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We study the collective excitations in a relativistic fluid with an anomalous U (1) current. In 3 +1 dimen-
sions at zero chemical potential, in addition to ordinary sound modes we find two propagating modes 
in presence of an external magnetic field. The first one which is a transverse degenerate mode, propa-
gates with a velocity proportional to the coefficient of gravitational anomaly; this is in fact the Chiral 
Alfvén wave recently found in [1]. Another one is a wave of density perturbation, namely a chiral mag-
netic wave (CMW). The velocity dependence of CMW on the chiral anomaly coefficient is well known. 
We compute the dependence of CMW’s velocity on the coefficient of gravitational anomaly as well. We 
also show that the dissipation splits the degeneracy of CAW. At finite chiral charge density we show that 
in general there may exist five chiral hydrodynamic waves. Of these five waves, one is the CMW while 
the other four are mixed Modified Sound-Alfvén waves. It turns out that in propagation transverse to the 
magnetic field no anomaly effect appears while in parallel to the magnetic field we find sound waves 
become dispersive due to anomaly.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Study of fluids with broken parity symmetry has attracted 
much attention recently. Parity may be broken in the system due 
to the presence of either an external magnetic field or a rotation in 
the fluid. Currents along the direction of an external magnetic field 
discussed earlier in [4] have been recently argued to be realized 
in heavy-ion collisions [2,3]. This is termed as the chiral magnetic 
effect, CME. Analogously, chiral vortical effect, CVE, is related to 
currents in the direction of a rotation axis [5]. The vorticity term 
which is responsible for this effect in the fluid constitutive current 
has been discovered in the context of gauge–gravity duality [6,7].

The long time missed vorticity term seems to be in contra-
diction with existence of a positive divergence entropy current. 
However, because the parity violating terms like vorticity violate 
time-reversal as well, one may expect their associated transport 
coefficients to be non-dissipative. Considering the latter fact, Son 
and Surowka showed that the vorticity term is not only allowed by 
symmetries, but also is required by the triangle anomalies and the 
second law of thermodynamics [8]. They computed the coefficients 
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of both CME and CVE terms in terms of the anomaly coefficient at 
non-zero chemical potential (μ �= 0). These so-called anomalous 
transport coefficients vanish at zero chemical potential. The non-
vanishing contribution to anomalous transport at μ = 0 was firstly 
observed in [9] and then was computed in [10,11] by considering 
the mixed gravitational anomaly in 3 + 1 dimensions.

The issue has been also developed through other approaches.1

For example, a new kinetic theory containing such effects has been 
derived from the underlying quantum field theory [12,13]. It has 
been shown that the Berry monopole is responsible for the CME 
and CVE [13,14]. Chiral magnetic effect has been also studied in 
the context of lattice field theory [15,16].

Non-dissipative character of anomalous transport has been dis-
cussed by some authors. Apart from explanations based on sym-
metry [8,17], it has been recently illustrated with an example in 
the context of gauge–gravity duality. Computing the drag force ex-
erted on a heavy quark moving in a general parity violating fluid,2

the authors of [18] have found a particular setting in which the 
CME- or CVE-induced current flows past the heavy quark without 
exerting any drag force on it.

1 The Chiral effects have been also studied in Lifshitz hydrodynamics [34].
2 In the context of gauge–gravity duality, the gradient corrections to the drag 
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On the other hand, a usual way to study the transport phe-
nomena is to investigate the long wave-length fluctuations around 
equilibrium state of the fluid. Associatively, non-dissipative nature 
of the anomalous transport coefficients may be better understood 
via studying the hydrodynamic excitations in the chiral fluid. So 
in this paper we consider a fluid of chiral particles, i.e. single 
right-handed fermions, and compute the spectrum of its collective 
excitations to first order in derivative expansion.

Let us recall that in a parity preserving fluid in 3 +1 dimensions 
the only collective modes are the two ordinary sound modes. How-
ever when taking into account the effect of dissipation, one finds 
four hydrodynamic modes in a charged fluid at zero chemical po-
tential [19]. Of these modes, two are the dissipating sound modes 
while the other two are pure shear modes. In [22] we showed that 
in presence of an external magnetic field, one of the latter shear 
modes would split into two new shear modes. As a result, one 
finds that the dissipation, when accompanying with presence of 
magnetic field, excites all five possible hydrodynamic modes corre-
sponding to five microscopic conserved charges in the system.

In the current paper we study the hydrodynamic excitations in 
a parity violating fluid in presence of a background magnetic field. 
Our study includes two parts. Firstly, we consider a system at zero 
chemical potential in 3 + 1 dimensions and compute the hydro-
dynamic modes in the absence of dissipation. We find four distin-
guished modes as follows: two longitudinal sound modes and two 
chiral modes. The appearance of chiral modes is due to presence of 
chiral anomaly as well as the gravitational anomaly. Of these two, 
the chiral wave with a velocity proportional to the gravitational 
anomaly coefficient is the so-called Chiral Alfvén, recently found 
by Yamamoto too [1]; this mode is a wave of momentum fluctu-
ations. Another chiral wave that we obtain is nothing but a CMW. 
The dependence of CMW velocity on the chiral anomaly is well 
known. We find the dependence of CMW velocity on the gravita-
tional anomaly coefficient as well. To do so, we use the anomalous 
transport coefficients including the effect of gravitational anomaly 
as well as the chiral anomaly effects, in Landau frame.

One may expect in a dissipative chiral fluid one of the above-
mentioned four modes to be split into two dissipative waves. We 
show that this actually happens for the Alfvén wave. In sum-
mary, in 3 + 1 dimensions, five distinguished hydrodynamic modes 
may be excited in a dissipative chiral fluid: two dissipating sound 
modes and three dissipating chiral waves.

Another part of our results is related to the hydrodynamic 
waves in a chiral fluid at finite density. In reality, such fluid 
might exist above the electroweak phase transition where the 
SU (2) × U Y (1) symmetry is not broken. Since the hypermagnetic 
field associated with the U Y (1) couples differently to right- and 
left-handed electrons, the high-temperature plasma there is chiral 
[23]. We will explore hydrodynamic fluctuations in such plasma. 
We will show that in this regime, sound modes specifically will 
be modified remarkably. They become mixture of longitudinal and 
transverse waves which one may refer to as the modified sound 
waves. Depending on the relative situation of magnetic field and 
wave vector, we carefully compute hydrodynamic modes in differ-
ent cases.

