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We study the effect of Lorentz symmetry violation (LSV) on the behavior at high energy of SUðNÞ
gauge theory with quarks in the fundamental representation. The approach is similar to that for QED treated
in a previous paper. In contrast to QED, standard Lorentz invariant QCD is asymptotically free. Our aim is
to explore the structure of the renormalization group at high energy and hence weak coupling without
requiring the Lorentz symmetry breaking to be small. The simplest type of LSV leaves the theory invariant
under a subgroup of the Lorentz group that preserves a (timelike) 4-vector. We examine this case in
detail and find that asymptotic freedom is frustrated. That is, at sufficiently high energy, the running
coupling constant attains a minimum value before increasing again, while the LSV parameter increases
without bound.
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I. INTRODUCTION

Lorentz symmetry violation (LSV) in QED has been
studied by a number of authors concerned with its con-
sistency with causality, unitarity [1–3], the structure of
asymptotic states, and renormalization theory [4–6]. In
previous papers [7,8], we studied some of these issues in
QED starting with a premetric formulation [9,10] based on
an action

S ¼ −
1

8

Z
d4xUμνστFμνðxÞFστðxÞ; ð1Þ

where FμνðxÞ is the standard electromagnetic field tensor
and the (constant) background tensor Uμνστ has the same
symmetry properties as the Riemann tensor in General
Relativity, namely

Uμνστ ¼ −Uνμστ ¼ Uστμν ð2Þ
and

Uμνστ þ Uμστν þ Uμτνσ ¼ 0: ð3Þ
This latter condition excludes parity violation. An outcome
of the analysis was that even when the Lorentz symmetry
violation is not constrained to be small the behavior of the

renormalized theory in the infrared limit is dominated by
the fixed point at zero coupling in a manner consistent with
Lorentz symmetry. That is, at a sufficiently large scale in
spacetime Lorentz symmetry reemerges. This is consistent
with related earlier work [11–13].
In this paper, we study a QCD type model with SUðNÞ

gauge symmetry. In addition to the gauge field, we include
a quark field that transforms under the fundamental
representation of SUðNÞ. A closely related model is
investigated in Ref. [14]. The significance of such a theory
is that it exhibits asymptotic freedom; that is, its behavior
at high energy is controlled, at least in the standard case
of Lorentz invariance, by a weak coupling fixed point
[15,16]. Our aim here is to investigate the manner in which
asymptotic freedom is modified by the presence of Lorentz
symmetry violation. An investigation with similar aims, in
particular comparing QED and QCD, is presented in
Ref. [17]. Although we look in detail only at the simplest
type of LSV, we set out the general theory in a manner
parallel to Ref. [7] in order to clarify the logical structure of
the argument. This prepares a framework for analyses of
more complex models.
In the obvious generalization of the case of QED, we

take the action for the SUðNÞ gauge field to be

Sg ¼ −
1

8

Z
d4xUμνστFaμνðxÞFaστðxÞ; ð4Þ

where FaμνðxÞ is the standard gauge field tensor trans-
forming according to the orthogonal representation of
SUðNÞ. For a general choice of Uμνστ, this action, although
gauge invariant, is not in general Lorentz invariant. Lorentz
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invariance with respect to a metric gμν can be recovered by
choosing

Uμνστ ¼ gμσgντ − gνσgμτ: ð5Þ

Although there is a priori no metric in the general case with
LSV, there is nevertheless, as argued in Ref. [7], a preferred
metric gμν that allows us to decompose Uμνστ in the
following way,

Uμνστ ¼ gμσgντ − gνσgμτ − Cμνστ; ð6Þ

where the tensorCμνστ has the same symmetries as theWeyl
tensor in General Relativity. That is,

Cμνστ ¼ −Cνμστ ¼ Cστμν; ð7Þ

and

Cμνστ þ Cμστν þ Cμτνσ ¼ 0: ð8Þ

In addition, it satisfies the trace condition

gμσCμνστ ¼ 0: ð9Þ

We refer to Cμνστ as a Weyl-like tensor (WLT). It follows
that the WLT determines the nature of the LSV. As in the
case of QED, the possible types of LSV can be determined
by applying the Petrov classification to the WLT [18].
A useful approach to the Petrov scheme is contained in
Refs. [19,20]. Its application in QED with LSV is presented
in Ref. [7]. There are six cases, conventionally labeled
O, N, D, I, II, and III. Each case has a canonical form for
the WLT [21].
Class O corresponds to the case Cμνστ ¼ 0, which for

pure gauge theory implies no LSV. However, as in the case
of QED [7], the quark field can engender LSV in the model
through its contribution to vacuum polarization provided
the associated metric for quark propagation shares with the
gluon metric an invariance under a subgroup of the Lorentz
group that is the little group of the given 4-vector [22]. The
4-vector can be timelike, spacelike, or lightlike (with
respect to both metrics). The timelike case implies that
there is a reference frame in which the theory is invariant
under rotations of the spatial axes. This is the case we study
in detail. However, it is convenient to set out the scheme for
quantizing and renormalizing the theory in a general form.
Canonical forms for the WLT in other Petrov classes and
the implications for the vector meson dispersion relations
are the same as those for photons in QED as described in
detail in Ref. [7].
It should be emphasized that our approach is entirely

consistent with and indeed is part of the Standard Model
Extension introduced and developed in Ref. [4]. In the
simplest terms, there is a notational correspondence

gμν → ημν, ḡμν → ημν þ cμν, and Cμνρτ → κμνρτG from this
paper to Ref. [4]. However, there is a small explicit
difference beyond notation. The aim in Ref. [4] was to
set out the departure from Lorentz invariance in a manner
appropriate for phenomenological applications, for which it
is natural to assume it is very small. Our aim is to compute
as far as possible without assuming that the LSV is small, so
it is not convenient to split ḡμν as in the above correspon-
dence. There is a further difference between our approach
and that of Ref. [4] in that we allow both gμν and ḡμν to
undergo a renormalization in dealing with UV divergences.
The reason is, as explained in Sec. V, to permit a simple
multiplicative renormalization of the gauge fields.
However, the equivalence of the two approaches can be
made evident by a linear change of coordinates that restores
gμν to a standard form which we can choose to be ημν. This
change of coordinates of course involves UV divergences
through the perturbative expansion in the coupling con-
stant. The structure of this argument is completely evident
in the application of the theory to the case of Petrov class O.

