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We study the effect of Lorentz symmetry violation (LSV) on the behavior at high energy of SU(N)
gauge theory with quarks in the fundamental representation. The approach is similar to that for QED treated
in a previous paper. In contrast to QED, standard Lorentz invariant QCD is asymptotically free. Our aim is
to explore the structure of the renormalization group at high energy and hence weak coupling without
requiring the Lorentz symmetry breaking to be small. The simplest type of LSV leaves the theory invariant
under a subgroup of the Lorentz group that preserves a (timelike) 4-vector. We examine this case in
detail and find that asymptotic freedom is frustrated. That is, at sufficiently high energy, the running
coupling constant attains a minimum value before increasing again, while the LSV parameter increases

without bound.
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I. INTRODUCTION

Lorentz symmetry violation (LSV) in QED has been
studied by a number of authors concerned with its con-
sistency with causality, unitarity [1-3], the structure of
asymptotic states, and renormalization theory [4-6]. In
previous papers [7,8], we studied some of these issues in
QED starting with a premetric formulation [9,10] based on
an action

1
g_ —g/d“xU"”MF,w(x)FM(x)’ (1)

where F,,(x) is the standard electromagnetic field tensor
and the (constant) background tensor U**°* has the same
symmetry properties as the Riemann tensor in General
Relativity, namely

UHvoT — _[JvHoT — [JOTHV (2)
and
U,uym' + U;,mﬂ/ + U;tn/r; — 0 (3)

This latter condition excludes parity violation. An outcome
of the analysis was that even when the Lorentz symmetry
violation is not constrained to be small the behavior of the
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renormalized theory in the infrared limit is dominated by
the fixed point at zero coupling in a manner consistent with
Lorentz symmetry. That is, at a sufficiently large scale in
spacetime Lorentz symmetry reemerges. This is consistent
with related earlier work [11-13].

In this paper, we study a QCD type model with SU(N)
gauge symmetry. In addition to the gauge field, we include
a quark field that transforms under the fundamental
representation of SU(N). A closely related model is
investigated in Ref. [14]. The significance of such a theory
is that it exhibits asymptotic freedom; that is, its behavior
at high energy is controlled, at least in the standard case
of Lorentz invariance, by a weak coupling fixed point
[15,16]. Our aim here is to investigate the manner in which
asymptotic freedom is modified by the presence of Lorentz
symmetry violation. An investigation with similar aims, in
particular comparing QED and QCD, is presented in
Ref. [17]. Although we look in detail only at the simplest
type of LSV, we set out the general theory in a manner
parallel to Ref. [7] in order to clarify the logical structure of
the argument. This prepares a framework for analyses of
more complex models.

In the obvious generalization of the case of QED, we
take the action for the SU(N) gauge field to be

1
Sg — —g/ d4xUﬂyUTFa”y(x)FaaT(x)’ (4)

where F,, (x) is the standard gauge field tensor trans-
forming according to the orthogonal representation of
SU(N). For a general choice of U7, this action, although
gauge invariant, is not in general Lorentz invariant. Lorentz
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invariance with respect to a metric g** can be recovered by
choosing

UHvor — g;mgur _ guag/u'. (5)

Although there is a priori no metric in the general case with
LSV, there is nevertheless, as argued in Ref. [7], a preferred
metric ¢ that allows us to decompose U*“" in the
following way,

U/HATT — g;wglz‘r _ guagur _ Cm/m" (6)
where the tensor C**°* has the same symmetries as the Weyl
tensor in General Relativity. That is,

Cmor — _ ot — Com, (7)
and
CHVOT | CHOW | CHVO — (), (8)
In addition, it satisfies the trace condition
G CPo" = 0. 9)

We refer to C*°7 as a Weyl-like tensor (WLT). It follows
that the WLT determines the nature of the LSV. As in the
case of QED, the possible types of LSV can be determined
by applying the Petrov classification to the WLT [18].
A useful approach to the Petrov scheme is contained in
Refs. [19,20]. Its application in QED with LSV is presented
in Ref. [7]. There are six cases, conventionally labeled
O, N, D, 1, II, and III. Each case has a canonical form for
the WLT [21].

Class O corresponds to the case C*°* = 0, which for
pure gauge theory implies no LSV. However, as in the case
of QED [7], the quark field can engender LSV in the model
through its contribution to vacuum polarization provided
the associated metric for quark propagation shares with the
gluon metric an invariance under a subgroup of the Lorentz
group that is the little group of the given 4-vector [22]. The
4-vector can be timelike, spacelike, or lightlike (with
respect to both metrics). The timelike case implies that
there is a reference frame in which the theory is invariant
under rotations of the spatial axes. This is the case we study
in detail. However, it is convenient to set out the scheme for
quantizing and renormalizing the theory in a general form.
Canonical forms for the WLT in other Petrov classes and
the implications for the vector meson dispersion relations
are the same as those for photons in QED as described in
detail in Ref. [7].

