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Abstract: Recently, new holographic models of black hole evaporation have given fresh

insights into the information paradox [1–3]. In these models, the black hole evaporates into

an auxiliary bath space after a quantum quench, wherein the holographic theory and the

bath are joined. One particularly exciting development is the appearance of ‘ER=EPR’-

like wormholes in the (doubly) holographic model of [3]. At late times, the entanglement

wedge of the bath includes the interior of the black hole. In this paper, we employ both

numerical and analytic methods to study how information about the black hole interior is

encoded in the Hawking radiation. In particular, we systematically excise intervals from

the bath from the system and study the corresponding Page transition. Repeating this

process ad infinitum, we end up with a fractal structure on which the black hole interior

is encoded, implementing the überholography protocol of [4].
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1 Introduction

More than four decades after its introduction, the information paradox [5] still looms large

over the field of quantum gravity. Although a full solution remains elusive, investigations of

the information paradox have led to some breakthroughs about the nature of spacetime in

quantum gravity. Much of this research can be summarized with the slogan “entanglement

builds spacetime” [6]. Most famously, the ER=EPR connection [7] argues that entangled

states in certain quantum systems have a dual interpretation as quantum gravitational

wormholes.

The ER=EPR connection was developed to provide a resolution to the firewall para-

dox [8–13], a sharp version of the information paradox that concerned the entanglement

between modes inside the black hole horizon and early-time Hawking modes. According to

ER=EPR, the Hilbert spaces corresponding to the early radiation and the interior of the

black hole are not independent because a wormhole connects those regions. This hypoth-

esis resolves some of the confusion about black hole evaporation but also suggests many

fascinating new questions. Yet historically, it has been difficult to study the ER=EPR

connection in this context, for lack of a tractable model of an evaporating black hole where

the quantum effects are under control.
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Two recent papers [1, 2] made remarkable progress by constructing holographic models

of evaporating black holes.1 Here we will focus on the second of these, which considers

a two-dimensional model of Jackiw-Teitelboim (JT) gravity [17–19] coupled to a confor-

mal field theory (CFT). In this model, we begin with an eternal black hole, which has a

holographic description in terms of a thermofield double state of two entangled quantum

mechanical systems [20]. We denote the latter as QML and QMR — see the top illustra-

tions in figure 1. At some finite time, we couple the right boundary system QMR to a (zero

temperature) bath, which consists of a copy of the same two-dimensional CFT prepared its

vacuum state on a half-line. The quench joining the two states creates two shockwaves, one

of which propagates into the black hole and the other into the bath. Following AEM4Z, we

will not worry too much about how the quench is regularized.2 With this new connection,

the Hawking radiation from the bulk black hole can then escape into the bath, allowing

the black hole to evaporate.

For this simple two-dimensional model, the backreaction can be explicitly calculated

because of the topological nature of JT gravity.3 Additionally, the von Neumann entropy

of CFT2, defined by the analog of Shannon entropy for quantum states ρ,

Sbulk(ρ) = −Trρ log ρ (1.1)

is also computationally tractable [24]. The situation is fortuitous because both the geome-

try and the quantum entanglement in the bulk play a role in determining the entanglement

wedge, i.e., the region of a bulk which can be reconstructed from a subset of the boundary

theory [1, 25–30]. At leading order in 1/N , the edge of this region is determined by the Ryu-

Takayanagi (stationary area) surface; but at next-to-leading order, corrections arise from

the entanglement of bulk fields, specifically as computed by the von Neumann entropy [31,

32]. The quantum prescription is to instead minimize the generalized entropy, defined by

Sgen[C] =
A[χ]

4GN
+ Sbulk(TrCρ) (1.2)

for a region C of a Cauchy surface divided into an interior and exterior by a codimension-2

surface χ. Fixing a region B on the boundary, we scan over all χ homologous to B (that is

to say, satisfying ∂C = χ ∪B) to find the surface which minimizes Sgen. The bulk surface

χ is called a quantum extremal surface (QES) for B [32].

The two-dimensional model of [2] reproduces many expected features of semiclassical

black hole evaporation. In particular, the model reproduces the information paradox for

the Hawking radiation, i.e., the entropy of the Hawking radiation absorbed by the bath

continues to grow without end. However, the entropy of the black hole, i.e., of QMR,4

1See also the important follow-up discussions of [3, 14–16].
2It remains an open problem to apply a more rigorous analysis of the quench, à la [21–23], to the AEM4Z

model.
3Recall that for JT model, the geometry is fixed to be at constant curvature, i.e., it is always locally

AdS2, and the backreaction only involves the evolution of the scalar dilaton on this background, and the

subsequent motion of the asymptotic boundary [19].
4Of course, the entanglement entropy of QML remains fixed at the Bekenstein-Hawking entropy of the

initial eternal black hole.
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Figure 1. In the AEM4Z model, the holographic principle is invoked twice, resulting in three

different pictures of the same physical system. In the top picture, there are two quantum mechanics

systems (QML and QMR) as well as a field theory (CFT2) vacuum state prepared on the half-line.

The middle picture includes the 2D holographic geometry (JT gravity) dual to the entangled state

of QML and QMR. The last picture contains the doubly-holographic description, with a bulk AdS3

dual to the matter in the middle picture.

undergoes a Page transition. That is, the QMR entropy initially rises to track the increasing

entropy of the bath, but then there is a sharp transition to a phase where it decreases again.

This rise and fall of the black hole entropy are characteristic of the behaviour exhibited by

the classic Page curve [33, 34]. This novel transition occurs in this holographic model (and

in the model described by [1]) as a result of the existence of a new class of QESs just inside

the event horizon of the evaporating black hole. These surfaces are in fact the minimal

solutions at late times, and thus delineate the true boundary of the entanglement wedge

of the dual QMR theory.

