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We report calculations of a wave-packet amplitude of the two-body scattering ¢p¢p - ® — ¢p¢h, which
leads to the measured probability in realistic experiments. We elucidate the decay amplitude of ® — ¢¢
from this. In such an amplitude of wave packets, there are in and out time boundaries for the initial ® and
final ¢p¢p configurations, respectively. In this paper, we prove that the effect of the in time boundary of
O — ¢ emerges from pp — O — p¢ without assuming any time boundary a priori. This effect has been
overlooked in the standard plane-wave formulation and can exhibit distinct phenomena in wide areas of
science. We confirm the result in different integration orders. The result is also interpreted as a Stokes

phenomenon in the Lefschetz-thimble decomposition.
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I. INTRODUCTION

Particle scattering in quantum field theory requires wave
packets in its very foundation, whereas the plane-wave
formulation, which involves the square of the energy-
momentum delta function in S-matrix [1], is “more a
mnemonic than a derivation” [2]. More concretely, this
means the following:

(i) Particle scattering in quantum field theory in stan-
dard calculational method uses plane waves. The
amplitude of plane waves is proportional to a four-
dimensional Dirac delta function §*(p; — p;), show-
ing energy-momentum conservation, where p; and
pr are the initial- and final-state total momenta. A
square of the Dirac delta function is proportional to
5*(0) and is divergent literally. A standard approxi-
mation is to replace the infinity with a time interval
and spatial volume of the system and to compute the
proportional constant. Scattering cross section and
other physical quantities are computed in this way.
These are idealistic quantities that preserve space-
time and other symmetries.

(i) Physical states in experiments and natural phenom-
ena have finite sizes in reality. In cases where these
sizes are much larger than typical characteristic
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lengths of scatterings, these may be approximated
with infinity, and plane-wave amplitudes describe
the transition with a good approximation. In other
cases, these may not be well approximated with
plane wave amplitudes. In both cases, the total
probability of a particle (within the one-particle
subspace) is unity and is expressed by a normalized
wave, satisfying |(y|y)|> = 1. These are the wave
packets. Scattering amplitudes of normalized wave
packets describe these transition processes and may
become different from those of plane waves.
Historically computations of scattering amplitudes have
been developed by Tomonaga [3], Schwinger [4], Feynman
[5,6], and Dyson [7] in the early time of quantum
electrodynamics (QED); see Ref. [8] for related seminal
papers. Complicated calculations of higher-order correc-
tions became drastically simplified by the powerful method
of Feynman diagrams. Amplitudes in the momentum space
are expressed using two-point Green’s functions, propa-
gators, and vertex parts systematically. In the context of this
paper, it is important that Feynman dropped contributions
from the asymptotic time region in order to obtain the
beautiful Lorentz-invariant formula. Feynman himself
mentions the ignorance [6] when he proceeds “imagining
that we can neglect the effect of interactions” near the
asymptotic time region, hoping that “we do not lose much
in a general theoretical sense by this approximation”;
see Sec. IV C for further details. In the present paper, we
calculate the amplitude including such a contribution
neglected by Feynman.
The wave function in the asymptotic time region can be
critical in a scattering process ¢¢p — ® — ¢¢ of a light
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scalar ¢ via a heavy intermediate scalar ® having a finite
lifetime. The wave-packet amplitude of this process is
sensitive to the state in the asymptotic time region of ®.
This is difficult to analyze in the plane-wave formalism and
is deeply connected with the contribution dropped by
Feynman. The wave-packet amplitude takes into account
this region explicitly and has no ambiguity nor difficulty in
the computation.

In this paper, we present detailed calculations and the
structure of the wave-packet amplitude. We will show that
such a contribution for @ does exist and shows unusual and
different properties not existing in the ordinary plane-wave
Feynman diagram calculations.

Finally, we point out the possible phenomenological
impact of our theoretical findings. Ishikawa et al. claim that
indeed a wave-packet effect—more specifically the time-
boundary effect due to localization of wave-packet overlap
in time—is responsible for diverse phenomena in science
such as the LSND neutrino anomaly [9,10]; violation of
selection rules [11]; the solar coronal heating problem
[12,13]; anomalous Thomson scattering and a speculative
alternative to dark matter, as well as modified Haag
theorem [14]; the anomalous excitation energy transfer
in photosynthesis [15]; and anomalies in the width of
ete™ = yy, in the z° lifetime, in Raman scatterings, and in
the water vapor continuum absorption [16,17]. There is an
ongoing experimental project for this effect [16,18].

However, the time-boundary effect has not been paid
high attention to, because so far it depends on whether one
accepts a priori the concept of the finite-time scattering that
involves the time boundaries. Here, we fill the gap by
showing that the effect from the in time boundary of
the ® — ¢ decay [10,19,20] emerges from the ¢p¢p —
® — ¢ scattering amplitude [21] even if we do not
include the in and out time boundaries for ¢¢. This
way, we exhibit the necessity to include the time boundaries
in general.

The organization of this paper is as follows: In Sec. II, we
review the basics of the Gaussian wave-packet formalism
and show how to obtain the wave-packet S-matrix, namely
the finite transition amplitude between the normalizable
multi-wave-packet states. In Sec. III, we show the emergence
of the above-mentioned in time boundary for ®. In Sec. IV,
we confirm our result by examining the pole structure
of what we call the wave-packet Feynman propagator
and by referring to the Lefschetz thimble decomposition.
In Sec. V, we summarize our result. In Appendix A, we list
our notations. In Appendix B, we present simpler expres-
sions of S-matrix etc. for a particular configuration. In
Appendix C, we give a detailed discussion on Fig. 2.

II. S-MATRIX IN GAUSSIAN FORMALISM

We study the scattering ¢p¢p > ® — p¢p with an inter-
action Lagrangian density

*(Zin—int

FIG. 1. Schematic figure in the position space z = (z°,z) for the
intersection times Tj,ine Touine and for the center of wave packet
2, (@a=1,...,4) at the arbitrarily chosen reference time ¢ = 0.
The solid and dashed lines denote the trajectories of the wave
packets of ¢. The intermediate state of @ is a plane wave that
spreads infinitely. The integral over the in- and out-interaction
points x = (x°,x) and y = (y°,y) have largest support around the
black dots at z° = Ty and Toyeine respectively.

['im = _g¢2(p’ (1)
where ¢ and @ are real scalar fields with masses m and M
(>2m), respectively, and « is a coupling constant. We only
take into account the tree-level s-channel scattering as we
are mostly interested in the amplitude near the resonance
pole of ®@.

A. Gaussian wave-packet formalism

In this paper, we work in the Gaussian wave-packet
formalism [22], where the external fields ¢ are written in
terms of the Gaussian basis, whereas the internal field ® the
plane-wave onel; see e.g. Refs. [20,21,23] for reviews. In
Fig. 1, we show a schematic figure. The concrete form of
the wave-function in the spacetime coordinate z = (z°,z)
for the Gaussian wave packet of ¢ is, for particle labels
a=1,2,3,4,

fzf,,;X[,,Pa (Z)
= (&) 3/4/$eip'(z_xa)_% _Pa)z s
T \/ 2p0(277.')3/2 0 2,2

p’=+/m~+p-
(2)

where the parameters for each wave packet a (witha = 1, 2
for incoming and 3,4 for outgoing) are its width-squared

'"The result does not change if we use the Gaussian basis
instead of the plane-wave one in internal lines; see footnote 2.
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6., spacetime position of its center X, = (X9, X,), and
its central momentum P,=(E,,P,), where E,:=
(m*> +P2)'/?. We may trade P, for V,:=P,/E, as
independent parameters.

