* (V;ﬂl)Aer— ngo)%‘kwmﬁ+27€ABA(1)Z¢M+

2
- EHA'MJF) +O(Z7/2) )
2\ 2 (i plin gy i gl bl il Lt
<—7E E™ 4y +7 ) ViCav++ 5B mGav-

ijlk
—etmnY VL BT EP" Ay, EAB)+O(Z7/2)7

O, =i
1 Ilm 1 B
JFZw(l)u%m¢Au+*@A(l)ﬂ)wBe 4£
3 5
i 1 (2\2 154 AT 1
= (€> 0 EJ}“CAM++1(£) ok E]}”(V#¢A2+—4wké V1Y At

0,4 =

- 14

16ABA VB 2 E[”‘E]]” VA + ES Y +0(27?)
DzVpu+— 1 Ap+ Av— uwYEWY Av+ )

5

2

+ 20
z 3 z 1
) ~E7) “CAqu—l(E) AU EDH ( p Azt — v VklwAqu—F%EABA z¢u+

13\] <
94 i (E
2 2\ 3 iv
_ EHA,U«Jr) + <€> E[’LH«EJ]Z/ (v;ﬂpAz/ +2Sku'}’k¢Au+> —|—O(Z7/2) ’
5
i 1/2\2 i .
O, 3|3 =7 (ﬂ) E* (CAH—+46AB’7J¢5+A(1)0EJP> +(9(z7/2),

We are now ready to compute the rheonomic parametrization of the supercurvature R

Since

. 1
RY = do™ + 60" - 5 Lyave AR
2 (C.6)

~ 1— -
= R, VoV = O AV — SWaUpeapF - Leabed G\ P peap Fl,
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applying the usual procedure yields

~ 1 [z i /22 v TA U
R 3Jk % <£> Ek]¢p+7 CAZ/++2£ <£> EGEk]¢#+7lCAp+EluE r

1/z2 S —=A i—-a
+7 (5) EGEZ]{—Dusﬁ+w22)mEzl/—1Hu+’Yl¢Au+—2CM+VZCAV+

i—a —A . (i 1
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| Z i
+gpean A=t = Mg )+ EVET (Ve 5 ™ mtian )
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~ 2\?3 1 i . i-a i—a
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1*14 vi TA 1% 14 4
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1/—a =A i . —A i mlip mmlo i ilip pmlo
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o i i 1,
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1 i
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<z E# 9w 2 j i lj lj Jox i i
+ 7 % O —Zw(z)u—i-w Wy~ w" lw +€ ( w( 0) ~ W(0) u)
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1—4 ii —A . i pilv 1 Im
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}+(9(z4).

To obtain the above formulas, we used f%ff; = O(z) and that the supertorsion is zero (see,
in particular, (B.13)).
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