It should be emphasized that our approach is entirely
consistent with and indeed is part of the Standard Model
Extension introduced and developed in Ref. [4]. In the
simplest terms, there is a notational correspondence

g¢v = G - 4 o, and C*T - k5" from this
paper to Ref. [4]. However, there is a small explicit
difference beyond notation. The aim in Ref. [4] was to
set out the departure from Lorentz invariance in a manner
appropriate for phenomenological applications, for which it
is natural to assume it is very small. Our aim is to compute
as far as possible without assuming that the LSV is small, so
it is not convenient to split g as in the above correspon-
dence. There is a further difference between our approach
and that of Ref. [4] in that we allow both ¢ and g to
undergo a renormalization in dealing with UV divergences.
The reason is, as explained in Sec. V, to permit a simple
multiplicative renormalization of the gauge fields.
However, the equivalence of the two approaches can be
made evident by a linear change of coordinates that restores
g" to a standard form which we can choose to be ##*. This
change of coordinates of course involves UV divergences
through the perturbative expansion in the coupling con-
stant. The structure of this argument is completely evident
in the application of the theory to the case of Petrov class O.

II. GAUGE FIXING AND GHOST FIELDS

In terms of the vector gauge fields A,,(x), the tensor
fields are given by

Fa;w(x) = aﬂAav (x) - auAa;t (X) + gfabcAb/t (X)Acv (x)’
(10)

where ¢ is the gauge field coupling constant and f ;. are
the structure constants of SU(N). In order to deal with the
gauge invariance of the action for the vector fields in
Eq. (4), we follow the approach in Ref. [7] and impose the
gauge condition

A, A4 (x) = 0. (11)

Here, A** is a metriclike tensor, which we will find it
convenient to distinguish from ¢*” because the two tensors
behave differently under the renormalization procedure. We
are therefore led to add a gauge fixing term to the action of
the form

s, :% / B x(AD, A (x)). (12)

In addition and in contrast to the case of QED [7],
we must introduce anticommuting ghost fields ¢, (x) and
€,(x) in order to construct in the standard way the Fadeev-
Popov determinant in the path integral formalism for the
computation of Green’s functions in the gauge theory. We
therefore complete the action for the gauge theory by
adding a term,
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S = —/d“xéa(x)A"”aﬂDabbe(x)- (13)

Here, D,;, = 8,40, + 9f apcAe(x) is the gauge covariant
derivative for the ghost fields. The complete action for the
theory is S, where

S =S, + Sy + Syu- (14)

III. FEYNMAN RULES

The Feynman rules for the theory can be read off from
the action S in the standard way. They are in certain
respects analogous to the corresponding rules for Bimetric
QED [7].

A. Feynman propagator

The Feynman propagator, illustrated in Fig. 1(a), is

AFab,uu(q) = _iéabjwylz(Q)7 (15)
where M,,(q) is the matrix inverse to M**(q) and
M (q) = (UF + NN )qq,. (16)
More explicitly,

M*™(q) = ¢*¢" — ¢"q" + Q" Q" = C"Pquqy. (17
Here, Q# = A*q,. It is easy to verify that when Cr®/
vanishes and A** = ¢"* this reduces to the standard Lorentz
invariant form. Following the analysis for the photon
propagator in Ref. [7], we first introduce M**(q), which

is the form taken by M**(q) when indeed A#* is replaced by
g", that is,

M (q) = g*g* — C*Pq,qp. (18)

The inverse matrix is M, (¢q) (see Ref. [7]), and it can be
used to construct M,,(q) in the form

k
H Y u
NANNNL
a q b a P
q
vEb
(a) (b) (c)
FIG. 1. Gluons (a) propagator, (b) 3-vertex, and (c) 4-vertex.

4-momenta inward.

0= (558 oo (5-05)
(19)

A careful analysis [7] shows that the Feynman propa-
gator has the same vector meson poles as M, (g) together
with the ghost poles at ¢.Q = A**q,q, = 0. It is straight-
forward to check that were we to set A* = ¢"* then we
would find

M, (q) = M, (q). (20)

B. Gluon vertices

The three-gluon vertex, Fig. 1(b), is

Yo _ —0f abe (pp yrmve q, Urvon kp Uﬂo’lw), (21)

abc

For the four-gluon vertex, Fig. 1(c), we have

YHYoT — —igz(UﬂDUTfhubfhcd + U”m—yfhacfhbd
+ U™ fraaf nbe)- (22)

Of course, momentum conservation is enforced at
each vertex. Again, it is easy to verify that in the absence
of LSV these vertices reduce to standard form (see, for
example, Ref. [23]).

C. Ghost propagator and vertex
The Feynman propagator for the ghost fields, Fig. 2(a), is

24 () = i (23)
where P¥=A"p, and P.p=P*p,=N"p,p,. Momentum
follows the ghost direction. From this, it is obvious that the
mass-shell condition for the ghosts is P.p = A* p,p, = 0.

The vertex coupling the ghosts to the vector field is
indicated in Fig. 2(b) and has the form

h v
VI — g e N p,. (24)

.