As it is well known, the chiral anomaly is present in even 
space–time dimensions. In 1 + 1 dimensions, the anomalous trans-
port has been discussed in the context of effective field theory. 
Using the second law of thermodynamics, the authors of [24] de-
rived a formula for the only anomalous transport coefficient in 
1 + 1 dimensions in terms of thermodynamic functions. The same 
relation has been also obtained in [25] from the partition function.

To complete our discussion, we also compute the hydrodynamic 
fluctuations of a non-dissipative chiral fluid in 1 + 1 dimensions. 
In addition to two ordinary sound waves, we find a new prop-
agating wave; the so-called “one-and-a-halfth sound” which was 
previously found in [24] from the effective field theory method. 
Compared to the earlier results, we explicitly compute the velocity 
of first mode in terms of anomaly coefficient.3

The paper is organized as follows. In section 2 we give a brief 
review of the parity odd fluid dynamics in 3 + 1 dimensions. We 
continue the topic by studying a neutral chiral fluid in section 3.
We first compute the hydro modes and their amplitudes and then 
physically interpret them. In section 4, we first study a charged 
fluid with no anomaly. Then for different relative situations of 
wave vector and magnetic field, we compute the hydrodynamic 
modes of a chiral charged fluid. In section 5, we study the effect of 
anomaly on the collective excitations of a 1 + 1 dimensional chiral 
fluid. After mentioning some follow up questions in Appendix A, 
we give some comments about the collective excitations in a par-
ity violating fluid in 2 + 1 dimensions.

2. Parity violating fluid in 3 + 1 dimensions

Let us recall that the parity violating terms in 3 + 1 dimensions 
have been shown to be associated with triangle anomaly of chiral 
currents. In presence of a background gauge field Aμ , the equa-
tions of hydrodynamic for a normal fluid with a conserved charge, 
with U (1)3 anomaly, take the form:

∂μT μν = F νλ Jλ

∂μ Jμ =CEμBμ
(1)

where we have defined the electric and magnetic field in the rest 
frame of the fluid as Bμ = 1

2 εμναβuν Fαβ , Eμ = F μνuν [8].
The energy–momentum tensor and the chiral current are

T μν = (ε + p)uμuν + p ημν + τμν

Jμ =nuμ + νμ.
(2)

Here the thermodynamic parameters ε(μ, T ), p(μ, T ) and n(μ, T )

are the values of energy density, pressure and charge density re-
spectively in an equilibrium state. The equilibrium state is specified 
with

uμ = (1,0,0,0), T = Const., μ = Const., B = 0 (3)

with the pressure p̄ = p̄(μ, T ) satisfying:

dp̄ = s̄dT + n̄dμ (4)

ε̄ + p̄ = s̄T + n̄μ. (5)

In the Landau–Lifshitz frame where uμτμν = 0 and uμνμ = 0
[27,9] we may write

τμν = −ηPμα Pνβ
(
∂αuβ + ∂βuα

) −
(

ζ − 2

3
η

)
Pμν∂.u (6)

νμ = −σ T Pμν∂ν

(μ

T

)
+ σ Eμ + ξωμ + ξB Bμ (7)

Here ωμ = 1
2 εμναβuν∂αuβ is the vorticity and the ξ and ξB are the 

anomalous transport coefficients corresponding to CVE and CME [8,
10]

ξ = Cμ2
(

1 − 2

3

n̄μ

ε̄ + p̄

)
+DT 2

(
1 − 2n̄μ

ε̄ + p̄

)
(8)

ξB = Cμ
(

1 − 1

2

n̄μ

ε̄ + p̄

)
− D

2

n̄T 2

ε̄ + p̄
(9)

3 Two-dimensional chiral transport has been also studied at weak coupling in [35,
36].
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where C and D are the coefficients of chiral anomaly and gravita-
tional anomaly respectively, as [28–30]

C = 1

4π2
, D = 1

12
. (10)

Let us note that firstly in [8], Son and Surowka computed the chiral 
anomaly contributions to ξ and ξB , namely the statements in front 
of C , and then the authors of [11] generalized [8] by computing 
the contribution of gravitational anomaly, namely D terms.

Before ending this subsection let us briefly discuss how one can 
consider the background electromagnetic field consistent with the 
hydrodynamic expansion. Note that we take the strength of Aμ of 
the same order of the temperature and the chemical potential, so 
Aμ ∼ O (∂0) and F μν ∼ O (∂).

Let us recall that we are interested in the problem of how 
different wave-lengths behave in presence of an external mag-
netic field. It is natural to assume that the value of this magnetic 
field is constant. However this assumption becomes problematic 
when one considers the values of wave-lengths that are not of 
the same order as length-scale corresponding to the magnetic field 
(�B ). The reason is that when freely studying the wave-lengths 
much larger than �B , additional not-necessarily-small contributions 
would arise which are not captured by the hydrodynamic expan-
sion. It means that the assumption that F μν is of first order will 
be no longer valid when it is constant. Therefore, our study is 
restricted to the values of wave-lengths that are of same scale 
as �B .

Our strategy is to study the problem following the method used 
in [31]. We consider a restricted interval of wave-lengths, which 
contains those of the same order as the �B . We study only the val-
ues of wave-lengths inside this so-called window. We then request 
the magnetic field to approach zero as the wave-vector tends to 
zero. To proceed one may consider the following relation between 
the magnetic field and the wave-vector [31]:

B = α̂ k.

However, in contrast to [31], α̂ is a matrix here and thus the mag-
netic field and the wave-vector are not in general parallel.

In the next subsection, we compute the hydrodynamic modes 
around the equilibrium state and show that how the simultane-
ous presence of dissipative effects and the anomalies may lead to 
excite three dissipating chiral waves in the medium.

3. Zero chemical potential

In order to study the hydrodynamic fluctuations, we should 
take the hydrodynamic equations and linearize them around the 
equilibrium state. Instead of five usual hydrodynamic variables, 
namely one temperature field T (x), one chemical potential field 
μ(x) and three components of velocity field uμ(x), we would 
rather to take the following set of variables as the hydrodynamic 
variables: φa = (

T 00(x), T 0i(x), J 0(x)
)
. The importance of this 

choice is that, to each of these hydrodynamic variables, a quan-
tum operator corresponds. In the two following subsections, we 
compute the hydrodynamic modes around the equilibrium state 
firstly for the zero chemical potential case and then we physically 
interpret our results.