This two-dimensional model [2] was then extended with an extra layer of holography

by [3]. In this variant, the matter theory in the bulk and bath is chosen to be itself a

holographic CFT coupled to JT gravity. This theory is itself the boundary theory of a dual

AdS3 bulk — see the third illustration in figure 1. The JT gravity theory resides on a Planck

brane suspended in an asymptotically AdS3 bulk. The latter can be thought of as a Randall-

Sundrum brane [35, 36], which cuts off the asymptotic AdS3 geometry at a finite radius,

but it is also engineered as a Dvali-Gabadadze-Porrati brane [37], in that the brane carries

an intrinsic gravity action (confined to one lower dimension), i.e., the JT action. Since the

CFT is defined on manifolds with boundary (a boundary conformal field theory, or BCFT),

the bulk also contains a second class of branes on which the AdS space ends: end-of-the-

world (ETW) branes [38]. This doubly holographic model, which we refer to as the AEM4Z

model5 from the combined authors’ initials of [2, 3] will be central to our considerations.

In this setup, the contribution of the CFT to the generalized entropy is calculated by

finding extremal HRT surfaces, i.e., geodesics, in the AdS3 bulk, in accord with the usual

prescription for holographic entanglement entropy [39, 40]. In general, these geodesics may

connect the endpoints of the relevant intervals in the boundary theory, however, they may

5The suggested pronunciation is ‘aims’.
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also end on the ETW brane [38, 41] or the Planck brane. In the latter case, the gravitational

entropy associated with the end-point must also be included as part of the generalized

entropy. The doubly holographic AEM4Z model yields much the same behaviour as found

with the two-dimensional model [2] described above. In particular, a Page-like curve is

recovered for the entropy of QMR. In the three-dimensional bulk, the corresponding HRT

surface undergoes a phase transition at the Page time, where the endpoint on the Planck

brane jumps to the new QES described above. However, since the total system, i.e., QML,

QMR and bath, is in a pure state, the information paradox is resolved and a Page curve

is also recovered for the Hawking radiation absorbed by the bath. That is, the same HRT

surface in the bulk describes the entanglement entropy for QMR and for the complementary

system, QML+bath. A remarkable feature of this doubly holographic description is that

after the Page time, the new HRT surfaces delineate an entanglement wedge which includes

(a portion of) the black hole interior. Invoking entanglement wedge reconstruction, the

bath (plus QML) is in principle able to reconstruct the black hole interior. Hence the

AEM4Z model provides an explicit manifestation of ER=EPR.

It is natural to ask how the black hole interior is encoded in the bath. In this paper,

we begin to investigate this question. Our approach is straightforward: we start by con-

sidering the entire bath (plus QML) as our entangled subsystem. We then systematically

excise various subregions of the bath from our entangling region, each time studying the

corresponding entanglement wedge in the three-dimensional dual. We perform the exci-

sions such that the system always sits at the transition where the entanglement wedge of

the remaining bath in combination with QMLbegins to include the interior of the black

hole. By identifying the Page transition for these various ‘hole-y’ subregions of the bath,

we can find which regions of the bath are important for encoding the black hole interior. In

this simple case, we find that the late radiation contains somewhat redundant information

to reconstruct the black hole interior, and the early time radiation is more important; a

similar effect was observed recently in [16]. We also study the limiting case where we excise

a large number of subintervals in the bath. By repeating this process ad infinitum, the

remaining bath has a fractal structure. In this way, we implement the überholography

of [4], and we can determine the support of the black hole interior encoding in the bath.

Outline. In section 2, we review the AEM4Z model. In particular, we show that there are

three phases that the entanglement entropy evolves through after the quench. We study the

entanglement properties of the holographic model in section 3, removing increasingly large

entangling segments from the bath. We explain how the information encoding the interior of

the black hole is encoded in the CFT via an increasingly refined boundary-bath operator al-

gebra. In section 4, we conclude with a discussion of our calculations and future directions.

2 Review of the AEM4Z model

In this section, we review the AEM4Z model [2, 3] and describe the salient quantitative

results for the quantum extremal surfaces and generalized entropies. We also examine

numerical solutions in certain instances to compare with our analytical approximations.
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The process described in the introduction involves a quantum quench where the QMR

system is connected to the bath, as well as the subsequent evaporation of the black hole on

the Planck brane. In the three-dimensional bulk description, the quench involves connecting

the corresponding end-of-the-world (ETW) branes and letting them fall into the AdS3

geometry. Similarly, the black hole evaporation is described by the dynamics of the joint

between the Planck brane and the asymptotic AdS3 boundary.

In principle, the problem of finding quantum extremal surfaces for the extremely dy-

namical bulk geometry described above seems an intimidating one. However, this difficulty

is mitigated by several simplifying features in the AEM4Z model.6 First, the theory in the

first holographic description (panel (b) in figure 1) is a two-dimensional boundary CFT

(BCFT). Hence in the dual description, after an analytic continuation, the entire evolution

can be conformally mapped to the vacuum state in the upper half-plane (UHP), i.e., with

a simple boundary running along the real axis. Given this configuration and turning to

the second holographic description (panel (c) in figure 1), we exploit the fact that holo-

graphic BCFTs have relatively simple expressions for the entanglement entropy, e.g., see

eq. (2.20). Lifting this result back to the two-dimensional description (b), the remainder

of the analysis involves undoing the previous conformal transformations. That is, we are

essentially following the analysis of [2], but the key difference is that we have a specific for-

mula for the entanglement entropy determined by the holographic BCFT. This also allows

us to consider more complicated situations, e.g., multiple intervals, in the two-dimensional

description in a straightforward way.