II. GAUGE FIXING AND GHOST FIELDS

In terms of the vector gauge fields AaμðxÞ, the tensor
fields are given by

FaμνðxÞ ¼ ∂μAaνðxÞ − ∂νAaμðxÞ þ gfabcAbμðxÞAcνðxÞ;
ð10Þ

where g is the gauge field coupling constant and fabc are
the structure constants of SUðNÞ. In order to deal with the
gauge invariance of the action for the vector fields in
Eq. (4), we follow the approach in Ref. [7] and impose the
gauge condition

Λμν∂μAaνðxÞ ¼ 0: ð11Þ

Here, Λμν is a metriclike tensor, which we will find it
convenient to distinguish from gμν because the two tensors
behave differently under the renormalization procedure. We
are therefore led to add a gauge fixing term to the action of
the form

Sgf ¼ 1

2

Z
d4xðΛμν∂μAaνðxÞÞ2: ð12Þ

In addition and in contrast to the case of QED [7],
we must introduce anticommuting ghost fields caðxÞ and
c̄aðxÞ in order to construct in the standard way the Fadeev-
Popov determinant in the path integral formalism for the
computation of Green’s functions in the gauge theory. We
therefore complete the action for the gauge theory by
adding a term,
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Sgh ¼ −
Z

d4xc̄aðxÞΛμν∂μDabνcbðxÞ: ð13Þ

Here, Dabν ¼ δab∂ν þ gfabcAcνðxÞ is the gauge covariant
derivative for the ghost fields. The complete action for the
theory is S, where

S ¼ Sg þ Sgf þ Sgh: ð14Þ

III. FEYNMAN RULES

The Feynman rules for the theory can be read off from
the action S in the standard way. They are in certain
respects analogous to the corresponding rules for Bimetric
QED [7].

A. Feynman propagator

The Feynman propagator, illustrated in Fig. 1(a), is

ΔFabμνðqÞ ¼ −iδabMμνðqÞ; ð15Þ

where MμνðqÞ is the matrix inverse to MμνðqÞ and

MμνðqÞ ¼ ðUμανβ þ ΛμαΛνβÞqαqβ: ð16Þ

More explicitly,

MμνðqÞ ¼ q2gμν − qμqν þQμQν − Cμανβqαqβ: ð17Þ

Here, Qμ ¼ Λμαqα. It is easy to verify that when Cμανβ

vanishes and Λμν ¼ gμν this reduces to the standard Lorentz
invariant form. Following the analysis for the photon
propagator in Ref. [7], we first introduce MμνðqÞ, which
is the form taken byMμνðqÞwhen indeedΛμν is replaced by
gμν, that is,

MμνðqÞ ¼ q2gμν − Cμανβqαqβ: ð18Þ

The inverse matrix is MμνðqÞ (see Ref. [7]), and it can be
used to construct MμνðqÞ in the form

MμνðqÞ ¼
�
δσμ −

qμQσ

q:Q

�
MστðqÞ

�
δτν −

Qτqν
q:Q

�
þ qμqν
ðq:QÞ2 :

ð19Þ

A careful analysis [7] shows that the Feynman propa-
gator has the same vector meson poles as MμνðqÞ together
with the ghost poles at q:Q ¼ Λμνqμqν ¼ 0. It is straight-
forward to check that were we to set Λμν ¼ gμν then we
would find

MμνðqÞ ¼ MμνðqÞ: ð20Þ

B. Gluon vertices

The three-gluon vertex, Fig. 1(b), is

Vμνσ
abc ¼ −gfabcðpρUρμνσ þ qρUρνσμ þ kρUρσμνÞ: ð21Þ

For the four-gluon vertex, Fig. 1(c), we have

Vμνστ ¼ −ig2ðUμνστfhabfhcd þUμστνfhacfhbd

þUμτνσfhadfhbcÞ: ð22Þ

Of course, momentum conservation is enforced at
each vertex. Again, it is easy to verify that in the absence
of LSV these vertices reduce to standard form (see, for
example, Ref. [23]).

C. Ghost propagator and vertex

The Feynman propagator for the ghost fields, Fig. 2(a), is

ΔðghÞ
ab ðpÞ ¼ i

δab
P:p

; ð23Þ

where Pμ¼Λμνpν and P:p¼Pμpμ¼Λμνpμpν. Momentum
follows the ghost direction. From this, it is obvious that the
mass-shell condition for the ghosts is P:p ¼ Λμνpμpν ¼ 0.
The vertex coupling the ghosts to the vector field is

indicated in Fig. 2(b) and has the form

VðghÞμ
abc ¼ −gfabcΛμνpν: ð24Þ

a b a

b

c a

b c

d

μ ν μ

ν

σ μ

ν

τ

σ

q p
q

k

p q

k
r

(a) (c)(b)

FIG. 1. Gluons (a) propagator, (b) 3-vertex, and (c) 4-vertex.
4-momenta inward.

a b

b

a b

μ

(a) (b)

p

p

FIG. 2. The ghost propagator is indicated in (a), and the vertex
for coupling to gluons is in (b).
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IV. QUARK FIELD

The model can be extended by including one or more
spinor fields each transforming under SUðNÞ. For simplic-
ity, we will consider the case of one such field. Modifi-
cations can be added later. The action for this field is Squ,
where

Squ ¼
Z

d4xψ̄ðxÞðiγ̄μDμ½A� −mÞψðxÞ: ð25Þ

Here,

γ̄μ ¼ γaēμa; ð26Þ

where ēμa is the vierbein associated with the spinor field
and fγag are the standard Dirac γ-matrices. The metric
associated with the spinor field is ḡμν ¼ ηabēμaēνb. This is a
second source of LSV in the model. Of course,Dμ½A� is the
gauge covariant derivative appropriate to the spinor field.
The Feynman propagator for the spinor field is indicated in
Fig. 3(a),