3.1. Hydrodynamic modes

To first order in linear fluctuations, the super field φa may be 
written as φa = (

φ0, φi, φ5
) = (

ε̄ + δε, πi, n
)

where πi = vi and 
ε̄+p̄
i = 1, 2, 3. In terms of spacial Fourier transformed field φa(t, k), 
the linearized hydrodynamic equations are written as

∂tδε + ik jπ j = 0

∂tπi + iki v2
s δε +Mi jπ j = −iD Fimkmn+

F im
(

σ

w̄
Fmj + i

ξ

2w̄
εmljk

l
)

π j

∂tn +
(

k2 D − i

2

(
∂ξB

∂n

)
ε

ε i jm Fi jkm

)
n + iσ

w̄
k j F jkπk = 0

(11)

Here Mi j = γη(k2δi j − kik j) + γskik j . Note that in the above equa-
tions, the anomalous transport coefficients have to be evaluated at 
zero chemical potential. While ξB vanishes at μ = 0, its fluctua-
tions will no longer vanish at the same limit

ξ = DT 2 (12)(
∂ξB

∂n

)
ε

= C
χ

− D
2

T 2

w̄
. (13)

In what follows we first compute the hydrodynamic modes in 
terms of ξ and ∂ξB

∂n and then, we re-express them in terms of the 
anomaly coefficients.

In order to find hydrodynamic modes we use the super field 
notation φa and rewrite the linearized equations (11) as

∂tφa(t,k) + Mab(k)φb(t,k) = 0 (14)

by introducing

Mab

=
⎛
⎜⎜⎝

0 ik j 0

iki v2
s Mi

j − σ w̄
(

B j Bi − B2δi
j

) + iξ
2w̄

(
B.kδi

j − B jk
i) −iDεinm Bmkn

0 − iσ
w̄ ε jnm Bnkm k2 D + i

(
∂ξB
∂n

)
T

B.k

⎞
⎟⎟⎠.

(15)

Hydrodynamic modes as the poles of response functions may be 
found via solving the following equation:

det (−iωδab + Mab(k)) = 0. (16)

Doing so, we find four hydrodynamic modes in the absence of dis-
sipative effects

ω
(0)
1,2(k) = ±vsk (17)

ω
(0)
3,4(k) = − ξ

2w̄
B.k (18)

ω
(0)
5 (k) =

(
∂ξB

∂n

)
ε

B.k. (19)

So far, we have only computed the dispersion relation of hydrody-
namic modes to zero order in derivative expansion, namely ω(0) . 
Just like a non-chiral fluid, we see that there exist two ordinary 
sound modes here. However, due to the effect of anomalies, two 
other hydrodynamic modes may propagate in a chiral fluid. The 
first one, which is itself a degenerate mode, namely ω3,4, was re-
cently found by Yamamoto too. This mode which is referred to 
as the Chiral Alfvén wave in [1], propagates with a velocity that 
goes to zero with the coefficient of gravitational anomaly (see Ta-
ble 1). As was noted in [1], in an incompressible fluid, the Chiral 
Alfvén wave would be a transverse wave. (We discus about this 
point in next subsection.) The last mode, namely ω5, is a kind 
of well-known Chiral Magnetic Waves. In [32], Kharzeev and Yee 
showed that the coupling between the density waves of the elec-
tric and chiral charges leads to existence of a new type of gapless 
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Table 1
Hydrodynamic modes in a non-dissipative chiral fluid in presence of external mag-
netic field at μ̄ = 0.

Type of mode Dispersion relation Amplitude

sound ω
(0)
1,2(k) = ±vsk δφ1,2(k,ω1,2) =

(
∓ 1√

β1
, k̂,0

)
Chiral Alfvén ω

(0)
3,4(k) = −D

2
T 2

w̄ B.k δφ3(k,ω3) =
(

0, B̂ × k̂,0
)

δφ4(k,ω4) =
(

0, B̂ − (B̂.k̂)k̂,0
)

CMW ω
(0)
5 (k) =

(
C
χ − D

2
T 2

w̄

)
B.k δφ5(k,ω5) = (0,0,1)

excitations in the plasma of chiral fermions. They called the lat-
ter as the Chiral Magnetic Wave. As they emphasized in [32], the 
CMW could also exist in a fluid of single right-handed fermions; 
the mode ω5 given above is exactly the CMW they pointed out. 
(See next subsection.)

3.2. Mode analysis

Using relations (12), we have re-expressed modes found in pre-
vious subsection in Table 1. In addition, we have written the nor-
malized amplitudes of fluctuations in the last column of the table. 
Note that δφn is the amplitude corresponding to the mode ωn(k); 
in position space it may be written as

δφn(k,ωn)eik.x−iωn(k)t . (20)

We know sound mode is the propagation of energy and momen-
tum fluctuations. Since the vectorial propagating component of 
sound amplitudes δφ1,2 is in the direction of wave vector k, sound 
would be a longitudinal mode expectedly. The situation is differ-
ent with Chiral Alfvén Waves. Both δφ3 and δφ4 are fully vector 
type fluctuations i.e. wave of momentum fluctuations. In contrast 
to sound modes, both of them are transverse4:

k.
(

B̂ × k̂
) = 0

k.
(

B̂ − (B̂.k̂)k̂
) = 0.

(21)

The fifth mode in the Table 1 is the wave of scalar fluctuations, 
i.e. a density wave (CMW). This is why we refer to this mode as 
the Chiral Magnetic Wave. It is worth mentioning that the depen-
dence of CMW’s velocity on the chiral anomaly coefficient is the 
same for both single right-handed (our case) and mixed chirality 
([32] case) plasmas. Our result shows that the velocity of CMW 
may also depend on the gravitational anomaly coefficient, if one 
takes into account the effect of gravitational anomaly in comput-
ing the anomalous transport coefficients.

In Table 2 we have re-expressed the modified dispersion re-
lation of the above modes when considering also the dissipative 
effects. Just analogous to what was found in [22] for a neutral 
fluid, dissipation splits the degeneracy of CAWs here. Interestingly, 
the chiral Alfvén is split into two chiral waves: one is a dissipating 
chiral Alfvén wave and another is a dissipating mixed CMW/Alfvén 
wave. It should be also noted that the CMW changes to a mixed 
CMW/Alfvén due to dissipation.

3.3. Physical interpretation

In [1], it has been discussed how an external magnetic field 
provides the restoring force needed for propagation of Chiral 
Alfvén waves in an anomalous charged fluid. We mention some 
more detail on how the Lorentz force can make dissipation at the 

4 In the special case of incompressible fluid, Yamamoto showed that CAW is a 
transverse mode before [1].
Fig. 1. Configuration of the vectors B , π , ω, J σ , J ω , F σ and F ω for propagation
of δφ4.

same time that it plays the role of a restoring force on the chiral 
current. We also discuss in this set-up only δφ4 propagates.

