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Abstract Despite having the somewhat successful descrip-
tion of accelerated cosmology, the early evolution of the uni-
verse always challenges mankind. Our promising approach
lies in a new class of symmetric teleparallel theory of gravity
named f (Q), where the non-metricity scalar Q is responsi-
ble for the gravitational interaction, which may resolve some
of the issues. To study the early evolution of the universe,
we presume an anisotropic locally rotationally symmetric
(LRS) Bianchi-I spacetime and derive the motion equations.
We discuss the profiles of energy density, equation of state
and skewness parameter and observe that our models archive
anisotropic spatial geometry in the early phase of the universe
with a possible presence of anisotropic fluid and as time goes
on, even in the presence of an anisotropic fluid, the universe
could approach isotropy due to inflation and the anisotropy
of the fluid fades away at the same time.

1 Introduction

Even though the current Universe is believed to be essentially
isotropic and homogeneous, without any special point or
direction, and given by the Friedmann–Lemaître–Robertson–
Walker (FLRW) metric, it may not have been so at its begin-
ning near the initial singularity, nor does it necessarily have to
be so in the future. In recent times the Wilkinson Microwave
Anisotropy Probe (WMAP) dataset [1–3] requires some
additional morphology than the standard isotropic and homo-
geneous model of the universe. The observationally sup-
ported inflationary paradigm has the remarkable property that
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it isotropizes the baby universe into today’s FLRW geometry.
For a complete version one should still relax to the consider-
ation of both spatial inhomogeneity and anisotropy and then
study its evolution into the observed amount of homogeneity
and isotropy. So as a first step one may consider Bianchi type
cosmological models, which form a large and almost com-
plete class of relativistic cosmological models, which are
homogeneous but not necessarily isotropic, the other choice
being the locally symmetric Kantowski–Sachs spacetime.
Moreover, by studying an almost FLRW-like model with
less symmetries, we can reasonably understand the isotropic
ones, which can be considered their special sub-case [4]. In
the present discussion we consider a special type of Bianchi
universe, the locally rotationally symmetric (LRS) Bianchi
type-I model to denote the anisotropic state of the universe,
given by the metric in the Cartesian coordinates

ds2 = −dt2 + A2(t)dx2 + B2(t)(dy2 + dz2). (1)

All of our results can be extended to the Bianchi type
I model without much effort. Fadragas et al. [5] explored
a detailed dynamical analysis of anisotropic cosmologies
with the presence of a scalar field. In particular, they stud-
ied Kantowski–Sachs, LRS Bianchi-I and Bianchi-III cases,
and their outcomes are compatible with observations such
as de Sitter, quintessence-like, or stiff-dark energy solu-
tions. Moreover, in the last few decades, Bianchi cosmologies
are seeking more interest in observational cosmology since
the WMAP data [1] suggest that the standard cosmologi-
cal model with a positive cosmological constant resembles
the Bianchi morphology [6–10]. Also, these results indicate
that the universe should have achieved a slightly anisotropic
spatial geometry despite the inflation, which is contrary to
generic inflationary models [11–17]. Recently a wide range
of Bianchi cosmology with the observational data have been
studied (see details in [18–22]).
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Furthermore, the accelerated expansion of the universe
was confirmed by the Supernovae Cosmology Project in
1998, which used the data of IA Supernovae [23]. This gives
rise to various theories in order to explain the acceleration.
In general relativity (GR), the existence of an unknown form
of energy in the universe, called the dark energy (DE), which
possesses an exotic property such as negative pressure leads
to a negative equation of state (EoS) parameter. To bypass the
undetected DE, as an alternative to GR, the modified gravity
theories were explored by modifying the Einstein–Hilbert
action, but keeping the geometry intact. f (R)-theories of
gravity are the simplest and most successful ones in this
direction. Nevertheless, other kind of theories were also con-
sidered in the past by altering the underlying geometry but
not disturbing the Lagrangian, such as the teleparallel theory
equivalent to the GR (TEGR) and the symmetric teleparallel
theory equivalent to the GR (STEGR). In these kind of theo-
ries, flat space is considered and the very special (symmetric
and metric-compatible) Levi-Civita connection, used in GR,
is replaced by an affine connection which has either non-
vanishing torsion (in TEGR) or non-metricity (in STEGR)
as the guiding force of gravity and its extension was pro-
posed in [24]. The details about these three basic theories,
we discussed in the below section.

A wide range of aspects have been studied in the context of
f (Q)-gravity, such as its covariant formulation [25], spher-
ically symmetric configuration [26], energy conditions [27],
cosmography [28], signature of f (Q)-gravity in cosmology
[29], as an alternative to �CDM theory [30] and also a spe-
cial kind of f (Q)-gravity, called the Weyl type f (Q)-gravity
[31,32]. The geodesic deviation equation in f (Q)-gravity
was also studied and some fundamental results were obtained
[33]. Recently, another array of very interesting results have
been published in f (Q)-gravity (check details in the refer-
ences herein [34–39]). However, all the above literatures have
focused to explore the present interests of the universe, by
considering the isotropic and homogeneous FLRW metric in
Cartesian coordinates, making sure of the coincident gauge,
whereas in our present work we are aiming to study the early
evolution of the universe in f (Q)-gravity with an anisotropic
but homogeneous background metric, one significant leap in
the cosmological application of this new gravity theory.