SFðpÞ ¼
i

γ̄μpμ −m
; ð27Þ

and the coupling to the gauge field is indicated in Fig. 3(b),

Vμ
a ¼ igγ̄μta: ð28Þ

Here, ta is the SUðNÞ generator appropriate to the repre-
sentation of the spinor field (see Ref. [23]).
We use dimensional regularization [24] in order to deal

with the ultraviolet divergences of the theory. The Feynman
diagrams for the perturbation series for the Green’s
functions of the theory are evaluated in n dimensions.
All the parameters of the theory, coupling constant, mass,
metrics, and WLT are subject to corrections involving UV
divergences. We denote the bare quantities with an extra
suffix 0. Each bare parameter is expanded in terms of a
renormalized coupling constant g. For example,

g → g0 ¼ μð4−nÞ=2g
�
1þ

X∞
k¼1

gðkÞg2k
�
: ð29Þ

Here, μ is the scale associated with the renormalized
coupling g [24]. The coefficients gðkÞ depend on the
dimension n and exhibit poles of various orders at n ¼ 4.
For example, gð1Þ has a simple pole at n ¼ 4. The other
parameters are similarly replaced by bare versions that are
expanded in powers of the renormalized coupling g,

m0 ¼ m

�
1þ

X∞
k¼1

bðkÞg2k
�

gμν0 ¼ gμν þ
X∞
k¼1

gðkÞμνg2k

ēμ0a ¼ ēμa þ
X∞
k¼1

ēðkÞμag2k

Cμνστ
0 ¼ Cμνστ þ

X∞
k¼1

CðkÞμνστg2k

Λμν
0 ¼ Λμν þ

X∞
k¼1

ΛðkÞμνg2k: ð30Þ

Again, the coefficients in the various expansions exhibit
poles at n ¼ 4. Note that we are free to assume that
det gμν0 ¼ det gμν ¼ −1. This implies that

gμνgð1Þμν ¼ 0: ð31Þ

V. PERTURBATIVE CALULATIONS
AT ONE LOOP

A. Renormalization of gauge field propagator

The vacuum polarization tensor Σμν
abðqÞ determines the

renormalization properties of the (inverse) gluon propagator
Δμν

abðqÞ. The (one-loop) diagrams that contribute to iΣμν
abðqÞ

are shown in Fig. 4 (see Ref. [23]). We have, to Oðg2Þ,
Δμν

0abðqÞ ¼ Δμν
F0abðqÞ þ iΣμν

abðqÞ: ð32Þ
Here, the inverseFeynmanpropagator is expressed in termsof
the bare parameters,

Δμν
F0abðqÞ¼−iδabfðgμν0 gαβ0 −gμβ0 gνα0 þΛμβ

0 Λνα
0 −Cμανβ

0 Þqαqβg:
ð33Þ

In principle, the contributions to the vacuum polarization are
also computed from the appropriate Feynman diagrams using
the bare parameters. However, our calculation will be of
Oðg2Þ, so we need only use the lowest order expansions in
Eqs. (30). This amounts to using the renormalized parameters
in the vertices and propagators when computing iΣμν

abðqÞ. In
addition, the UV divergences of iΣμν

abðqÞ occur only in the
lowest terms in its Taylor expansion in qα. On general
grounds, then, we can exhibit the UV divergences to
Oðg2Þ by writing

a μ

p

p p’

(a) (b)

FIG. 3. The quark propagator is indicated in (a), and the quark
gluon coupling is in (b).
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iΣμν
abðqÞ ¼ iδab

g2

n − 4
Wμανβqαqβ þOðq4Þ; ð34Þ

where the Oðq4Þ terms are UV finite. The tensor Wμανβ has
the same symmetry properties as the Riemann tensor. Hence,
in a standard fashion, it can be expressed in the form

Wμανβ ¼
�
1

12
Wðgμνgαβ − gμβgναÞ

þ 1

2
ðVμνgαβ þ gμνVαβ − Vμβgνα − gμβgναÞ

− Vμανβ

�
; ð35Þ

where

W ¼ Wαβgαβ;

Wαβ ¼ Wμανβgμν;

Vαβ ¼ Wαβ −
1

4
Wgαβ: ð36Þ

We have also

Vαβgαβ ¼ 0;

Vμανβgαβ ¼ 0: ð37Þ

It follows that Vμανβ, having the appropriate symmetries and
trace properties, is aWLT. InEqs. (36) and (37), we have used
the four-dimensional decomposition,which is adequatewhen
computing the residues of the pole at n ¼ 4. The type of
Lorentz symmetry breaking exhibited by the model can be
specified by means of the Petrov classification of Weyl
tensors. We will return to this point later.
From Eqs. (29), (30), and (33), we see that

Δμν
F0abðqÞ ¼ Δμν

FabðqÞ þ δΔμν
FabðqÞ; ð38Þ

where Δμν
FabðqÞ is obtained from Δμν

F0abðqÞ by replacing the
bare parameters with their renormalized versions and

δΔμν
FabðqÞ ¼ −δabig2fgαβgð1Þμν þ gð1Þαβgμν − gμαgð1Þνβ

− gð1Þμαgνβ þ ΛαβΛð1Þμν þ Λð1ÞαβΛμν

− ΛμαΛð1Þνβ − Λð1ÞμαΛνβ − Cð1Þμανβgqαqβ:
ð39Þ

The renormalization parameters are fixed by requiring that
the renormalization of Δμν

0abðqÞ reduces to an overall
multiplicative factor, that is,

Δμν
0abðqÞ ¼

�
1 −

1

12

g2

n − 4
W

�
ðΔμν

FabðqÞ þOðq4ÞÞ: ð40Þ

This is achieved by requiring that

gð1Þμν ¼ 1

2

1

n − 4
Vμν;

Λð1Þμν ¼ 1

24

1

n − 4
WΛμν;

Cð1Þμανβ ¼ 1

n − 4
ðVμανβ − CμανβÞ: ð41Þ

Note that the results in Eqs. (41) do imply that
gð1Þμνgμν ¼ 0. Furthermore, the renormalization of Λμν

0 is
multiplicative and involves the field renormalization factor
Z1=2, where

Z1=2 ¼ 1þ 1

24

g2

n − 4
W: ð42Þ

This is not necessarily true of the metric renormalization.
For this reason, it is conceptually convenient to distinguish
the bare metric from the bare ghost metric. However, at the
level of one loop in perturbation theory, it is possible and
convenient to allow the two metrics to coincide. Higher
order calculations may require the maintenance of the
distinction, imposed order by order, between the two
metrics.