Let us consider a chiral Alfvén wave in an incompressible fluid. 
As it can be seen in Table 2, the magnetic field contributes through 
two terms in the expression of ω3: In the first term it leads to 
propagation of a chiral wave while in the last term it makes the 
propagating chiral wave dissipates.

In order to understand how the magnetic field makes the role 
of a restoring force at the same time that it forces the wave to dis-
sipate, we consider the following set-up: let us take the magnetic 
field in the positive z-direction and consider the perturbation of 
fluid momentum5 in the positive y-direction, π = πy(z) ŷ [1]. As 
one expects, the momentum perturbation induces an Ohmic cur-
rent as J σ = σ

w̄ π × B . In addition, since the fluid is chiral, the 
local vortical current J ω = DT 2ω is induced too. In presence of a 
magnetic field, the above currents receive Lorentz forces F σ and 
F ω respectively.

In Fig. 1 we have illustrated the Lorentz forces exerted on an 
element of the fluid at the origin in two different situations. In the 
left panel we assume πy > 0 and ∂zπy > 0. We also take the fluid 
incompressible, i.e. ∇.v = 0, so the wave-vector k points the neg-
ative z-direction. (See ωnd

3 (k).) For this local fluid momentum, the 
vorticity, ω = ∇ × v , points along the negative x-direction. The re-
sultant currents J ω and J σ have been shown in the figure. At the 
bottom part of the figure, we have illustrated the fluid element as 
a point oscillating on the y-axis near the origin, with the Lorentz 
forces exerted on it. At the situation considered above, the mo-
mentum of the element is increasing. This is due to both shape of 
the momentum profile and the direction of wave propagation; so 
at this moment, the fluid element behaves like an oscillator going 
towards the center of oscillation from the left-hand side of it. As it 
can be clearly seen in the figure, F ω plays the role of the restoring 
force while F σ makes the momentum of the element dissipates.

Let us consider another situation in which F ω and F σ act on 
the element in the same direction. To proceed, in the right panel 
of Fig. 1 we take πy > 0 and ∂zπy < 0. Compared to the left panel 
case, the direction of vorticity is reversed here. As a result, J ω

and F ω are reversed too. Since the momentum of the element is 
decreasing now, it behaves like an oscillator going away from the 
center. Although both F ω and F σ act in the same direction, the 
former is a restoring force pointing to the center and the latter is 
a friction-like force pointing opposite to the velocity.

5 As was denoted earlier, the Chiral Alfvén wave may propagate due to momen-
tum fluctuations.
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Table 2
Hydrodynamic modes in presence of an external magnetic field at μ̄ = 0. In the expressions above, θ is the angle between 
momentum vector k and the magnetic field B , i.e. cos θ = k̂.B̂ .

Type of mode Dispersion relation σ = η = ζ = 0

sound ω1,2(k) = ±vsk − i
2

(
k2γs + σ

w̄ B2 sin2 θ
)

ω
(0)
1,2(k)

Alfvén ω3(k) = −D
2

T 2

w̄ B.k − i
(

k2γη + σ
w̄ B2 cos2 θ

)
ω

(0)
3 (k)

mixed Alfvén/CMW ω4,5(k) =
(

C
2χ − D

2
T 2

w̄

)
B.k − i

2

(
k2(D + γη) + σ

w̄ B2
)

ω
(0)
4 (k)

± 1
2

√(
ik2(D − γη) − i σ

w̄ B2 − C
χ B.k

)2 − 4Dσ
w̄ B2 k2 sin2 θ ω

(0)
5 (k)
In the set-up considered above, we took the wave vector along 
the direction of magnetic field. From the Table 1, it is obvious that 
the CAW with amplitude δφ3 will not be excited in this situation 
( B̂ × k̂ = 0). However the amplitude δφ4 propagates. The reason is 
as follows; consider θ as the angle between the wave vector and 
the direction of magnetic field. In order to study the B̂ ‖ k̂ case in 
the expression of δφ4, we take the wave vector fixed in the space 
and so rotate the magnetic field around it that θ → 0. Having

lim
θ→0

(
B̂ − (B̂.k̂)k̂

) = lim
θ→0

(
R(θ)k̂ − 1 cos θ k̂

) = 1 (22)

with R(θ) the rotational matrix, simply confirms why when B̂ ‖ k̂, 
the amplitude δφ4 propagates.

An interesting point about δφ3 is that even if the magnetic field 
was transverse to the wave vector, this mode could not propa-
gate. The reason for that is in this case no restoring force exists 
to make δφ3 propagate. Mathematically, it is obvious that in this 
limit (B.k → 0), ω3 vanishes. It means that δφ3 may propagate in 
every magnetic field except in directions either parallel or trans-
verse to it.

In summary, while there could exist only two propagating wave 
in a normal fluid (sound modes), a neutral chiral fluid may have 
five hydrodynamic waves. To excite the three new waves, an ex-
ternal magnetic field is needed. The external magnetic field affects 
on an anomalous fluid through two ways: 1) providing the restor-
ing force for propagation of chiral waves, 2) making dissipation via 
inducing Ohmic currents.

4. Non-vanishing chemical potential

Now, let us consider a fluid of single right-handed fermions at 
finite density, namely at finite chiral chemical potential. Up to first 
order in derivative expansion, the linearized equations would be at 
most to second order in derivatives and take the following form:

∂tδε + ∂iπi = 0,

∂tπi + β1∂iδε + β2∂iδn − n̄

w̄
ε i jlπ j Bl

− ξ

2w̄

(
Bl∂lπ

i − Bl∂ iπl

)
= 0,

∂tδn + ξB

w̄
Bi∂tπi + n̄

w̄
∂iπi

+ Bi

[(
∂ξB

∂ε

)
n
∂i δε +

(
∂ξB

∂n

)
ε

∂i δn

]
= 0, (23)

where w̄ = ε̄ + p̄ is the value of equilibrium enthalpy density. We 
have also used:

δp = β1δε + β2δn,

δξB =
(

∂ξB

∂ε

)
n
δε +

(
∂ξB

∂n

)
ε

δn.
(24)

In momentum space equations (23) may be written as:
−iωδε + ikiπi = 0,

+β1ikiδε − iωπi − n̄

w̄
ε i jlπ j Bl

− ξ

2w̄

(
Bliklπi − Blikiπl

)
+ β2ikiδn = 0,

Bi

(
∂ξB

∂ε

)
n

iki δε + n̄

w̄
ikiπi − ξB

w̄
Bi iωπi − iωδn

+ Bi

(
∂ξB

∂n

)
ε

iki δn = 0. (25)

Due to presence of a term including ωπ , it would not be possi-
ble to restate the equations above in the matrix form analogous 
to (14). Instead, we may express them as:

Mab(k,ω)δφa(k,ω) = 0, (26)

with Mab given as:

Mab =⎛
⎜⎜⎜⎝

−iω ik j 0

β1 iki −iωδi
j − i ξ

2w̄

(
B · kδi

j − B jk
i
)

− n̄
w̄ εi

jl Bl β2 iki(
∂ξB
∂ε

)
n

i B · k n̄
w̄ ik j − ξB

w̄ iωB j −iω +
(

∂ξB
∂n

)
ε

i B · k

⎞
⎟⎟⎟⎠.

