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In this paper, lattice simulations are used to propose a potential model
for gluonic excited Σ−

u states of bottomonium meson. This proposed model
is used to calculate radial wave functions, masses and radii of Σ−

u bot-
tomonium hybrid mesons. Here, the gluonic field between a quark and an
antiquark is treated as in the Born–Oppenheimer approximation, and the
Schrödinger equation is numerically solved employing the shooting method.
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1. Introduction

Static quark potential models play an important role in understanding
of Quantum Chromodynamics. A hybrid static potential is defined as a po-
tential of a static quark–antiquark pair with the gluonic field in the excited
state. Hybrid static potentials for different states of mesons are computed
in Refs. [1–5]. These hybrid static potentials are characterised by quantum
numbers, Λ, η, and ǫ, where Λ is the projection of the total angular momen-
tum of gluons and for Λ = 0,±1,±2,±3, . . . , meson states are represented
as Σ,Π,∆, and so on respectively [1]. η is a combination of parity and
charge, and for η = P ◦ C = +,−, states are labelled by subscripts g, u [1].
ǫ is the eigenvalue corresponding to the operator P and is equal to +,−.
Parity and charge for hybrid static potentials are defined as [1]

P = ǫ(−1)L+Λ+1 , C = ǫη(−1)L+Λ+S . (1)
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The low-lying static potential states are labelled Σ+
g , Σ

−
g , Σ

+
u , Σ

−
u , Πg, Πu,

∆g, ∆u and so on [1]. Σ+
g is the low-lying potential state with ground state

gluonic field and is approximated by a Coulomb plus linear potential. The
Πu and Σ−

u are the QQ potential states with low-lying gluonic excitations.
Linear plus Coulomb potential model is extended for Πu states in [6] by
fitting the suggested ansatz with the difference of Πu and Σ+

g states lattice
data [5], and this extended model is tested by finding properties of mesons
for a variety of JPC states in Refs. [6–9]. In the present paper, the linear plus
Coulomb potential model is extended for the lowest excited hybrid state, Σ−

u ,
by fitting the difference of Σ−

u and Σ+
g states lattice data [5] with a newly

suggested analytical expression (ansatz). The validity of suggested ansatz is
tested by calculating the spectrum of Σ−

u states hybrid bottomonium and
comparing it with lattice results. For this purpose, the Born–Oppenheimer
formalism and adiabatic approximation are used. Relativistic corrections in
the masses are incorporated through the perturbation theory.

Heavy hybrid mesons have been studied using theoretical approaches
such as the lattice QCD [1–3, 5, 10], constituent gluon model [11–13], ef-
fective field theory [14], QCD sum rule [15–22] and Bethe–Salpeter equa-
tion [23].

The paper is organised as follows: In Section 2, the potential model for
Σ+

g state is discussed, while the proposed potential model for Σ−
u state is

defined in Section 3. The methodology of finding radial wave functions,
spectrum and radii is explained in Section 4, while the discussion on the
results and concluding remarks are written in Section 5.

2. Potential model for Σ
+
g

states

Σ+
g is the quarkonium state with ground state gluonic field and the

potential model for this state is defined as [24]

V (r) =
−4αs

3r
+ br +

32παs

9mbmb

(

σ√
π

)3

e−σ2r2Sb · Sb +
4αs

m2
br

3
ST

+
1

m2
b

(

2αs

r3
− b

2r

)

L · S . (2)

Here −4αs

3r describes coulomb like interaction while linear term br is due to
linear confinement. The term with Sb · Sb is equal to

Sb · Sb =
S(S + 1)

2
− 3

4
(3)

L · S describes the spin orbit interactions defined as

L · S = [J(J + 1)− L(L+ 1)− S(S + 1)]/2 . (4)
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ST is the tensor operator defined in [24] as

〈

3LJ

∣

∣ST

∣

∣

3LJ

〉

=











− L
6(2L+3) , J = L+ 1 ,

+1
6 , J = L ,

− L+1
6(2L−1) , J = L− 1 .

(5)

Here, L is the relative orbital angular momentum of the quark–antiquark
and S is the total spin angular momentum. Spin-orbit and colour tensor
terms are equal to zero [24] for L = 0. mb is the constituent mass of
bottom quark. To calculate the radial wave functions, parameters αs = 0.36,
b = 0.1340 GeV2, σ = 1.34 GeV, mb = 4.825 GeV are taken from Ref. [8].