When, as in [2], we consider the entanglement entropy of QMR, or alternatively its

purification, the bath plus QML, we find the entropy evolves through three phases, which

are sketched in figure 2 — see also the spacetime diagram of the two-dimensional boundary

in figure 3. These three phases are as follows:

a) Quench phase. This is a short period after the bath and QMR systems are joined, in

which the entanglement entropy rapidly rises. The three-dimensional description involves

the HRT surface having two separate components. The first is anchored to the bifurcation

surface of the initial eternal black hole on the Planck brane and falls straight down into the

AdS3 bulk to terminate on the ETW brane (which is stationary at this point). Similarly,

the second connects QMR to the ETW brane where the new connection was made and

where it quickly falling into the bulk. Hence the rapid rise in the entanglement entropy is

entirely due to the stretching of this second component of the HRT surface.

b) Scrambling phase. The transition to this phase occurs on a thermal time scale (see

eq. (2.47)). The entanglement entropy shows some transient behaviour at the beginning of

this phase, e.g., depending on the precise choice of parameters, the entropy may initially

decrease, as shown in figure 3. However, after roughly the scrambling time (see eq. (2.55)),

the entanglement entropy begins to grow linearly as the bath steadily absorbs more and

more Hawking radiation from the black hole (or from QMR). The gradual increase in

6Certainly, one of the simplifying features is that the evaporating black hole is constructed in the two-

dimensional JT model, which means any candidate QES is simply a point and its extremality is easily tested

by taking ordinary derivatives, e.g., see eqs. (2.32).
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Figure 2. A cartoon illustration of the three phases for the entanglement entropy of QMR or

QML+bath, after the quench where QMR is connected to the bath. The darker colors indicate the

true generalized entropy, while the lighter colors indicate the general shape of each of the branches

slightly beyond the regime where it provides the minimal value for the generalized entropy. Below

the plot is a sketch of the shape of the extremal surfaces in AdS3 which contribute to the generalized

entropy in each phase.

entropy is consistent with the heuristics from efficient scrambling systems where only a

small but increasing amount of the radiation can be decoded before the Page transition [42].

During this phase, the corresponding HRT surface consists of a single geodesic which

connects QMR to a point very close to the bifurcation surface of the initial black hole (see

figure 3). In particular, it connects boundary points on opposite sides of the shock wave

propagating into the Planck brane.

c) Late-time phase. In this phase, the entanglement entropy decreases, as required

by the late time behaviour of the Page curve. Of course, the bath continues to absorb

Hawking radiation and so this decrease indicates there must be correlations between the

Hawking quanta emitted at early and late times. In this phase, the corresponding HRT

surface again consists of a single component, but now the geodesic connects QMR to the

new QES behind the event horizon of the evaporating black hole — see figure 3. Hence

these geodesics are distinguished from the previous class since the two boundary points

which they connect both lie to the future of the shock wave.

2.1 Setup

The AEM4Z model consists of a AdS2 black hole in JT gravity, dual to a Hartle-Hawking

state of two copies of a one-dimensional quantum mechanics theory [2, 3]. At Lorentzian

time t = 0, we perform a quantum quench on the CFT, joining it to a field theory vacuum

state defined on the half-line σ > 0. In the bulk, Hawking radiation can now escape to

the bath and land on I +, and the black hole thus evaporates. Additionally, the quench

results in two shockwaves, one propagating into the black hole and one into the bath,
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x+ x−

± 1
πT0

t∞

x −= 0 x+
= 0t

u

u = 0

y +−
y −=0

y+
=∞

y −=∞

Figure 3. In the AEM4Z model, the AdS2 black hole is coupled to bath along the boundary σ = 0

at time τ = 0 = t. This results in the shock indicated by the yellow solid line. The evolution of

quantum extremal surfaces is indicated by the solid blue curve. The first phase transition occurs

when the QES jumps from the green point at x± = (πT0)−1 to the other green point, and the

second (Page) phase transition happens at the jump between the blue block. In this final phase,

the QES tracks close to the new horizon.

corresponding to the propagation of a large amount of energy arising from the joining

quench. The energy of these shockwaves ES should be thought of as one of the UV scales

for the model. The spacetime diagram of the coupled system is shown in figure 3.

The two-dimensional gravity solution is locally AdS2, described by the Poincaré metric

ds2
AdS = − 4L2

AdS

(x+ − x−)2
dx+dx− (x± = t± s) . (2.1)

Note that the Poincaré depth coordinate is denoted s, so that the (unregulated) asymptotic

boundary is at s = 0. Further, we will generally set the AdS curvature scale LAdS = 1 in

the following. Meanwhile, the bath is represented by a flat Minkowski half-space:

ds2
bath = −dy+dy− (y± = u∓ σ) . (2.2)

where σ denotes the spatial coordinate.7 These two spaces are to be glued along their

respective boundaries, i.e., σ = 0 in the bath region and s ∼ ε ≈ 0 in the AdS2 space,

where ε is an IR cutoff. After this quench, energy can flow freely through the boundary

7Our unconventional choice in defining y± ensures that moving further into the bath corresponds to

moving towards larger positive σ. That is, σ is positive in the bath, while s is positive in AdS.

– 7 –



J
H
E
P
0
3
(
2
0
2
0
)
1
5
2

from one space to the other. The x± coordinates can be extended to cover the bath, and

the y± coordinates can be extended to cover a Rindler patch of the AdS.

To prepare the corresponding bulk quantum state, we Wick rotate to Euclidean sig-

nature. The Euclidean coordinates and Lorentzian coordinates are related by x− →
−x, x+ → x̄. This state can be mapped to the vacuum of the CFT in the upper half

plane (UHP) Im{z} ≥ 0 by a local Weyl rescaling

ds2
AdS −→ Ω(x+, x−)2ds2

AdS =
dzdz̄

ε2
,

ds2
bath −→ Ω′(y+, y−)2ds2

bath =
dzdz̄

ε2
.