@ ®

FIG. 2. The ghost propagator is indicated in (a), and the vertex
for coupling to gluons is in (b).
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IV. QUARK FIELD

The model can be extended by including one or more
spinor fields each transforming under SU(N). For simplic-
ity, we will consider the case of one such field. Modifi-
cations can be added later. The action for this field is S
where

qu>

Su= [ @D, A = miwl). (29
Here,
= e, (26)

where e#, is the vierbein associated with the spinor field
and {y“} are the standard Dirac y-matrices. The metric
associated with the spinor field is g = n®®e# ,&",. Thisis a
second source of LSV in the model. Of course, D, [A] is the
gauge covariant derivative appropriate to the spinor field.
The Feynman propagator for the spinor field is indicated in
Fig. 3(a),

i

Se(p) =——.
fP) =5

(27)

and the coupling to the gauge field is indicated in Fig. 3(b),
Vi = igi't,. (28)

Here, 7, is the SU(N) generator appropriate to the repre-
sentation of the spinor field (see Ref. [23]).

We use dimensional regularization [24] in order to deal
with the ultraviolet divergences of the theory. The Feynman
diagrams for the perturbation series for the Green’s
functions of the theory are evaluated in n dimensions.
All the parameters of the theory, coupling constant, mass,
metrics, and WLT are subject to corrections involving UV
divergences. We denote the bare quantities with an extra
suffix 0. Each bare parameter is expanded in terms of a
renormalized coupling constant g. For example,

g = go = pt+=/ 29<1 + Zg“‘)gz">- (29)
k=1

() (b)

FIG. 3. The quark propagator is indicated in (a), and the quark
gluon coupling is in (b).

Here, u is the scale associated with the renormalized
coupling g [24]. The coefficients ¢g\¥) depend on the
dimension n and exhibit poles of various orders at n = 4.
For example, ¢(") has a simple pole at n = 4. The other
parameters are similarly replaced by bare versions that are
expanded in powers of the renormalized coupling g,

mo —m(l +fjb<k>g2k)

k=1

9}(4)1/ = g" + Z g(k)/w92k
k=1
Egu = Eﬂa + Z E(k):anZk
k=1
©

CGDM = Cmwor | C(k)ﬂl/O'T 921(
=1

k=

Ny =Ny Abm gk, (30)
k=1

Again, the coefficients in the various expansions exhibit
poles at n = 4. Note that we are free to assume that
detgy” = det¢g*” = —1. This implies that

Gug = 0. (31)

V. PERTURBATIVE CALULATIONS
AT ONE LOOP

A. Renormalization of gauge field propagator

The vacuum polarization tensor X/ (¢) determines the
renormalization properties of the (inverse) gluon propagator
A" (). The (one-loop) diagrams that contribute to X4, (q)
are shown in Fig. 4 (see Ref. [23]). We have, to O(g?),

AGap (@) = ANy (9) + 25 (q). (32)

Here, the inverse Feynman propagator is expressed in terms of
the bare parameters,

Ny (@)= =8 L (dy 95 — P g+ NN = Co™ ) 05}
(33)

In principle, the contributions to the vacuum polarization are
also computed from the appropriate Feynman diagrams using
the bare parameters. However, our calculation will be of
O(g?), so we need only use the lowest order expansions in
Eqgs. (30). This amounts to using the renormalized parameters
in the vertices and propagators when computing X/, (¢). In
addition, the UV divergences of /X (¢) occur only in the
lowest terms in its Taylor expansion in ¢,. On general
grounds, then, we can exhibit the UV divergences to
O(g?) by writing
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N v g
q [IVaVaVs
a b a
(a) (b)

u v
a K v
q

a b
(c) (d)

FIG. 4. Contributions to vacuum polarization from (a) gluons, (b) ghosts, (c) quarks, and (d) the gluon loop.

%3, (q) = ida W”“””q g5+ 0(q*), (34

where the O(g*) terms are UV finite. The tensor W#**# has
the same symmetry properties as the Riemann tensor. Hence,
in a standard fashion, it can be expressed in the form

1
Whah — {E W(g“g? - ¢’ ¢)

(VI g vl g b )
- V"“”ﬂ}, (35)
where
W =W¥gy.
Wb — Wb,
yab — b % W (36)
We have also
VP gus =0,
veabg s = 0. (37)

It follows that V#*# having the appropriate symmetries and
trace properties, is a WLT. In Egs. (36) and (37), we have used
the four-dimensional decomposition, which is adequate when
computing the residues of the pole at n = 4. The type of
Lorentz symmetry breaking exhibited by the model can be
specified by means of the Petrov classification of Weyl
tensors. We will return to this point later.
From Egs. (29), (30), and (33), we see that

Nioap(@) = Aoy (@) + 647, (), (38)

where A%, (g) is obtained from Ay, (¢) by replacing the
bare parameters with their renormalized versions and

50, (q) = =Bapig*{gP g 4 g P g — gragl
— gWragh L NP AWy 4 A(Daf Apv
— AHaANDB _ A(Dpa AvB _ C(l)ﬂm’ﬁ}qaqﬁ_

(39)

The renormalization parameters are fixed by requiring that
the renormalization of Af,,(¢) reduces to an overall
multiplicative factor, that is,

2
i) = (1= 5,25 W ) (Sliula) + 0. (40

This is achieved by requiring that

11
(Dpv — Ve,
g 2n—4
A = L1y
24n—4
C(l)/ml/ﬂ — m (Vﬂavﬂ — Cﬂauﬂ). (41)

Note that the results in Eqgs. (41) do imply that
g(l)“”gﬂy = 0. Furthermore, the renormalization of Af” is
multiplicative and involves the field renormalization factor
72 where

2

I g
ZV2 = 14—
+24n—4

(42)

This is not necessarily true of the metric renormalization.
For this reason, it is conceptually convenient to distinguish
the bare metric from the bare ghost metric. However, at the
level of one loop in perturbation theory, it is possible and
convenient to allow the two metrics to coincide. Higher
order calculations may require the maintenance of the
distinction, imposed order by order, between the two
metrics.