3. Potential model for Σ
−

u
states

Static potentials computed by lattice simulations are plotted in Fig. 3
of Ref. [5] for Σ+

g , Πu, and Σ−
u states with respect to quark–antiquark sep-

aration (r). From this lattice data [5], the difference between Σ+
g and Σ−

u

potentials within a given range of r is calculated and fitted with the following
ansatz:

VΣ(r) = A′ exp
(

−B′rP
′

)

+ C ′ . (6)

The best fit values of the parameters A′, B′, P ′ and C ′ are obtained. The
values of these four parameters with standard error are equal to

A′ = 11.5917± 1.1514 GeV , B′ = 2.9224± 0.0913 ,

P ′ = 0.2810± 0.0120 , C ′ = 0.9589± 0.0060 GeV . (7)

Here, VΣ(r) represents the potential difference between the ground state and
the hybrid Σ−

u state. Hence, the potential for Σ−
u state can be modelled as

V (r) + VΣ(r) . (8)

V (r) and VΣ(r) are defined in Eq. (2) and Eq. (6). χ2 can be defined as

χ2 =

n

∑

i=1





εi − (A′ exp
(

−B′rP
′

i

)

+ C ′

δεi





2

. (9)

Here, εi are the data points taken from Fig. 3 of lattice data [5] and n = 42
is the number of data points used in the fitting. These data points are shown
in Fig. 1 (a). δεi is the error/uncertainty in εi. In the present work, data
points (δεi) are taken with large accuracy, so the error in their values is very
small. Therefore, one may consider δεi = Λεi and the appropriate value of
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Fig. 1. (a) Data points for the potential difference between Σ−

u and ground states.

(b) Points represent the data points for the potential energy difference taken from

Ref. [5] and the solid line represents our proposed model.

the factor Λ is calculated by using the following condition of the goodness
of fit:

χ2

n− a
= 1 . (10)

a represents the number of parameters used in the model. For the model
defined in Eq. (6), Λ is calculated to be 0.0023664. If the number of param-
eters is reduced, the value of Λ increases as shown in Table I. This shows
that the error/uncertainty in the εi increases with reduction of the number
of parameters.

The fit of the proposed model (VΣ(r)) with the difference of Σ+
g and Σ−

u

potential states lattice data is shown in Fig. 1 (b).
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TABLE I

Λ for different ansätze.

Ansatz Λ A′ B′ P ′ C ′

A′ exp(−B′rP
′

i ) + C ′ 0.0023664 11.5917 2.9224 0.2810 0.9589

A′ exp(−B′rP
′

i ) 0.0350816 962.793 6.3795 0.044 —
A′ exp(−B′ri) + C ′ 0.0241949 1.7609 1.2192 — 1.1042

exp(−B′rP
′

i ) + C ′ 0.042738 — 0.6379 1.6690 1.1302
A′ exp(−ri) + C ′ 0.0236432 1.5694 — 1.0264 1.0798

4. Characteristics of Σ
−

u
hybrid bottomonium states

4.1. Radial wave function of Σ+
g and Σ−

u states

For Σ+
g state, the radial Schrödinger equation is written as

U ′′(r) + 2µ

(

E − V (r)− L(L+ 1)

2µr2

)

U(r) = 0 , (11)

where V (r) is defined above in Eq. (2). Here, U(r) = rR(r), where R(r)
is the radial wave function. To find numerical solutions of the Schrödinger
equation for Σ+

g states, the shooting method is used. At the small distance
(r → 0), the wave function becomes unstable due to a very strong attractive
potential. This problem is solved by applying smearing of position coordi-
nates by using the method discussed in Ref. [25].

For Σ−
u bottomonium hybrid states, the radial Schrödinger equation can

be modified as

U ′′(r) + 2µ

×
(

E − V (r)−A′ exp
(

−B′rP
′

)

− C ′ −
L(L+ 1)− 2Λ2 +

〈

J2
g

〉

2µr2

)

×U(r) = 0 . (12)

Here,
〈

J2
g

〉

is the square of gluon angular momentum and
〈

J2
g

〉

= 2 [1] for

Σ−
u state. Λ is the projection of gluon angular momentum and Λ = 0 [1] for

Σ−
u state. Numerical solutions of the Schrödinger equation for Σ−

u states are
found with the same method as discussed above and resultant radial wave
functions with different JPC are shown in Fig. 2 and Fig. 3. The quantum
numbers (L and S) for these states are given below in Table II.
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Fig. 2. The radial wave functions for Σ+
g and Σ−

u states for L = 0. The solid lines

indicate Σ−

u states and the dashed curves are for Σ+
g states. Radial wave functions

for S = 0 and S = 1 with L = 0 are almost the same in our numerical limits.

