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Abstract Warped conformal field theories in two dimen-
sions are exotic nonlocal, Lorentz violating field theories
characterized by Virasoro–Kac–Moody symmetries and have
attracted a lot of attention as candidate boundary duals to
warped AdS3 spacetimes, thereby expanding the scope of
holography beyond asymptotically AdS spacetimes. Here we
investigate WCFT2 s using circuit complexity as a tool. First
we compute the holographic volume complexity (CV) which
displays a linear UV divergence structure, more akin to that
of a local CFT2 and has a very complicated dependence on
the Virasoro central charge c and theU (1) Kac–Moody level
parameter k. Next we consider circuit complexity based on
Virasoro–Kac–Moody symmetry gates where the complex-
ity functional is the geometric (group) action on coadjoint
orbits of the Virasoro–Kac–Moody group. We consider a spe-
cial solution to extremization equations for which complexity
scales linearly with “time”. In the semiclassical limit (large
c, k, while c/k remains finite and small) both the holographic
volume complexity and circuit complexity scales with k.
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1 Introduction

Holography [1–4] has not only provided us with tools which
have revolutionized our understanding of phenomena in
strongly coupled field theories, it has even led to the discov-
ery of novel exotic phases of strongly coupled field theories
and led to the identification of new conformal field theories.
One such example are the Warped conformal field theories
(WCFT) [5,6], which are the proposed holographic duals
of warped AdS3 spacetimes [7]. WCFTs can be defined as
the two dimensional field theories with SL(2,R)R ×U (1)L
Kac–Moody symmetry, which is the local extension of the
algebra of two global translation and one global chiral scale
symmetries. This is in contrast to the much older result [8]
where an unitary two dimensional QFT with global Poincaré
and scale invariance,

x− → x− + a, x+ → x+ + b,

x− → λ− x−, x+ → λ+x+,

ends up having an enhanced to a direct product of two copies
of the Virasoro algebra, corresponding to two dimensional
conformal symmetry,

x− → f (x−), x+ → g(x+).

if the dilatation operator has discrete non-negative spectrum.
Here x± are the two dimensional lightcone coordinates. In
[5], however the field theory was assumed to possess only
one-sided (chiral) global scale invariance

x− → x− + a, x+ → x+ + b,

x− → λ− x−.

There is a novel symmetry enhancement when one adds to the
mix a chiral boost symmetry x+ → x++ω x−. In such a case
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the symmetry algebra gets enhanced to an infinite dimen-
sional symmetry algebra, namely that of a semidirect product
of a Virasoro algebra and a U (1) current algebra (Virasoro–
Kac–Moody algebra), corresponding to the so called warped
conformal symmetry,

x− → f (x−), x+ → x+ + g(x−). (1.1)

Field theories possessing such a warped conformal sym-
metry are the WCFTs. Since then warped conformal symme-
try and WCFTs have been explored intensely using various
field theory and holographic tools – it is worth nothing a few
prominent works here. See reference [6], for a discussion
about representations of the warped conformal symmetry and
an analogue of the Cardy formula. Correlation functions have
been worked out in reference [9]. Two and three point func-
tions get completely determined by the global warped con-
formal symmetry, while the four-point functions are deter-
mined up to an arbitrary function of the cross ratio. Several
concrete examples of WCFTs have now been worked out, see
[10,11] for bosonic WCFTs, [12–15] for fermionic WCFT
models and [16] for supersymmetric WCFTs. For other inter-
esting works in WCFTs refer to [11,17–19]. In this work
we are particularly interested in holographic WCFTs, which
are dual field theory candidates to gravitational theories on
warped AdS3 (WAdS3) spacetimes. WAdS3 are non-Einstein
spacetimes which can be realized in topologically massive
gravity [20–24] or in string theory [25–29]. The asymptotic
symmetry group of these spacetimes is the semidirect prod-
uct of a Virasoro algebra and a U (1) affine Kac–Moody
algebra [30–34]. These spacetimes are not asymptotically
locally AdS, and hence they expand the scope of holography
beyond asymptotically AdS. In particular we are interested
in spacelike warped AdS3 spacetimes, which are obtained
when a spatial line or circle is fibered over AdS2. Timelike
and null warped AdS3, where the U (1) fiber is timelike and
null respectively, are known to contain closed timelike curves
(CTC) and hence are not expected to have sensible, well-
behaved boundary duals. Spacelike warped AdS3 spacetimes
also admit black hole solutions [7].

Ideas from quantum information have brought new insights
into various physics branches and had far-reaching conse-
quences. It has given a new perspective in interpreting sev-
eral geometric objects in the context of holography. A most
studied information-theoretic tool is entanglement entropy.
Typically, the entanglement entropy is computed using the
von-Neumann entropy after partitioning the systems into two
subsystems and tracing them out. This has been extensively
explored in the context of AdS/CFT [35] and the Warped
holography [36–41]. Another information-theoretic quan-
tity, primarily motivated by recent developments in black
hole physics [42,43], has come into the limelight is cir-
cuit complexity [44,45]. In the context of holography, cer-

tain geometrical objects, e.g. maximal volume of a particu-
lar codimension-one bulk slice (complexity = volume) [46],
gravitational action defined on Wheeler–DeWitt patch of a
bulk Cauchy surface anchored at a specific time (complex-
ity = action) [47], are conjectured to be the gravity dual to
the circuit complexity of the dual field theory state. Circuit
Complexity, an idea from the theory of quantum computa-
tion, basically quantifies the minimal number of operations
or gates required to build a circuit that will take one from a
given reference state(|ψR〉) to the desired target state (|ψT 〉).
In recent times, circuit complexity has been explored in the
context of quantum field theory [48–62].1 In this paper, we
will explore complexity both from the field theory and grav-
ity side in the context of warped holography, complementing
the studies of entanglement entropy in this context.