B. Renormalization of quark propagator

The renormalization of the quark propagator iSy(p)
proceeds along similar lines. We have

So'(p) = Sro(p) +Z(p), (43)
where
7o = 1"€0, (45)

and y* are standard Dirac y-matrices. The quark propagator
is implicitly a unit operator in SU(N) space. The self-
energy amplitude iX(p) can be calculated (at one loop)
from the diagram in Fig. 5 using the Feynman rules with
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q k+q
k
FIG. 5. Quark self-energy.

renormalized parameters. The UV divergences can be
exposed in the Taylor expansion

2(p) = Z(0) + Z*(0)p, + O(p?), (46)

where the contribution O(p?) is finite at n = 4, and we
have

%(0) = m-_— (47)
and
2(0) = L h, (43)
n—4
We write
B — %H&ff e (49)

where h*, = 0. The term H determines the quark propa-
gator renormalization Z P while /##, fixes the counterterm in
ey, More explicitly, we have, taking account only of the
poles at n = 4,

1 &
Zqzl_Zn—é‘-H’ (50)
1 2
2p(1) = 7 -9 g 1
g =Ty T et (1)
and
&
gelm gl + p_— 4hﬂy =0. (52)
That is,
&
gzé(l)ﬂa+n_4hﬂy@”a =0, (53)
implying that, to O(g?),
&
W= Lo (Y

C. Renormalization of coupling constant

The coupling constant renormalization is most easily
followed by considering the quark-gluon vertex. The
relevant diagrams are shown in Fig. 6 and yield contribu-
tions to the truncated three-point function that render it

p P’ p P

FIG. 6. Quark gluon coupling diagram.

finite after appropriate field renormalizations. We can
anticipate the nature of the divergences by examining
the bare vertex Vi, = igo7yt,. From Egs. (29) and (30),
we have

Vi =igo7ota=in@"2g(1+ ggW) (", + g*e V) )rb1,.
(55)

That is,

2

g
n—4

Voa = i/ 29((1 +g7g)e) - hﬂv) 7t (56)

The point we make here is that the renormalization of the
quark vierbein enters into the vertex calculation and
the contribution V4 (p, p’) to the three point function from
the diagrams in Fig. 6 must be consistent with this. We can
expect then that V4 (p, p’) will (at zero external momenta)

have the form
', 7't,.
1 l/) a

(57)

2
VE(0,0) = ip-m/2g <i K&'t, + -2
n—4 n—

This will be verified in particular calculations. The frun-

cated three point function V(HS)” (p, p') will, at zero external
momentum, satisfy

gz
1 K) 7't,. (58)

Vg3)ﬂ(0,0) — l'lu(4—n)/2g<1 _’_gzg(l) =+

Finally, ¢! is determined by requiring that the right side of
this equation is rendered finite by extracting the field
renormalization factors Z;'Z~'/2, implying

2
g 1 1
n_4<4H—24W—K>. (59)

gzg<1> =

We will look at this in more detail when evaluating the
vertex in the special case of LSV we consider below.

VI. RENORMALIZATION GROUP

From the results in Sec. V, we can obtain the renorm-
alization group (RG) equations for the renormalized
parameters to lowest nontrivial order in the coupling
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LORENTZ SYMMETRY VIOLATION IN QCD AND THE ...

PHYS. REV. D 101, 085004 (2020)

constant g. These are derived from the requirement that the
bare parameters are independent of the renormalization
scale u. For the coupling constant, we have

0
Moo= 0. (60)

From Eq. (57), we then obtain the renormalization group
p-function

0 1

Bu) ~ a9 —(2—”/2)9—g3<iH—24W—K>.

(61)

Note that in deriving Eq. (61) from Eq. (60), we have
ignored derivatives of H, W, and K since they are of O(g?)
and may, and indeed must, be ignored at one loop. Of
course, the first term on the right of Eq. (61) vanishes in
four dimensions.

Following the same principles, we obtain for the gluon
metric

0

1
Y b — 1 2y
ﬂaﬂg“ = 292V (62)

and

0 _ _ _
ﬂa—#ga” = ¢ (h*, " + 1’ , ). (63)

We obtain also for the renormalized mass

om 5 1
,ua—’u——mg (0+4H>. (64)

The renormalization scheme set out here can be applied
to LSV associated with a WLT of any of the Petrov classes.
However, even at one loop, the calculations are rather
complex. Partly then for reasons of simplicity, we restrict
attention in this paper to models in Petrov class O. The
results nevertheless remain interesting.