In the standard theories of gravity governed by Einstein’s
field equations, the evolution from an anisotropic universe
into an FLRW one, termed as the isotropization, can be
achieved by a period of inflationary expansion, as discussed
by [40]. Isotropization is a vital issue as it discusses whether
the universe can result in isotropic solutions without the need
of fine tuning the model parameters [41,42]. Naturally, for
any new theories of gravity it is worthwhile to study the
isotropization process and are considered to be one of the
important milestones for that theory of gravity towards accep-
tance as an alternative to GR. It is no way sufficient but atleast

it is necessary to revive the standard cosmological paradigms
in any proposed alternative of GR. It is interesting to inves-
tigate whether these modified f (R), f (T ) and f (Q) theo-
ries can accommodate an anisotropic universe with or with-
out the presence of anisotropic perfect fluid. Several stud-
ies were carried out in this direction for the first two the-
ories, for example, in f (R) theories anisotropic geometry
was studied using the exponential and power-law volumetric
expansions in [44]. In [43], detailed phase-space analysis of
Kantowski–Sachs geometries was carried out, particularly
for f (R) = Rn and isotropization was achieved indepen-
dent of the initial anisotropy. In the context of f (T ) theories,
anisotropic background was considered by Rodrigues et al.
in several occasions [45–48]. Among others, models which
can reproduce the early universe (assuming inflation) and the
late-time accelerated expanding universe were obtained [46];
it was shown that our universe might live a quintessence like
state even if anisotropic models were considered [48]; in [47],
isotropization in a LRS-Bianchi background metric was con-
sidered and analysis showed that the nonlinear model, terms
of higher order in T are favored by observational data.

The present article is organized as follows: on the geomet-
rical view, we discuss three fundamental theories of grav-
ity in Sect. 2. Section 3 discusses the basic formalism of
f (Q)-gravity. In Sect. 4, we derive the conservation equa-
tion for anisotropic spacetime. Then, we formulate equations
of motion in the LRS-BI model in Sect. 5. In Sect. 6, we dis-
cuss anisotropic cosmological models with the choice of a
linear f (Q) function, which helps us to compare our results
with GR. Section 7 analyzes the cosmological models for
modified f (Q)-gravity. Finally, gathering all of our results,
we conclude in Sect. 8.

2 Overview of geometrical trinity of gravity

The two main building blocks of a spacetime are a metric ten-
sor gμν and an affine structure, which is determined by a con-
nection �α

μν [49]. These two structures are completely inde-
pendent in nature, but together helps to define the geometrical
objects and that allow for conveniently classify geometries.
The deviation of the connection from being metric is mea-
sured by the non-metricity

Qαμν ≡ ∇αgμν, (2)

and its antisymmetric part defines the torsion

T α
μν = 2�α[μν]. (3)

Among all the possible connections, the Levi-Civita con-
nection is the unique connection that is symmetric and
metric-compatible. Its components may be expressed by the
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Christoffel symbol

�̊λ
μν = 1

2
gαλ(gλν,μ + gμλ,ν − gμν,λ). (4)

It is convenient to describe the general connection as

�α
μν = �̊λ

μν + K α
μν + Lα

μν. (5)

Notice that, the non-torsional part of the connection�α
μν is the

Levi-Civita connection, whereas contorsion and disforma-
tion have torsional transformation properties under change of
coordinates. Further more, after gathering the relevant geo-
metrical objects, we can use them to characterize a spacetime
as follows:

• Metric: the connection is metric-compatible, which indi-
cates that Qαμν(�, g) = 0. The length of vectors is con-
served in metric spaces, hence non-metricity gauges how
much their length changes when we parallel transport
them.

• Torsionless: T α
μν(�) = 0 and the connection is symmet-

ric. The non-closure of the parallelogram generated when
two infinitesimal vectors are parallel carried along one
other is measured by torsion. As a result, it is commonly
assumed that parallelograms do not close when torsion
is present.

• Flat: Rα
βμν = 0 and the connection is not curved. Cur-

vature is the rotation that a vector undergoes as it travels
parallel along a closed curve. This creates a barrier for
comparing vectors defined at various places in space-
time. However, in flat spaces, vectors do not rotate as
they are conveyed, giving a stronger sense of parallelism
at a distance. This is why theories developed in these
environments are known to as teleparallel.