The plan of the paper is as follows. In Sect. 2 we
resort to holographic methods, in particular the complexity-
volume (CV) prescription to compute the complexity of the
warped conformal field theories dual to timelike and space-
like warped AdS3 spacetimes realized in topologically mas-
sive gravity theory. We find that for the timelike case, the
dependence on the UV cutoff is rather complicated – an indi-
cation of the fact the warped CFT is a nonlocal theory, but
the holographic complexity is not defined for a arbitrary val-
ues of the UV cutoff. The complexity is only well defined
when the cutoff is kept under a critical value determined
by the warping parameter. Such a phenomenon has already
been observed in the case of complexity of field theories
dual to null warped AdS3 spacetimes realized in the con-
text of T T , JT , JT deformed CFT2’s in a different work
[65]. Such computations lend credence to the claim that the
warped CFT2’s which are dual to null and timelike warped
AdS3 spacetimes do not have an unitary UV completion.
Then we work out the holographic complexity of WCFTs
dual to spacelike WAdS3 spacetimes. These are free from
pathologies (i.e. are unitary and UV complete) and the under-
lying symmetry structure is that of a semidirect product of a
Virasoro and a U (1) Kac–Moody algebra. The holographic
complexity in this case scales extensively with system in units
of the UV cutoff, a trait which is perhaps more expected from
a local CFT2, despite the fact that warped CFTs are highly
nonlocal theories. There is a nontrivial dependence on the
symmetry parameters c, k. In particular the complexity does
not scale linearly with the Virasoro central charge c as it did
in the case of local CFT2, but instead with the U (1) Kac–
Moody level number, k. Although there is no restriction on
the cutoff in terms of the warping parameter, it can be arbi-
trary, the complexity is still defined in a restricted domain
of the parameter space of the symmetry algebra, namely
c/k ≤ 25/8. Next in Sect. 3, we adopt the method of [56–58]

1 This list is by no means exhaustive. Interested readers are referred to
these reviews [63,64], and citations are therein for more details.
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to directly evaluate the circuit complexity of WCFT employ-
ing the Kac–Moody symmetry gates to construct a complex-
ity functional. Although finding the most general solution to
the extremization conditions of this complexity functional
appears highly intractable, we are able to obtain an exact
solution by simple inspection. For this special solution, we
find that the complexity has an overall linear scaling in the
warping parameter k, and has a subleading contribution of
order c/k. This dependence on k, c

k , is in good agreement
with what we obtain from the gravity side. We conclude the
section after an elaborate comparison with the results coming
from holography. Finally in Sect. 4, we discuss our results and
provide an outlook for further future investigations. Some
of mathematical details are provided in Appendices A, B
and C.

We note that there have been other, complementary studies
of complexity of warped conformal field theories [66] as well
holographic complexity of warped AdS3 black holes [67–
69].

2 Holographic complexity of warped CFTs

In this section our goal is to study the complexity of two
dimensional WCFTs using holography i.e. using the dual
warped-AdS3 solutions. To be precise we use the holographic
volume complexity prescription [42,43,46]. Although time-
like and null warped AdS3 spacetimes are not supposed to be
dual to any UV complete boundary field theory we work out
the holographic complexity of timelike WAdS3 for the sake of
completeness. The holographic volume complexity expres-
sion must exhibit a characteristic signature for the sickness
of the boundary dual field theory. The holographic of null
warped AdS3 has already been considered elsewhere [65]
where it is obtained as the holographic dual to a little string
theory (LST) obtained as a single trace T T̄ , J T̄ , J̄ T defor-
mation of a CFT2, for a very special case of the deformation
parameters (λ = ε+ = 0). There it has been observed that
both the holographic volume and action complexity expres-
sions become either complex or ill-defined if the UV cut off is
arbitrarily large. Sensible (real positive) complexity expres-
sions are only obtained when the UV cutoff is restricted by
the warping parameter. Such a behavior of the complex-
ity clearly signals the UV incompleteness of the putative
WCFT (in this case an LST) dual to the null Warped AdS3.
To avoid redundancy, we skip the null warped case as it
has appeared in a separate work [65] and instead we begin
our holographic computations with the case of the timelike
warped AdS3. We work specifically with the metric in a
Poincaré patch of the timelike warped AdS3, which can be
obtained by taking the zero temperature limit of the warped
black string metric equation (4.10) of [37] as reviewed in the
Appendix A.

The metric in Poincaré patch is (A.2) in Appendix A and
reads

ds2 = −dt2 + dx2 + dz2

z2 − λ2 (dt + dx)2

4z4 .

As usual z = 0 is the (conformal) boundary, and the (warped)
AdS radius is set to unity. Here λ is a dimensionless param-
eter representing (timelike) warping. Note that for z < λ/2,
the transverse x-direction turns timelike so the conformal
boundary is 0 + 2 dimensional (two times). From the bulk
sting background perspective, the transverse direction x is a
compact (closed), and there appears closed timelike curves
once one crosses into the deep UV (near boundary) region
2z < λ. Then to obtain a causal macroscopic semiclassical
bulk one is forced to excise the spacetime time region 2z < λ.
This phenomenon points out to the UV incompleteness of the
warped CFTs dual to timelike warped AdS3 akin to the case
of the null warped case. To recap, it can be shown that the dual
LST to bulk null warped AdS3 has complex energy eigen-
values for energy scales large ε, thereby rendering the dual
theory nonunitary [70]. One is forced to truncate the theory
beyond a certain cutoff UV energy scales (Hagedorn) such
that the spectrum of the truncated theory is real. Although
the explicit dual WCFT to the timelike warped AdS3 gravity
is as yet unknown one anticipates the dual WCFT to share a
similar pathology – the far UV spectrum must be truncated
to keep the dynamics unitary.

In order to compute the volume complexity, we need to
first work out the maximal volume spatial slice � – a space-
like hypersurface which has the maximum volume among all
spacelike hypersurfaces anchored at a given boundary time,
T0. The volume complexity of the dual boundary theory at the
time T0 is then proportional to the volumeV� of the maximal
volume slice �,

C(T0) = V�(T0)

GN l
. (2.1)

Here l is some characteristic length scale of the geometry
(which is a bit arbitrary to some extent). In the present case
we will take it to be the (W)AdS3 radius (which we have set
to unity l = 1).

Let us parameterize a generic spatial surface (say γ ) by
t = t (z), ∀x . Then the induced metric on this spacelike
hypersurface is

ds2
γ =

(
1

z2 − λ2t ′(z)2

4z4 − t ′(z)2

z2

)
dz2

− λ2t ′(z)
2z4 dxdz + dx2

(
1

z2 − λ2

4z4

)
.
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The volume of the spacelike hypersurface γ is then,

Vγ =
∫

dx
∫ ∞

0
dz

1

z2

√
1 − t ′(z)2 − λ2

4z2 . (2.2)

Extremizing this volume functional leads us to the following
Euler–Lagrange equation

z
(

4z2 − λ2
)
t ′′(z) +

(
λ2 − 8z2

)
t ′(z) + 8z2 t ′(z)3 = 0.