The tree-level s-channel S-matrix for the Gaussian wave
packets (2) with the interaction (1) becomes [21]

S= (—ik)z/(d4p -

2n)* p? + M? —ie

X / d4xf0| X1,P, (x)fo'z;Xz.Pz (x)e—ip-x
< [ @ o O e Q)

Here, the exponential factors originate from the plane-wave
expansion of @; the spacetime position of “in-interaction” x
and that of “out-interaction” y are integrated over the whole
spacetime.2

The amplitude (3) specifies the location of the wave
packets X1, ..., X, in addition to their momenta Py, ..., P,.
One can integrate out X, ..., X, if one wants to compare
it with the corresponding plane-wave result. The amplitude
(3) contains more information than the plane-wave
S-matrix which only contains information of Py, ..., P,.

We may rewrite the plane-wave propagator of ® with the
off-shell momentum p = (p°,p) as

—i —i
M —ie —(p°)? +p*+M*—ice
—i —i
= .4
—-(P°) +E;

T+ E—ie

where E, (> € > 0) and E, are defined for later use:

/ / : i€
Ep = M2 +p2, Ep = E;—lé‘ﬁEp —E. (5)
P

Loop corrections to the two-point function of ® may be
approximated by taking

€=M, (6)

where I is the decay width of ®.> That is, within this
particular theory, € is not an infinitesimal nor an indepen-
dent variable as it can be computed for a given set of
parameters (k, m, M). In this paper, we keep it independent
for ease of extension. To summarize, (k,m,M,¢) and
(64,X,,P,) are all the independent parameters in this

*The result of the integral would not differ if we expanded ®
by the Gaussian waves instead of the plane waves [21].

Seee. g. Appendix C and D in Ref. [24] and references therein
for subtleties when I" becomes comparable to M.

paper: The former set determines the theory, while the
latter set parametrizes each wave packet.
We also define the following for later use:
(1) oy, and o, are the spatial widths-squared for the in
and out interaction regions, respectively:

010) 0304
Gin = > GOllt = (7)
O 1 + 0'2 O 3 + 04
(1) ¢;, and ¢, are the temporal widths-squared for the
in and out interaction regions, respectively:

. [} + ()
Cin *= m Sout

o3 + 0y

“weve

(iii)) Their sum and the inverse of their inverse sum are

OinOout
O = 0y + Ouyts O i=—, 9
+ n out Cin i Gout ( )
GinSout
6+ =Gt 6o = —. (10)
- " ot Cin + Sout

@iv) Py, =Py + P, and P, :=P;+ P, are the total
momenta for the in and out states, respectively.

(v) E,=E;+E, and E, = E; + E4 are the total
energies for the in and out states, respectively.

(vi) The following are the weight-averaged quantities:

_ VvV, V _ VvV, V
Vin = Ojp <_1 =+ _2> ’ Vout = Oout <_3 + _4> s
(o] o) 03 Oy

_ oinPin + OouPout

P(r:_ (11)

Oin T Oout

(vii) E, is energy of ® with the momentum P,, while E
is its complex extension that includes the effect of
®-decay width in the imaginary part:

E = (M>+ P2 E,o\/E—icnE, -

(o2

(12)

At the leading order in the plane-wave expansion
for large o, the Gaussian wave packet (2) is approximated
by [20-22]

eiPa'<Z_Xa)

6,; )23 —¢
Toakat Q)= g Y 2E,

~ g Xa= (=X (13)

After putting them into Eq. (3), we can perform the six-
dimensional Gaussian integral over the spatial positions
of in- and out-interaction vertices x and y, respectively,
without any further approximation. The resultant wave-
packet S-matrix becomes

4 : 11 I x4 1
In particular, ; = ——+_——=) 7, o

Oin Oout
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d*p

S = (zﬂ\/m)?)N / (277:)3 e_%(P_Pin)z_%(P_Pom)z_iéin‘(l’_l)in)+i§'ou&'(I7_Pout)

© L (0= V2 0 [ 1 (0 2 ; 0
X / dx e zgin(x {Sm—ml) lWip (P)x / dyoe_m(y _Toul—inl) ‘kuul(p»]
—00 -

[Se]

where we have defined the following:
(i) Z, is a weighted average of the center positions of
the two incoming wave packets ¢¢ at an arbitrary
reference time 7 = 0,

0,0 = =
= 1 <_1+_2>, (15)

61 +o,\0; 0y

o

and similarly E,,, is of the two outgoing ones,

_ 010 = =
B, = 304 <3+4>, (16)

03 Oy

where the center of ath wave packet at t =0 is
defined by’

E,=X,- VXY (17)
see Fig. 1.

(1) Tinint Founin) 18 the intersection time for the
incoming (outgoing) ¢¢:

< _ (Vi=Vy)- (B —5)
in-int — T 2 ’
(Vi=V»)
V=V, (E;—E
‘Iout—int = _( & 4) ( 32 4> 5 (18)
(V3=Vy)
see Fig. 1.

(iii) x° (y°) is the time for the in(out)-interaction vertex.
(iv) @ip(p) [wou(p)] is the “shifted energy” for the in
(out) interaction:

<

<
|

Py

(19)

(v) N is a normalization factor that is mostly irrelevant
to the following discussion:

. . \2 _ RintRout 1 1 3/4
N = (=ix)2e ] ] JE(H%) ., (20)

a=1

in which the “overlap exponents” are given by6

S

E, is E,(1)],_o =%, in the language of Ref. [21].
®The wave limit of R, Eq. (C.5), in Ref. [20] has a typo in the
sign of the second term.

dp® —ie= P’ 0"=")

—_ 14
2w p? + M?* —ie (14)
|
B —5) - [V (B -8&)]
Rin:(-1 2)" = [Via - (& 2)] ’
o)+ 0,
By —Ey)2—[Vay- (Bs —Ey)
Rout:( 3 4) [ 34 ( 3 4)] i (21)
O'3+64

Here and hereafter, we neglect the overall phase factor that
is independent of the integrated variables (p°,p, x°,°).

B. Strategy of paper

In this paper, we evaluate the S-matrix (14) in two

different orders of integrals:

Order 1. First integrate over p, p°, and x°. Then we
exhibit the emergence of an in-time-boundary effect
for the ® — ¢p¢p decay from the remaining integral
over .

Order 2. First integrate over x° and y°. Then we analyze
the structure of the off-shell p° integral via two
distinct approaches:

(a) The saddle-point method and the residue

theorem.

(b) The Lefschetz thimble decomposition.
We will also show that the result of the remaining p integral
in a nonrelativistic limit in order 2 agrees with that of
order 1. Roughly, order 1 examines the emergence of the
boundary for y° (the time of local interaction governing
® — ¢¢) in the position space, whereas order 2 examines
the structure of the @ propagator in its momentum space.

Finally, we comment on the possible “time-boundary

effect” of ¢. In this paper, we first neglect the time
boundaries of ¢ and then will show that the in-time-
boundary effect of ® for the ® — ¢¢ decay still emerges.’