B. Renormalization of quark propagator

The renormalization of the quark propagator iS0ðpÞ
proceeds along similar lines. We have

S−10 ðpÞ ¼ S−1F0ðpÞ þ ΣðpÞ; ð43Þ
where

S−1F0ðpÞ ¼ γ̄μ0pμ þm0; ð44Þ
γ̄μ0 ¼ γaeμ0a ð45Þ

and γa are standard Dirac γ-matrices. The quark propagator
is implicitly a unit operator in SUðNÞ space. The self-
energy amplitude iΣðpÞ can be calculated (at one loop)
from the diagram in Fig. 5 using the Feynman rules with

μ μ μ

μ

ν ν ν

νa a a

a

b b

b

q qq

q

(d)(c)(b)(a)

FIG. 4. Contributions to vacuum polarization from (a) gluons, (b) ghosts, (c) quarks, and (d) the gluon loop.
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renormalized parameters. The UV divergences can be
exposed in the Taylor expansion

ΣðpÞ ¼ Σð0Þ þ Σμð0Þpμ þOðp2Þ; ð46Þ
where the contribution Oðp2Þ is finite at n ¼ 4, and we
have

Σð0Þ ¼ m
g2σ
n − 4

ð47Þ

and

Σμð0Þ ¼ g2

n − 4
Hμ

νγ̄
ν: ð48Þ

We write

Hμ
ν ¼

1

n
Hδμν þ hμν; ð49Þ

where hμν ¼ 0. The term H determines the quark propa-
gator renormalization Zq, while hμν fixes the counterterm in
ēμ0a. More explicitly, we have, taking account only of the
poles at n ¼ 4,

Zq ¼ 1 −
1

4

g2

n − 4
H; ð50Þ

g2bð1Þ ¼ g2

n − 4
σ þ 1

4

g2

n − 4
H; ð51Þ

and

g2ēð1Þμbēbν þ
g2

n − 4
hμν ¼ 0: ð52Þ

That is,

g2ēð1Þμa þ
g2

n − 4
hμνēνa ¼ 0; ð53Þ

implying that, to Oðg2Þ,

ḡμν0 ¼ ḡμν −
g2

n − 4
ðhμρḡρν þ hνρḡρμÞ: ð54Þ

C. Renormalization of coupling constant

The coupling constant renormalization is most easily
followed by considering the quark-gluon vertex. The
relevant diagrams are shown in Fig. 6 and yield contribu-
tions to the truncated three-point function that render it

finite after appropriate field renormalizations. We can
anticipate the nature of the divergences by examining
the bare vertex Vμ

0a ¼ ig0γ̄
μ
0ta. From Eqs. (29) and (30),

we have

Vμ
0a¼ ig0γ̄

μ
0ta¼ iμð4−nÞ=2gð1þg2gð1ÞÞðēμbþg2ēð1ÞμbÞÞγbta:

ð55Þ

That is,

Vμ
0a ¼ iμð4−nÞ=2g

�
ð1þ g2gð1ÞÞδμν − g2

n − 4
hμν

�
γ̄νta: ð56Þ

The point we make here is that the renormalization of the
quark vierbein enters into the vertex calculation and
the contribution Vμ

aðp; p0Þ to the three point function from
the diagrams in Fig. 6 must be consistent with this. We can
expect then that Vμ

aðp; p0Þ will (at zero external momenta)
have the form

Vμ
að0; 0Þ ¼ iμð4−nÞ=2g

�
g2

n − 4
Kδμνta þ

g2

n − 4
hμν

�
γ̄νta:

ð57Þ

This will be verified in particular calculations. The trun-

cated three point function Vð3Þμ
a ðp; p0Þ will, at zero external

momentum, satisfy

Vð3Þμ
a ð0; 0Þ ¼ iμð4−nÞ=2g

�
1þ g2gð1Þ þ g2

n − 4
K

�
γ̄μta: ð58Þ

Finally, gð1Þ is determined by requiring that the right side of
this equation is rendered finite by extracting the field
renormalization factors Z−1

q Z−1=2, implying

g2gð1Þ ¼ g2

n − 4

�
1

4
H −

1

24
W − K

�
: ð59Þ

We will look at this in more detail when evaluating the
vertex in the special case of LSV we consider below.

VI. RENORMALIZATION GROUP

From the results in Sec. V, we can obtain the renorm-
alization group (RG) equations for the renormalized
parameters to lowest nontrivial order in the coupling

q k+q

k

FIG. 5. Quark self-energy.

p p’ p p’

q q

FIG. 6. Quark gluon coupling diagram.
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constant g. These are derived from the requirement that the
bare parameters are independent of the renormalization
scale μ. For the coupling constant, we have

μ
∂
∂μ g0 ¼ 0: ð60Þ

From Eq. (57), we then obtain the renormalization group
β-function

βðμÞ ¼ μ
∂
∂μ g ¼ −ð2 − n=2Þg − g3

�
1

4
H −

1

24
W − K

�
:

ð61Þ
Note that in deriving Eq. (61) from Eq. (60), we have
ignored derivatives of H,W, and K since they are of Oðg2Þ
and may, and indeed must, be ignored at one loop. Of
course, the first term on the right of Eq. (61) vanishes in
four dimensions.
Following the same principles, we obtain for the gluon

metric

μ
∂
∂μ g

αβ ¼ −
1

2
g2Vαβ ð62Þ

and

μ
∂
∂μ ḡ

αβ ¼ g2ðhαρḡρβ þ hβρḡραÞ: ð63Þ

We obtain also for the renormalized mass

μ
∂m
∂μ ¼ −mg2

�
σ þ 1

4
H

�
: ð64Þ

The renormalization scheme set out here can be applied
to LSVassociated with a WLT of any of the Petrov classes.
However, even at one loop, the calculations are rather
complex. Partly then for reasons of simplicity, we restrict
attention in this paper to models in Petrov class O. The
results nevertheless remain interesting.

VII. RENORMALIZATION FOR PETROV CLASS O

As explained above, in the case of Petrov class O, the
LSV is due entirely to the difference between the light cone
associated with the gluons and that associated with the
quark field. That is, we are assuming that the tensor Cμνστ

vanishes. This is possible if there is a reference frame in
which rotational invariance holds simultaneously for both
metrics. Given the symmetry properties of Cμνστ, it is
consistent with this rotational invariance only if it is null.
Similar remarks apply to situations where the preserved
subgroup of the Lorentz group, in a suitable frame, leaves
invariant either a purely spacelike or lightlike vector. We
will concentrate on the rotationally invariant case. We have
for the gluon metric

gμν ¼

0
BBB@

α 0 0 0

0 −β 0 0

0 0 −β 0

0 0 0 −β

1
CCCA ð65Þ

and for the quark metric

ḡμν ¼

0
BBB@

ᾱ 0 0 0

0 −β̄ 0 0

0 0 −β̄ 0

0 0 0 −β̄

1
CCCA: ð66Þ

We assume that

αβ3 ¼ ᾱβ̄3 ¼ 1; ð67Þ

so that det gμν ¼ det ḡμν ¼ −1. We have similar forms for
the bare metrics gμν0 and ḡμν0 in terms of the bare parameters
(α0, β0) and (ᾱ0, β̄0) which have appropriate expansions in
powers of the renormalized coupling. That is,

α0 ¼ αþ g2

n − 4
αð1Þ þ…; ð68Þ

together with similar expansions for the other bare param-
eters. It is convenient to relate the two metrics by setting
ᾱ ¼ aα and β̄ ¼ bβ with the consequence that ab3 ¼ 1.
Similar remarks hold in an obvious way for bare parameters
a0 and b0. The significance then of b is that in a coordinate
frame in which the gluon metric is diagonal with
entriesð1;−1;−1;−1Þ the quarks have a light cone asso-
ciated with a velocity cq ¼ b2. At appropriately high
energies, we would expect that when b > 1 the quarks
travel faster than the gluons and slower when b < 1.