To solve this differential equation we assume the following
ansatz for the spacelike slice anchored at the boundary as

t (z) :=T0+T1z+T2z
2+T3z

3 + T4z
4 + T5z

5 + T6z
6 + · · · ,

when solved order by order in z. Since this is a second order
equation, we need a second boundary condition, which is
the constraint that asymptotically this is a spacelike surface
( dtdz |z=0 = 0). The solution to the Euler Lagrange equation
is remarkably simple, it is the constant time slice t (z) = T0.
However plugging in the maximal volume slice t = T0, in
the expression for the volume naively gives divergent result
since the space is noncompact. So we need to introduce a
volume regulator in the form of a radial cutoff, z = ε instead
of integrating all the way to the boundary z = 0. After regu-
lating the volume, one obtains a finite (regulator dependent)2

expression for the volume complexity of warped CFT dual
to a timelike warped AdS3 spacetime to be

C = 1

GN

∫
dx

∫ ∞

ε

dz
1

z2

√
1 − λ2

4z2

= Lx

GN

⎛
⎝1

λ
sin−1

(
λ

2ε

)
+ 1

2ε

√
1 − λ2

4ε2

⎞
⎠ . (2.3)

There are several features to note in this expression for
complexity. First and foremost, unlike that of a local CFT2,
the complexity of a warped CFT does not diverge linearly
with the cutoff ε. This is consistent with the fact the warped
CFTs are highly nonlocal, boost non-invariant field theories.
The second key feature is that for a fixed cutoff, the com-
plexity is a nonanalytic function of the warping parameter λ

– the complexity does not make sense for all real values of

2 Note that just like entanglement entropy, complexity is also expected
to be a manifestly (UV) cutoff dependent quantity for a continuum
quantum field theory. In addition, generically for a quantum theory
where states are described by a continuum of state vectors, the so called
circuit complexity is intrinsically unbounded and can only be defined
provided one introduces a tolerance parameter which is a sort of minimal
volume cell in the Hilbert space of states. There have been attempts to
define quantum complexity which is finite as well as tolerance free but
there is no unanimity in such approaches.

the warping parameter λ. The cutoff cannot be made arbitrar-
ily small, there is a restriction imposed on it by the warping
parameter λ. In order for the above complexity expression
to make sense, we must always restrict the cutoff to 2ε ≥ λ

as we have pointed out earlier that as the radial coordinate,
2z < λ, the bulk x-direction turns timelike. Consequently
the constant t surface is not a spacelike surface and its vol-
ume does not represent complexity. In fact since for 2z < λ,
the spacetime turns 1 + 2-dimensions, no codimension one
hypersurface is spacelike and the volume complexity pre-
scription does not apply anymore. This pathology is similar
in nature to as the one encounters in the study of null WAdS
[65]. Such pathological features render the warped CFTs dual
to timelike or null warped AdS3 spacetimes unsuitable for
further investigations and in the remainder on will concern
ourselves with the warped CFTs which are dual to exclusively
spacelike warped AdS3.

2.1 Holographic volume complexity of spacelike WAdS3

Here we consider the physically interesting case of warped
CFTs dual to spacelike warped AdS3 spacetime. Spacelike
warped AdS has isometry group SL(2,R)×U (1). The metric
of spacelike WAdS3 solution is given by [7]

ds2 = l2

ν2 + 3

[
− cosh2 ρ dt2 + dρ2

+ 4ν2

ν2 + 3
(dt sinh ρ + du)2

]
. (2.4)

When ν2 > 1 one obtains a spacelike stretched AdS3, while
a spacelike squashed AdS3 is obtained when ν2 < 1. Evi-
dently ν2 = 1 case represents undeformed pure AdS3 space-
time. For computational convenience, we make the diffeo-
morphism tan θ = sinh ρ, with 0 ≤ θ ≤ π/2 to bring the
spacelike warped AdS3 metric to the following form

ds2 = l2

(ν2 + 3) cos2 θ

(
dθ2 − dt2

+ 4ν2

ν2 + 3
(dt sin θ + du cos θ)2

)
. (2.5)

As was done previously, the next step towards computing
the holographic volume complexity is to locate the maxi-
mal volume slice. To this end, let us parameterize a generic
spacelike hypersurface by the condition t = t (θ) ∀u. Then
the pullback metric on this spacelike hypersurface t = t (θ)

is given by

ds2 = l2

(ν2 + 3) cos2 θ

[
− t ′(θ)2 dθ2 + dθ2
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+ 4ν2

ν2 + 3

(
sin θ t ′(θ) dθ + du cos θ

)2
]
, (2.6)

with the volume

V = 2 l2 ν

(ν2 + 3)3/2

∫
du

∫
dθ

1

cos θ

√
1 − t ′2(θ). (2.7)

Extremizing the volume functional leads to the following
Euler–Lagrange equation

−t ′′(θ) + tan θ t ′(θ)3 − tan θ t ′(θ) = 0. (2.8)

Apart from the obvious root t (θ) = T0, this second order
nonlinear differential equation has following two nontrivial
roots

t (θ) = c2 ± tan−1

( √
2 sin θ√

2c1 + cos 2θ + 1

)
, (2.9)

where c2 = T0 − tan−1
(

1√
c1

)
and c1 > 0. So these are a pair

of one-parameter family (continuum infinity) of codimension
one hypersurfaces parameterized by c1. Depending on the

value of c1, these could be spacelike (c1 > 1 +
√

ν2+3
2ν

),

timelike (c1 < 1 +
√

ν2+3
2ν

) or null (c1 = 1 +
√

ν2+3
2ν

).
A simple inspection of the volume element (2.7) makes

it obvious that t ′(θ) = 0 or t (θ) = T0 is global maximum
among all spacelike slices (refer to Appendix B for an explicit
check). Selecting this constant t spatial slice and evaluating
the volume functional, we obtain the holographic complexity
of spacelike warped AdS3 is,

C = 2Lxl

GN

ν

(ν2 + 3)3/2

∫
dθ sec θ,

= 2Lxl

GN

ν

(ν2 + 3)3/2

∫ 1/ε

0
dρ,

= 2l

GN

ν

(ν2 + 3)3/2

Lx

ε
. (2.10)

Here we have introduced a radial cutoff ε (boundary UV cut-
off) and an IR cutoff, Lx , in the transverse boundary direc-
tion,

∫
du = Lx to regulate the complexity expression.