III. EMERGENCE OF TIME
BOUNDARY FOR ® — ¢¢

First, we run a series of calculations in Sec. III A through
Order 1 from the S-matrix (14). Then we will discuss its
properties in Sec. III B.

"This may be rephrased as follows: We first introduce time
boundaries for the two-to-two scattering, 73, and T, at which
interactions are negligible; cut off the interaction-time integrals
fTT‘ dx? and fTT‘ dy?; focus on the “bulk terms” for the two-to-
two scattering; and take the limit 75, — —oo0 and T, — 0.
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A. Calculati f i -matri SE+V - VX0
Calcu a' ion of Gaussian S-matrix . P =P+ + Vour)® n¥” (26)
From the S-matrix (14), we perform the Gaussian O+
integral over p in the saddle-point approximation for large
o.. The result is Recall that ¢, and P, have been defined in Egs. (9)

and (11), respectively. The mass dimensions of Z,, and V,
are —1 and 0, respectively.

Hereafter, we replace p,. by P, in Eq. (23), namely, we

take the leading-order terms in the large ¢, expansion in its

X / dyPe Zow '~ Towin)” oV 603°) T (x°,y%),  (22)  polynomial while leaving the exponents intact:

S (27[0 3/2N/ dxo _m< Tin-im>2

i 20(1,0 0
where® o o /dpo i’ (y0=x")
A , ~ [ — . 27
) | s —ie 2D
dp? =ip®(y'=x")
T.(0y0)= [ ° _(23) 0 —
27i —(p°)? +p% + M?* —ie Then we can perform the p” integral analytically:
BEA Vo = Va2 T, (00
Vo10,30) = (B~ Py = O Youd 2Vt £
- o L (030 = x0)e~E 0" 1 020 — y9) B ).
lG<V O+Vouty0> (P — P ) 2E
Gm UOUI ot " (28)
- ia)in (O)XO + iwout(o)yo’ (24)
where 6 is the Heaviside step function. Recall that E is
in which defined in Eq. (12). For the propagation from the
in-interaction time x° to the out-interaction time y°, the
O == By — By (25)  first and second terms correspond to the forward and
backward propagation in time, respectively.
is the displacement between the in and out wave packets After putting the result (28), we may perform the x°
and the saddle point is located at integral in Eq. (22) exactly. The result is
|
( 1 _Sﬂ‘?in . Voul)yo _T+
. . 1+ eI‘f o4 in-int
(27[6)3/21\’ —4(P,,—P; Eout_éin __Zin-int ﬁl int__ uul int _ T out- m[)z I ( ;ml § ; (T:m-im)z < \/237 )
S = T 3 )’ 26+< 2in 2Gout 4 /2ﬂsm dy e Sout 2Sin 2Sout >
in-int (1 iﬁ‘_/in"_/ou()yo
(‘0 TO_U‘ lﬂ[>2 1 (T; l"‘)2 Il (T;UI lnl 2 1 + erf( 2#>sl" )
- Sout TSy T 2sout y 29
+e ) (29)
where s;, and S, are effective temporal width-squared for the in- and out-intersections, respectively,
1
Sin = 1 ‘_/ﬁ] P (30)
Sin Z
Sout
Sout = _ Pa— s (31)
1+ ff—i’ (V?,ut - sin(Vi;;VOm)z)

and the complex parameters T;, i, and T, correspond to the in- and out-intersection times T; ;. and T i (see Fig. 1),
respectively,

¥Starting from Eq. (14), we have an extra phase factor e~ Pou=Pn) with & := "E%‘;‘la‘ As said above, we neglect such a phase
factor that does not contain any integration variable. e
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TITI int = in{ {M =+ M]
Cin (o
V. - (P, —P:
— i|:win (O) FE, + oVin ( out 1n):| }’ (32)
Toutint . Vou - (VinTi SE
T(:::ut lnt Sout{ |: out-nt + out ( in "in-int ):|
out oL

<

SinVin - V.
+i |:w0ut(0) + Eo <1 e out>
O+

)

In Eq. (29), we can always separate the following
expression for a general complex number z into what we
call the bulk and boundary terms:

1+erf(ﬁ> 1—|—sgn(\/287) erf(m) sgn(\/g)
2 2 + 2

)
(34)
|

_ GVoul ) (Pout

Oout

(33)

<2
2E,

+ 2
(Tm ml>

X < e *Sin

out m[
2Soul

)2 ___in-int__
m 2%in

7 ] _|_ erf uul int mTi+n—im
vV 2Sout

2

Recall that ¢ and ¢ are defined in Egs. (9) and (10),
respectively.

Again, we can decompose the parts of the form HeTrf()
into the bulk and boundary terms via Eq. (34). In particular,

the resultant step functions in the braces in Eq. (37) are

ORT guine = NTiind)- (38)
and
(ERTl_n int ChT(;ut mt) (39)

respectively. We see more transparently that the former and
latter represent the forward and backward propagation in
time. Hereafter, we neglect the latter since we are interested
in the near-on-shell scattering around the resonance that

where ) and J denote the real and imaginary parts,
respectively, and the last equality holds except at
Nz = 0, which is out of our interest.”

For simplicity, we hereafter focus on the limit

Sin — 0, (35)
which picks up only the bulk terms in Eq. (29):
1+ erf( < )
V) g(%iz) (36)

Comparing with Eq. (28), we see that the first and second
terms in the square brackets in Eq. (29) correspond to the
forward and backward propagation from the (effective) in-
intersection time T, to the out-interaction time 0.

Next, we analytically perform the y° integral in Eq. (29)
after taking the limit (36), namely, 6, > $;,Vin - Vou > 0.
The integral of y° regenerates the combinations (34) but
with different arguments:

2

A
out-int
Zout /2S5 1/ 2S o

RT: T
in-int out-nt
2 1 +erf (—m )

out
2

(T

in-int

+ e *n

UU[ lﬂl
2Sout

2
+

(37)

[
suppresses the latter exponentially:

(276)3°N

2E,

s 1m v P P

_ga _p. 2__1 (& _& \2_Cin-int_ Zout-int

X e z(Pnul Pm) 20 (“oul _m) 2in 2cout /2”Sin /2ﬂsout
—RT" .
+ 2 —+ out-int in-int
(Tm ml) <Tuul mt) 1 + erf ( \/ Soul )

X e S 2Sout (40)

2

1. Simple configuration

The physical meaning of the general result (40) is more
apparent when we concentrate on the particularly simple
conﬁgurationlo:

The sign function sgn(z) for a general complex argument 7 is
defined in Eq. (63) in Ref. [20].

For the simple configuration (41), we do not need the
expansion (27) to proceed with the subsequent computation.