A. Vacuum polarization for Petrov class O

In order to carry out the renormalization process, we
assume the renormalized gauge metric satisfies (to one-
loop order) Λμν ¼ gμν. The vanishing of Cμνστ then yields
for the renormalized gluon propagator

MμνðqÞ ¼
gμν
q2

: ð69Þ

The vertex factors, as mentioned above, acquire the
standard form for the gauge theory without (at this stage)
any LSV. We can therefore use the discussion of non-
Abelian gauge theories in Ref. [23] to evaluate the con-
tributions from the diagrams in Figs. 4(a), 4(b), and 4(d) to
obtain the gauge field contribution to the UV divergence at
one loop as
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iΣðgÞμν
ab ðqÞ ¼ −

10

3
C2ðGÞ

ig2

ð4πÞ2 δabðg
μνgαβ − gμβgανÞqαqβ

×
1

n − 4
; ð70Þ

where C2ðGÞ is the value of the quadratic Casimir operator
in the adjoint representation of SUðNÞ. As explained in
Ref. [23], the diagram in Fig. 4(d) does not contribute to
this pole residue. In a similar way, we can use the results in
Ref. [23] to evaluate the quark contribution to the vacuum
polarization from Fig. 4(c) provided we use ḡμν as the
appropriate metric. The result is

iΣðqÞμν
ab ðqÞ ¼ 4

3

ig2

ð4πÞ2 δabðḡ
μνḡαβ − ḡμβḡανÞ 1

n − 4
: ð71Þ

From Eq. (36), we see that contribution to the tensorWμανβ

from the gluon field term is

WðgÞμανβ ¼ −
1

ð4πÞ2
10

3
C2ðGÞðgμνgαβ − gμαgβνÞ ð72Þ

and

WðgÞ ¼ −
40

ð4πÞ2 C2ðGÞ: ð73Þ

It is immediately obvious VðgÞμν vanishes as does VðgÞμανβ.
From the quark field term, we have

WðqÞμανβ ¼ 1

ð4πÞ2
4

3
ðḡμνḡαβ − ḡμβḡανÞ: ð74Þ

We have then

WðqÞ ¼ 8

ð4πÞ2
β̄

β

�
ᾱ

α
þ β̄

β

�
¼ 8

ð4πÞ2 bðaþ bÞ; ð75Þ

and

VðqÞαβ ¼ 2

ð4πÞ2 bða − bÞ

0
BBB@

α 0 0 0

0 β=3 0 0

0 0 β=3 0

0 0 0 β=3

1
CCCA: ð76Þ

It follows that

W ¼ WðgÞ þWðqÞ ¼ 8

ð4πÞ2 ðbðaþ bÞ − 5C2ðGÞÞ: ð77Þ

Of course,

Vμν ¼ VðqÞμν: ð78Þ

Finally, then, from Eqs. (41) and (78), we have

αð1Þ ¼ 1

ð4πÞ2
1

n − 4
bða − bÞα ¼ 1

ð4πÞ2
1

n − 4

�
1

b2
− b2

�
α;

ð79Þ

that is,

α0 ¼ α

�
1þ g2

ð4πÞ2
1

n − 4

�
1

b2
− b2

��
; ð80Þ

and

β0 ¼ β

�
1 −

1

3

g2

ð4πÞ2
1

n − 4

�
1

b2
− b2

��
: ð81Þ

In the limit of Lorentz invariance, a ¼ b ¼ 1, and we have
α0 ¼ α and β0 ¼ β. The field renormalization factor is

Z1=2 ¼ 1þ 1

3

g2

ð4πÞ2
1

n − 4

��
1

b2
þ b2

�
− 5C2ðGÞ

�
: ð82Þ

B. Quark self-energy for Petrov class O

The results for the calculations in the previous section,
because each term involves only a single metric, can be
read off from standard results (see Ref. [23]). However, the
one-loop self-energy correction to the quark propagator is
obtained from the Feynman rules applied to the diagram in
Fig. 5. Both metrics are involved. A possible conflict with
causality might be anticipated. This possibility has been
discussed previously, and the conclusion is that in the
present case there is no difficulty, as is confirmed directly in
the calculations [1–3,7,25]. We have then

iΣðpÞ ¼ −g2C2ðNÞ
Z

dnk
ð2πÞn γ̄

μ 1

γ̄αðpþ kÞα −m
γ̄ν
gμν
k2

:

ð83Þ

We require

iΣð0Þ ¼ −g2C2ðNÞ
Z

dnk
ð2πÞn γ̄

μ 1

γ̄αkα −m
γ̄ν
gμν
k2

; ð84Þ

and

i
∂
∂pλ

ΣðpÞjp¼0¼ iΣλð0Þ

¼g2C2ðNÞ
Z

dnk
ð2πÞn γ̄

μ 1

γ̄αkα−m
γ̄λ

1

γ̄βkβ−m
γ̄ν
gμν
k2

:

ð85Þ
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The evaluation of these terms is along the same lines as the
corresponding calculation for QED in Ref. [7]. We find for
the UV poles at n ¼ 4

iΣð0Þ ¼ im
4g2

ð4πÞ2 C2ðNÞ 1

n − 4

aþ 3bffiffiffi
b

p ð ffiffiffi
a

p þ ffiffiffi
b

p Þ ; ð86Þ

with the result

σ ¼ 4

ð4πÞ2 C2ðNÞ 1þ 3b4

b2ð1þ b2Þ : ð87Þ

We have also

iΣ0ð0Þ ¼ i
4g2

ð4πÞ2 C2ðNÞ 1

n − 4

a − 3b

ð ffiffiffi
a

p þ ffiffiffi
b

p Þ2 γ̄
0; ð88Þ

iΣjð0Þ ¼ −i
4

3

g2

ð4πÞ2 C2ðNÞ 1

n − 4

ðaþ bÞð2 ffiffiffi
a

p þ ffiffiffi
b

p Þffiffiffi
b

p ð ffiffiffi
a

p þ ffiffiffi
b

p Þ2 γ̄j:

ð89Þ

Using a ¼ b−3, we find for the mass renormalization

bð1Þ ¼ −
4

ð4πÞ2 C2ðNÞ 1

n − 4

1þ 3b4

b2ð1þ b2Þ : ð90Þ

We find also

H ¼ −
4

ð4πÞ2 C2ðNÞ 2ð1 − b2 þ 2b4Þ
b2ð1þ b2Þ ; ð91Þ

and

hλρ ¼
4

ð4πÞ2 C2ðNÞ ð1 − b2Þð1þ 3b2 þ 4b4Þ
2b2ð1þ b2Þ2 T λ

ρ: ð92Þ

Here, T λ
ρ is a traceless diagonal matrix with entries

ð1;−1=3;−1=3;−1=3Þ. It then follows that

β̄0 ¼ β̄

�
1þ 1

3

4g2

ð4πÞ2C2ðNÞ 1

n−4

ð1−b2Þð1þ 3b2þ 4b4Þ
b2ð1þb2Þ2

�
:

ð93Þ

Combining this with Eq. (81), we obtain

b0 ¼ b

�
1þ 1

3

g2

ð4πÞ2
1

n − 4

ð1 − b2Þ
b2

×

�
ð1þ b2Þ þ 4C2ðNÞ ð1þ 3b2 þ 4b4Þ

ð1þ b2Þ2
��

: ð94Þ

C. Coupling constant renormalization
for Petrov class O

The one-loop diagrams in Fig. 6 yield the coupling
constant renormalization. For the computation of the UV
pole divergence, it is sufficient to calculate the vertex with
p ¼ p0 ¼ 0. From the first diagram, we obtain

Vλ
að0; 0Þ ¼ g3tbtatbgμνIμλν; ð95Þ

where

Iμλν ¼
Z

dnk
ð2πÞn γ̄

μ 1

γ̄αkα −m
γ̄λ

1

γ̄βkβ −m
γ̄ν

1

k2
: ð96Þ

On omitting terms that do not contribute to the UV
divergence, we have

Iμλν ¼ γ̄μγ̄αγ̄λγ̄βγ̄νTαβ; ð97Þ

then,

Tαβ ¼
Z

dnk
ð2πÞn

kαkβ
ðḡα0β0kα0kβ0 −m2Þ2k2 : ð98Þ

The result using tbtatb ¼ ðC2ðNÞ − C2ðGÞ=2Þta and
ab3 ¼ 1 is

V0
að0;0Þ ¼ 4

ig3

ð4πÞ2
1

n− 4
ðC2ðNÞ−C2ðGÞ=2Þ

1− 3b4

ð1þ b2Þ2 taγ̄
0:

ð99Þ

We have also

Vj
að0; 0Þ ¼ −

4

3

ig3

ð4πÞ2
1

n − 4
ðC2ðNÞ−C2ðGÞ=2Þ

×
ð1þ b4Þð2þ b2Þ

b2ð1þ b2Þ2 taγ̄j: ð100Þ

In the case of the second diagram, we note that in the limit
of zero external momenta the internal three-gluon vertex
reduces to

Vλμν
abc ¼ −gfabckρðUρνλμ −UρμνλÞ

¼ −gfabckρð2gρλgνμ − gρμgνλ − gρνgμλÞ: ð101Þ

The contribution to the vertex becomes

Vμ
að0; 0Þ ¼ −

1

2
g3taγ̄ν

0
γ̄αγ̄μ

0
gμμ0gνν0

× ð2gρλgμν − gρμ − gρνgμλÞT̃αρ; ð102Þ

where
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T̃αρ ¼
Z

dnk
ð2πÞ4

kαkρ
ðḡα0β0kα0kβ0 −m2Þðk2Þ2 : ð103Þ

We have again omitted terms that do not contribute to the
UV pole at n ¼ 4. The tensor T̃αρ is closely related to Tαρ in
Eq. (98). Finally, we have the contributions

V0
að0; 0Þ ¼ −4

ig3

ð4πÞ2 C2ðGÞ
1

n − 4

b2ð1þ 2b2Þ
ð1þ b2Þ2 taγ̄0 ð104Þ

and

Vj
að0;0Þ ¼ −

4

3

ig3

ð4πÞ2C2ðGÞ
1

n− 4

1þ 2b2 þ 4b4 þ 2b6

b2ð1þ b2Þ2 taγ̄j:

ð105Þ

Combining the two sets of results, we obtain

V0
að0;0Þ ¼ 4

ig3

ð4πÞ2
1

n− 4
taγ̄0

�
C2ðNÞ 1− 3b4

ð1þ b2Þ2 −
1

2
C2ðGÞ

�

ð106Þ

and

Vj
að0; 0Þ ¼ −

4

3

ig3

ð4πÞ2
1

n − 4
taγ̄j

�
C2ðNÞ ð1þ b4Þð2þ b2Þ

b2ð1þ b2Þ2

þ 3

2
C2ðGÞ

�
: ð107Þ

This leads to

Vλ
að0; 0Þ ¼ 4

ig3

ð4πÞ2
1

n − 4
taRλ

ργ̄
ρ; ð108Þ

where

Rλ
ρ ¼ −

1

2

�
C2ðNÞ 1 − b2 þ 2b4

b2ð1þ b2Þ þ C2ðGÞ
�
δλρ

þ 1

2
C2ðNÞ ð1 − b2Þð1þ 3b2 þ 4b4Þ

b2ð1þ b2Þ2 T λ
ρ: ð109Þ

As expected from Eq. (56), the second contribution to Rλ
ρ

yields the correct term ∝ hλρ. The bare coupling and the
one-loop correction yield

Vλ
0að0; 0Þ þ Vλ

að0; 0Þ

¼ iμð4−nÞ=2g
�
1þ gð1Þg2 −

4g2

ð4πÞ2
1

n − 4

1

2

×

�
C2ðNÞ 1 − b2 þ 2b4

b2ð1þ b2Þ þ C2ðGÞ
��

taγ̄λ: ð110Þ

Thus, from Eq. (59), we find that

K ¼ −
2

ð4πÞ2
�
C2ðNÞ 1 − b2 þ 2b4

b2ð1þ b2Þ þ C2ðGÞ
�
: ð111Þ

The remaining UV divergences, as shown in Eq. (59), are
removed by appropriate field renormalization factors and
then finally by the pole in the coupling constant expansion.
We have then from Eq. (110) the result for the β-function
for the renormalized coupling

βðgÞ ¼ −ð2 − n=2Þ − g3

ð4πÞ2
�
11

3
C2ðGÞ −

1

3

�
1

b2
þ b2

��
:

ð112Þ

Obviously, the first term vanishes in four dimensions. The
second term reduces to the standard answer when b ¼ 1
and there is no Lorentz symmetry breaking.