To translate this result in the language of field theory
we use the WAdS3/WCFT2 holographic dictionary [7,33,
34,71]. WAdS3 is realized in topologically massive grav-
ity (TMG) as a classical solution which is asymptotically
AdS3 with radius l for every value of the gravitational Chern–
Simons (CS) coupling μ(> 0). The CS coupling, μ is related
to the parameter ν appearing in the gravity solution, ν = μl

3 .
The phase space corresponding to the metric has asymptotic
symmetry algebra is a semidirect product of the Virasoro

and Kac–Moody algebra with central charge c and the Kac–
Moody level number k respectively:

[Ln, Lm] = (n − m)Ln+m + c

12
(n3 − n)δn+m,

[Ln, Pm] = −mPn+m,

[Pn, Pm] = −k

2
nδn+m . (2.11)

This asymptotic symmetry algebra is identified with the sym-
metry algebra of the holographic dual warped CFT2. The
holographic map between the boundary field theory param-
eters (c, k) and bulk gravity action parameters (GN , l, ν) is
[34],

c = 5ν2 + 3

ν
(
ν2 + 3

) l

G
, k = ν2 + 3

6ν

l

G
. (2.12)

Thus the final expression for complexity of warped CFT
dual to spacelike warped AdS3 is

C = c̃
Lx

ε
, (2.13)

where the parameter c̃ is a rather elaborate function of the
symmetry algebra parameters c, k,

c̃ = 5
5
2

2
11
2 3

1
2

k

(
3

5
−

√
1 − 8c

25k

)(
1 +

√
1 − 8c

25k

) 3
2

,

(2.14)

for ν < 1.3416 while for ν > 1.3416,

c̃ = 5
5
2

2
11
2 3

1
2

k

(
3

5
+

√
1 − 8c

25k

)(
1 −

√
1 − 8c

25k

) 3
2

.

(2.15)

The holographic complexity expression of the WCFT dual
to spacelike WAdS3 ((2.13), (2.14) (2.15)) has the following
features of note,

• Complexity scales extensively with the number of lattice
sites, i.e. system size in units of the UV cutoff, C ∝ Lx/ε

(here since the WCFT/system is spatially extended in
one dimensions), much like that of a local field theory
CFT2. This is a bit counterintuitive since the WCFT is
understood to be a nonlocal theory.

• Unlike in the case of the WCFTs dual to timelike or null
WAdS3 case, there is no restriction of the UV cutoff ε on
the warping parameter k/c. This affirms the fact that the
dual WCFT to spacelike WAdS is a unitary UV complete
theory.

• In contrast to local CFT2, for which the holographic com-
plexity is proportional to the Virasoro central charge c,
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in the case of the WCFT2 it is proportional to c̃, which
is a complicated function of the Virasoro central charge
and the U (1) Kac–Moody level. We note that the for
ν2 ∈ R, one restricts the range of the parameters c, k to
the domain

c

k
≤ 25

8
. (2.16)

So there is no way to set k → 0 while keeping c finite.
• Finally one can check that setting ν2 = 1 in (2.10) or

equivalently by setting

c = 2l

G
, k = 2l

3G

in (2.14) one recovers the pure AdS complexity.3

3 Circuit complexity for warped CFTs

In this section we compute the circuit complexity for dual
warped conformal field theory using the approach as out-
lined in [56–58]. This will allow us to compare and con-
trast the field theory based circuit complexity using available
techniques to the holographic results of the last section. In
general such a direct comparison of field theory and holo-
graphic results are rare, WAdS/WCFT complexity provides
us yet another opportunity.

Symmetry generators and their transformations:
As discussed in [5,6], the Lorentzian theory has a global
SL(2, R)R × U (1)L invariance. Furthermore, on the plane
the algebra is defined by the commutators of the following
operators [5,6],

Tζ = − 1

2π

∫
dx− ζ(x−)T (x−),

Pχ = − 1

2π

∫
dx− χ(x−)P(x−). (3.1)

The right moving and left moving modes are associated
with x− and x+ respectively and T (x−), P(x−) are the local
operators (the stress-tensor and momentum operator) on the
plane. The ground state of the theory is invariant under the
action of these symmetry generators.

3 Incidentally, one could perhaps attempt to extract the volume com-
plexity of spacelike WAdS3 by taking the zero temperature (and zero
angular velocity) limit of the holographic volume complexity expression
for WAdS3 black holes obtained in [69]. However that volume complex-
ity expression does not reduce to the pure AdS volume complexity when
one sets ν2 = 1, in fact the divergences in volume complexity vanish
entirely in the unwarped pure AdS limit by setting ν2 = 1 and M = 0
in Eq. 4.6 of (2.14).

To get an insight about the algebra, let us take an con-
crete example. If we go from a Lorentzian plane (x+, x−) to
a Lorentzian cylinder using the coordinate transformations
x− = eiφ and choose the test functions

ζ(x−) = ζn = (x−)n = ei n φ,

χ(x−) = χn = (x−)n = ei n φ, (3.2)

then following [5,6] one can show that Fourier modes satisfy
Virasoro–Kac–Moody algebra mentioned in (2.11) with cen-
tral charge c and the Kac–Moody level k after the following
identification,

Ln = i Tζ2n+1 , Pn = Pχn . (3.3)

Note that, the T (x−) generates infinitesimal coordinate trans-
formation for the coordinate x−. On the other hand P(x−)

generates the infinitesimal gauge transformations in the
gauge bundle parametrized by x+. Following [5,6] we can
write down the following transformation rules for T (x−) and
P(x−)

T ′(w−) = f ′2 T (x−) + c

12
{ f, w−} + f ′g′P(x−) − k

4
g′2,

P ′(w−) = f ′P(x−) − k

2
g′, (3.4)

where, f, g are two arbitrary functions and f ′ = ∂ f (w−)

∂w− , g′ =
∂g(w−)

∂w− . Also we have used the fact that the finite transforma-
tions for the coordinates going from (x−, x+) to (w−, w+)

is of the form mentioned in (1.1). Also, we can identify the
Schwarzian term as,

{ f, w−} = f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

.

Now again going back to the case of mapping the theory
defined on a plane to a cylinder, using the (3.4) we get,

T α(φ) = −(x−)2 T (x−) + c

24
+ i 2 α x−P(x−) + k α2,

Pα(φ) = i x−P(x−) + k α (3.5)

where we have used the following coordinate transforma-
tions,

x− = ei φ, x+ = t + 2 α φ. (3.6)

α is an arbitrary tilt [5,6]. The Fourier modes for T α(φ) and
Pα(φ) on the cylinder is defined as,

Pα
n = − 1

2π

∫
dφ Pα(φ)einφ,
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Lα
n = − 1

2π

∫
dφ T α(φ)einφ. (3.7)

Then using the (3.5) we can relate the Fourier modes on the
cylinder with those on the planes in the following way,

Lα
n = Ln + 2 α Pn −

(
k α2 + c

24

)
δn,

Pα
n = Pn − k α δn, (3.8)

where Ln and Pn are the Fourier modes defined on the plane.
We need to know one more thing before we proceed fur-

ther. We will be requiring to know the expectation values of
T α(φ) and Pα(φ) with respect some primary states.
Complexity measure for symmetry groups:
Now we use the method of [56] to compute the circuit com-
plexity. In [56] authors have adapted the methods for com-
puting circuit complexity [44] for conformal field theory. We
primarily follow their approach. Starting from a suitable ref-
erence state |ψR〉 we can go a target state |ψT 〉 by acting the
reference state by a unitary operator

U (τ ) = ←−P exp

(
−i

∫ τ

0
H(τ ′)dτ ′

)
.