In Einstein’s general relativity formulated on a metric and
torsionless spacetime and attributed gravity to the curvature.
However, it is natural to wonder, as Einstein did later, whether
gravity may be attributed to the other qualities, such as torsion
and non-metricity. So far these three theories of gravity equiv-
alently described GR and knocking into shape a geometrical
trinity of gravity. The usual formulation of GR, for example,
assumes a Levi-Civita connection, which requires vanish-
ing torsion and non-metricity, but its teleparallel equivalent
(TEGR) assumes a Weitzenbock connection, which entails
zero curvature and non-metricity [50]. The Weitzenbock con-
dition of the vanishing of the sum of the curvature and torsion
scalar was studied in a gravitational model in a Weyl-Cartan
spacetime in [51]. Another similar formulation of GR, known
as the symmetric teleparallel equivalent of GR, is a relatively
unmapped field (STEGR). The gravitational interaction is
described by the non-metricity tensor Q, which takes into
account vanishing curvature and torsion. The STEGR was
first presented in a brief paper [52], in which the authors

emphasize that the formulation brings a new perspective to
GR, and that the gravitational interaction effects, via non-
metricity, have a character similar to the Newtonian force
and are derived from a potential, namely the metric. The
formulation, on the other hand, is geometric and covariant.
Therefore, to represent the same physical interpretation, GR
can be described by the integrand in Einstein–Hibert action
as R, the integrand in action of teleparallel equivalent T [53]
and Coincident GR Q [54,55]. The equivalent descriptions to
GR by curvature, torsion and non-metricity provides the start-
ing point to modified theories of gravity once the respective
scalar replaced by the arbitrary functions. Models of Ricci
or torsion scalar general functions have already been widely
investigated in the literature. On general FLRW backgrounds,
the cosmic realization of f (R) theories forces them to stay
near to GR, but models based on f (T ) suffer from substantial
coupling issues [56–60]. On generic FLRW backgrounds, the
significant coupling difficulties that may be observed in f (T )

theories are absent in f (Q) models. Also, the predictions of
the f (Q) and f (T ) models correspond in the small-scale
quasistatic limit, but that at higher scales the f (Q) mod-
els generically transmit 2 scalar degrees of freedom that are
absent in the case of f (T ). These two degrees of freedom
vanish around maximally symmetric backgrounds, resulting
in the strong coupling problem that has been explored [61].
Moreover, one can see one of the interesting study [62] where
the formalism of f (T )-gravity was developed aligning with
GR. Although these three theories of gravity are considered
to be completely equivalent, these two counterparts of GR
almost remained unnoticed until recently when the extension
in these two theories, respectively f (T ) and f (Q) theories
of gravity in line with the f (R) extension of GR were inves-
tigated as an alternative of dark energy source and compared
with the f (R) theories [63]. Among others, the second order
field equations of these two theories, unlike the fourth order
equations in the metric f (R) theory were found to be advan-
tageous. Furthermore, it is well-known that, theories of grav-
ity on curvature and torsion are almost in their mature stage,
but theories on the non-metricity is under development. So,
in this work, we are focusing to explore a new possibility to
study of our universe in f (Q)-gravity.

3 Basic formalism of f (Q)-gravity

In f (Q)-gravity theory, the spacetime is constructed by using
the symmetric teleparallelism and non-metricity condition,
that is, Rρ

σμν = 0 and Qλμν := ∇λgμν �= 0. The associated
connection coefficient is given by

�λ
μν = �̊λ

μν + Lλ
μν (6)
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where �̊λ
μν is the Levi-Civita connection and Lλ

μν is the
disformation tensor. This implies that

Lλ
μν = 1

2
(Qλ

μν − Qμ
λ
ν − Qν

λ
μ) .

In addition, we define the superpotential tensor

Pλ
μν := 1

4

(
− 2Lλ

μν + Qλgμν

−Q̃λgμν − 1

2
δλ
μQν − 1

2
δλ
ν Qμ

)
(7)

and using it, the non-metricity scalar

Q = Qλμν P
λμν = −1

2
QλμνL

λμν + 1

4
QλQ

λ − 1

2
Qλ Q̃

λ .

(8)

The action of f (Q)-gravity is given by

S =
∫ [

1

2κ
f (Q) + LM

] √−g d4x

where g is the determinant of the metric tensor and L is the
matter Lagrangian. By varying the action with respect to the
metric, we obtain

2√−g
∇λ(

√−g fQ Pλ
μν) − 1

2
f gμν + fQ(Pνρσ Qμ

ρσ

−2PρσμQ
ρσ

ν) = κTμν. (9)

Nevertheless, this equation is not in a tensor form, and it is
only valid in the coincident gauge coordinate [24].

On the other hand, by using (6), we can have the following
relations between the curvature tensors corresponding to �

and �̊:

Rρ
σμν = R̊ρ

σμν + ∇̊μL
ρ

νσ − ∇̊νL
ρ

μσ

+Lρ
μλL

λ
νσ − Lρ

νλL
λ
μσ (10)

and so

Rσν = R̊σν + 1

2
∇̊νQσ + ∇̊ρL

ρ
νσ

− 1

2
QλL

λ
νσ − Lρ

νλL
λ
ρσ

R = R̊ + ∇̊λQ
λ − ∇̊λ Q̃

λ − 1

4
QλQ

λ

+ 1

2
Qλ Q̃

λ − LρνλL
λρν .