(27)

For (26) to have a non-trivial answer, it is necessary to request

det Mab = 0. (28)

This equation simply gives the dispersion relation of hydrodynamic 
excitations. In next subsections, we firstly study the hydrodynamic 
modes of a charge fluid at finite chemical potential in presence of a 
background magnetic field and in the absence of global anomalies. 
Since then we enter anomalies and study the effect of quantum 
anomalies on the hydrodynamic regime of a charged fluid at finite 
chiral chemical potential.

4.1. The hydrodynamic modes in the absence of anomalies

The equations that yield the hydrodynamic modes and their as-
sociated amplitudes in this regime become:(

Mab(k,ω)
∣∣
ξ=0, ξB=0

)
δφa(k,ω) = 0,

det
(

Mab
∣∣
ξ=0, ξB=0

)
= 0.

(29)

In what follows we take B⊥ and B‖ as the components of magnetic 
field orthogonal and parallel to the wave vector k̂, respectively. We 
divide the study of collective motions to three cases:

• B‖ �= 0, B⊥ = 0
Let us denote that the only objects we have in this case are 
two parallel vectors; so we are not able to present the am-
plitudes in a covariant way. We freely take the wave-vector 



28 N. Abbasi et al. / Physics Letters B 762 (2016) 23–32
Table 3
Hydrodynamic modes in a non-dissipative chiral fluid in presence 
of external longitudinal magnetic field B‖ at μ̄ �= 0.

Mode Eigenvector

ω
(0)
1 = 0 δφ1(k,ω1) =

(
− β2

β1
, 0, 0, 0, 1

)
ω

(0)
2,3 = ± n̄B‖

w̄ = ± n̄B
w̄ δφ2,3(k,ω2,3) = (0, ±i, 1, 0, 0),

ω
(0)
4,5 = ±k

√
β̄
w̄ δφ4,5(k,ω4,5) =

(
1, 0, 0, ±

√
β̄
w̄ , n̄

w̄

)

and the magnetic field both along the z-axis. By this choice, 
the dispersion relation of modes and their amplitudes may 
be given as it can be seen in Table 3. (We have defined 
β̄ = β2n̄ + β1 w̄ .) Among the non-zero modes given in the ta-
ble, let us first interpret ω2,3. The frequency of these modes 
is obviously independent of the wave vector; so they are non-
propagating modes. Since k̂.δφ2,3 = 0, they just represent two 
circularly polarized standing waves of the transverse momenta. 
The presence of such vortex like rotating modes is the conse-
quence of exerting the Lorentz force on the transverse mo-
menta. This is a specific feature of the charged fluid and can 
not be observed in a neutral fluid even in presence of mag-
netic field. In next subsection we show that when n̄ specifies 
the density of a chiral charge, these standing modes may both 
propagate due to effect of the anomalies. In fact ω2,3 found in 
the current case, are nothing but the gap between the chiral 
Alfvén waves in a charged fluid.
Now let us consider modes ω4,5. These are simply the longitu-
dinal sound modes (k̂ ‖ δφ4,5) whose velocity differs from the 
sound velocity in a neutral fluid (vs):

ω4,5 = ±k

√
β̄

w̄
= ±k

√
β1 + β2n̄

w̄
= ±k

√
v2

s + β2n̄

w̄
(30)

As it can be clearly seen, the speed of sound in this case, has 
nothing to do with the parallel magnetic field and the differ-
ence relative to vs is only due to presence of non-vanishing 
charge in the fluid. It could be also simply understood by con-
sidering the fluctuation of the pressure:

δp = β1δε + β2δn =
(

∂ p

∂ε

)
n
δε +

(
∂ p

∂n

)
ε

δn. (31)

In the limit where n̄ = 0 the second term vanishes and only 
the energy perturbation contributes to propagation of sound. 
However, in the non-vanishing charge limit, the second term 
leads to appearance of a new contribution in the square root 
in (30). In another word charge density perturbations may pro-
duce pressure gradient, as well as energy density perturbations 
do.

• B‖ = 0, B⊥ �= 0
To evaluate the amplitude of fluctuations in this case, we first 
take the wave-vector along the z-axis and the magnetic field 
along the y one. In this special frame we obtain:

δφa(k,ω1) =
(

−β2

β1
, 0, 0, 0, 1

)
, (32)

δφa(k,ω2) = (0, 0, 1, 0, 0) ,

δφa(k,ω3) =
(

− in̄

β1 w̄
,

k

B
, 0, 0, 0

)
,

δφa(k,ω4,5) =
(

w̄,−in̄
B

k
, 0,±1

k

√
n̄2 B2 + w̄k2β̄, n̄

)
.

As we have shown in Table 4, the only non-zero modes in 
this case are ω4,5. With two elliptic polarization in the x–z
plane, these modes propagate in the z-direction. As a result, 
these modes are neither transverse nor longitudinal. Similar to 
the sound wave, the propagation of πz perturbations along z
is due to the pressure gradient. However the magnetic field 
(directed along y-direction) exerts a Lorentz force on the πx

perturbation which makes the role of an extra pressure gra-
dient in the z-direction. In order to mathematically show this 
increase in the sound speed, let us rewrite the last two disper-
sion relations with the substitution |B| = α⊥k:

ω4,5 = ±k
1

w̄

√
n̄2α2⊥ + w̄β̄.

Obviously, the velocity of these modes is greater than that of 
sound:

v =
√

v2
s + β2n̄

w̄
+ n̄2α2⊥

w̄2
. (33)

It can be seen that in addition to the pure contribution of the 
finite density, namely the term β2n̄/w̄ in the square root, there 
exists another contribution. The origin of the term n̄2α2⊥/w̄2

in the square root is the Lorentz force, discussed in previous 
paragraph, exerting on the fluid.