VII. RENORMALIZATION FOR PETROV CLASS O

As explained above, in the case of Petrov class O, the
LSV is due entirely to the difference between the light cone
associated with the gluons and that associated with the
quark field. That is, we are assuming that the tensor C**°*
vanishes. This is possible if there is a reference frame in
which rotational invariance holds simultaneously for both
metrics. Given the symmetry properties of CH*°7, it is
consistent with this rotational invariance only if it is null.
Similar remarks apply to situations where the preserved
subgroup of the Lorentz group, in a suitable frame, leaves
invariant either a purely spacelike or lightlike vector. We
will concentrate on the rotationally invariant case. We have
for the gluon metric

a 0 0 O
0o - 0 0
g9 = (65)
0 0 -5 0
0O 0 0 -p
and for the quark metric
a 0 0 O
. 0 - 0 0
g = - . (66)
0O 0 - 0
0 0 0 -
We assume that
af® =ap =1, (67)
so that det g = det " = —1. We have similar forms for

the bare metrics ¢j” and g” in terms of the bare parameters
(a, fo) and (@, fy) which have appropriate expansions in
powers of the renormalized coupling. That is,

= 68
ag a+n (68)

together with similar expansions for the other bare param-
eters. It is convenient to relate the two metrics by setting
@ = aa and B = b with the consequence that ab® = 1.
Similar remarks hold in an obvious way for bare parameters
ag and bg. The significance then of b is that in a coordinate
frame in which the gluon metric is diagonal with
entries(1,—1,—1,—1) the quarks have a light cone asso-
ciated with a velocity ¢, = b%. At appropriately high
energies, we would expect that when b > 1 the quarks
travel faster than the gluons and slower when b < 1.

A. Vacuum polarization for Petrov class O

In order to carry out the renormalization process, we
assume the renormalized gauge metric satisfies (to one-
loop order) A* = ¢#*. The vanishing of C**°" then yields
for the renormalized gluon propagator

M, (q) =22 (69)

The vertex factors, as mentioned above, acquire the
standard form for the gauge theory without (at this stage)
any LSV. We can therefore use the discussion of non-
Abelian gauge theories in Ref. [23] to evaluate the con-
tributions from the diagrams in Figs. 4(a), 4(b), and 4(d) to
obtain the gauge field contribution to the UV divergence at
one loop as

085004-7



I. T. DRUMMOND

PHYS. REV. D 101, 085004 (2020)

. v 10 igz v av
122‘2‘ (q) = —?Cz(G) (n)? San (99" — 4P 9 ) 44
1
X PR (70)

where C,(G) is the value of the quadratic Casimir operator
in the adjoint representation of SU(N). As explained in
Ref. [23], the diagram in Fig. 4(d) does not contribute to
this pole residue. In a similar way, we can use the results in
Ref. [23] to evaluate the quark contribution to the vacuum
polarization from Fig. 4(c) provided we use g as the
appropriate metric. The result is

. v 4 ig2 —Uv = —uff=av
=" (q) = 2L 5., (75 - 7 5™)

3 (4rx)? (71)

n—4’

From Eq. (36), we see that contribution to the tensor W+*#
from the gluon field term is

1 10
Wmavh — “Gn s C(G)(g™g” — gg™)  (72)
and
40
W = — ) C,(G). (73)

It is immediately obvious V(@# vanishes as does V(@rah,
From the quark field term, we have

1 4
w(@pavp — _
3

3 @T 7).

We have then

8 B/a P 8
W@ — (4”)2§ <g+§> :Wb(a+b), (75)
and
a 0 0 0
) 0 p/3 0 0
(q9)ap — -

7l R R VER e

0 0 0 p/3

It follows that

W=wo4+wa = (b(a+b)—5C,(G)).  (77)

8
(47)?

Of course,

Ve — y(@w, (78)

Finally, then, from Egs. (41) and (78), we have

11 11 /1
W= " pla—-ba=——— (= —p?
T 4n)n—4 (a=b)a (4n)2n—4(b2 >“’

(79)

B O

ﬂo:ﬂ<1_%(4gj)2ni4<%_bz)>' (81)

In the limit of Lorentz invariance, a = b = 1, and we have
ag = a and f; = f. The field renormalization factor is

VAL +;(49;)2ni4 <<blz+ b2> - 5C2(G)). (82)

that is,

and

B. Quark self-energy for Petrov class O

The results for the calculations in the previous section,
because each term involves only a single metric, can be
read off from standard results (see Ref. [23]). However, the
one-loop self-energy correction to the quark propagator is
obtained from the Feynman rules applied to the diagram in
Fig. 5. Both metrics are involved. A possible conflict with
causality might be anticipated. This possibility has been
discussed previously, and the conclusion is that in the
present case there is no difficulty, as is confirmed directly in
the calculations [1-3,7,25]. We have then

) dk _ 1 Y
lZ(p) = _QZCZ(N) / (271')" 7/#770[(]7 + k) _m7 k_ﬂz
(83)
We require
. d'k _ I 9w
20) =~ V) [ Gt (8)
and
0

i —X(p)] = =iZ*(0)

op;
d"k 1 1 g
L —
g°Cy(N) SRR e

(85)
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The evaluation of these terms is along the same lines as the
corresponding calculation for QED in Ref. [7]. We find for
the UV poles at n = 4

i%(0) = im (ji; G(N)- 1 . @(a}; ib 75 (86)
with the result
- (4jz)2 C2(W) bzl (;ijz;) ' (87)
We have also
i20(0) = i(:i; Cy(N) ni . wg;iﬁlﬂﬂo’ (88)
e (“%%fjg@ g