Therefore, by using the symmetric teleparallelism condition,
we can rewrite the field equations in (9) as

fQG̊μν + 1

2
gμν(Q fQ − f ) + 2 fQQ∇̊λQPλ

μν = κTμν

(11)

where

G̊μν = R̊μν − 1

2
gμν R̊

and Tμν is the energy–momentum tensor.
To study non-trivial isotropization in the evolution pro-

cess of the universe, once the anisotropic type spacetime
metric is considered, the EoS parameter of the gravitational
fluid should, in principle, also be generalized to exhibit an
anisotropic character to give a more sensible model. With
the isotropization of the universe, the fluid also isotropizes
to display a vanishing skewness parameter and isotropic pres-
sure. The energy–momentum tensor for the anisotropic fluid
is defined as

Tμ
ν = diag(−ρ, px , py, pz) . (12)

where ρ denotes the energy density of the fluid, px , py and pz
are the pressures along x , y and z coordinates which assume
respective directional Equation of state (EoS) parameters ωx ,
ωy and ωz . We parametrize the deviation from isotropy by
setting ωx = ω and then denoting the deviations along y
and z directions by the skewness parameter δ, where ω and
δ are possibly functions of time. Using the metric (1), the
components of Tμν are given by the following:

T00 = ρ , T11 = A2 px , T22 = B2 py , T33 = B2 pz .
(13)

4 Conservation of energy–momentum

We open the present discussion with a significant result in
symmetric teleparallelism, by proving that the divergence of
the gravitational sector in the field equations of the modi-
fied f (Q)-gravity in the LRS-BI anisotropic universe van-
ishes. Thus we make sure that during the present discussion
we do not have to impose any additional constraint on the
function f to restrict the movement of the test particles in
a geodesic. This is the first proof of the null divergence of
the energy–momentum tensor in the modified f (Q)-theory
in anisotropic universe which is one of the basic principles
of GR and staple for most of the gravity theories.

First and foremost, we calculate the non-metricity scalar
as

Q = −2

(
Ḃ

B

)2

− 4
Ȧ

A

Ḃ

B
. (14)

Hence, Q is only time-dependent, so we can write

∇λQ = ∇0Q = ∂t Q =: Q̇.

Taking divergence of (11), we get
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∇̊μT
μν = fQQG̊

μν∇̊μQ + 1

2
fQQQgμν∇̊μQ

+ 2 fQQ Pλμν∇̊μ(∇̊λQ)

+ 2 fQQ(∇̊λQ)(∇̊μP
λμν)

+ 2 fQQQ Pλμν(∇̊μQ)(∇̊λQ). (15)

For the given metric (1) we can calculate [see Appendix]

(
G̊μν + 1

2
Qgμν

)
∇̊μQ = Q̇

[
4
Ȧ

A

Ḃ

B
+ 2

(
Ḃ

B

)2]
(16)

2Pλμν∇̊μ(∇̊λQ) = Q̇

[
1

2

(
Ȧ

A

)2

− 2
Ȧ

A

Ḃ

B

]
(17)

2(∇̊λQ)(∇̊μP
λμν) = Q̇

[
−1

2

(
Ȧ

A

)2

− 2
Ȧ

A

Ḃ

B

−2

(
Ḃ

B

)2]
(18)

2Pλμν(∇̊μQ)(∇̊λQ) = 0. (19)

Combining (15)–(19) we conclude

∇̊μT
μν = 0. (20)

For the fluid given by (12), this results into

ρ̇ + [3(1 + ω)H + 2δHy]ρ = 0. (21)

The presence of the term δHyρ in (21) appeared due to the
anisotropy of the fluid gurantees a non-constant energy den-
sity even if we consider the EoS ω = −1 and vice-versa,
unlike in the isotropic perfect fluid scenario for conventional
vacuum energy.

5 Equations of motion in the LRS-BI model

In this section, we derive the expressions of ρ, px , py , pz , ω,
δ. Using Eqs. (1) and (11), we find the following equations
of motion:

ρ = f

2
+ fQ

[
4
Ȧ

A

Ḃ

B
+ 2

(
Ḃ

B

)2]
(22)

px = − f

2
+ fQ

[
−2

Ȧ

A

Ḃ

B
− 2

B̈

B
− 2

(
Ḃ

B

)2]

− 2
Ḃ

B
Q̇ fQQ (23)

py = − f

2
+ fQ

[
−3

Ȧ

A

Ḃ

B
− Ä

A
− B̈

B
−

(
Ḃ

B

)2]

−
(
Ȧ

A
+ Ḃ

B

)
Q̇ fQQ (24)

pz = py . (25)