D. Renormalization group for Petrov class O

In four dimensions then, the important renormalization
group equations are for g and b. They take the form

μ
∂g
∂μ ¼ −

g3

ð4πÞ2
�
11

3
C2ðGÞ −

1

3

�
1

b2
þ b2

��
; ð113Þ

and

μ
∂b
∂μ¼−

1

3

g2

ð4πÞ2
1−b2

b2

�
1þb2þ 4C2ðNÞ1þ 3b2þ 4b4

ð1þb2Þ2
�
:

ð114Þ

In general, the two variables influence one another as they
evolve along the RG trajectory. However, some points in
ðg; bÞ-space are particularly significant. The Lorentz invari-
ant situation b ¼ 1 is stable and is maintained under the
RG. The coupling constant g then runs to zero, its fixed
point, in the standard way as μ rises to infinity. The rate at
which g drops is the result of a competition between the
contributions of the gauge field and the quark field to the
vacuum polarization. When we explore values of b ≠ 1, we
see that the effect of the quark field is enhanced with the
result that βðgÞ vanishes when b satisfies

11C2ðGÞ −
1

b2
− b2 ¼ 0: ð115Þ

That is,

b ¼ b� ¼
�
1

2
ðR�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 4

p
Þ
�

1=2
; ð116Þ

where R ¼ 11C2ðGÞ. On these two lines ∂b=∂μ remains
nonvanishing. The RG trajectories cross the lines, and at the
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crossing point, the coupling constant attains a minimum
value. It increases again as the scaling energy μ continues to
increase.
If we modify the model so that it contains nf quarks, all

sharing the same metric, then Eq. (113) becomes

μ
∂g
∂μ ¼ −

g3

ð4πÞ2
�
11

3
C2ðGÞ −

nf
3

�
1

b2
þ b2

��
: ð117Þ

Equation (114) remains unchanged. The minimum of g
occurs when

11C2ðGÞ − nf

�
1

b2
þ b2

�
¼ 0; ð118Þ

that is, when b ¼ b�, where now R ¼ 11C2ðGÞ=nf.
The RG equation for the quark mass is obtained from

Eqs. (64) and (87). It is

μ
∂m
∂μ ¼ −2m

g2

ð4πÞ2 C2ðNÞ 1þ b2 þ 4b4

b2ð1þ b2Þ : ð119Þ

VIII. DISCUSSION

The behavior of the RG trajectory described above
shows that a frustration of asymptotic freedom can arise
in the presence of LSV, at least in this model. The question
arises as to whether it might be observable experimentally.
There are several issues to be considered, for example the
relationship of the lab frame to the gluon frame used in the
above discussion. We set this matter provisionally aside,
though it must ultimately be resolved, and assume that the
lab frame is traveling slowly relative to the gluon frame.
More significant is the size of the energy range implicit in
the model. We introduce an initial energy MI and asso-
ciated LSV parameter bI, QCD coupling αI ¼ αSðMIÞ and
the energy Mmin at which the coupling reaches its mini-
mum value.
In a gesture toward “reality," we consider the case SUð3Þ

gauge theory, whereC2ðGÞ ¼ 3 andC2ð3Þ ¼ 4=3 [23] with
nf ¼ 6 quarks. In this case, bþ ¼ 2.3947 and b− ¼ 0.4339.
The light cone of the quarks in the gluon frame at minimum
coupling is cq ¼ b2þ ¼ 5.311 for LSV with b > 1 and
cq ¼ b2− ¼ 0.1882 for LSV with b < 1. These values for cq
represent rather severe LSV.
In order that our asymptotic calculation is relevant, we

must assume MI is sufficiently large and in particular is
greater than the top quark mass, that is, 173 GeV. In this
energy regime, there is no easy way to relate our calculation
to low energy determinations of αSðμÞ. The story of the
running coupling and its relationship to low energy phe-
nomena and ΛQCD is complicated. It is comprehensively
reviewed in Ref. [26]. An important point is the subtraction
scheme used to obtain finite results for physical quantities.
We are using the minimal subtraction (MS) scheme [24].

More widely used is the MS scheme introduced in Ref. [27]
to improve convergence. In that scheme, the strong coupling
has an evaluation αSðMZ ≃ 90 GeVÞ ≃ 0.12. On the
grounds that our calculation is exploratory, we feel justified
in neglecting the difference in subtraction schemes and
propose αSðMIÞ ¼ 0.1 when MI ¼ 102–103 GeV. The
qualitative nature of the results is not altered by (relatively)
small changes in our initial conditions.
With these initial conditions, the results for examples of

the renormalization trajectory, obtained by numerical inte-
gration (second order Runge-Kutta (RK)) of Eqs. (117) and
(114) are shown in Fig. 7. Obviously, the closer the initial
value bI is to unity, the closer the renormalization group
trajectory stays near the Lorentz symmetry line and the later
it breaks away, heading for its minimum value. These results
are illustrated in Fig. 8, which shows the connection
between log10ðMmin=MIÞ and bI. The smooth curve is
obtained by fitting the rightmost point on the plot. Even for
this implausibly high value bI ¼ 1.1 at our initial energy
scale MI ¼ 102 GeV, we still find Mmin ≃ 1025MI . Tuning
bI down to potentially more realistic values results in yet
greater disparities in the orders of magnitude of Mmin and
experimentally attainable values for MI. The conclusion
must therefore be that for QCDwith the known set of quarks
there is little hope of observing any of the frustration of
asymptotic freedom in accelerator experiments. However,
the complex asymptotic behavior that we encounter in this
model may have relevance to very high energy processes at
very early times in the initiating big bang of the Universe. In
view of the fact that the energy range associated with
frustration of asymptotic freedom appears to lie well above
the Planck mass (MP ≃ 1019 GeV) where gravitational
effects must become important, one might question its
physical relevance. However, it may also be possible and
would certainly be interesting to relate the behavior of
αSðMÞ when M ≃MP to models of quantum gravity
constructed with appropriate running LSV parameters
[28,29].