At τ = 0 this U (τ ) becomes identity operator so that we get
the reference matrix. Then,

|ψT 〉 = U (τ = T )|ψR〉. (3.9)

Here we have assumed that we will reach the target state after
τ = T time. The Hermitian operator H(τ ) is composed of a

set of gates that satisfy a closed algebra and form a group.
←−P

represents the path ordering as these gates do not commute
in general. In [56], the authors following the arguments of
[55] focuses on the symmetry group. Hence the gates are
generated by the symmetry generators. This method has been
used to compute circuit complexity for Virasoro and Kac–
Moody groups [57,58].

Using appropriate representation we can identify the
instantaneous gates Q(τ ′) = −i H(τ ′) as,

Q(τ ′) = 1

2π

∫
dx ε(τ ′, x)J (x), (3.10)

where J (x) is the conserved current and ε(τ ′, x) is the control
functions which counts how many times the particular gen-
erators have been acted at a given time τ ′. One can view the
circuit as a path on the underlying group manifold connect-
ing two given points. For infinitesimally close points along
the path we can write down the following,

U (τ + dτ) = e−Q(τ )dτU (τ ). (3.11)

We also we need to relate this control function with the
group elements to compute the circuit complexity. This can
be done by noting the fact that under the symmetry trans-
formations we can write the following for the group element
g(τ, x),

g(τ + dτ, x) = eε(τ,x)dτ g(τ, x). (3.12)

Then we can expand this to the first order we can relate the
control function with the derivative of the group element
[56,57]. It can be easily seen that, ε(τ, x) is nothing but the
instantaneous velocity in the group space.

Finally we need to specify a suitable functional assigning
computational cost to all of these symmetry transformations.
In the original formulation by the Nielsen [44], typically one
assign higher penalties for those gates which are ‘difficult’
to construct. Here we will follow the approach of [56,57]
to assign same cost all kind of symmetry transformations.
Furthermore, following [56] we will define the cost func-
tional by evaluating the gates Q(τ ) in the instantaneous state
at time τ. This is different from the Nielsen’s original for-
mulation. For more details we discussions on this interested
readers are referred to [56,57]. We mainly use the following
cost-functional,

F = |Tr[ρ(τ)Q(τ )]|. (3.13)

This is also known as “one-norm” cost-functional. There are
plethora of choices for cost-functional. For more details of
possible choices for cost-functional interested readers are
referred to [45,72]. The density matrix for the instantaneous
state ρ(τ) in this can be generated from the initial density
matrix ρ0 by evolving with the unitary operator, ρ(τ) =
U (τ )ρ0U †(τ ). Then (3.13) can be re-written as,

F = |Tr[ρ0 Q̃(τ )]|, (3.14)

where, Q̃(τ ) = U †(τ )Q(τ )U (τ ). Furthermore the total cost
can be found by integrating over this cost-functional over the
entire path connecting reference and target states.

C =
∫

dτF

= 1

2π

∫
dτ

∣∣∣∣
∫

dx ε(τ, x)〈ψR |U †(τ )J (x)U (τ )|ψR〉
∣∣∣,

(3.15)

where we have used (3.10) and (3.14). Then we have to
choose a suitable reference state and minimize (3.15). Note
that, (3.15) is a functional of the group path g(τ ). By mini-
mizing it we are finding the shortest path. Also as each path
corresponds a circuit, shortest path corresponds to the opti-
mal circuit. Finally, evaluating (3.15) on this path will give
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us the complexity associated with the optimal circuit which
will take us from a given reference state to a desired target
state.

Virasoro–Kac–Moody Circuit:
Armed with this discussion, now we turn our attention to
the Virasoro–Kac–Moody symmetry group and compute the
circuit complexity using the methods discussed above. We
construct the unitary circuit solely using the gates generating
Virasoro–Kac–Moody symmetry defined by,

QT (t) =
∫ 2π

0

dφ

2π
ε1(t, φ)T α(φ),

QP (t) =
∫ 2π

0

dφ

2π
ε2(t, φ)Pα(φ) (3.16)

where, T α(φ) and Pα(φ) are the stress-tensor and momen-
tum operator defined on the cylinder (3.5). The quantum cir-
cuit then takes the following form,

U (τ ) = ←−P exp

[∫ τ

0

(
QT (τ ′) + QP (τ ′)

)
dτ ′

]
. (3.17)

Next to compute the complexity functional (3.15) we have
to do the following:

• We choose the reference state |ψR〉 as the primary state
|p, h〉 of the underlying warped CFT [5,6].

• To compute the following,

Q̃(τ ) = U †(τ )
(
QT (τ ) + QP (τ )

)
U (τ ). (3.18)

we first note that, U (τ ) is basically unitary representa-
tion of the symmetry group elements. Hence actingU (τ )

on QT (τ ) and QP (τ ), amounts to transform T α(φ) and
Pα(φ) using the transformation rules mentioned in (3.4).
We then get the following,

U †(τ )T αU (τ ) = f ′(τ, φ)2 T α(φ) + c

12
{ f (τ, φ), φ}

+ f ′(τ, φ)g′(τ, φ)Pα(φ)− k

4
g′(τ, φ)2,

U †(τ )PαU (τ ) = f ′(τ, φ)Pα(φ) − k

2
g′(τ, φ). (3.19)

Here, for a given path τ in the group manifold, f is the
diffeomorphism on the circle just like the Virasoro case
[56,57] and g provides a translation along τ for given φ.

Note that in contrast to [56,57] we are using the notation
f, g instead of F,G and to represent the inverse diffeo-
morphism and vice versa. Our notation is more in line
with the original literature in the context of coadjoint
orbit action in 2D gravity [73].

• Also we relate the control functions ε1,2(τ, φ) with the
group parameters. Note that, we can identify it as the
instantaneous velocity in the group space from (3.12)
just like the case of Virasoro [56,57].