From the consideration of the anisotropic fluid

Tμ
ν = diag(−1, ωx , ωy, ωz)ρ

= diag(−1, ω, (ω + δ), (ω + δ))ρ,

the equations of motion can be expressed as

ρ = f

2
+ fQ

[
4
Ȧ

A

Ḃ

B
+ 2

(
Ḃ

B

)2]
(26)

ωρ = − f

2
+ fQ

[
−2

Ȧ

A

Ḃ

B
− 2

B̈

B
− 2

(
Ḃ

B

)2]

− 2
Ḃ

B
Q̇ fQQ (27)

(ω + δ)ρ = − f

2
+ fQ

[
−3

Ȧ

A

Ḃ

B
− Ä

A
− B̈

B
−

(
Ḃ

B

)2]

−
(
Ȧ

A
+ Ḃ

B

)
Q̇ fQQ . (28)

We have the directional Hubble parameters

Hx = Ȧ

A
, Hy = Ḃ

B
, Hz = Ḃ

B
(29)

and the average Hubble parameter

H = 1

3

V̇

V
= 1

3

[
Ȧ

A
+ 2

Ḃ

B

]
(30)

where the spatial volume is

V = AB2. (31)

The rate of expansion is evaluated by anisotropy parameter

� = 1

3

3∑
i=1

(
Hi − H

H

)2

= 2

9H2

(
Hx − Hy

)2
. (32)

Therefore, we also have

H2
y + 2Hx Hy = 3H2

(
1 − �

2

)
. (33)

The expansion scalar θ(t) and shear σ(t) of the fluid are
given by

θ(t) = Ȧ

A
+ 2

Ḃ

B
, σ (t) = 1√

3

(
Ȧ

A
− Ḃ

B

)
. (34)

First we express ρ, ω and δ in terms of the non-metricity
scalar Q, the average Hubble parameters H and directional

Hubble parameters Hx , Hy . We note that ∂
∂t

(
Ȧ
A

)
= Ä

A −(
Ȧ
A

)2
and Q = −2H2

y − 4Hx Hy .
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From (26) we get

ρ = f

2
− Q fQ . (35)

From (27) we get

ωρ = − f

2
− 2

∂

∂t

[
Hy fQ

] − 6H fQHy (36)

and from (28),

(ω + δ)ρ = − f

2
− ∂

∂t

[
fQ(Hx + Hy)

]
−3H fQ

(
Hx + Hy

)
. (37)

Therefore, (35) and (36) together imply

ω = −1
f
2 − Q fQ

[
f

2
+ 2

∂

∂t

[
Hy fQ

] + 6H fQHy

]
(38)

and finally, (35), (36) and (37) give

δ = 1
f
2 − Q fQ

[
∂

∂t

[
fQ

(
Hy − Hx

)]

+ 3H fQ
(
Hy − Hx

)]
. (39)

From (8), (30) and (32) we can calculate

6H2
(

1 − �

2

)
= −Q. (40)

Using (40) in (26) we obtain an expression for the energy
density

ρ = f

2
+ 6H2 fQ − 3H2� fQ . (41)

This is vital for our discussion, which shows that for a given
value of the mean Hubble parameter H in the LRS-BI space-
time, the anisotropy of the expansion lowers down the energy
density ρ; the highest possible energy density is achieved
in case of isotropic expansion (i.e., �(t) = 0) and the
anisotropy of the expansion is constrained by the equation
(41) and cannot vary arbitrarily.

From (41), we can define the energy density associated
with the anisotropy of the expansion by ρanis = 3H2 fQ�

and write

3H2 = ρe f f = ρ + ρQ + ρanis (42)

with ρQ = 3H2 − f
2 − 6H2 fQ . For �(t) → 0, other

than vanishing ρanis , from (32) we obtain A(t) → B(t), so
the expansion tends to be isotropic and we regain the usual
isotropic and homogeneous FRW universe A(t) = B(t) and
by (39), a vanishing δ.

6 Revisiting GR

We consider the case f (Q) = Q to revisit the LRS-BI uni-
verse in GR. In this case the equations of motion (26)–(28)
reduce to

ρ = −Q

2
(43)

ωρ = −Q

2
− 2

[
Ȧ

A

Ḃ

B
+

(
Ḃ

B

)2

+ B̈

B

]
(44)

(ω + δ)ρ = −Q

2
−

[
3
Ȧ

A

Ḃ

B
+

(
Ḃ

B

)2

+ Ä

A
+ B̈

B

]
. (45)

(41), in this case reduces to

ρ = 3H2
(

1 − �

2

)
. (46)

Therefore, � < 2 is essential to observe ρ > 0 for a comov-
ing observer, this result is equivalent to the generalized Fried-
mann equation for a Bianchi type-I spacetime (see [64,65]
for the generalized Friedmann equation).