Fig. 3. The radial wave functions for Σ+
g and Σ−

u states for L = 1. The solid lines

indicate Σ−

u states and the dashed curves are for Σ+
g states. Radial wave functions

for S = 0 and S = 1 with L = 1 are almost the same in our numerical limits.
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TABLE II

Our calculated masses of bb hybrid Σ−

u bottomonium mesons.

Calculated mass Mass Calculated

Meson JPC Relativistic NR [3]
√

〈r2〉

GeV GeV GeV fm

ηh
b
(11S0) 0++ 11.2378 11.2012

10.912(3)
0.5827

Υh(13S1) 1+− 11.2385 11.2018 0.5841

ηh
b
(21S0) 0++ 11.4244 11.4154

11.192(5)
0.8375

Υh(23S1) 1+− 11.4254 11.4163 0.8392

ηh
b
(31S0) 0++ 11.5911 11.6079 1.0562

Υh(33S1) 1+− 11.5922 11.6089 1.0580

ηh
b
(41S0) 0++ 11.7440 11.7853 1.2539

Υh(43S1) 1+− 11.7451 11.7864 1.2555

ηh
b
(51S0) 0++ 11.8866 11.9514 1.4369

Υh(53S1) 1+− 11.8876 11.9526 1.4385

ηh
b
(61S0) 0++ 12.0210 12.1086 1.6090

Υh(63S1) 1+− 12.0219 12.1098 1.6105

hh

b
(11P1) 1−− 11.2983 11.2689

10.998(4)

0.6574
χh
0
(13P0) 0−+ 11.2928 11.2645 0.6873

χh
1
(13P1) 1−+ 11.2976 11.2684 0.6572

χh
2
(13P2) 2−+ 11.3001 11.2704 0.6594

hh

b
(21P1) 1−− 11.4775 11.4753

11.268(6)

0.9014
χh
0
(23P0) 0−+ 11.4709 11.4728 0.8991

χh
1
(23P1) 1−+ 11.4767 11.4753 0.9016

χh
2
(23P2) 2−+ 11.48– 11.4763 0.9033

hh

b
(31P1) 1−− 11.6393 11.6625 1.1139

χh
0
(33P0) 0−+ 11.6322 11.6609 1.1127

χh
1
(33P1) 1−+ 11.6384 11.6628 1.1145

χh
2
(33P2) 2−+ 11.6422 11.6634 1.1154

hh

b
(41P1) 1−− 11.7886 11.8361 1.3073

χh
0
(43P0) 0−+ 11.7813 11.8350 1.3066

χh
1
(43P1) 1−+ 11.7876 11.8366 1.3080

χh
2
(43P2) 2−+ 11.7915 11.8370 1.3087

hh

b
(51P1) 11−− 11.9283 11.9993 1.4871

χh
0
(53P0) 0−+ 11.9210 11.9985 1.4867

χh
1
(53P1) 1−+ 11.9273 11.9998 1.4879

χh
2
(53P2) 2−+ 11.9313 12.0001 1.4885

hh

b
(61P1) 1−− 12.0604 12.1540 1.6566

χh
0
(63P0) 0−+ 12.0532 12.1535 1.6564

χh
1
(63P1) 1−+ 12.0594 12.1547 1.6575

ηb2(1
1D2) 2++ 11.3804 11.3619

11.117(4)

0.7561
Υh(13D1) 1+− 11.3782 11.3583 0.7509
Υh
2
(13D2) 2+− 11.3803 11.3615 0.7553

Υh
3
(13D3) 3+− 11.3815 11.3637 0.7591

ηh
b2
(21D2) 2++ 11.5505 11.5584 0.9877

Υh(23D1) 1+− 11.5474 11.5561 0.9846
Υh
2
(23D2) 2+− 11.5503 11.5583 0.9874

Υh
3
(23D3) 3+− 11.5522 11.5596 0.9896
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4.2. Spectrum of Σ−
u state

To check the validity of our model, masses of bottomoium mesons are
calculated for Σ−

u states. To calculate the mass of bb state, the constituent
quark masses are added to the energy E, i.e.

mbb̄ = 2mb + E . (13)

The lowest-order relativistic correction in mass is incorporated by pertur-
bation theory as adopted in Refs. [7, 8]. With relativistic correction, the
expression to calculate mass can be written as

mbb̄ = 2mb + E + 〈Ψ |
( −1

4m3
b

)

p4 |Ψ〉 . (14)

The best fit values of parameters (αs = 0.4, b = 0.11 GeV2, σ = 1 GeV,
mb = 4.89 GeV) with relativistic correction are taken from Ref. [8]. The
calculated masses for Σ−

u states with and without relativistic corrections are
reported in Table II.