ε1(τ, φ) = − ḟ (τ, φ)

f ′(τ, φ)
, (3.20)

ε2(τ, φ)= ġ(τ, φ) f ′(τ, φ) − g′(τ, φ) ḟ (τ, φ)

f ′(τ, φ)
. (3.21)

We have denoted the τ andφ derivative as by “(˙)” and ( ′ )
and respectively. Details of the derivation can be found in
Appendix C. At this point we note that, ε1(τ, φ) depends
only on f (τ, φ) and its derivative just like the Virasoro
case [57,74].

• Finally we replace the expectation values of T α(φ) and
Pα(φ) with respect to the primary states in the complex-
ity functional (3.15) by the relations mentioned in (3.33).

Complexity Functional:Using (3.19), (3.20) (3.21), we arrive
at the form of the complexity functional,

C = 1

2π

∫ T

0
dτ

∫ 2π

0
dφ

∣∣∣∣ε1 〈ψR |U †(τ )T αU (τ )|ψR〉

+ ε2 〈ψR |U †(τ )PαU (τ )|ψR〉
∣∣∣∣

= 1

2π

∫ T

0
dτ

∫ 2π

0
dφ

∣∣∣∣ − ḟ f ′ T0 − c

12

ḟ

f ′ { f, φ}

− 2 ḟ g′ P0 + 3 k

4

ḟ

f ′ g
′2 + ġ f ′ P0 − k

2
ġ g′

∣∣∣∣. (3.22)

Here we have defined T0 = 〈h|T α( f, g)|h〉 and P0 =
〈h|T α( f, g)|h〉, and we have chosen the primary state |h〉 as
the reference state |ψR〉. Now, before we extremize this com-
plexity functional we switch to the inverse functions F,G
(refer to Appendix C) by switching variables φ → f (τ, φ).

Thus, we arrive at the complexity functional form,

C = 1

2π

∫ T

0
dτ

∫ 2π

0
dφ

∣∣∣∣ ḞF ′ T0 − c

12

Ḟ

F ′ {F, φ}

−k

4

Ḟ G ′2

F ′ + G ′ Ḟ
F ′ P0 + Ġ P0 − k

2
Ġ G ′

∣∣∣∣ . (3.23)

Extremizing this complexity functional leads to the Euler–
Lagrange equations for F(τ, φ):

∂τ

[
T0

F ′ − c

12

{F, φ}
F ′ 2 − k

4

G ′ 2

F ′ + G ′

F ′ P0

]

+ ∂φ

[
Ḟ

F ′ 2

{
c

6

(
F ′′′

F ′ − 9

2

F ′′ 2

F ′ 2

)
− T0

}]
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+ c

4
∂2
φ

(
Ḟ F ′′F ′′′

F ′3

)
+ c

12
∂3
φ

(
Ḟ

F ′2

)
= 0, (3.24)

and for G(τ, φ):

k Ġ ′ + k

2

Ḟ

F ′ G
′′ +

(
Ḟ

F ′

)′ (k
2
G ′ − P0

)
= 0. (3.25)

The arguments, (τ, φ) of all the functions have been sup-
pressed to reduce clutter of notation.
These are a pair of coupled nonlinear partial differential equa-
tions, of high (cubic) order in derivatives of φ, and it is not
a priori obvious what are the consistent boundary and initial
data on F, Ḟ, F ′, F ′′, Ġ,G ′ which will lead to the existence
of an unique solution. The questions of consistent initial and
boundary data, existence, uniqueness, boundedness of the
solution etc of this equation can perhaps be taken up in a
separate work. For now we content ourselves by arriving at
a solution by plain guessing, since for the purpose of this
paper, any solution will allow us to make an estimate of the
circuit complexity and afford a comparison with the holo-
graphic complexity computed in Sect. 2. By simple inspec-
tion, the most obvious solution are when Ḟ, F ′ are constants,
say Ḟ = k1, F ′ = k2. Then the equation for G, (3.25) yields,

G(τ, φ) = c1(τ ) + c2 (τ − 2k2φ/k1) (3.26)

where c1, c2 are two arbitrary functions. Plugging this in
the equation for F , (3.24) then implies either G ′ = 2

k P0 or
Ġ ′ = 0. The first choice determines c2 to be,

c2

(
τ − 2k2

k1
φ
)

= −k1 P0

k k2

(
τ − 2k2

k1
φ
)

+ c3

and thus,

G(τ, φ) = c1(τ ) + P0

k

k1

k2

(2k2

k1
φ − τ

)
+ c3. (3.27)

The second choice leads to the condition c′′
2(τ −2k2φ/k1) =

0, or,

c2(τ, φ) = k3(2k2φ/k1 − τ) + c3.

where k3, c3 are constants. Thus the other solution is,

G(τ, φ) = c1(τ ) + k3(2k2φ/k1 − τ) + c3. (3.28)

One must have G(τ, φ) only as a function of φ at τ = 0,
which implies for either of the two solutions for G,

c1(0) = −c3. (3.29)

This will then give,

G(τ, φ) = c1(τ ) − c1(0) + γ

(
φ − k1

2 k2
τ

)
(3.30)

where γ = 2 P0
k for the first solution and γ = 2 k3 k2

k1
for the

second solution. Now if we impose an initial condition on G

so that it reduces to the plane-to-cylinder transformation at
τ = 0, namely, (3.6), then we must have γ = 2α. However,
k1, c1(τ ) still remain arbitrary. From the periodicity condi-
tion on F(τ, φ), namely F(τ, φ + 2π) = F(τ, φ) + 2π , we
have k2 = F ′ = 1. The solution to F , then assumes the form
F(τ, φ) = k1τ + φ + const. The constant has to be set to
zero, to satisfy the initial condition, F(0, φ) = φ. Thus we
have the final form of the solution,

G(τ, φ) = c1(τ ) − c1(0) + 2α

(
φ − k1

2
τ

)
, (3.31)

F(τ, φ) = k1 τ + φ. (3.32)

We will specialize to the vacuum state on the cylinder, for
which h = 0, whereby [5,6]

T α(φ) = kα2 + c

24
, Pα(φ) = kα. (3.33)

Substituting the solutions (3.32) in (3.23), and using the
expectation values (3.33), we obtain the final expression for
the complexity,

C = T k1 k

(
2α2 + c

24 k

)
. (3.34)

Now, before we extremize this complexity functional we
switch to the inverse functions F,G by switching variables
φ → f (τ, φ). Before we end this section, there are a few
comments in order.

• Among various other choices for complexity functional,
there is one other commonly use functional which can be

defined as, F =
√

−Tr[ρ0 Q̃2(τ )]. For our case then the
complexity will take the following form,

C =
∫ T

0
dτ

√
−Tr

[
ρ0 (Q̃2

T (τ ) + Q̃2
P (τ ))

]
. (3.35)

It has been argued in [56] this will give the same complex-
ity as before in large c limit. This is indeed the case for
Virasoro symmetry group. Unless we take large c limit
we can not expect that this complexity functional will
give the same value as what we have quoted in (3.22).