• B‖ �= 0, B⊥ �= 0
Let us first consider the wave-vector is taken along z-axis and 
the magnetic field has two components B⊥ and B‖ along axes 
y and z, respectively. The corresponding amplitudes take the 
following form in this frame:

δφa(k,ω1) =
(

−β2

β1
,0,0,0,1

)
, (34)

δφa(k,ωi)

=
(

w̄,
−in̄ B y ω2

i

k
(
ω2

i − n̄2 B2
z/w̄2

) ,
−2 n̄2 B y Bz ωi/w̄

k
(
ω2

i − n̄2 B2
z/w̄2

) ,
ωi w̄

k
, n̄

)
,

i = 2,3,4,5.

Considering the following definitions, we have listed the dis-
persion relation of the modes in addition to their covariant 
amplitudes in Table 5.

a = n̄2 B2 + w̄k2β̄, (35)

� = a2 − 4n̄2 w̄(B · k)2β̄

Obviously, each of the non-zero modes is a mixture of lon-
gitudinal and transverse propagation. However it is clear that 
generally, none of these mode are sound. All of them are mod-
ified sound modes which propagate with elliptic polarization 
in a plane neither parallel nor transverse to the wave vector. 
Only in a special case where B⊥ → 0, two of these modes be-
come the ordinary longitudinal sound waves. It is also worth 
mentioning that for any direction of the magnetic field, one 
of the five possible hydrodynamic modes will never be excited 
in the fluid. In next subsection we show that anomaly effects 
may excite the fifth mode.

4.2. Anomalous fluid with finite chiral chemical potential

In this subsection we are going to take the effect of anomalies 
into account. It is important to note that the effect of anomalies 
enters via the non-anomalous transport coefficients. These coeffi-
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Table 4
Hydrodynamic modes and their S O (3) covariant amplitudes in a non-dissipative chiral fluid in 
presence of external transverse magnetic field B⊥ at μ̄ �= 0.

Mode Eigenvector

δφ1(k,ω1) =
(
− β2

β1
,0,1

)
,

ω
(0)
1,2,3 = 0 δφ2(k,ω2) = (

0, B
B ,0

)
,

δφ3(k,ω3) =
(
− in̄

β1 w̄ , B×k
B2 ,0

)

ω
(0)
4,5 = ± 1

w̄

√
n̄2 B2 + w̄β̄k2 δφ4,5(k,ω4,5) =

(
w̄,−in̄ B×k

k2 ± k
k2

√
n̄2 B2⊥ + w̄k2β̄, n̄

)

Table 5
Hydrodynamic modes in a non-dissipative charged fluid in presence of external general mag-
netic field.

Mode Eigenvector

ω
(0)
1 = 0 δφ1(k,ω1) =

(
− β2

β1
,0,0,0,1

)

ω
(0)
i = ±

√
a+±√

�√
2w̄

δφ2,3,4,5(k,ωi) =
(

w̄ ,
−in̄ k×Bω2

i −2 n̄2
w̄ (B·k)

(
B−(B·k) k

k2

)
ωi(

ω2
i k2−n̄2(B·k)2/w̄2

) + ωi w̄
k2 k , n̄

)
,

i = 2,3,4,5 i = 2,3,4,5
cients appear at the first order of hydrodynamic derivative expan-
sion. So all what we compute in this subsection will be to compute 
the derivative corrections to our results in previous subsection. We 
limit our study to computing the derivative corrections to the dis-
persion relations. Just analogue of what we did in case of charged 
fluid with no anomaly, we divide our current study into three dif-
ferent cases.

• B‖ �= 0, B⊥ = 0
Using the modes given in Table 3 as the zero order solution 
to the equation (28), we find the collective excitations to first 
order as the following:

ω1 = w̄

β̄

(
β1

(
∂ξB

∂n

)
ε

− β2

(
∂ξB

∂ε

)
n

)
Bk

ω2,3 = ± n̄

w̄
B − ξ

2w̄
Bk

ω4,5 = ± 1

w̄

√
n̄2 B2 + w̄β̄k2

+ β2

2β̄

(
w̄

(
∂ξB

∂ε

)
n
+ n̄

(
∂ξB

∂n

)
ε

− ξB

w̄
β̄

)
Bk (36)

Let us remind that B, k ∼ O (∂) and to first order in deriva-
tive expansion of hydrodynamic constitutive relations, disper-
sion relations would normally include terms with at most two 
derivatives.
The first mode ω1 denotes the CMW in a chiral charged fluid. 
Compared to CMW in neutral chiral fluid given in (19), we find 
a new contribution as the following:

− w̄

β
β2

(
∂ξB

∂ε

)
n

Bk = − β2n̄

2β w̄

(
Cμ2 +DT 2

)
Bk. (37)

The next two modes, namely ω2,3, are nothing but CAWs. As 
we explained in previous subsection, the net chiral charge of 
the fluid makes the CAW gapped. The most interesting feature 
of the results might be related to the last two sound modes. 
We remember from the case of a neutral chiral fluid that the 
sound modes are not affected by the effect of anomaly. How-
ever when the fluid is chirally charged, from the last line 
of (36) it is observed that the sound modes become disper-
sive. It would be better seen when writing the modes with 
substituting |B| = α‖k:
ω1 = w̄

β̄

(
β1

(
∂ξB

∂n

)
ε

− β2

(
∂ξB

∂ε

)
n

)
α‖k2,

ω2,3 = ± n̄

w̄
α‖k − ξ

2w̄
α‖k2,

ω4,5 = ±
√

β̄

w̄
k + β2

2β̄

(
w̄

(
∂ξB

∂ε

)
n

+ n̄

(
∂ξB

∂n

)
ε

− ξB

w̄
β̄

)
α‖k2. (38)

The dispersive part of the sound only exists when the chiral 
density is finite.

• B‖ = 0, B⊥ �= 0
The values of the frequencies do not differ from those of a 
non-anomalous fluid in this case (see Table 4). It means that 
anomaly effects can not be detected in directions transverse 
to the magnetic field even if the fluid is chirally charged. In 
another word, no first order parity odd correction contributes 
to the collective excitations in the direction transverse to the 
magnetic field.