(2.3)

Explicitly,

Ω =
x+ − x−

2ε

√
z′(x)z̄′(x̄) , Ω′ =

1

ε

√
z′(y)z̄′(ȳ) (2.4)

Before the quench, the reparameterization function f(u) relating the x and y coordinates

is given by the solution of a black hole with temperature T0 in JT gravity, i.e.,

f(u) =
1

πT0
tanh (πT0u) (u < 0), (2.5)

where we identify the physical time on the boundary with the coordinate t via the inverse

function u = f−1(t). The quench occurs at u = 0. The quench introduces a localized

positive energy shock followed by a flux of energy:8

〈Tx−x−〉 = ESδ(x
−)− c

24π
{y−, x−}Θ(x−) . (2.6)

Consistency of the change in black hole energy with this flow of energy between the AdS

and bath systems demands that f satisfies the following equation

{f(u), u} = −2(πT1)2e−ku . (2.7)

The solution was found in [2] to be

f(u) =
1

πT1

I0

[
2πT1
k

]
K0

[
2πT1
k e−ku/2

]
− I0

[
2πT1
k e−ku/2

]
K0

[
2πT1
k

]
I1

[
2πT1
k

]
K0

[
2πT1
k e−ku/2

]
+ I0

[
2πT1
k e−ku/2

]
K1

[
2πT1
k

] . (2.8)

where k � T1 is a constant that determines the relative strength of backreaction compared

to the entropy:
c

12
= k

φ̄r
4GN

. (2.9)

After the quench, the horizon shifts, corresponding to the change in temperature. The

new horizon corresponds to x+ = t∞, where

t∞ = f(u =∞) =
1

πT1

I0

[
2πT1
k

]
I1

[
2πT1
k

] =
1

πT1
+

k

4 (πT1)2 +O
(
k2
)

(2.10)

8The Schwarzian is defined as {f(u), u} = −3f ′′2+2f ′f ′′′

2f ′2 .
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After taking the limit of very large ES ≡ φrπ
4GN

(
T 2

1 − T 2
0

)
, the map to the UHP is achieved

by the piecewise-Möbius map [2]

z =

{(
12π
c ES

)−2 i
f(y) for y > 0,

−iy for y < 0,
(2.11)

or equivalently in terms of x coordinates,

z =

{(
12π
c ES

)−2 i
x for x > 0 ,

if−1(−x) for x < 0 .
(2.12)

We are looking for the quantum corrections to the entanglement wedge of QMR. This

means we need to evaluate the generalized entropy (1.2), which in JT gravity means the

function

Sgen(x+, x−) =
φ

4GN
+ Sbulk , (2.13)

where

φ = φ0 +
φr(x

+, x−)

ε
, (2.14)

is the value of the dilaton. The large constant contribution from φ0 is related to the

divergences associated to the short range entanglement across the end points of an interval.

The spacetime-dependent φr takes the value φ̄r at the boundary where AdS and the bath

are joined.

We solve the quantum extremal surfaces, i.e., the codimension-2 surfaces (points) which

minimize the generalized entropy. Before the quench, the dilaton takes the simple static

solution

φ = 2φ̄r
1− (πT0)2 x+x−

x+ − x−
= 2φ̄rπT0 coth

(
πT0(y+ − y−)

)
, (2.15)

where we used the reparameterization function for static black hole with temperature T0.

After the quantum quench, the AdS2 geometry is modified due to the backreaction. Since

2D gravity is topological, this corresponds to a modification of the boundary. Alternatively,

we can consider the AdS2 geometry as fixed and account for the backreaction by putting

it in the dilaton. After the shock x− > 0, the new solution is

φ = 2φ̄r
1− (πT0)2 x+x− + k

2I(x+, x−)

x+ − x−
(2.16)

where

I =

∫ x−

0
(x+ − t)(x− − t){u, t}dt (2.17)

accounts for the presence of stress-energy exchange through the boundary [19, 43].

In the original iteration of the AEM4Z model [2], no assumptions are made about the

bulk BCFT. The calculation of the entanglement entropy can then be carried out using

replica techniques [44–46]. In terms of the conformal cross-ratio

η ≡ (z1 − z̄1)(z0 − z̄0)

(z1 − z̄0)(z0 − z̄1)
, (2.18)
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the entanglement entropy of an interval with endpoints z0 and z1 in a two-dimensional

BCFT with boundary at z − z̄ = 0 is

SUHP =
c

6
log

(
|z0 − z1|2

δ2
η

)
+ logF(η). (2.19)

Here, δ is a UV cutoff and F(η) is a function which depends on the theory living on the

boundary defect. In the limit η → 1, we are in the OPE limit, whence F(1) = 1; in

the opposite limit η → 0, we instead have F(0) = g2, where log g is the Affleck-Ludwig

boundary entropy [47].

For our purposes, however, we wish to work with the holographic model described

in [3]. In this case, the matter theory is a holographic BCFT. Thus, we can imagine the JT

gravity theory plus bath system as living on the boundary of a new, asymptotically-AdS3

bulk. Because of the boundary defects, there is a dynamical ETW brane hanging into the

space [48, 49]. After the quench, the ETW brane detaches from the asymptotic boundary

(where the JT gravity and bath are connected) and falls into the bulk.

A particularly convenient aspect of the holographic model is that the entanglement

entropy is now determined simply using the Hubeny-Rangamani-Ryu-Takayanagi prescrip-

tion [39, 50]. In this setup, this simply means evaluating the length of the minimal geodesic

homologous to the entangling region. In this case, the HRT surfaces are allowed to end on

the ETW brane.

In this case, the entanglement entropy of one interval reduces to

SUHP =


c
6 log

(
|z1−z0|2

δ2

)
for η > η∗

c
6 log

(
|z1−z̄1|

δ · |z0−z̄0|δ

)
+ 2 log g for η < η∗

(2.20)

where η∗ = (1 + g12/c)
−1

is the value of the cross-ratio at which the transition between

families of HRT surfaces occurs. Without loss of generality for our purposes, we take g = 1

from now on, so that η∗ = 1/2. We will discuss the role of g in more detail in section 4.