096013-6
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Vi, =0, Vou = 0. (41)

In this case, we get

Eq. (35)
wiy(p) = Eiy, Sin—~6n ( — 0),
. (35
Tin—int - ‘Zin—int - iGinEin (Eq_(> )‘Zin—int)7 (42)

wout(p) = Eqys Sout ™ Souts

Tout—int - Sout—int =+ iGOutEout‘ (43)

We also note that ¢ — ¢;, (= 0) and ¢, — ¢oy due to
Eq. (35). The following simplification will also be useful
for the quantities defined below in Egs. (53) and (55):

0(p) = Egu— By 0,(0) > E.(SVE,),  (44)
where

i Ei E . Eq (35
Eg - SinLin + SoutLout ( q_(> )Eout)' (45)
Cin + Sout

The result (40) simplifies to

A% _e(p.__p. )2 Cin _Sin(p _p y2
- (2 4 N (Poul Pm) >mn (Eout Em)
= (27) N|:<27T> ¢ 2

X V 277"goul e—‘;QTM(EH_Eout)z_ﬁ(éoul_ém)z
2E,
erf( AT ) —sgn( AT )
% 9<m AT > + V260u V260ut .
V260ut 2

(46)
where

0% = gout-int - gin—inn
AT := 6% + goutan + iGOut(Eout - mEa)- (47)

Here, 6% is the elapsed time between the in and out
intersections, namely the propagation time of ®; see
Fig. 1. The physical meaning of each factor in Eq. (46)
is the following:

(i) N is the factor (20) that depends on the configuration
of external states. This factor is out of our interest in
this paper.

(i) The first and second square brackets represent the
momentum and energy conservations, and reduce to
the delta functions &°(Pyy — Pin) and §(Eqy — Ein)
in the limits of 6 — oo and ¢;, — oo, respectively.

(iii) The complex parameter E, is the energy (12) of
the intermediate particle @ that includes its width
as well.

(iv) Eq. (46) contains the ® — ¢¢ amplitude, Eq. (58) in
Ref. [20].11 The first and second terms in the braces
in Eq. (46) are the bulk and in-time-boundary terms,
respectively, introduced in Eq. (34).

For the first time, we have proven that the in time boundary
of the ® — ¢p¢ decay emerges even if we do not take into
account any time-boundary effect for the ¢¢p — ¢p¢
scattering.

B. Properties of Gaussian S-matrix

Now we examine various detailed aspects of the
Gaussian wave-packet S-matrix (46), obtained for the
simple configuration (41), by varying the configuration
of external states.

As an illustration, in Fig. 2, we show the dependences of
the (normalized) differential probability

K4 (o]

2 .
157/ 64zM° o3

(48)

on the final wave-packet positions x3 := |X3| and x4 := |X,|
at time Xg = Xg =T for a typical setup closest to the on-
shell plane-wave calculation. The position vectors of initial
wave packets are back to back and collinear to their
momenta, corresponding to a head-on collision, with the
collision point being the origin of the spacetime
(Tipint = 0), and the final state momenta are back to back
as well (we focus on the case of symmetric widths ¢, =
0, < 03 = 0,4 and the on-shell momenta E, + E, = E3 +
E, for a small €). Then we obtain 6& = 25 V; (= &)
and 6T = T — 28 (= Tyy4p). 6T > 0 and 5T = 0 cor-
respond to the bulk and in time boundary for the ® — ¢¢
decay.]2 Further details are presented in Appendix C.

We first discuss the left panels that include the bulk
contribution at ©3* < T, with J* = T being the in time
boundary. The probability density |S|? is constant along the
x3 = x4 line, exhibiting manifest independence on &%.
Along the perpendicular direction to this constant line,
|S|? is exponentially damped with the width ~,/53/|V3].
This width increases as the size of the wave packets /o3
increases, but the in time boundary stays at 7% = T |S|?
summed over x3 and x,; remains trivially independent
of o%.

Next we discuss the right panels with all the contribu-
tions. |S|? is smooth everywhere thanks to the boundary

”EG is identified to its initial energy Ej, o4, to its width-
squared oy, ¢y to its temporal width-squared o,, T;, i to its in
time boundary T}, and T,y to its interaction time T. Note that
o and ¢;, have no counterparts in Ref. [20] and that the ¢¢ out
time boundary has been neglected in this paper.

“Here and in the next paragraph, (in)equalities are given for
€ — 0 for simplicity. If we recover it, the bulk and in time

€03 — €03 i
boundary are 6% > MV and 0% = v respectively.
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FIG. 2. Differential probability |S|*/ ¢ 4’7‘;4(,

% from Eq. (46) as a function of the final wave-packet positions x3 = [X3] and x4 == |X,| at
3

time X3 = X} =:T (= 100 in units M = 1). The upper and lower panels are for momenta on and off the resonance, respectively. The left
panels show the bulk contribution only, whereas the right ones show the sum of all the bulk and boundary ones. The difference between
the right and left panels is the boundary contribution. This figure verifies our theoretical prediction that the boundary effect is sizable

both on and off the resonance.

contribution localized around x;~x,~T (= 100),
namely 0% ~0:

(i) On the resonance (in the upper-right panel), the
interference between the bulk and boundary terms
provides a negative contribution at 6% 20
(x3 +x4 <T), while the absolute-square of the
boundary term gives a sizable contribution at 6T <
03 +x427).

(i1) Off the resonance (in the lower-right panel), the
boundary effect is prominent. The boundary con-
tribution is suppressed only by a power law at the
off-resonance, while the bulk one is by the expo-
nential law.

The large boundary effect at off-resonance has been over-
looked because it is buried in backgrounds or has itself
been regarded as a background. Its confirmation requires
a dedicated experiment or a comprehensive reanalysis of
existing data [16,18].

The wave-packet formalism contains more complete

information than the plane-wave formalism. For the

T

absolute-square of the S-matrix (46), the phase space of
the initial and final states are spanned not only by Py, ..., P,
but also X1, ..

wave-packet formalism, and is encoded only in 62 and 6%

., X4. The latter information is peculiar to the

(which also appears in AT), always appearing as the ratios
6E//; and 6T/\/Cou, respectively. When |6E| < /67,
the wave packets sizably overlap with each other, and the
probability |S|? is not suppressed by the overall factor
¢~(%8)*/o. . Among such configurations, when |5 > V/Sout
the boundary term is exponentially suppressed and the bulk
term dominates, while when |6T| < |/Goy. the boundary
contribution becomes sizable and cannot be neglected.
We note that 6T takes all the values —oc0 < 6% < oo as we
vary Xy, ..., X,

Finally, we show the result of a limit |AT| > /26,

with 0% > 0 that makes the analytic structure of the
amplitude (46) more apparent:

3/2 . . E:nul’éin 2 A/
S N (277'.)4N |:<;> / e_%(Pnul—Pin )2:| |: gme_glzn(Eout_Ein)Z:| e_% ZﬂgOUt
\[ /3

X 6(6(3 + goutjEtr)e_%(E““‘_E”)z -

This form will be used for later comparison.