• For our case it is natural that we have to take a large k limit
as well since the leading semiclassical limit is defined by
l/GN � 1 which mandates large c, as well as large k
since ν is order one). The final expression of the symme-
try gate complexity (3.34) evidently displays a leading
contribution of order k, with a subleading contribution of
order c/k. Thus it is similar to the result obtained from
the holography, which is also proportional to the k in this
limit as evident from (2.13), (2.14) and (2.15).
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• Last but the not the least, unlike the gravity result, we
do not get any UV cut-off dependence (short distance
singularities) in the complexity! In fact this supposed to
be case, for Virasoro group also as mentioned in [57,58].

4 Discussions

WAdS3/WCFT2 duality allows us to explore holography
beyond asymptotically AdS spacetimes. WCFTs are non-
local quantum field theories characterized by the infinite
dimensional symmetry algebra, namely the Virasoro–Kac–
Moody current algebra. In this work we have probed WCFTs
by means of circuit complexity, a novel tool which has tradi-
tionally been used in quantum information and computation
theory, but has gained importance in black hole physics and
holography of late. In particular we studied the WCFT com-
plexity in two independent schemes. First is the holographic
volume complexity scheme and the other is the recently pro-
posed circuit complexity based on circuits constructed purely
by means of unitary gates which are the Kac–Moody symme-
try transformations. We mainly focused on WCFTs which are
putative duals of spacelike warped AdS3 since the WCFTs
dual to timelike or null warped AdS3 are not expected to
have unitary UV completion. (While discussing holographic
complexity, we did discuss the timelike warped AdS3 case
just to illustrate the point that the complexity expression
becomes nonanalytic and develops cuts when the UV cut-
off is made arbitrarily small signaling UV incompleteness
of the dual WCFT). For spacelike warped AdS3 case, the
dual WCFT2 holographic complexity turns out to be linearly
divergent. This is rather counterintuitive because such lin-
ear divergences are expected for local CFT2 while WCFTs
are nonlocal field theories. However, such a trend has been
true for other observables like WCFT entanglement entropy
[36,39] which does display logarithmic divergence charac-
teristic of local CFT2s. The coefficient of the complexity
linear divergence for CFT2 is the central charge (up to a
numerical factor), while for the case of WCFT2 we see that
this coefficient is a rather elaborate function of the Virasoro
central charge, c as well as the U (1) Kac–Moody level num-
ber, k and the complexity only makes sense for the range of
parameters in the domain c/k ≤ 25/8. So there is no simple
way to take a large c limit while keeping k fixed, in fact one
has take both c, k large while maintaining c/k ≤ 25/8. How-
ever, one can take k large while keeping the ration c/k fixed,
and in this limit, the holographic complexity has a leading
behavior proportional to k. From the holographic standpoint,
one might think of employing other schemes such as the
action complexity or some other alternative proposals [75].
However we recall that for the case of CFT2 dual to pure
AdS3, the action complexity vanishes due to dimensional
accident (in arbitrary boundary spacetime dimensions, say

d, the action complexity is proportional to a factor ln(d−1))
[76]. Analogous vanishing of the action complexity has also
been observed in the null warped AdS3 [65] while being stud-
ied in the broader context of holographic complexity of little
string theories [77]. So we do not pursue this direction here
in this work. See [67] for a calculation of the divergence-free
time-rate of action-complexity growth in warped AdS black
hole geometries.

Next we looked at the circuit complexity of WCFT based
on a proposal [57] which advocates the use of the uni-
tary gates corresponding to (exponentiating) Kac–Moody
symmetry generators. Note that, the complexity functional
mentioned in (3.22) is not actually geometric action func-
tional supported on the coadjoint orbits of the Virasoro–Kac–
Moody symmetry group.4 In [57], a modification of the pro-
posal advocated in [56] has been given. It will be interesting
to use that modification to obtain a complexity functional for
our case which will be same as warped coadjoint orbit action.
However, extremizing the complexity functional (3.22) leads
to a pair of highly nonlinear coupled PDEs which appear to be
quite intractable. But by simple inspection, we find can a spe-
cial solution where the derivatives F ′, Ḟ are constants. This
choice yields a very simple looking expression for the circuit
complexity, one which depends on the symmetry parameters
c and k, and the path length T between the reference and the
target state. Of course it would be ideal if one could somehow
arrive at a more general solution of the complexity functional
extremization conditions, and figure out the most generic
dependence on the parameters c, k. At this point it is unclear
what are the consistent boundary conditions which will lead
to a well-behaved solution of (3.24). Perhaps one may try
to consider to particular limits involving c and k to simplify
(3.24) and get a well behaved solution. We leave that general
analysis for future work. Since the complexity functional is
proportional to the length of the path in the group manifold
and not physical space, there is no dependence on the system
size. Also, by construction this complexity functional is tol-
erance free and free from UV divergences. Thus perhaps one
cannot perform a direct comparison of the resulting expres-
sions of the two schemes of holographic complexity and cir-
cuit complexity employed here, apart from the fact that both
are proportional to k in the leading order. This absence of UV
divergences might be related to the choice of the reference
state. The reference state considered in this paper is a pri-
mary state. However, one might think of trying to setup this
computation in the spirit of [48] where one start from a unen-
tangled reference state. This will be an interesting avenue to
pursue in future. Nevertheless, at this point, these are only
speculations. Further investigations are needed to understand

4 This is also true for the Virasoro case if we simply follow the approach
of [56].
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the absence of UV-divergence from the complexity computed
using this group-theoretic approach.