Figure 4 illustrates the two families of bulk geodesics in the two different branches

contained in eq. (2.20) (with log g = 0). The η ≥ 1
2 channel corresponds to a single geodesic

stretching between the two endpoints, while the η ≤ 1
2 channel corresponds to two geodesics

(one from each endpoint) terminating on the ETW brane. This formula matches with CFT

calculations in the large c limit; the phase transition between the two channels follows from

the universality of the four-point function on the full plane in a holographic theory [51, 52].

Employing this holographic formula (2.20) for the entropy of an interval on the upper

half-plane, we can find the bulk entropy we need by taking the conformal transformation

to the physical coordinate system. Because of the conformal invariance, this reduces to the

answer on the upper half-plane, except for the transformation of the cutoff at each endpoint:

Sbulk = SΩ−2g = SUHP −
c

6

∑
xi∈∂

log Ω(xi) (2.21)

where the sum runs over all the endpoints of the intervals.
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Figure 4. The entanglement entropy for an interval in a holographic BCFT on the upper half-plane

has two branches. The dominant branch is determined by the cross ratio η defined in eq. (2.18).

The case illustrated here corresponds to a tensionless ETW brane in the bulk, or alternatively

log g = 0 in the BCFT. For other choices of log g, the ETW brane will be tensionful and intersect

the UHP at some other angle.

Note that all of the entanglement entropies which we calculate in the following are for-

mally UV divergent, because of the UV cutoff δ appearing in eq. (2.20). However, in any of

our analyses, we are also comparing different branches with the same number of endpoints

in the bath and so these δ contributions do not play a role. Hence in any expressions which

are explicitly shown in equations or plotted in the figures, we simply subtract c
6 log(LAdS/δ)

for each of the endpoints. Of course, in the holographic description, these UV divergences

appear because of the infinite length appearing when the HRT geodesics extend to the AdS3

boundary. A similarly large length appears when these bulk geodesics terminate on the

Planck brane. In this case, the divergences are absorbed by the gravitational contribution

in the generalized entropy (2.13). In particular, these divergences are associated with renor-

malizing the coupling to the topological Einstein term in the JT action, i.e., φ0/4GN [2, 3].9

2.2 Recovering the Page curve

We now review the results in [2] for finding quantum extremal surfaces. Finding these

surfaces requires computing the generalized entropy for an interval with one point in the

AdS2 and another point on the boundary. We assume the simple holographic results for

bulk entropy, where we found a small change in the behavior of the quantum extremal

surface before the shock relative to the results of [2]. Unless otherwise specified, we will

use the parameters in table 1 as our baseline parameters in all of our numerics.

Before the shock, the possible contributions to generalized entropy is also divided into

two different phases according to the position of endpoints. After the shock, the cross-ratio

is fixed to be 1 at leading order in E−2
S , as in [2].

9For details on how this occurs in general dimensions, refer to the appendix of [53].
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Parameter LAdS k T1 T0 c ε φ0 φ̄r

Value 1 1
4096

1
π

63
64π 4096 1

4096 0 1
40962

Table 1. Baseline parameters for this work. Unless otherwise specified, all of our figures are

generated using these values for the parameters.

Phase Range of η Position relative to shock

Quench [0, 1
2) Straddling (x−QES ≤ 0)

Scrambling [1
2 , 1) Straddling (x−QES ≤ 0)

Late-Time ≈ 1 Above (x−QES ≥ 0)

Table 2. A summary of the range of parameters determining the phase of the von Neumann

entropy. In Lorentzian coordinates, η = x+1 (x+QES − x−QES)/[x+QES(x+1 − x
−
QES)].

2.2.1 Finding the phase transitions

Consider a bulk region defined by the interval between two points, x±QES and x±1 . (More

correctly, consider the domain of dependence of this interval.) As a warm-up, we take x0

to lie in the bulk and x1 to be near the boundary. In this case we can relabel the point x1

in terms of the proper time u along the boundary,

t = f(u) =
x+

1 + x−1
2

, z =
x+

1 − x
−
1

2
= εf ′(u) . (2.22)

From the above holographic formula for entanglement entropy with two points, we can fix

the choice of bulk entropy by taking account of the cross-ratio decided by the position of

AdS2 point, giving

Sbulk =


c
6 log

(
|z1−z̄1|·|zQES−z̄QES|

Ω1ΩQESδ2

)
for η ∈ [0, 1

2)

c
6 log

(
|z1−zQES|·|z̄1−z̄QES|

Ω1ΩQESδ2

)
for η ∈ [1

2 , 1]
(2.23)

The first formula (where η < 1
2) is only applicable when the bulk endpoint lies before the

shock with x−QES < 0. In this formula, the entropy factorizes into contributions from the

two endpoints. (For an idea of what the η < 1
2 region looks like, consult figure 5.)

The second formula (where η ≥ 1
2) holds both before and after the shock. However,

because the map from the upper half plane to the physical coordinates depends on whether

the interval straddles the shock or lies to its future, the formulas for the bulk entropy will

still depend on this distinction.
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(a) Quench phase.
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(b) A new extremum (point S) emerges, but

is non-minimal.
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(c) Transition to Scrambling phase.
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(d) Instant before Page transition.

Figure 5. Motion of QES and other (non-minimal) extrema in the Quench and Scrambling Phases.

The sub-figures show contour plots of generalized entropy as a function of xQES in the region bounded

by the initial black hole horizon (solid black lines), a past null ray (dotted black line) emanating

from the point x1 on the AdS-bath boundary, and the shock (magenta lines); dark blue and bright

yellow shading indicate low and high generalized entropies respectively. The blue curve marks

points for which η = 1/2. Three extrema of generalized entropy are shown: the bifurcation point

(Q), a saddle point (S), and a maximum point (m). The QES (opaque point) in the Quench and

Scrambling Phases is given respectively by Q and S. In order to make various qualitative features

visible in this figure, we have chosen parameters differing from the baselines listed in table 1; here,

ε = 1
16 , c = 16, k = 1

16 , T0 = 2
3π , T1 = 1

π , φ0 = 0, and φr = 1
256 .