2E,

6T+couIEs)_; ~
1 —_ ie_ %_I(Eoul _En) (5s+gnulJEn)

V278G oyt

Eg—E, — i “9)

Sout
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IV. ALTERNATIVE DERIVATIONS VIA ORDER 2

Now we turn to order 2. Originally, the exponents in
Eq. (14) are linear in p°. We perform x° and y° integrals
exactly in Eq. (14),

(27) WN/ ) 2+M2—l€ (50)

and the exponent becomes quadratic in p°:

2

where the location of saddle point on the complex p° plane
becomes

) = o.p) =i (52)

S+

in which

gma)m(p) + Cout@ou (P)
ofp) = Snll)F G )

is the off-shell shifted energy of ®. Here, the exponent at
the saddle point becomes

Gl[l

1.0~ (- L o-Pur-Zy -1

+ (-%(P _Pout)2 + iE‘out : (P _Pout>>
5%)2 ;
_ ( (Z) +ic ((Zm»mt

2¢,

o) ) = (G0lp),

Sin Sout
(54)

where

60 (p) = wou(p) — @in(p); (55)

see Eq. (107) in Ref. [21]. That is, the structure of the
exponent is

(69)?

f+«(p) = ————+ “p-dependent terms”.  (56)
2

The integral in Eq. (50), which we call the “wave-packet
Feynman propagator,” may be written as

/ (;;53 P (p), (57)

where
o dp? —i
I — e F(p°-p2p))?
) /_oo P (B it
°°dp0 —i St 0_ 0(p))2
= om0 -ri), 58
/_oo (B G8)

A. Saddle point and poles
The above exponential factor has a saddle point at

p° = p%(p), with its steepest descent and ascent paths

being J(p° — p%(p)) = 0 and R(p° — p%(p)) = 0, respec-
tively. Along the former, the saddle-point approximation
gives

1 —i
BNV R P

which leads to Eq. (110) in Ref. [21].
We compute the wave-packet Feynman propagator:

/ d*p —i
(27)* p* + M?* -

An important observation is that the saddle-point integral /,,
over the steepest descent path from —oco + Jp%(p) t

oo + JIpY(p) differs from the integral I over R by the
residues:

(59)

3
S0 — [P ) I(p). (60)
ie (2r)?

1) = 1.(0) (R g—%(po—pi’(p))z)g( E 0
=1I.(p) - es ————— |0(JE, — Tp;
=&, =(p") +E; '

oS- p))?

4 Res &
(fes e

__((uc(P) p_la 5
:I*(p)+€9< % e >

2 Ep S+

_%(wg@)JrEp_ig)z 5%
4+ G(CiE ——), (61)

2E, St

)e(zps 3(-E,))

where

co+Jp? dpo -1
Loy = [T

—eotapt 2 —(P°)? + Ej —

1 —i
~ . —. (62)
V27, —(@.(p) - l§>2 + EI% - e

The exponent of the first term in Eq. (61) is quadratic in p
after the pC-integral (62) and can be computed as in
Eq. (134) in Ref. [21], while that of the second term is

e~ 3" -pp))?
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not, and we compute it in the nonrelativistic limit below. We will neglect the third term, which corresponds to a propagation

backward in time, assuming a nearly on-shell scattering.

As shown in Fig. 3, the original /(p) is a sum of /,(p) and the residue at the poles p° = E, and —E, when Jp° < JE, and

Jp° > —JE,, respectively:

e 2 — o, (p)-E, > +ilw (p)-E,|6% 5% JE
e EIp) = e E L (p) + & : ’ e( Tt ”)
2Ep \% 2g0ut
-, (p)+E, > +ilw. (p)+E, 6T JE. — 8%
4 ’ ot T, (63)
2Ep 2gout

- . ¢
where we have multiplied a positive constant Tre In the

Heaviside function to match Eq. (46). The first and second
terms in Eq. (63) correspond to the second and first terms in
the braces in Eq. (46), respectively. The last term in Eq. (63)
corresponds to the “backward propagation” term dropped
in Eq. (46).

We comment that the Wick rotation for the integration
contour of p° from the real to imaginary axes can be
justified only for the pole contributions, the second and
third terms in Eq. (63), whereas for the first term represent-
ing the wave-packet effect, the Wick rotation cannot be
justified, as is obvious from the shaded region in Fig. 3. In
other words, the Wick rotation becomes possible if we
ignore the quadratic term with respect to p® in £(p°;p) by
taking the limit ¢, — oo before performing the p° integral,
so that only the pole structure becomes relevant.

1. Nonrelativistic approximation

So far in this section, we have left the integral over p
untouched. For comparison with Eq. (49) from Order 1, we
perform the p-integral in Eq. (50), that is, in Eq. (57) with
Eq. (63). We will see that the results agree with each other.

|

— 2 (M —p.)i(o,6,+ (V) (7)) (Mv ~p.) -

[

In order to perform the integral around a saddle point p,
(in the limit o,M? > 1), we employ a nonrelativistic
approximation p ~ Mv and E, ~ M + M2 \which is valid
when |p,| < M:

p =My +O(P),

2
Ep_\/Mz—sz_M(l#-%)—I—O(|v|4), (65)
M? M?
_ 2 2 _ T2 2 4
E,=/M+p fM\/1+M2 =M v + O,

(64)

(66)
- () (67)
w.(p) = o (0)+ MV_-v+ O(v]*), (63)

where v := £- = £ 4 O(p®) and M := VM? — ic. Then the
14
exponent in the second term in Eq. (61) becomes

(6%)?
2,
in)* = (V- 68)

S ((6‘7)2(Eout B
2(04 +(8V))

o0\ -
~ M (00) M=% ) (7o) 4
S+
co+ v
— 550 (Eouw — Ein
2o, + (V)

0+
2
g My

where the following are the weighted averages

_ Vi V. _
Vg==6<ﬁ+ﬂ>, V.

Oin Oout

- Va : (Pout - Pin))2 + O(|V|3),

__ Sin ‘_/in + gout‘_lout T = <(zin—int Tout»int)
- > ¢ = g - + - />
Sin T Sout Gin Sout

. (6 + T 5V)? S
c 2
0%

2
o (0:0 =M= 7)< v = -

S+
(69)

(70)
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and
oV i= Vo — Vin, (71)
5w (0)8V — i(62 5V V)2 5 (0)8V — i(62 5V
b= (Pa_g w(0)6V — (62 + T, V)) _(sv) __ (Pa _ 6w(0)8V — (68 + T, V)) , (72)
o o +¢(oV) o I
|
in which where
Sw(0) = @y, (0) — @i, (0), (73) a=>sV, b=V,
) a=—cM?*§V, p=—-c.M*V_ (77)
Q“ = M&V (74)
(6V)? and
Note that M? 5%
ote tha y:—a+M2+g+T(wg(0)—M—ig—), (78)
bV O (P _ cdw(0)5V — i(55+$45f/)> '
" = 5ul\ls . _ 0%
o +5(6V) o+ §=cM(p,-5V)5V —c. MV, (a)g(O)—M—i—>. (79)
-8V, (75) St

Now we can perform the Gaussian integral over v. The
saddle point is located at

S PR R SR, T2
-y @p)b-a)-(r+a-a)y+b-p)
(a-6)b-a)—(b-6)(y+a-a)

_(a’ﬂ)(b'a)—(V+a-a)(y+b.ﬂ)ﬂ ) (76)

Ve —

FIG. 3. Shaded region represents convergent directions for
|p°| = oo for the integrand in /(p). The points +E, denote
the poles of the propagator of ®. The orange, purple, and blue
lines represent the integral path for Jp° > J(-E,),
JE, <Jp° < J(-E,), and Tp° < JE,, respectively.