This is a system of three equations in five unknowns
A, B, ρ, ω and δ. So to completely solve the system we need
to impose two additional conditions. We start with the fol-
lowing scenario:

6.1 The volumetric expansion law

As a popular choice in the literature concerning anisotropic
models in GR [66,67], we consider a constant ρe f f which
produces a constant H and thus the De Sitter volumetric
expansion law

V = c1e
3H0t , (47)

where c1 and H0 are two positive constants. From (31) we
have

A(t) = c1e3H0t

B2 . (48)

As the second condition to be imposed in the system, we
consider two distinct cases as follows:

6.1.1 Case I: ω = −1

Now, using Eqs. (48) and (43)–(46), we find out the following
relations

B(t) = k2
3
√
e3H0t − k1 (49)

and

A(t) = c1e3H0t

k2
2

(
e3H0t − k1

)2/3 . (50)

123
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Using the two equations above, we find the following expres-
sions for energy density, δ and �, respectively.

ρ = 3H2
0

(
1 − k2

1(
e3H0t − k1

)2

)
(51)

δ = − 3k2
1

e6H0t − 2k1e3H0t
(52)

� = 2k2
1(

e3H0t − k1
)2 . (53)

Also, it is observed that ρ is positive throughout the evolu-
tion of the universe. The δ of the equation of state parameter
monotonically decreases as t tends to infinite. This behavior
of skewness parameter suggests that the anisotropic expan-
sion is high during the early phase of the universe and later
reduces to isotropic expansion. For this case, the anisotropic
expansion takes its values less than 2 and reduces to zero as t
tends to be infinite. These results suggest that the anisotropic
expansion of our universe is high during the early time, and
later, it becomes isotropic.

6.1.2 Case II: ρ = constant (γ )

From Eqs. (48) and (43)–(46), we find the following relations
for anisotropic scale factors

B(t) = k3e

(
H0±

√
9H2

0 −3γ

3

)
t

(54)

A(t) = c1

k2
3

e

(
H0∓ 2

√
9H2

0 −3γ

3

)
t

. (55)

Now, using (54) and (55), we can write δ and ω as

δ = 2 +
−6H2

0 + H0

√
9H2

0 − 3γ

γ
,

or, 2 −
6H2

0 + H0

√
9H2

0 − 3γ

γ
, (56)

ω =
√

9H2
0 − 3γ + 3H0√

9H2
0 − 3γ − 3H0

,

or,

√
9H2

0 − 3γ − 3H0√
9H2

0 − 3γ + 3H0

, (57)

and, the anisotropy measures as

� = 2 − 2γ

3H2
0

. (58)

With the consideration of constant energy density ρ in this
case, we derive the solutions for anisotropic scale factors.

From all of the above expressions, it is clear that γ ≤ 3H2
0 .

For γ = 3H2
0 , our model shows the isotropic expansion of

the universe, because δ = 0, � = 0, and ω = −1. However,
when γ < 3H2

0 , then we have two cases such as ω < −1,
or ω > −1 and � > 0. Also, it can be observed that while
the pressure along the x-axis shows the phantom behavior,
i.e., ω < −1 and quintessence behavior i.e., ω > −1,
the pressure along y and z-axes always shows the phan-
tom behavior, i.e., ω + δ < −1. We summarize the results
in below table (there, first pair of scale factors represents

A(t) = c1
k3
e

(
H0− 2

√
9H2

0 −3γ

3

)
t

, B(t) = k3e

(
H0+

√
9H2

0 −3γ

3

)
t

and second pair represents the other pair of scale factors with
H0 = 1. As a result, ρ = γ should lie in (0, 3]).

ω δ �

First pair γ → 0 Phantom region (ω < −1) −∞ 2
γ → 3 �CDM (ω 
 −1) 0 0

Second pair γ → 0 Quintessence (ω < −1) −∞ 2
γ → 3 �CDM (ω 
 −1) 0 0

6.2 Anisotropic relation (θ2 ∝ σ 2)

As the second set of additional conditions, we first consider a
physical condition that the shear is proportional to the expan-
sion scalar and this leads to the relation

A = Bn, (59)

where n( �= 0, 1) is an arbitrary real number. This physical
law is imposed on the basis of the observations of the velocity
redshift relation for extragalactic sources which suggest that
the Hubble expansion of the universe may achieve isotropy
when σ

θ
is constant [68]. The condition was used in several

occasions in the literature [66,69,70].
As earlier, we consider two distinct cases to close the sys-

tem and compare them.

6.2.1 Case I: ω = −1

Using Eqs. (35), (38), (39), and (59), we find the following
expressions for scale factors

A(t) = [(1 − n) (k4t + k5)]
n

1−n (60)

B(t) = [(1 − n) (k4t + k5)]
1

1−n . (61)

123
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Following the above anisotropic scale factors, we can
express

ρ = k2
4(2n + 1)

(n − 1)2 (k4t + k5) 2 (62)

δ = 1 − n (63)

� = 2(n − 1)2

(n + 2)2 . (64)

6.2.2 Case II: ρ = constant (β)

Using Eqs. (35), (38), (39), and (59), we find the following
expressions for scale factors

A(t) =
[
k6e

t
√

β
2n+1

]n
(65)