• B‖ �= 0, B⊥ �= 0
In this part we give the results corresponded to propagation 
of hydrodynamic waves in an arbitrary direction with respect 
to an external magnetic field. At zero order in derivative ex-
pansion, there exist two modified sound excitations (ω4,5) in 
addition to another two mixed transverse-longitudinal waves 
(ω2,3):

ω
(0)
1 = 0, (39)

ω
(0)
2,3 = ±

√
−√

� + a√
2w̄

,

ω
(0)
4,5 = ±

√√
� + a√
2w̄

,

where � and a are defined in (35). The fully covariant cor-
rections in first order are given in Table 6. The presence of a 
factor B · k in front of all ω(1)s is in agreement with our argu-
ment in part (B‖ = 0, B⊥ �= 0) of the current subsection. Apart 
from the CMW ω1, there exist four mixed dispersive modes. 
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Table 6
Hydrodynamic modes in a non-dissipative chiral fluid in presence of general external magnetic field at finite chemical potential.

Zero order First order

ω
(0)
1 = 0 ω

(1)
1 = w̄

β
(B · k)

(
β1

(
∂ξB
∂n

)
ε

− β2

(
∂ξB
∂ε

)
n

)
ω

(0)
2,3 = ±

√
a−√

�√
2w̄

ω
(1)
2,3 = (B·k)

4
√

�w̄2

(
−

(
2w̄2k2 − 4n̄2 w̄2 (B·k)2

a−√
�

)(
β2

(
−β̄ξB + w̄2

(
∂ξB
∂ε

)
n

+ n̄w̄
(

∂ξB
∂n

)
ε

)
+ β̄ξ

)
− 2

√
�ξ w̄

)
ω

(0)
4,5 = ±

√
a+√

�√
2w̄

ω
(1)
4,5 = (B·k)

4
√

�w̄2

((
2w̄2k2 − 4n̄2 w̄2 (B·k)2

a+√
�

)(
β2

(
−β̄ξB + w̄2

(
∂ξB
∂ε

)
n

+ n̄w̄
(

∂ξB
∂n

)
ε

)
+ β̄ξ

)
− 2

√
�ξ w̄

)

These four modes are in general mixed Modified Sound-Alfvén
waves. In the special case B ‖ k two of these modes become 
sound waves; the other two are CAWs appearing just from 
the first order. That two of these modes vanish at zero order 
can be simply understood by considering this point that when 
B ‖ k, depending on whether n̄B is greater or w̄β̄k2, one of 
the expressions a + √

� and a − √
� vanishes (see Eqs. (35)) 

while all ω(1)s remain non-vanishing.

5. Parity violating fluid in 1 + 1 dimensions

What all we have done so far was especially related to chiral 
fluids in 3 + 1 dimensions. As it is well known, the chiral anomaly 
is also present in even space–time dimensions. Knowing this fact, 
chiral fluids have been also studied in 1 + 1 dimensions in the lit-
erature. There are well-known results concerning the anomalous 
transport in 1 + 1 dimensions found from both effective field the-
ory [24] and partition function [25] methods.

Specifically, the authors of [24] have considered a Wess–
Zumino-like term to account the effect of anomalies. Interestingly, 
they have shown that in the spectrum of collective excitations 
of chiral fluid in 1 + 1 dimensions, in addition to two ordinary 
sound modes, there exists a new propagating mode; a right- or 
left-moving wave with propagation speed that goes to zero with 
the anomaly coefficient.

Analogous to 3 +1 dimensions, the hydrodynamic spectrum can 
be found directly from the linearized hydrodynamic equations in 
1 + 1 dimensions. In what follows we study the linearized equa-
tions of chiral hydrodynamic in 1 + 1 dimensions and show that 
there exist exactly three hydrodynamic modes as found in [24]. 
Furthermore we rewrite the dispersion relation of each hydrody-
namic mode in an explicit expression of thermodynamic variables 
and the anomaly coefficient in the Landau–Lifshitz frame. Let us 
note that in [24], the dispersion relations of hydrodynamic modes 
have been given in the limit c → 0 and in the entropy frame 
(sμ = s̄uμ).

The hydrodynamic equations for a chiral fluid in 1 + 1 dimen-
sional flat space–time in presence of an external long wave-length 
gauge filed read

∂μT μν = F νλ Jλ

∂μ Jμ = c εμν F μν
(40)

with the anomaly coefficient c. The constitutive relations at zero 
order in derivative expansion are

T μν = (ε + p)uμuν + p ημν

Jμ =nuμ + ξ ũμ.
(41)

where ũμ = εμνuν and the coefficient ξ appearing in front of the 
parity violating term is an anomalous transport coefficient, as [24,
25]

ξ = c

(
n̄μ2

¯ − 2μ

)
− d

n̄T 2

¯ . (42)

ε̄ + p ε̄ + p
Let us recall that in 3 + 1 dimensions, the anomaly effects arise 
from the first order in derivative expansion; that in 1 + 1 dimen-
sions there existed one anomalous coefficient even at zero order, 
is simply due to the rank of Levi-Civita tensor in 1 + 1 dimensions.

To find the spectrum of the fluid, we have to specify the state 
of equilibrium. Since no magnetic field exists in 1 + 1 dimensions, 
we take the state of equilibrium as

uμ = (1,0), T = Const., μ = 0. (43)

So the linearized hydrodynamic equations around the above state 
are

∂tδε + ikπ = 0

∂tπ + ikv2
s δε = 0

∂tn − ξ

w̄
∂tπ + i

(
∂ξ

∂n

)
ε

k n = 0.

(44)

Analogue of what we did in the case of a chiral fluid in 3 + 1
dimensions, we take the super filed πa = (

δε, π, n
)

and rewrite 
the above linearized equations in the form ∂tφa(t, k) + Mab(k)×
φb(t, k) = 0 with

−iωδab + Mab(k) =
⎛
⎜⎝

−iω ik 0
iki v2

s −iω 0

0 i ξ
w̄ ω −iω + i

(
∂ξ
∂n

)
ε

k

⎞
⎟⎠ . (45)

Equating the det(−iωδab + Mab(k)) to zero, we find three hydro-
dynamic modes in an ideal chiral fluid in 1 + 1 dimensions

ω1,2(k) = vsk =
(

∂ p

∂ε

)
k

ω3(k) =
(

∂ξ

∂n

)
ε

k =
(

−2c

χ
− dT 2

w̄

)
k.

(46)

Obviously, the modes ω1,2 are the sound modes. The third mode, 
namely ω3, must be the one-and-halfth sound mode earlier found 
through the effective filed theory approach.