The three eigenvalues of the Hessian matrix are

- [MZ(;+ + gﬁ’ i (wg(O) M- if)] (80)

and

M2 5T
— M6, + 5 <w 0 —M—i)]
[ - M g( ) (o

MP(V) + ¢ MV
2

2 V)2 _ /2)2 V.V )2
| My/(elo?) g+v2g> P OV

For the simple configuration (41), we get
v, =0, (82)

SE
p.—>P,+i—, (83)
O+

l-g)Z _ (5{5)2 _ (Eout - E'in)z

o, 2¢, 20,

(All the three eigenvalues)

2
e S GRS
S+
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which results in

S 204N | (L 372 —2(Pou=P:n)? —$(Egu—FEn)? | Li(E.—~M)5T
- (27) 7 e ? Ee P e'lEe

(63)%_(65)%

2r¢, e~ TP~ F(0,(0)-M)*~iP,-62 1 —ie” %2y HE~M)ST
X 0(6% + ¢, .IM) ~ - : (86)
2M (1 +§_:w)3/2 \/ 27[€+ wg(o) _M_l%

The full expression corresponding to Eq. (86) can be easily
obtained without taking the simple configuration (41), but
it is lengthy and will be omitted.

We see that Eq. (86) matches Eq. (49) with the relation
M~E, and w(0) = E_ (- E,,). Note that the consis-
tency condition |p,| << M for the nonrelativistic approxi-
mation requires 62%/6% <« M? along with P2 < M? and
hence the factors e(95)/20. o=5F; P68
irrelevant.

e 27¢, and e~ are

B. Lefschetz thimble decomposition

Here, we evaluate the p°-integral in Eq. (50) by the
Lefschetz thimble decomposition to confirm Eq. (63). That
is, we show that the result (63) can be understood as a
Stokes phenomenon.

We first rewrite the integral (58) into an exponential
form:

o dp?
I(I’)_/ dLeF(p";P), (87)

o 270

where
F(p'ip) = =5 (0" = p2p))* = In(=(p")? + E}).  (88)

Recall that p%(p) is given in Eq. (52). Hereafter, we
suppress the p-dependence and write F(p°), etc. for
simplicity. As an illustration, we plot the absolute value
of the integrand ¢™ on the complex p° plane in Fig. 4,
with sample parameters ¢, = 10, o (p.) (=Rp?) = 0.5,
and € = 0.3 in the E, = 1 units. The second logarithmic
term in Eq. (88) modifies the exponent but the qualitative
pole structure remains the same.

By solving g—ﬁ) = 0, we obtain the three saddle points p(()*>
and p(() ., that are shifted from p? and +E, (see Fig. 3) due
to the extra logarithmic term in F(p°). Concretely, the
saddle-point equation reads

oF 2p°
a_po =—¢.(p° - pllp)) - _

This is cubic in p°, and we obtain exact solutions for the
saddle points p(()i). Here we show the large-¢, results as an
illustration, though we use the exact ones in the numerical
plots below:

1 2pY
0 0 *
p % = Px +— 5
*) ¢ —(pd)?* + EI%
11
0
Pl = +E, + ————. 90
0 =F5 T VT E, (90)
with
1 1 2(pY)?
Fy=In (p2) (o1)

-0’ +E o (PP -Ep)*

St Sy pY
P

(93)

FIG. 4. We plot ™ with sample parameters ¢, = 10, w_(p.)
=RpY) = 0.5, and e = 0.3 in the E, = 1 units. This corresponds
to forward propagation of @ with g (=-3p% =0.5.
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Forward propagation (§ T>0)

Im p

Equal time (6 T=0)

Backward propagation (6 T<0)

00 0. ) ) 215 -1.0 -0.5 0.0

Re p0

Re p°

-1.5
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Re p°

FIG. 5. We show contours for JF = 0 (mod 2x), on a density plot of RF in [—10, 20]. We have chosen sample parameters ¢, = 10,
w.(p.) (=Rp? =0.5,and e = 0.3 in the E, = 1 units. The first panel corresponds to forward propagation of @ with % (=-3pH=0.5,

while the second and third to equal-time and backward with ‘z% = 0 and —0.5, respectively. The red-solid, yellow-dashed, and green-

dotted contours are IF = TF,), IF ), and TJF _ respectively. The white dots denote the poles at pl = +E, and the blue single
circles nearby them are correspondingly the saddle points p‘() iy The blue double circle denotes the saddle point p((’*>.

PF () P’

~ OFE,)?—(2+=" ey, 94
S FE P (26 e 09
where we have shown up to the subleading terms (as well as
the order-In¢, term) for large ¢, .

For each saddle point (i) with i = * and =, the steepest
decent and ascent paths are obtained from the condition
J(F(p°) - ]:(p(()l.))) = 0. The steepest descent path J;
[ascent path IC<,-)] from the saddle point (i) is called the
Lefschetz thimble or the Stokes line (the antithimble or the
anti-Stokes line). The integral path in the pole approach (a),
which is one of the colored horizontal lines in Fig. 3,
corresponds to J,) in the current approach (b). On the
other hand, the poles +E, in Fig. 3 correspond to the
contour-integral along 7 ), respectively.

As an illustration, we plot in Fig. 5 contours for JF = 0
(mod 27x), superimposed on the density plot for RF.
The blue (double) circles denote saddle points p(()l.), and
the white dots denote the poles +E,. The horizontal and
vertical contours (both red solid) through p(()*) are the
thimble J(,) and the antithimble K, respectively.
Through p? iy the yellow dashed contour that connects
E, and a |Jp°| — oo region is the antithimble K(,), while
its perpendicular contour is the thimble 7. Through
p(()_), the green-dotted contour connecting —E, and a
|3p°| — oo region is K(-), and its perpendicular, J_).
All the other contours that are disconnected from any of p?i)
are irrelevant to the integral.

The figure is drawn on a single Riemann surface for the
logarithmic function in 7 (p°): In the case Ip{,, < JE, in
the first panel in Fig. 5, we may put a branch cut from
—E, to —oo + 3(—Ep) and another from E, along a, say,

red-solid or green-dotted contour. This way, we may
continuously deform R into the thimbles J () and J )
without crossing the cuts. We may do similarly for
other cases. In Fig. 6, we explain artifact lines appearing
in Fig. 5 due to the branch cuts in the numerical
computation.

We take the direction of J (£) such that it can be
deformed to R without crossing the poles, namely, J )

Magnified, forward propagation (§ T>0)
0.25

0.05
-1.10

~1.00
Re p°

-1.05 -0.95 -0.90

FIG. 6. Magnified plot for JF (mod 2x) of the second panel in
Fig. 5 near the saddle point p?_) (blue circle) and the pole —E,

(white dot). We see that three contours and an artifact line
terminate in —E,,: The three contours are JF = JF (+) (red-solid),
JF =3F 4 (yellow dashed), and the antithimble IC<_) (green
dotted) from p?_). The extra artifact line, seemingly consisting of

three degenerate contours, is from the branch cut of the
logarithmic function in the numerical computation, along which
the contributions from all the other Riemann surfaces appear.
This way, in each pole in Fig. 5, there always terminate three
contours and an artifact line.
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and J and —Ep
clockwise, respectively. Along J (i)
approximate Gaussian integral

clockwise and counter-
we may evaluate the

circulate Ep

dPO 0.
” = 27 (p) 95
o= [ e (95)
without the oscillation of integrand:

Iy p) = = (96)

U Vare ~(P ) + B
1 S0 2,16+
Is)(p)=~ o~ F(Pp)FE, P +1 &+
v2ﬂ¢ Pp) F E,)? ’

)

e e‘%(l’?([’)ZFEpy (97)
B V4 2 2Ep '

where we have taken Vre = \/re’/? for —x < 6 < =,

) TE,)*=E, T plp).