FIG. 7. The RG trajectories for SUð3Þ with nf ¼ 6 starting at
αS ¼ 0.1. The initial values of b are (a) 1.025, (b) 1.0125,
(c) 1.00625, and (d) 0.99375. The horizontal line is at
b ¼ bþ ¼ 2.3047.
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These considerations do not preclude the possibility of
discovering LSV effects in an energy range for which b
remains close to unity. For example, if we set b ¼ 1þ x
and assume x is small, then to lowest order in x, Eqs. (117)
and (114) become

μ
∂g
∂μ ¼ −A

g3

ð4πÞ2 ; ð120Þ

μ
∂x
∂μ ¼ B

g2

ð4πÞ2 x; ð121Þ

where A¼ð11C2ðGÞ−2nfÞ=3 and B ¼ 4ð1þ 4C2ðNÞÞ=3.
In this approximation,

αSðEÞ ¼ αI

�
1þ 7

αI
4π

log
E
MI

�
−1
; ð122Þ

the RG trajectories have the form

b ¼ 1þ xIðαS=αIÞ−κ; ð123Þ
where xI is the initial value of x and κ ¼ −B=2A.
Equation (123) exhibits the instability at the fixed point
ðαS; bÞ ¼ ð0; 1Þ. Depending on the sign selected for xI, b
will either rise or fall from unity as αS approaches zero.
With our choice of parameters, we have A ¼ 7 and B ¼
8.4444 with the result κ ¼ 0.6031. The dependence of x on
αS is therefore relatively weak. When αS decreases by an
order of magnitude, x only increases by a factor of roughly
4. A similar approximation for the renormalized mass m
yields

m
mI

¼
�
αS
αI

�
τ

; ð124Þ

where τ ¼ 0.762. In the asymptotic energy range then, the
renormalized mass reduces, also relatively slowly, with a

power of the renormalized coupling. If effective methods
were developed for computing the structure and scattering
of high energy particles in the model (see Refs. [30,31] for
related discussions in QED and the Standard Model
Extension), then possibly it could provide guidance for
accelerator experiments and cosmic ray detectors inves-
tigating LSV phenomena in a high energy regime of PeV
and beyond. For example, if we take (intuitively) the quark
metric, diagða;−b − b − bÞ, as determining the dispersion
relation for quark based states, it would become for a
particle with mass m, energy E, and momentum P,

aE2 − bP2 ¼ m2c4q: ð125Þ
Combining the above results, we find for the velocity of
quark based particles

v ¼ dE
dP

¼ P
E

�
1þDxI − F

m2
I

E2

�
; ð126Þ

where

D ¼ 4

�
αS
αI

�
−κ

þ 14καI
4π

�
αS
αI

�
1−κ

ð127Þ

and

F ¼ 7αI
4π

�
αS
αI

�
2τþ1

�
τ þ 7ðτ − κÞxI

�
αS
αI

�
−κ
�
: ð128Þ

The point here is that the coefficients in the dispersion
relation depend only on αS=αI and therefore vary only
logarithmically with the energy E. The outcome for the
velocity of quark based particles is shown in Eq. (126).
Omitting all terms OðαIÞ that decrease logarithmically, we
are left with the simple result

v ≃
P
E

�
1þ 4xI

�
αS
αI

�
−κ
�
: ð129Þ

This is qualitatively different from LSV originating in
higher derivative contributions to the QCD Lagrangian
[32,33] or spacetime foam models [34,35]. These are
parametrized by large mass scales and suggest power
law increases in energy. In our case, Eq. (129) suggests
a slow logarithmic increase that we might expect to be more
difficult to detect. However, were LSV to have been
detected, the suggested energy dependence would distin-
guish this QCD model from such higher derivative models.

IX. CONCLUSIONS

We have studied an SUðNÞ QCD model with quarks in
the fundamental representation and formulated the pertur-
bation series to one loop with no restriction on the
magnitude of the Lorentz symmetry breaking. In the
particular case we studied, the LSV was due entirely to
a mismatch between the light cones of the quarks and

FIG. 8. Here, MI is the initial energy scale, bI is the corre-
sponding LSV parameter, and Mmin is the energy scale at which
the running coupling attains a minimum. The results of the R-K
integration are represented by crosses and compare well with the
continuous curve log10ðMmin=MIÞ ¼ 2.5=ðbI − 1Þ.
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gluons. This is a consistent possibility if the light cones are
generated by two metrics that are both invariant under the
same subgroup of the Lorentz group that leaves a 4-vector,
timelike in both metrics, invariant, a rotation group in fact.
Similar results can be obtained with spacelike and lightlike
vectors.
The renormalization group equation for the coupling

constant αS and the LSV parameter bwas obtained with the
result, exhibited in Fig. 7, that initially αS decreases with
energy just as in the standard Lorentz symmetric case.
However, b departs from unity increasingly with energy,
and this enhances the contribution of the quark vacuum
polarization to the β-function for αS. The outcome is that at
sufficiently high energy αS ceases to decrease, reaches a
minimum, and then increases again with energy. This
constitutes the frustration of asymptotic freedom in QCD
with LSV of the kind we have investigated. We suggest
plausible values for the energy range E > MI we are
investigating and the associated initial value αI for the
strong coupling. The outcome is that the frustration part of
the RG trajectory for ðαS; bÞ is at energies many orders of
magnitude greater than is accessible to accelerator experi-
ments. It is well above the Planck mass. However, it is
possible that part of the RG trajectory lying near the
Lorentz symmetry line b ¼ 1 might be attainable in

accelerator or cosmic ray observations. The effect on the
dispersion relation of particles is through powers of αS and
hence is logarithmic in character and represents a kind of
intrinsic LSV rather than one parametrized by higher
derivative contributions to the Lagrangian.
There are many variations of the model that might be

investigated such as increasing the number of quarks,
varying the quark metrics in ways that induce more
complex LSV associated with higher Petrov classes. Of
course, one should also consider how these results relate to
the full structure of the Standard Model and its extensions.
Finally, it is worth noting that in the context of relatively
weak LSV it may be possible to pursue a nonperturbative
investigation of our model using the techniques of lattice
QCD.
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