In total, we end up with the following bulk von Neumann entropy formulas for the

three phases defined in table 2:

Sbulk, quench =
c

6
log

(
24πES
εc

ut√
f ′(u)

)
, (2.24)

Sbulk, scrambling =
c

6
log

(
24πES
εc

ux−QES

(
t− x+

QES

)
(x+

QES − x−QES)
√
f ′(u)

)
, (2.25)
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Figure 6. The time evolution of quantum extremal surfaces. The arrow indicates the direction

of the flow. The blue line is the physical solution we considered in the paper. It starts at the

bifurcation point and ends at a point away from shock. The green one is another branch of the

solution with larger entropy. Here, we choose a large k to make the deviation from the horizon

more obvious when plotted.

Sbulk, late-time =
c

6
log

2
(
u− y−QES

) (
x+

QES − t
)

ε
(
x+

QES − x−QES

) √
f ′(y−QES)

f ′(u)

 . (2.26)

With these ingredients in place, we can find the generalized entropy in each of the

three phases,

Sgen =
φ

4GN
+ Sbulk , (2.27)

and find the quantum extremal surfaces which are stationary points of this equation, using

∂+Sgen = 0 , ∂−Sgen = 0. (2.28)

where we abbreviate ∂± to mean ∂x±QES
to simplify the notation.

2.2.2 Quantum extremal surfaces at early times

It is easy to minimize the generalized entropy in the quench phase, because the bulk

von Neumann entropy in this phase is independent of xQES. The problem reduces to

finding the saddle point of the dilaton, which is of course the bifurcation surface of the

original (temperature T0) black hole at

x±QES = ± 1

πT0
. (2.29)
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Even though the quantum extremal surface is fixed to the bifurcation surface, the general-

ized entropy still evolves with time, and is given by

Sgen, quench =
φ̄r

4GN

(
2πT0 + 2k log

(
24ES
εc

ut√
f ′(u)

)) (
η ≤ 1

2

)
. (2.30)

This solution is relevant only when

t ≤ 1

3πT0
. (2.31)

Now we consider the scrambling phase. The quantum extremal surfaces in this phase

are found from solving the equations

0 =
4GN

φ̄r
∂+Sgen =

2((πT0x
−
QES)2 − 1)

(x+
QES − x−QES)2

+ 2k
x−QES − t

(t− x+
QES)(x+

QES − x−QES)
, (2.32)

0 =
4GN

φ̄r
∂−Sgen =

2(1− (πT0x
+
QES)2)

(x+
QES − x−QES)2

+
2kx+

QES

x−QES(x+
QES − x−QES)

. (2.33)

An exact solution10 for x±QES can easily be found. Using these exact solutions, we plot the

generalized entropy in this phase in figure 7. An approximate solution (using a small-k

expansion) is

x+
QES(t) =

1

πT0
− k

π2T 2
0

+
k2 (3πT0t− 1)

2π3T 3
0 (πT0t− 1)

+O(k3) <
1

πT0
, (2.34)

x−QES(t) = − 1

πT0
− k (πT0t+ 1)

π2T 2
0 (πT0t− 1)

+
k2 (πT0t+ 1)

2π3T 3
0 (πT0t− 1)

+O(k3) , (2.35)

The small k expansion is a good approximation for this early-time regime and we need to

consider more and more orders of k when we move to later time region. From the k expan-

sion, we can also derive the leading contributions to generalized entropy for uT1 = O(1) as

Sgen, scrambling ≈
φ̄r

4GN

[
2πT0 + 2kπT1u+ 2k log

(
24πES
εc

u

2πT0

)
+ 2k log

(
T0

(
2e−2πT1u − 1

)
+ T1

2T1

)]
+O(k2) ,

(2.36)

keeping the first two orders in k. The first line is the dominant term in this approximation,

because the second line is order O
(
k log

(
T1−T0
T1

))
. The above approximation captures the

behavior of generalized entropy at early time in the scrambling phase. We also note the

contribution from dilaton is almost constant up to a linear increase of order k2:

φ

φ̄r
≈ 2πT0 +

k2 (πT0t+ 1)

πT0 (1− πT0t)
+O

(
k3
)
, (2.37)

which is negligible at early times (πT0t� 1).

10The above equations actually have several branches of solutions. Here we only take the solutions

satisfying the constraints. Even still there is another solution, shown in figure 6 in green, which satisfies

the constraints but with larger generalized entropy. This occurs because of the factor of log x−QES in the

entropy of the scrambling phase; the solution lies close to the shock located at x−QES = 0.
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Figure 7. The generalized entropy from full solutions. The green curve is derived from (2.25) with

exact solutions of (2.32). The red one represents the generalized entropy with endpoint at bifurca-

tion point. The green point in the right plot indicates the point uQS where Sgen,scrambling = Sgen,quench.

For later times, closer to the Page time, we need to push the above approximation to

next order. The next order correction to the dilaton takes the form

φ

φ̄r
≈ 2πT0 +

k2

πT0

2T1

T1 − T0
+O

(
k3
)
. (2.38)

which is not negligible when T1 − T0 is order k. Similarly, the bulk terms are corrected at

order kn/(T1 − T0)n−1. For example, we can find the linearized generalized entropy as

Sgen, scrambling ≈
φ̄r

4GN

[
2πT0 + 2kπT1u+ 2k log

(
24πES
εc

u

2πT0

T1 − T0

2T1

)
+

1

2
k2

(
−πT1u

2 +
5

π (T0 − T1)
+ u

)]
+O(k2) .