(89)
Using a = b3, we find for the mass renormalization

4 1 1436

p(D) = C ) 90
Wi mrnrey Y
We find also
4 2(1 = b* +2b%)
H=——C(N)—s——2, 91
(4x)2 2(N) b2(1 + b?) (91)
and
4 (1 =0%)(1 +3b* + 4b*)
W= C,(N T* . 92
= N Ty o 02

Here, 7/ , 1s a traceless diagonal matrix with entries
(1,-1/3,-1/3,—1/3). It then follows that

o 1 4¢ 1 (1=0%)(1+3b%+4b%)
=p(1 Cr(N
bo ﬂ( +3(4;;)2 (M) 3 b2(1+b%)?
(93)
Combining this with Eq. (81), we obtain
1 ¢ 1 (1-b%
by=b(1+=
0 < 3Gnn-a
1 +3b% + 4b*)
L4 b2) 4 acy(n) L30T+ 45 94
X[( +b%) +4C,(N) (11 b2) D (94)

C. Coupling constant renormalization
for Petrov class O

The one-loop diagrams in Fig. 6 yield the coupling
constant renormalization. For the computation of the UV
pole divergence, it is sufficient to calculate the vertex with
p = p' = 0. From the first diagram, we obtain

V?J(()’ O) = g3thlathgyylﬂiyi (95)

where

d"k 1 1 1
AV b’ —A U
I _/(2ﬂ)"y”7“ka—my ol w9

On omitting terms that do not contribute to the UV
divergence, we have

I = 77777 T op (97)
then,

_— / d'k kaks
D) @) (G kky — m?)2R2

(98)
The result using f,f,t, = (Co(N)— C,(G)/2)t, and
ab’ =1 is

1-3p* g
T ld
(1+5%)?

(99)

i 3
V0.0 =4 () - C:(6)2)

We have also

Vi(0,0) = —

i 3
T (C0)-C0)2)

(1L+692+6)
Wtay . (100)

In the case of the second diagram, we note that in the limit
of zero external momenta the internal three-gluon vertex
reduces to

VIS = =g apcky (UP — U1

abc
= —9f abck, 29 " — g — g ¢*).  (101)
The contribution to the vertex becomes
M _ 1 3. sV sasu
V4(0,0) = ~ G TV G G/
x 29" = ¢* = ¢ 9Ty (102)

where
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;o / d"k kok,
P ) Q) (F P kgky — m?)(K2)?

(103)

We have again omitted terms that do not contribute to the
UV pole at n = 4. The tensor T ap 18 closely related to 7', in
Eq. (98). Finally, we have the contributions

g 1 b?(1+2b%)
0(0,0) = -4—L_¢,(G 7 (104
Va( ) (471_)2 2( )I’l—4 (1—|—b2)2 al ( )
and
; 4 ig® 1 1420 +4b* +20° .
{l 070 - —= C G t _j'
Va(0.0) 3 (4n)? 2 )n—4 b*(1+b*)? al
(105)
Combining the two sets of results, we obtain
i® 1 1-30* 1
00,0) =4—L_— 4 7 C,(N)—— == C5(G
Va( ) (4]1_)2”_4 al 2( )(1—|—b2)2 D) 2( )
(106)
and
. 4 i 1 , (1+b%)(2+ b?)
V4(0,0) = —= ——t, 7| Co(N)——————55—
( ) 3(4”)2’1_4 J/< 2( ) b2(1+b2)2
3
+§C2(G)>. (107)
This leads to
VA(0,0) = 4 9 1 Ri (108)
P A
where
1 1 - b* +2b*
R' = —— s+ C,(G) |5
p= =5 (M S )
1 (1=0%)(1 + 3> + 4b*)
= T, 1
260 b*(1 + b?)? , (109)

As expected from Eq. (56), the second contribution to R’lp
yields the correct term h’ll,. The bare coupling and the
one-loop correction yield

V(,(0,0) + V4(0,0)

42 11
_ianeg(1e e 2911
" g( Ty (4n)>n—42

1 —b>+2b*

(e e

+ cgc)))W. (110)

Thus, from Eq. (59), we find that

2 1— b 42b*
== 2(N)

W 7])2(1_“72) +C2(G)>- (111)

The remaining UV divergences, as shown in Eq. (59), are
removed by appropriate field renormalization factors and
then finally by the pole in the coupling constant expansion.
We have then from Eq. (110) the result for the fg-function
for the renormalized coupling

3
g 11 1/1 5
=—2-n/2)———=|—=—C,(G)—=|—=+b .
(112)
Obviously, the first term vanishes in four dimensions. The

second term reduces to the standard answer when b = 1
and there is no Lorentz symmetry breaking.