4.3. Radii

The numerically calculated normalised wave functions are used to calcu-
late the root mean square radii. To find the root mean square radii of the
gluonic excited Σ−

u bottomonium states, the following relation is used:

√

〈r2〉 =
√

∫

U⋆r2Udr . (15)

5. Discussion and conclusion

In this paper, a potential model for lowest-lying Σ−
u hybrid states is pro-

posed whose parameters are found by fitting the model with lattice data [5].
This model is used to calculate the numerical solutions of the Schrödinger
equation for Σ−

u states with different JPC . In Figs. 2–3, normalised radial
wave functions of Σ+

g and Σ−
u states are plotted with respect to quark–

antiquark separation r. Figures 2–3 show that peaks of radial wave functions
are shifted away from the origin for gluonic excited states (Σ−

u ) comparing
to gluonic ground states. Figure 2 shows that shape of wave functions is
different for Σ+

g and Σ−
u states for L = 0.

The newly suggested model is used to calculate the masses and radii of
the Σ−

u states and the results are written in Table II. Our calculated masses
without relativistic corrections are close to the results given in Ref. [3] as
shown in Table II. In Ref. [3], the spectrum is calculated without including
the spin, so the same mass is given for ηhb and Υ h

b . However, our proposed
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potential model gives distinguished results for S = 0 and S = 1. As observed
from Table II, the lowest calculated mass of the Σ−

u state is calculated to
be 11.2012 GeV without relativistic corrections and is equal to 11.2378 GeV
with the incorporation of relativistic corrections in masses. In Refs. [1, 5],
the lowest mass of Σ−

u state is 11.1 GeV. This shows that our calculated
masses with non-relativistic corrections are closer to the masses calculated
by lattice simulations [1, 5] than the relativistic masses.

From Table II, it is observed that masses and radii are increased by in-
creasing the orbital quantum number (L). The similar behaviour is observed
in Ref. [8] while working on Σ+

g and Πu states of bottomonium meson. The

spectrum of Σ+
g state bottomonium mesons is calculated in Ref. [8] by the

shooting method and a few of the results of Ref. [8] are shown below in Ta-
ble III. The comparison of masses of Σ+

g and Σ−
u states shows that masses

and radii of Σ−
u states are greater than Σ+

g states. Overall, we conclude
that masses and radii increase towards higher gluonic excitations.

TABLE III

Masses of Σ+
g states of bottomonium meson. These results are taken from our

earlier work [8].

Meson Relativistic mass NR mass
√

〈r2〉
GeV GeV fm

ηb(1
1S0) 9.4926 9.5079 0.2265

Υ (13S1) 9.5098 9.5299 0.2328

ηb(2
1S0) 10.0132 10.0041 0.5408

Υ (23S1) 10.0169 10.0101 0.5448

hb(1
1P1) 9.9672 9.9279 0.4347

χ0(1
3P0) 9.8510 9.9232 0.4375

χ1(1
3P1) 9.9612 9.9295 0.4379

χ2(1
3P2) 9.9826 9.9326 0.4375

ηb2(1
1D2) 10.1661 10.1355 0.5933

Υ (13D1) 10.1548 10.1299 0.5930
Υ2(1

3D2) 10.1649 10.1351 0.5939
Υ3(1

3D3) 10.1772 10.1389 0.5942

Our suggested potential model (VΣ(r)) depends on parameters (A′, B′,
P ′, C ′). The relative error in the masses due to ±1% change in each parame-
ter (A′, B′, P ′, C ′) is calculated to be within the range of (0.0096–0.0236)%,
(0.0388–0.0861)%, (0.014–0.0223)%, (0.0789–0.0856)%, respectively. The
standard deviation in masses is calculated to be equal to 0.303.
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The results of calculated radial wave functions, masses and radii can
be used to find more properties such as decay constant, decay widths and
transition rates of gluonic excited Σ−

u states. Overall, we conclude that our
extended potential model can be used to study the gluonic excitations in a
variety of meson sectors.
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