The integral I can be decomposed into those on the
Lefschetz thimbles:

=" (Ku.R), (98)

i=x%,%

namely, +/(p

where (KC(;,R) is the intersection number between the
antithimble KC;) and the original integration path R; see e.g.
Ref. [25] for a review. This expression allows an inter-
pretation of the appearance of the Heaviside step functions
in Eq. (63) as a Stokes phenomenon, which we discuss
from now on.

There are three cases depending on the relative position

of J . and +E,, represented in Fig. 5:
(I) When Jp(* JE, as in the first panel, the antith-
imble K, termlnates in —E,, and hence do not

intersect Wlth the real axis: (IC<_> R) = 0; see Fig. 6

for magnification and more explanation.

(I) When JE, < ﬁpo*) <J(-E,) as in the second
panel, both antithimbles terminate in j:Ep, and
hence (K, R) = 0.

() When ’Jp(()*) 2 3(-E,) as in the third panel, K
terminates in E,, and hence (KC(;), R) = 0. This is
how the discrete change in the amplitude (4) in the
main text is understood as a Stokes phenomenon.
Cases (I), (II), and (III) correspond to Jp° < JE,,
JE, <Jp’ <3J(-E,), and 3Jp”>73J(-E,) in
Approach (a), respectively.

We see that the results of Approaches (a) and (b) in

order 2, namely Egs. (63) and (98), respectively obtained in

this Sec. IV, are identical up to the extra factor \/_ ~
that appears in Eq. 97).13

C. Discussion on wave-packet Feynman propagator

We comment on the pole structure of the wave-packet
Feynman propagator (60). From the dependence on 6% for
a fixed ¢,, as well as on the energy difference such as
E, — o.(p), we identify the first term in Eq. (63) as the
time-boundary effect, while the second and third ones as
the bulk effect that has a counterpart in the plane-wave
propagator'*:

(1) In the first term, (i) the real and imaginary parts of

the energy pole are shifted as E, — E, — w.(p) and

- ﬁ - — i + g, respectively; (ii) the energy non-

conservation is suppressed only by a power law; and

(iii) there is exponential suppression for large 0%.

These are all the characteristics of the time boundary

effect [20].

(i1) In the second and third terms, (i) the pole structure = E

is the same as the ordinary plane-wave propagator;

(ii) the energy is exponentially localized to the

positive and negative poles w.(p)~E, and

w.(p) ~ —E,, respectively; and (iii) when we first

take the 1maginary part infinitesimal as in the

Feynman propagator, JE, — 0, there is no expo-

nential suppression for large 5. These are all the
characteristics of the bulk effect [20].

Historically in the original paper [5], Feynman first
considered a transition amplitude between a wave packet
that is time-translated from f(x;) atr =0to 7 (> 0) and a
wave packet g(x,) at t = T under an external potential A.
Therefore the time integral over the interaction point in the
resultant amplitudes (22) and (23) in Ref. [5] must be
between 0 and 7. Then he implicitly changed the time-
boundary conditions to extract a manifestly Lorentz-
covariant amplitude, corresponding to a transition from a
plane wave at time —oco to a one at oo. In the sequel
paper [6], he generalized this to many-body amplitudes
“imagining that we can neglect the effect of interactions”
near the time boundaries, hoping that “we do not lose much
in a general theoretical sense by this approximation”; see
also Ref. [26]. In the present paper, we calculate the

It would be interesting to pursue the difference of the factor
e/\/2x ~ 1.08 between approaches (a) and (b). In the former, the
saddle-point integral is done on the straight line, while in the
latter, the integral on the thimble is approximated by the Gaussian
integral on the straight line that is tangent to the thimble, which is
highly bent in the limit ¢, — oco. This might be a cause of the
deviation.

“This is opposite to the interpretation in Ref. [21].

This has to be the case unless we change the physical state to
the “dressed” one in the sense of Ref. [21]. This change was made
implicitly when Feynman gave the plane-wave amplitude in the
momentum basis in the subsequent part in Ref. [5].
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amplitude including the time-boundary contribution that
Feynman neglected. It is important that the wave-packet
form (63) is a finite complete expression without any
singularity and contains the plane-wave amplitude. We
stress that the Gaussian basis forms a complete set that
spans each free one-particle Hilbert space (see e.g.
Refs. [22,23]), and hence the time-boundary effect must
not be omitted."'

V. SUMMARY

We have elucidated the nature of the wave-packet
scattering amplitude ¢¢ — ® — ¢p¢p. The wave-packet
formalism provides a finite amplitude-squared that has
no ambiguity of the delta-function-squared of the energy-
momentum, unlike the plane-wave amplitude-squared. The
obtained amplitude provides a complete formula for the
resonant production of @ and its subsequent decay.

First, in order 1, we have explicitly computed the wave-
packet scattering amplitude relying on the saddle-point
approximation in Sec. III. We have proven that the in-time-
boundary term for the @ — ¢¢p decay amplitude emerges
from this scattering amplitude, even if we neglect both the
in and out time boundaries for the ¢¢ — ¢p¢ scattering
process. For the first time, we have derived the time
boundary term shown in Eq. (46) without introducing
any time boundary a priori. We stress that our formula
is applicable to the general situation, including the inter-
mediate state @ being long-lived.

Second, in order 2, we have confirmed the result in the
different integration order in Sec. IV. The confirmation is
done in the two different approaches (a) saddle-point
and poles and (b) Lefschetz thimble decomposition in
Secs. IVA and IV B, respectively. In Sec. IVC, we
discussed the relation to the ordinary plane-wave
Feynman propagator in detail. The wave-packet amplitude
contains more information than the plane-wave counterpart
and exhibits the time-boundary effect, which is hardly
tractable in the plane-wave formulation.

The time-boundary effect directly influences the tran-
sition probability, a critical element of quantum physics,
and hence has a great impact on vast sectors of scien-
tific study.
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'®We comment that the standard textbook by Goldberger and
Watson [27] also takes the same approach as that of Feynman,
dropping the contributions from the asymptotic time region.

APPENDIX A: NOTATIONS

We list the symbols defined in the main text:

P, P,

Vv =-4%4=—_- (Al)
¢ E, Vm? + PZ
E, = \/M? +p?,
E, —\/E2 16—\/M2+p — i€,
M= V/M? —ie, (A2)
Ei, = E| + Ey, Eoq = E3 + E4. (A3)
Pin:Pl+P2v Pout:P3+P4’ (A4)
1 010) 1 030y
0O;, = = N O, = = ,
mn ﬂil+6_ 61+02 out ﬂ%_'_”% 63—|—64
(A5)
_ vV, V
Vin = 0in (1 + 2) Vout = Oout < > ) (A6)
0] 0)
(Uin(p> = E + P
wout(p> = Eou ‘_/out (P Pout) (A7)
o1 + () 03 + Oy
, A8
mn (Vl _ V )2 gOLI[ (V3 V4) ( )
1 1 n
C=7T 1 -1 .1.1_.1° 04 = Oin + Oouts
o T owm atamTats
(A9)
1 CinSout
i + ﬁ Sin + Sout - " o ( )
E,=\/M*+P2,
E, = \/E,Z; —ie= \/M2 + P2 —ie, (A11)
® (p) _ ginwin@) =+ gouta)out@)
¢ Sin + Sout '
Eg _ ginEin + goutEout ; (A12)
Sin + Sout
52 = E'out - E'inv 0% = Ioul—int — Tin-ints (A13)
AT = 6T + g+an + iGOut( out - RE ) (A14)
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RintRout 1 1 3/4
N = (—ixpe = ] < > . (ALS)

| V2E, \no, Vo= 6(& + Vout) Vo= gin‘_/in + goutVout
’ Oin Oout ' c Sin =+ Sout ’
1 g -int g3 t-int
S = (A16) T = g( n-in + ou i
" gl Z—ﬁ“ 3 Sin Sout
in +
— Sout