In Nielsen’s original formalism [44,45,53], this C in
(3.15), can furthermore be related to the number of gates,
which in turn then make the complexity dependent on the sys-
tem size. One first needs to perform that analysis for this case
in order to relate the C that we have computed in (3.22) with
the number of gates constituting the circuit. Also, one impor-
tant thing that we have to keep in mind is that the penalty
factor played an important role in such analysis. In our case,
we have not penalized any gates. We leave these important
issues for future investigations. Apart from this, it will be
also interesting to investigate circuit complexity using other
methods eg Fubini–Study, path integral approach along the
lines of [58,60,74,78,79]. Last but the not the least, it will
be worthwhile to investigate operator complexity related with
the Hamiltonian evolution. In that context an useful approach
might be to consider recently proposed ‘Krylov complexity’
[80,81] for our case. Again we hope to report on this issue
in near future.
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Appendix A: Review of timelike WAdS3

Our starting point is the black string metric, equation (4.10)
of [37]

ds′2 = l2
(

(1 + λ2A2)

4
(
r2 − A2B2

)dr2 + A2dv2

+ (B2(1 + λ2A2) − λ2r2)du2 + 2rdudv

)
, (A.1)

where, the non-compact event horizon is located at rh =
AB. We will rewrite the above metric in order to arrive at
timelike WAdS3 metric. To this end let’s separately write the
λ independent unwarped part of the metric as

ds2
0 = dr2

4
(
r2 − A2B2

) + A2dv2 + B2du2 + 2r dudv,

where we have taken l = 1. If we further perform the follow-
ing set of coordinate changes and parameter redefinitions,

du = dx + dt, dv = dx − dt,

r = 1

2

(
ρ2 − a2 + b2

2

)
,

A = a + b

2
, B = a − b

2
.

then the black string metric (A.1) turns into

ds2
0 = dρ2ρ2(

ρ2 − a2
) (

ρ2 − b2
) −

(
ρ2 − a2

) (
ρ2 − b2

)
ρ2 dt2

+ ρ2
(
dx − ab

ρ2 dt

)2

.

This is evidently the metric of BTZ spacetime in disguise
with horizons at a and b. In this setup, A is related to the
level of Kac–Moody algebra. As we can see that in order
to obtain a black hole free background by making horizon
disappear simply amounts to takinga = 0 = b (i.e. vanishing
Kac–Moody level). This choice simplifies the metric to the
form

ds2
0 = dr2

4r2 + 2 r dudv,

thus we recover the pure AdS3 metric

ds2
0 = dρ2

ρ2 + (−dt2 + dx2)ρ2,

which we immediately recognise to be the metric of the
Poincaré patch of the AdS3. After taking ρ → 1

z , further
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simplifies the metric to

ds2
0 = dz2 − dt2 + dx2

z2 .

Let’s turn our attention towards the warped part of the metric
. After plugging in A = 0 = B in (A.1) and carrying out the
exact same transformations as above, leads us to the warped
portion of the metric

ds2
λ = −λ2 (dt + dx)2

4z4 .

Hence, the required timelike W AdS3 metric we work with
in section (2.10) takes the following form

ds2 = dz2 − dt2 + dx2

z2 − λ2 (dt + dx)2

4z4 . (A.2)

Appendix B: Maximum volume spacelike hypersurfaces

The (regulated) volume for the t = T0 slice is,

V = a
∫ π

2 −δ

0

dθ

cos θ

= a

[
− ln

(
δ

2

)
− δ2

12
− 7δ4

1440
+ O

(
δ6

)]
. (B.1)

Despite the minus sign the leading log divergent contribution
is positive definite because δ � π/2, so δ/2 � π/4 � 1.
Note that the UV regulator δ is related to the UV regulator ε

by,

1

ε
= − ln

(
δ

2

)
(B.2)

courtesy the diffeomorphism tan θ = sinh ρ. One can com-
pare the volume of this spacelike slice to the volume for the
two other (family) of solutions for which

ṫ(θ) = ± cos θ√
e2c1 + cos2 θ

,

where now we have redefined c1 → exp c1, so that now c1 ∈
R. If one works out the normals to the above hypersurface(s),
one finds

nt = 1 nθ = ∓ cos θ√
c1 + cos2(θ)

nu = 0, (B.3)

with (regulated) norm at the conformal boundary5

n2 ∝
(

4e2c1 + 3
)

ν2 + 8
√
e2c1ν2 + 3.

Evidently, for ec1 > 1 +
√

ν2+3
2ν

the normal is timelike
(n2 < 0) and the solutions (2.9) represent spacelike hypersur-
faces. The regulated volume for these one-parameter family
of spacelike hypersurfaces are given by the same expression,

V = a
∫ π

2 −δ

0

dθ

cos θ

√
1

1 + e−2c1 cos2 θ

= a tanh−1

(
cos δ√

1 + e−2c1 sin2 δ

)

= −a

2
ln

(√
1 + e−2c1 sin2 δ − cos δ√
1 + e−2c1 sin2 δ + cos δ

)

= −a ln

(
δ

2

)
−a

2
ln

(
1 + e−2c1

)

−
(

1 − 3e−2c1
) δ2

12
+ O

(
δ4

)
. (B.4)

Evidently this solution has a lower volume is than the solution
t (θ) = constant case (B.1) since the finite piece (indicated in
red) is negative definite for finite c1. So the solution t (θ) =
constant which we have worked with is a global maxima.

Appendix C: Relating control functions with the group
velocities

If we compose two warped conformal transformations,

x− → x ′− = F1(x
−), x+ → x ′+

= x+ + G1(x
−)

x ′− → x ′′− = F2(x
′−), x ′+ → x ′′+

= x ′+ + G2(x
′−),

we get,

x− → x ′′− = F2
(
F1(x

−)
)
, x+ → x ′′+

= x+ + G1(x
−) + G2

(
F1(x

−)
)
.

So the group composition law is,

(F2,G2).(F1,G1) = (F2 ◦ F1, G2 ◦ F1 + G1) (C.1)

5 Clearly as θ → π/2 the metric diverges due to the overall factor of
cos−2 θ , and the norm of the unnormalized normal vector (B.3) van-
ishes. So one has to work with the normalized normal vector. Alterna-
tively, one can use the metric without the cos−2 θ factor and compute
the norm.
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Using this transformation law in the equation for the group
space circuit, namely

G(τ + dτ, φ) = eε(τ,φ)dτ .G(τ, φ)

where G = (F,G) is a group element and the infinitesimal
transformation is defined by

eε(τ,φ)dτ ≡ 1 + (ε1(τ, φ)dτ, ε2(τ, φ)dτ).

We obtain,

ε1(τ, F(τ, φ)) = Ḟ(τ, φ), ε2(τ, F(τ, φ)) = Ġ(τ, φ).

(C.2)

The solution for ε1 can be written in terms of the inverse
f (τ, F(τ, σ )) = σ ,

ε1 = − ḟ

f ′ . (C.3)

To solve for ε2 we need to introduce a function g, defined by
g(τ, F(τ, σ )) = G(τ, σ ). This is the condition of the inverse
of the transformation (F,G). This then leads to form of the
solution,

ε2 = ġ + g′ ε1 = ġ f ′ − g′ ḟ
f ′ . (C.4)

Here and henceforth, dot ( ˙) and prime ( ′ ) denote partial
derivatives wrt to τ and σ respectively.
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