(2.39)

From this approximation, it is easy to find the almost linear growth of generalized

entropy as a function of proper time u in the regime 1/πT1 � u < k−1, as shown in

figure 7. This linear growth is dominated by the second term tracing back to the bulk

entropy term. However, at later times, the terms which we dropped at small k become

important. Even still, it is easy to find that the evolution in x+ direction at late time is

very small. So we can take the approximation

x+
QES(t) ≈ x+

QES(t∞) > t∞ , t ≈ t∞ . (2.40)

and most parts in generalized entropy will be around a constant decided by its value at

t∞. For example,

log

(
1

x+
QES − x−QES

)
≈ − log

(
2

πT0
+

2k

(πT0)2(πT0t∞ − 1)

)
. (2.41)

In order to get a simple expression for generalized entropy, we define a constant to approach

parts of generalized entropy

κ =
2(1− πT0x

+
QES)(πT0x

−
QES + 1)

x+
QES − x−QES

+ 2k log

(
πT1x

−
QES(t− x+

QES)

x+
QES − x−QES

) ∣∣∣∣
t→t∞

, (2.42)

– 16 –



J
H
E
P
0
3
(
2
0
2
0
)
1
5
2

and rewrite the entropy for very late u as

Sgen, scrambling ≈
φ̄r

4GN

[
2πT0 + 2k log

(
24πES
εc

u

πT1

√
f ′(u)

)
+ κ

]
, (2.43)

The evolution of generalized entropy is dominated by the derivative term whose approxi-

mation is derived as

log
1√
f ′(u)

≈ 2πT1

k

(
1− e−ku/2

)
− 1

2
log (4πT1t∞) +

ku

4
+O(keku) (2.44)

For the late-time region ku < 1, the above term leads us to a linear increasing entropy

Sgen, scrambling ≈
φ̄r

4GN

[
2π(T0 + T1ku) + 2k log

(
24πES
εc

u

2πT1

)
− πT1

2
k2u2 +

k2

2
u+ κ

]
, (2.45)

as show in figure 7. Physically, we can understand this linear increase of entropy as the

increase of entanglement between the Hawking radiations and their partners left behind

the event horizon. For very late times u > k−1, one can see from the above formula (2.43)

that the linear dependence on time u breaks down and the entropy is dominated by the

logarithmic term.

Having located the candidates for the quantum extremal surfaces in each phase using

eq. (2.24), we need to compare their generalized entropies and pick the minimal solution.

Using the approximate formulae, we can find the transition occurs at

log tQS ≈ log

(
x−QES(tQS − x+

QES)

x+
QES − x−QES

)
+

k (πT0tQS + 1)

2πT0 (1− πT0tQS)
+ . . . , (2.46)

which gives the approximate solution

tQS ≡ f(uQS) ≈ 1

3πT0
− 4k

9π2T 2
0

+
7k2

27π3T 3
0

+ . . . . (2.47)

2.2.3 Quantum extremal surfaces at later times

If the bulk endpoint is located in the region after the shock (i.e., if x+
QES ≥ 0), then the

bulk entropy is in its late-time phase. This case is exactly the same as that analyzed in [2].

The QES is derived from the solutions of the following two equations

0 =
4GN

φ̄r
∂+Sgen =

2(πT1x
−
QES)2 − 2− k

∫ x−QES

0 (x−QES − t)2{u, t} dt
(x+

QES − x−QES)2
(2.48)

+ 2k

(
1

x+
QES − t

− 1

x+
QES − x−QES

)
,

0 =
4GN

φ̄r
∂−Sgen =

2− 2(πT1x
+
QES)2 + k

∫ x−QES

0 (x+
QES − t)2{u, t} dt

(x+
QES − x−QES)2

(2.49)

+ 2k

(
1

x+
QES − x−QES

− 1

(u− y−QES)f ′(y−QES)
+

f ′′(y−QES)

2(f ′(y−QES))2

)
.
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Figure 8. The numerical solutions x+QES, y
−
QES from eqs. (2.48) is presented by the dotted lines.

Note that the left plot is a log plot. The solid line is the linear approximation from (2.53).
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Figure 9. The dotted pink line shows the numerical results for generalized entropy with endpoint

after the shock. The Page time and the first transition at the early time are both indicated by

the green point in this plot. The solid red line is derived from the linear approximation, i.e.,

eq. (2.61). The difference between analytical and numerical results is approximately constant, due

to the constant error from the approximation of the dilaton term.

Because of the integral in the dilaton term, it is not easy fo find the analytical solutions for

these equations. Therefore we first turn to numerics. The numerical answer is presented

in figure 8, and the corresponding generalized entropy is shown in figure 9.

From the numerical plot, it is interesting to find that around the Page time, the two

branches both display linear behavior. For the solution before the Page time, the linearity

can be seen in the small k expansion in (2.36). The post-Page time analysis is performed

in the original paper [2] by carefully dealing with the integral with Schwarzian. The key

idea is we can use the approximation for f around small k for fixed ku, specifically

log

(
t∞ − f(u)

2t∞

)
∼ −4πT1

k

(
1− e−

k
2
u
)

+O
(
ke

k
2
u
)
, (2.50)
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Keeping only the leading terms in the QES equations (∂±Sgen = 0), we arrive at these

extremely simple equations

0 ≈ 4πT1
e−

k
2
y−QES

t∞ − x−QES

− 2k

x+
QES − t

(2.51)

0 ≈ 4πT1(t∞ − x+
QES)e−

k
2
y−QES +

k

2
(t∞ − x−QES) , (2.52)

or, solving at the same order,

x+
QES =

4

3
t∞ −

1

3
t+O(k(t∞ − t)) (2.53)

y−QES = u− uHP +
k

2

(
uHP −

1

2πT1

)
(uHP − u) +O(k2) , (2.54)

where we define the delay of y− in time direction as

uHP =
1

2πT1
log

(
8πT1

3k

)
, (2.55)

which is (to leading order) the Hayden-Preskill scrambling time [42], as explained in [2].