B(t) = k6e
t
√

β
2n+1 . (66)

Now, we can write the cosmological parameters as follows

δ = − (n − 1)n

2n + 1
(67)

ω = − 3

2n + 1
(68)

� = 2(n − 1)2

(n + 2)2 . (69)

7 Analysing f (Q)-models

In this case, we consider that the anisotropy in the universe
is given by the same forms of scale factors A(t) and B(t)
as in the previous section. We use the four sets of values
of A(t) and B(t) obtained in Sects. 6.1 and 6.2 and investi-
gate the main goal of the present study, the dynamics in par-
ticular f (Q)-models. This comparative analysis illustrates
the impact of the non-metricity in terms of the modifica-
tions in the matter content of the universe through the new
terms collected across f (Q) in the motion equations. For
our present discussion, we consider the well-analysed model
f (Q) = Q + αQ2. The polynomial forms of f (Q) have
been studied widely. For instance, Mandal et al. [27] studied
the energy conditions to examine the viability of the cos-
mological models with the observational measurements of
cosmographic parameters. Hasan et al. [36] studied the vari-
ous types of wormhole models, Jiménez et al. [61] explored
the cosmological perturbation scenario, bouncing scenarios
to avoid the initial singularity problem studied in [71], and

dynamical analysis of the cosmological model analyzed in
[72]. Therefore, it is worthy to consider a polynomial form
of f (Q) to study the Bianchi universe.

We start with the first condition:

7.1 Case I: ρe f f is constant and the EoS ω = −1

We begin with the expression of A(t) and B(t) given respec-
tively by (49) and (50) and obtain the energy density as

ρ = 3H2
0

(
−18αH2

0 − 18αH2
0 k

4
1(

e3H0t − k1
)4

+k2
1

(
36αH2

0 − 1
)

(
e3H0t − k1

)2 + 1

)
. (70)

As t → ∞, the energy density ρ → 3H2
0 (1 − 18αH2

0 ).
Therefore, for a positive energy density throughout the evolu-
tion history we must make sure that the parameter α satisfies
α < 1

18H2
0

for the present case.

The skewness parameter δ can be calculated as

δ = 3k2
1e

−3H0t
(
2k1

(
24αH2

0 − 1
)
e3H0t + (

1 − 12αH2
0

)
e6H0t + k2

1

)
(
e3H0t − 2k1

) (−2k1
(
18αH2

0 − 1
)
e3H0t + (

18αH2
0 − 1

)
e6H0t − k2

1

) (71)

which vanishes as t → ∞ since 18αH2
0 �= 1, contributing

to isotropization of the fluid. Finally, the anisotropy of the
universe is given by

� = 2k2
1(

e3H0t − k1
)2 (72)

which also clearly fades away as time increases, thus entering
into the isotropic Robertson–Walker geometry.

7.2 Case II: ρe f f is constant and ρ is constant

In this case, we assume the expressions of A(t) and B(t)
are given respectively by (54) and (55). Following the same
procedure as above, we calculate the parameters as

ω =
(2αγ − 1)

√
9H2

0 − 3γ + 3H0(6αγ − 1)

(6αγ − 1)

(√
9H2

0 − 3γ − 3H0

) ,

or,
(2αγ − 1)

√
9H2

0 − 3γ + H0(3 − 18αγ )

(6αγ − 1)

(√
9H2

0 − 3γ + 3H0

) (73)
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δ =
3H0(4αγ − 1)

√
9H2

0 − 3γ

γ (6αγ − 1)
,

or,
3H0(4αγ − 1)

√
9H2

0 − 3γ

γ (1 − 6αγ )
. (74)

For this case, we present two sets of parameters as we have
two pairs of scale factors. Previously, we have discussed
about the other parameters except α in Eqs. (73) and (74).
Here, we observe that for any values of α with the values of
parameters in the Sect. 6.1, δ lies in its positive range and ω

represents phantom region for first pair of solution and for
second pair of solution δ lies in phantom region and ω lies
in quintessence region.

7.3 Case-III: θ2 ∝ σ 2 and the EoS ω = −1

In this case, we consider the expressions of A(t) and B(t)
given in (60) and (61). For this anisotropic scale factors,
we find the following expressions for energy density ρ and
skewness parameter δ

ρ = k2
4(2n + 1)

(
(n − 1)2 (k4t + k5)

2 − 6αk2
4(2n + 1)

)
(n − 1)4 (k4t + k5) 4

(75)

δ = 4k2
4α(n − 1)(4n − 1) − (n − 1)3(k4t + k5)

2

(n − 1)2(k4t + k5)2 − 6k2
4α(2n + 1)

. (76)

As t is increasing, δ → 1−n. Hence, the vanishing skewness
parameter requirement produces n = 1. In other words, in the
present case isotropization of the gravitational fluid pushes
the anisotropy of the universe to enter into the isotropic
Robertson-Walker geometry by providing A = B. It is
observed that the energy density reduces as time goes on
and equation of state converges towards �CDM with time.
The skewness parameter takes its value in positive range.