In summary, a chiral fluid in 1 + 1 dimensions has three prop-
agating mode; two ordinary sound waves and one chiral wave. 
Compared to [24], we have computed the velocity of chiral wave in 
terms of anomaly coefficient and the value of thermodynamic vari-
ables in equilibrium. An undetermined integral constant, namely d, 
is also present in the dispersion-relation of this mode.

6. Summary and outlook

In this paper we computed the spectrum of hydrodynamic fluc-
tuations for a chiral fluid in the presence of an external magnetic 
field. As one naturally expects, five distinguished hydrodynamics 
modes may propagate in a fluid with one U (1) global symmetry 
in 3 + 1 dimensions. These modes are in correspondence to con-
servation equations of the five hydrodynamic currents. As long as 
the charge current is conserved, only two of the five modes may 
be excited by perturbing the fluid. These are nothing but the sound 
modes. We have found that when the U (1) current is anomalous, 
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an external magnetic field would be able to turn on all five possi-
ble hydrodynamic excitations. In the limit of vanishing net chiral 
charge, the three new modes are as follows: a degenerate Chi-
ral Alfvén Wave (19) and a Chiral Magnetic Wave (19). We have 
shown that the degeneracy between the CAWs might be removed 
if the effects of dissipation were considered (Table 2).

When the fluid is chirally charged, similar to the previous case, 
five hydrodynamic modes may propagate. However the feature of 
propagation is somewhat different from what of happens in an un-
charged chiral fluid. Here, sound waves combine with Chiral Alfvén
waves into four mixed waves (Table 6); the new mixed waves are 
neither transverse nor longitudinal. The only unchanged mode is 
Chiral Magnetic Wave, by this mean that the CMW is a wave of 
scalar (density) perturbations yet, although its speed of propaga-
tion changes compared to the uncharged chiral fluid case.

While the main outcome of our computations is that the 
anomaly effects may macroscopically appear through hydrody-
namic waves in the magnetic field, it is worth mentioning that 
these waves may propagate in every arbitrary directions except in 
direction perpendicular to the magnetic field.

What we have done in this work may be simply generalized 
to the case of a chiral fluid with both axial and vector currents. 
Whether in presence of two currents Chiral Alfvén wave propa-
gates or not is an interesting question which might be important in 
quark–gluon plasma physics. We leave more investigation on this 
issue to our future work.

In another direction, very recently the author of [33] has shown 
that in a charged fluid at zero chemical potential a new type of 
chiral waves, different from the chiral Alfvén waves, may propa-
gate. Analogous to the chiral Alfvén waves, the new wave, namely 
the chiral heat wave, is associated with anomalous effects with 
this difference that for the latter, the necessary condition of prop-
agation is presence of a background vorticity ω in the fluid. It 
would be interesting to investigate how the dissipative processes 
affect the chiral heat waves. It would be also interesting to study 
the mixing of chiral Alfvén/Heat waves in a fluid when consider-
ing both an external magnetic field and a constant vorticity in the 
fluid.

Another interesting problem is to study the Chiral Alfvén waves 
in the holography. As it is well known, to every long wave-length 
perturbation of Einstein equations in AdS5 space, one fluid dy-
namical flow on the boundary of AdS is corresponded. The latter 
statement is the main subject of fluid/gravity duality [37]. So it 
might be possible to determine CAW on the boundary of AdS is 
corresponded to which gravity set-up in the AdS side.
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Appendix A. Comment on parity violating fluid in 
2 + 1 dimensions

As we discussed in the text, chiral anomaly is present only in 
even space–time dimensions. So the presence of parity violating 
terms in hydrodynamic currents in odd space–time dimensions can 
not be related to anomaly. However, it is instructive to investigate 
how these terms affect the hydrodynamic transport in odd space–
time dimensions.
In [26], all transport coefficients of first order hydrodynamics in 
a parity broken system have been classified in 2 + 1 dimensions. 
Furthermore, in the same paper the second law of thermodynam-
ics, time reversal symmetry and properties of response functions 
have all been used to constrain the transport coefficients.

Due to absence of anomalies in 2 +1 dimensions, we do not ex-
pect the parity violating terms introduced in [26] could make new 
propagating modes in the fluid. However it would be instructive 
to study the effect of these terms on the hydrodynamic modes. 
To proceed, we repeat the computations of previous sections for a 
non-dissipative parity violating fluid in 2 + 1 dimensions.

In 2 + 1 dimensions, the first order corrections in (2) are given 
by:

τμν = (−ζ∇αuα − χ̃B B − χ̃ωω
)
�μν − ησμν − η̃σ̃ μν ,

νμ = σ V μ + σ̃ Ṽ μ + χ̃E Ẽμ + χ̃T beεμνρuν∇ρ T
(47)

with

ω = −εμνρuμ∇νuρ, B = −1

2
εμνρuμFνρ, (48a)

Eμ = F μνuν, V μ = Eμ − T pμν∇ν
μ

T
, (48b)

Pμν = uμuν + gμν, (48c)

σμν = Pμα Pνβ
(∇αuβ + ∇βuα − gαβ∇λuλ

)
, (48d)

and

Ẽμ = εμνρuν Eρ , Ṽ μ = εμνρuν Vρ , (48e)

σ̃ μν = 1

2

(
εμαρuασ

ν
ρ + εναρuασ

μ
ρ

)
. (48f)

As before, the thermodynamic parameters p̄(μ, T ), ε̄(μ, T ) and 
n̄(μ, T ) are the values of the pressure, energy density and charge 
density respectively in an equilibrium configuration in which B =
ω = 0, where B is the rest-frame magnetic field and ω the vortic-
ity.6

Linearizing the hydrodynamic equation around the state

uμ = (1,0,0), T = Const., μ = 0, (49)

we find four hydrodynamic modes of which, two modes are zero 
modes which will become shear and heat modes when accounting 
the dissipative effects. The other two modes are the sound modes

ω1,2(k) = ±vsk

(
1 − T B

2w̄

(
χ̃T + cv

∂χ̃B

∂ε

))
(50)

The parameters χ̃B and χ̃T are not independent; indeed at 
μ = 0 they are specified in terms of a thermodynamic function

MB = ∂ P

∂ B
(51)

and its derivatives with respect to T and μ [26]. Our above result 
shows that the parity violating terms in 2 + 1 dimensions can only 
affect the sound propagation’s speed in a magnetized fluid [22]. 
As a result no new propagating mode would appear due to parity 
breaking in 2 +1 dimensions. This result illustrates the importance 
of relation between anomalies and parity violating terms in even 
space–time dimensions discussed earlier.

6 In 2 + 1 dimensions, both magnetic field and the vorticity are scalar quantities.
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