D. Renormalization group for Petrov class O

In four dimensions then, the important renormalization
group equations are for g and b. They take the form

gt o

and

o _

1 ¢ 1-b2

3(4n)? b2

1+ 3b% 4 4b*
(1 +b? +4C2(N);>

(1+b%)?
(114)

In general, the two variables influence one another as they
evolve along the RG trajectory. However, some points in
(g, b)-space are particularly significant. The Lorentz invari-
ant situation b = 1 is stable and is maintained under the
RG. The coupling constant g then runs to zero, its fixed
point, in the standard way as y rises to infinity. The rate at
which ¢ drops is the result of a competition between the
contributions of the gauge field and the quark field to the
vacuum polarization. When we explore values of b # 1, we
see that the effect of the quark field is enhanced with the
result that f(g) vanishes when b satisfies

1
11C2(G)—ﬁ—b2:0. (115)
That is,

1 1/2

b—bi—(E(Rj: R2—4)> , (116)

where R = 11C,(G). On these two lines 0b/0u remains
nonvanishing. The RG trajectories cross the lines, and at the
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crossing point, the coupling constant attains a minimum
value. It increases again as the scaling energy u continues to
increase.

If we modify the model so that it contains ns quarks, all
sharing the same metric, then Eq. (113) becomes

Mg—Z: —(49;2 <%C2(G) —% <%+b2>>. (117)

Equation (114) remains unchanged. The minimum of g
occurs when

1

(118)
that is, when b = b, where now R = 11C,(G)/n;.

The RG equation for the quark mass is obtained from
Egs. (64) and (87). It is

om 5 e 1 + b + 4b*

VIII. DISCUSSION

The behavior of the RG trajectory described above
shows that a frustration of asymptotic freedom can arise
in the presence of LSV, at least in this model. The question
arises as to whether it might be observable experimentally.
There are several issues to be considered, for example the
relationship of the lab frame to the gluon frame used in the
above discussion. We set this matter provisionally aside,
though it must ultimately be resolved, and assume that the
lab frame is traveling slowly relative to the gluon frame.
More significant is the size of the energy range implicit in
the model. We introduce an initial energy M; and asso-
ciated LSV parameter b;, QCD coupling a; = ag(M;) and
the energy M, at which the coupling reaches its mini-
mum value.

In a gesture toward “reality,” we consider the case SU(3)
gauge theory, where C,(G) = 3 and C,(3) = 4/3 [23] with
ny = 6 quarks. In this case, b, = 2.3947 and b_ = 0.4339.
The light cone of the quarks in the gluon frame at minimum
coupling is ¢, = b% =5.311 for LSV with b > 1 and
cg = b% = 0.1882 for LSV with b < 1. These values for o
represent rather severe LSV.

In order that our asymptotic calculation is relevant, we
must assume M, is sufficiently large and in particular is
greater than the top quark mass, that is, 173 GeV. In this
energy regime, there is no easy way to relate our calculation
to low energy determinations of ag(u). The story of the
running coupling and its relationship to low energy phe-
nomena and Agcp is complicated. It is comprehensively
reviewed in Ref. [26]. An important point is the subtraction
scheme used to obtain finite results for physical quantities.
We are using the minimal subtraction (MS) scheme [24].

More widely used is the MS scheme introduced in Ref. [27]
to improve convergence. In that scheme, the strong coupling
has an evaluation ag(M;~90 GeV)~0.12. On the
grounds that our calculation is exploratory, we feel justified
in neglecting the difference in subtraction schemes and
propose ag(M;) = 0.1 when M; =10°-10° GeV. The
qualitative nature of the results is not altered by (relatively)
small changes in our initial conditions.

With these initial conditions, the results for examples of
the renormalization trajectory, obtained by numerical inte-
gration (second order Runge-Kutta (RK)) of Egs. (117) and
(114) are shown in Fig. 7. Obviously, the closer the initial
value b; is to unity, the closer the renormalization group
trajectory stays near the Lorentz symmetry line and the later
it breaks away, heading for its minimum value. These results
are illustrated in Fig. 8, which shows the connection
between logo(Min/M;) and b;. The smooth curve is
obtained by fitting the rightmost point on the plot. Even for
this implausibly high value b; = 1.1 at our initial energy
scale M; = 10?> GeV, we still find M ,;, ~ 10*>M,. Tuning
b; down to potentially more realistic values results in yet
greater disparities in the orders of magnitude of M ;, and
experimentally attainable values for M;. The conclusion
must therefore be that for QCD with the known set of quarks
there is little hope of observing any of the frustration of
asymptotic freedom in accelerator experiments. However,
the complex asymptotic behavior that we encounter in this
model may have relevance to very high energy processes at
very early times in the initiating big bang of the Universe. In
view of the fact that the energy range associated with
frustration of asymptotic freedom appears to lie well above
the Planck mass (Mp =~ 10" GeV) where gravitational
effects must become important, one might question its
physical relevance. However, it may also be possible and
would certainly be interesting to relate the behavior of
as(M) when M ~Mp to models of quantum gravity
constructed with appropriate running LSV parameters
[28,29].

b
N WA U N ©

( (iv)

0 0.02 0.04 0.06 0.08 0.1
as=g%/4n

FIG. 7. The RG trajectories for SU(3) with n, = 6 starting at
ag = 0.1. The initial values of b are (a) 1.025, (b) 1.0125,
(¢) 1.00625, and (d) 0.99375. The horizontal line is at
b=>b, =2.3047.
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FIG. 8. Here, M, is the initial energy scale, b; is the corre-

sponding LSV parameter, and M, is the energy scale at which
the running coupling attains a minimum. The results of the R-K
integration are represented by crosses and compare well with the
continuous curve log,o(M i /M;) = 2.5/(b; — 1).