7.4 Case-IV: θ2 ∝ σ 2 and ρ is constant

In this subsection, we presume the expressions (65) and (66).
Using those expressions, we obtain

ω = 3 − 2αβ(2n + 7)

(2n + 1) (6αβ − 1)
(77)

δ = − (n − 1)(n + 2) (4αβ − 1)

(2n + 1) (6αβ − 1)
(78)

Here, we observe that the values of the parameters as con-
stant. Let’s take the values of parameters from the previous
Sect. 6.2, then for any values of α, ω and δ behaves oppo-
sitely (i.e., if ω behaves like phantom, then δ behaves like
quintessence and vice-versa.)

8 Conclusion

In this manuscript, we have focused on exploring the Bianchi
Universe in a novel modified f (Q)-gravity theory, where the
gravitational interaction is demonstrated without the pres-
ence of curvature and torsion. Here, we have derived the
motion equations for f (Q)-gravity in the anisotropic yet
homogeneous LRS Bianchi-I spacetime in the presence of
a single anisotropic perfect fluid with a dynamic equation of
state (EoS) parameter and energy density. We have proved the
conservation of energy–momentum from contracted Bianchi
identity and thus secured a non-constant energy density even
for DE EoS parameter ω = −1. In order to re-obtain the
anisotropic dark energy results as an analogy to the GR, we
have first considered f (Q) = Q in the Sect. 6. Four different
physical scenarios have been discussed, two cases under the
assumption of volumetric expansion law and the other two for
anisotropic relation. For all the four cases, we have found the
expressions for the anisotropic scale factors A(t) and B(t).
To proceed further in our study of isotropization history in
the cosmological evolution of universe in the f (Q)-theory,
we have considered a widely studied polynomial form of
f (Q) = Q + αQ2.

To investigate this particular f (Q) model, we have made
use of the expressions of the four pairs of anisotropic scale
factors A(t) and B(t) from the previous Sect. 6. Such way
we have obtained modifications in the matter content of the
universe (the anisotropy of the fluid and the new contribu-
tion of the nonlinear terms of Q). We have derived the energy
density ρ, skewness parameter δ, and anisotropic parameter
�. Our investigation has illustrated that at the early time, the
universe presented unequal scale factor in the x and y direc-
tions, and as the late-time is reached, they display equality,
and in due process remove the anisotropy in the gravitational
fluid. Furthermore, we have analyzed the energy density ρ,
EoS ω, the anisotropic parameter �, skewness parameter δ

for four separate sets of physical conditions in detail for each
case. Our study has concluded that even in the presence of an
anisotropic fluid, the universe could approach isotropy and
isotropizes the anisotropy of the fluid at the same time. So we
cannot rule out a priori the possibility of anisotropic DE, even
though the present universe shows an isotropic expansion.

Moreover, 9-year Wilkinson Microwave Anisotropy probe
(WAMP) observations suggest small deviations from the
isotropy [73], which motivated us to study the Bianchi uni-
verse as it could lead to more realistic results. Also, the
observational constraint on the DE EoS ω such as ω =
−1.10 ± 0.14 [74], −0.14 < 1 + ω < 0.12 [3] suggest, its
value should be very close to −1. In addition, several obser-
vational studies on Bianchi identities in the gravitational
frameworks show the same behavior of ω to present the late-
time acceleration of the universe [18,19,21,22]. Although
we have theoretically constructed and studied the anisotropic
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universe in a modified gravity framework, our outcomes align
with the observational results. In further studies, it would be
interesting to test these models against the observational data
such as Hubble, Pantheon, BAO. Some of these tests will be
addressed in the near future, and we hope to report them.
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Appendix

The non-vanishing Levi-Civita connections of (1) are:

�̊t
xx = AȦ , �̊t

yy = �̊t
zz = B Ḃ

�̊x
tx = Ȧ

A
= �̊x

xt , �̊y
ty = �̊z

tz = Ḃ

B
= �̊y

yt = �̊z
zt .

The corresponding Einstein tensors are:

G̊tt = 2
Ȧ

A

Ḃ

B
+

(
Ḃ

B

)2

G̊xx = −A2
(
Ḃ

B

)2

− 2A2 B̈

B

G̊ yy = − Ä

A
B2 − Ȧ

A
B Ḃ − B B̈

G̊zz = G̊ yy .

The non-vanishing non-metricity tensors are:

Qtxx = 2AȦ; Qtyy = 2B Ḃ; Qtzz = 2B Ḃ.

The superpotential tensors are:

Ptxx = − Ḃ

A2B

Ptyy = −1

2

Ȧ

AB2 − 1

2

Ḃ

B3

Ptzz = Ptyy

Pxxt = −1

4

Ȧ

A3 + 1

2

Ḃ

A2B
= Pxtx

P yyt = 1

4

Ȧ

AB2 = Pyty

Pzzt = 1

4

Ȧ

AB2 = Pztz .
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