Sout = 1+ Sout (‘72 (= Sin(‘_/in'Voul)Z) ’ (A17) E. = ginEin + goutEout

[ ou o, cE——

Sin + Sout

iz V. .88
Ti—int = Sin{ |:;Llnt + mT:|
in +

560([7) = wout(p) - win(p)’

_ i[a)m(o) TE, +"V“‘ - (Pou _Pin)] } (A18)

Oin
7, ¥, = 58 = Eout - E‘in’
T(Tut-im = Sout { |:‘Iout—im + Vout ) (VinTin—int - 55):|
gout 0+
SinVin - V.
+1i |:wout(0) + Eg <1 - w) 0% == Sout—int - zin—int’
O+
6‘_/01.11 i (Pout - Pin)
- Al ~ .
Oout ’ ( 9) AT :=6% + gomJE{; + lgout(Eout - mE(;)

APPENDIX B: EXPRESSIONS FOR SIMPLIFYING CONFIGURATION

We list expressions for the simplifying configuration (41).
(1) Egs. (23) and (24):

—ipO(y0—x0
L) - [ e .
21 —(pO)2 4+ P2 M2 = EE — (e — %)
o 1 = = = . .
V*(Xos yO) g _5 (Pout - Pin) - 2% ('='0ut - '='m)2 — = (Pout - Pin) - lwin(o)xo + lwout(o)yo'
+

(i) Eq. (29):

3/2 = = = . w2
— (277:0) N e_%(Puul_Pin)2_ﬁ(nuu[_:in)z_l:zr'(Puut_Pin) /00 dyoe_#mu(yo_zoul-im)z+lEnu1yo_%:“
2E, }

[Se]

yo_gin-in(_igin(Eu_Ein)
L erf (FEegEon))

2

1+erf( — )

+ e%in({zin-im_igin (E6+Ein))2+iE(xy0
2
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(i) Eq. (37):

3/2
N (277’-26; / N e‘%(Pout—Pin)z__

% |e- Sin (E(,Z—Ein)z _ €om(505r5rx12 iE, 6% 9(

2
_§in(Errz+Ein) _ é‘oul(Engﬁ’Eo')z LiE, 5%

+e

6% +¢,JE,) +

5
e
L
o
Q .
|
ol
T
txy
g
A
g
E‘_ .
L.
s
=
A
2
z
[\
)
0N
=}
[\
S
N
o)
=L

AT _ AT
erf(vz‘?om) sgn <\/ 2§nu1)

=%+, IE,~igou (Eou+RE,) —sgn =03 +¢, B, —igou (Equ +RE,)
V260u

V260ut

erf(
x | (-6 + ¢ JE,) +

(iv) Eq. (38):

= 0(5T + ¢, 9E,). (BS)

(v) Eq. (39):

— 0(=5% + ¢, JE,). (B6)

APPENDIX C: DETAILS ON FIG. 2

In Fig. 2, we have plotted |S|?> (up to the normalization
factor (C23) below), using Eq. (46), as a function of final
state positions

x= |Xa] xg = (X (C1)
We have focused on the back-to-back scattering in the
center-of-mass frame,

Py, =P, +P,=0, P,,=P;+P,=0,

[P1| = |P2| = |P3] = [P4|(= |P)). (C2)
with the wave-packet positions being collinear to their
momenta, X, «x P, (=E,V,; a=1,...,4), and overlap-
ping at the origin:

E‘l = Xl - Vl(—T) = 0, 53 = (.X3 - T)V, (C3)
H ==X, (-V))(-T) =0, Ey=(-x,+T)V. (C4)
where
V=V 1% P:=P P V= P

3= "Va, =13 =LYy, TP
(Cs5)

2

and the initial and final times of the wave packets are taken
to be T\ =T,=-T and T3 =T, =T, respectively. It
follows that |V,| = |V,| = |V3| = |V4] = |V|. The widths
of the wave packets are chosen to be symmetric
01 = 0, K 03 = 04. As a result, we obtain

E;,, =2V m? + P2, Eow =2Vm?>+ P>, (C6)

o (o
Oin = 71’ Oout — 23 > (C7)
Vm =0, ‘_/out =0, (C8)

a)in(p) =Ej, =2v m? +P2’
wout(p) = Eout = 2 \% m2 +P2’ (C9)

(] O3

"= —— out = == » C10
Sin 2V2 Sout 2V2 ( )

0] 03
o=, o= (C11)

o1 03
~—, —, Cl12
2V2 €+ 2V2 ( )

€ €
P,=0, E,=M, E,=M-i—-, OJE,=——_",
o "M 2M

(C13)
o (p) =2Vm + P, E.=2J/m>+ P, (Cl4)
Pout_Pi =0, Eo — Ein =0, (ClS)
68 = Eout - = ;)C4 v, 0% = Topim = T — = ;—x“ ’
(C16)
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AT:T—x3+X4— €03 +li(2 m2+P2—M),

2 AaMV? - 2Vv?
(C17)

1 1 3/2 1 3/2
Ne=2—(— )" ()", (c18
¢ (2E,)? (7701) <7F03) (C18)

where we have taken a small ¢ and

E, =0, Eout = 7 v, (C19)
X3+ X
Zin-ine = 0, Loutint = T — : ) 4’ (CZO)
Rin =0, Rouw = 0. (C21)
The resultant expression for |S|? is
2
‘S|2 _ Cﬁe—%(@—n)z—z{%(Z\/ m2+P2—M>
P
< lo T_x3 t+x4 €03
2 4MV?
2
erf(lv‘j-r) —sgn <—M£T)
T . VAN (C22)
with AT being given by Eq. (C17) and
K4 (o3
= C23
64zM° o3 (€23)

is a constant factor. In Fig. 2 in the main text, we have
plotted |S|?/C.
The plot is for the parameters

M 100 10

m=—, T T e=0.01M2, o3 =10 (C24)

On the upper panels, we have chosen the momenta to be on
the resonance:

2Vm? +P? =M,

(C25)

namely, |[P| = ‘/TEM . On the lower panels, we have chosen
them to be off the resonance: |P| = .

On the left panels, we include only the first term in the
absolute squared in Eq. (C22), namely,

« o T_x3+x4_ €05 2.
2 4MV?

On the right panels, we take into account all the contri-
butions including the interference with the boundary
contribution

(C26)

0<0<T_X3+X4_ €03 >

2 4MV?
erf (—‘VIfT) - sgn(lvlfT)
X i 5 "/ 4 He. (C27)
and the boundary-only contribution
2
erf (—‘VlfT) —sgn (lvlfT)
o« | nl (C28)

2

The interference (C27) contributes at 6% = T — % >0
(x3 + x4 < 2T) negatively on the resonance (upper-right
panel) and mainly positively off the resonance (lower-right
panel). The boundary-only contribution (C28) exists at both
signs of o%.
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