These considerations do not preclude the possibility of
discovering LSV effects in an energy range for which b
remains close to unity. For example, if we set b =1+ x
and assume x is small, then to lowest order in x, Egs. (117)
and (114) become

dg g
99 _ _a 12
”ay (4m)*’ (120)
0x 7
,Lla—ﬂ = B(47[)2X, (121)

where A=(11C,(G)—2n;)/3 and B = 4(1 +4C,(N))/3.
In this approximation,

a; E\"!
as(E) :a,<1 +7Ebgﬁ1> , (122)
the RG trajectories have the form
b=1+x/(as/ar)™, (123)
where x; is the initial value of x and x = —B/2A.

Equation (123) exhibits the instability at the fixed point
(as,b) = (0, 1). Depending on the sign selected for x;, b
will either rise or fall from unity as ag approaches zero.
With our choice of parameters, we have A =7 and B =
8.4444 with the result x = 0.6031. The dependence of x on
ag is therefore relatively weak. When ag decreases by an
order of magnitude, x only increases by a factor of roughly
4. A similar approximation for the renormalized mass m

yields

m N g T

my B a;)
where 7 = 0.762. In the asymptotic energy range then, the
renormalized mass reduces, also relatively slowly, with a

(124)

power of the renormalized coupling. If effective methods
were developed for computing the structure and scattering
of high energy particles in the model (see Refs. [30,31] for
related discussions in QED and the Standard Model
Extension), then possibly it could provide guidance for
accelerator experiments and cosmic ray detectors inves-
tigating LSV phenomena in a high energy regime of PeV
and beyond. For example, if we take (intuitively) the quark
metric, diag(a, —b — b — b), as determining the dispersion
relation for quark based states, it would become for a

particle with mass m, energy E, and momentum P,
aE* — bP? = m*cy. (125)

Combining the above results, we find for the velocity of
quark based particles

dE P m?
where
—K 14 1—k
D —4<$> + <@> (127)
ay dr \ oy
and

Fe 1—‘: (Z—f) o <f +7(e =), (Z-f) _K>. (128)

The point here is that the coefficients in the dispersion
relation depend only on ag/a; and therefore vary only
logarithmically with the energy E. The outcome for the
velocity of quark based particles is shown in Eq. (126).
Omitting all terms O(«;) that decrease logarithmically, we
are left with the simple result

P g —K
~— (1 +4x(— .
' E( " XI<01> >

This is qualitatively different from LSV originating in
higher derivative contributions to the QCD Lagrangian
[32,33] or spacetime foam models [34,35]. These are
parametrized by large mass scales and suggest power
law increases in energy. In our case, Eq. (129) suggests
a slow logarithmic increase that we might expect to be more
difficult to detect. However, were LSV to have been
detected, the suggested energy dependence would distin-
guish this QCD model from such higher derivative models.

(129)

IX. CONCLUSIONS

We have studied an SU(N) QCD model with quarks in
the fundamental representation and formulated the pertur-
bation series to one loop with no restriction on the
magnitude of the Lorentz symmetry breaking. In the
particular case we studied, the LSV was due entirely to
a mismatch between the light cones of the quarks and
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gluons. This is a consistent possibility if the light cones are
generated by two metrics that are both invariant under the
same subgroup of the Lorentz group that leaves a 4-vector,
timelike in both metrics, invariant, a rotation group in fact.
Similar results can be obtained with spacelike and lightlike
vectors.

The renormalization group equation for the coupling
constant ag and the LSV parameter b was obtained with the
result, exhibited in Fig. 7, that initially ag decreases with
energy just as in the standard Lorentz symmetric case.
However, b departs from unity increasingly with energy,
and this enhances the contribution of the quark vacuum
polarization to the f-function for ag. The outcome is that at
sufficiently high energy ag ceases to decrease, reaches a
minimum, and then increases again with energy. This
constitutes the frustration of asymptotic freedom in QCD
with LSV of the kind we have investigated. We suggest
plausible values for the energy range E > M; we are
investigating and the associated initial value «; for the
strong coupling. The outcome is that the frustration part of
the RG trajectory for (ag, b) is at energies many orders of
magnitude greater than is accessible to accelerator experi-
ments. It is well above the Planck mass. However, it is
possible that part of the RG trajectory lying near the
Lorentz symmetry line » =1 might be attainable in

accelerator or cosmic ray observations. The effect on the
dispersion relation of particles is through powers of ag and
hence is logarithmic in character and represents a kind of
intrinsic LSV rather than one parametrized by higher
derivative contributions to the Lagrangian.

There are many variations of the model that might be
investigated such as increasing the number of quarks,
varying the quark metrics in ways that induce more
complex LSV associated with higher Petrov classes. Of
course, one should also consider how these results relate to
the full structure of the Standard Model and its extensions.
Finally, it is worth noting that in the context of relatively
weak LSV it may be possible to pursue a nonperturbative
investigation of our model using the techniques of lattice
QCD.
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