Note that the quantum extremal surface after the shock (x+
QES, y

−
QES) lies close to but behind

the new horizon located at x+ = t∞.

The above linear solution captures the leading-order behavior of QES and also the

generalized entropy. In figure 8, we compare this analytic approximation to the numerical

solution. We can find an approximation for generalized entropy11

Sbulk ≈
c

6

(
log

(
8uHP

3ε

)
− πT1uHP +

k

4
uHP

)
+O(k2) (2.56)

φ ≈ 2φ̄r

(
1− (πT1)2 x+

QESx
−
QES + k

2I
(
x+

QES, x
−
QES

)
t∞ − x−QES

)(
1−

x+
QES − t∞
t∞ − x−QES

)
+O(k2 log k) , (2.57)

I
(
t∞, x

−) ≈ 2

k

(
(πT1t∞)2 − 1

)
+
t∞ − x−

2

(
log

(
t∞ − x−

t∞

)
− 1

)
. (2.58)

For times much smaller than k−1 we can further simplify these expressions by taking the

limit

log

(
t∞ − f(u)

t∞ − f(y−)

)
∼ 4πT1

k

(
e−

k
2
u − e−

k
2
y−
)

+O
(
ke

k
2
u
)
≈ 2πT1(y− − u) ,

log

(
f ′(y−)

f ′(u)

t∞ − f(u)

t∞ − f(y−)

)
≈ log

(
e
k
2

(u−y−)
)

=
k

2
(u− y−) .

(2.59)

We find the entropy from the dilaton contribution decreases linearly:

φ ≈ φ̄r
(

2πT1 − kπT1(u− uHP)− k

2
log 2e

)
. (2.60)

11Compared to [2], here we added the contributions from bulk terms and also two sub-leading corrections

for dilaton which are ignored in [2].
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Figure 10. The Page time for fixed temperatures T0 and T1, as a function of k−1. The dots are

derived from numerical results without any approximation and the solid line is the approximate

Page time defined in (2.62).

We arrive at an equation displaying linear decrease of the generalized entropy

Slinear ≈
φ̄r

4GN

[
2πT1 − kπT1(u− uHP) + k log

(
8ku2

HP

3
√

2eε2πT1

)
+O(k2 log(k))

]
(2.61)

where the first two terms are derived from the dilaton term which lead to the linear decrease

of the entropy around the Page time, and the extra constant terms are contributions from

the bulk entropy.

The linear formula given above matches the numerical results shown in figure 9. As

shown in this figure, when the time is large than the Page time uPage, the endpoint of QES

jumps from the point before the shock to that after the shock.

From the approximations in eqs. (2.61) and (2.39), we can find the approximate Page

time

uPage ≈
2

3

T1 − T0

T1k
+
uHP

3
+

k

6πT1

5

(T1 − T0)π

+
2

3πT1
log

(√
8kπT1

3
√

2e

uHP

u0
P

c

6πES

T0

T1 − T0

)
+O(T1 − T0) ,

(2.62)

where we have defined12

u0
P =

2

3

T1 − T0

T1k
+
uHP

3
(2.63)

as the leading-order approximation to uPage. A comparison with numerical results is given

in figure 10.

12Here we have kept the k
T1−T0

term, which may be order one for some choices for parameters.
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Figure 11. Entanglement wedges for the three phases of evolution. The quench phase is in red,

the scrambling phase in green and the late-time phase in blue.

3 Entanglement of Hawking radiation

As was shown in section 2.2, the evaporating model we are considering exhibits two phase

transitions. Each phase corresponds to a different location for the quantum extremal

surface inside the new horizon. An important consequence of these transitions is that the

entanglement wedge of QML+bath contains a bigger region of the bulk geometry after each

phase transition. In particular, there is an area inside the black hole that is contained in the

entanglement wedge after the transitions, but not before. This is illustrated in figure 11.

By entanglement wedge reconstruction [1, 25–30], this implies that after some time, QML

plus the bath contain information about the interior of the black hole. In this section,

we investigate how much of the bath is essential to keep in order to still reconstruct the

black hole interior. For concreteness we will focus on the Page transition in which the

quantum extremal surface jumps across the infalling shock, because this transition allows

much more of the interior to be reconstructed; but a qualitatively similar story occurs for

the first transition, in which the extremal surface jumps from the bifurcation point to a

point perturbatively close from it.

Before the evaporation begins, the black hole interior cannot be reconstructed from

only the QML or the QMR system since it is not contained in the entanglement wedge of

either. On the other hand, the combination of the QML and QMR is enough to reconstruct

the entire bulk geometry. This implies that the information required to reconstruct the

interior of the black hole is shard between the two sides of the black hole. One can also

ask what is the entanglement wedge of QMR (or QML)+bath before evaporation begins,

but the answer is trivial because there is no entanglement between the two: it is the

entanglement wedge of QMR (QML) plus the empty set. After the Page time, enough

evaporation has taken place and the quantum extremal surface of QMR is located after

the shock perturbatively close to the apparent horizon. The entanglement wedge of QMR

is smaller than it was before evaporation began: QMR has lost part of the information

required to reconstruct some of the bulk geometry it was originally encoding before the

evaporation. On the other hand, the entanglement wedge of the complement, the QML

plus the bath, gained information encoding part of the interior of the black hole. This

reflects the fact that some of the initial entanglement between QML and QMR has been

transferred to the bath by the Hawking radiation so that QML+bath can reconstruct a

portion of the black hole interior.
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3.1 Early-time protocol: forgetting the late-time radiation

Our first modification of the AEM4Z model as described in section 2 is to move the endpoint

y±1 of the bulk interval into the bath region. This corresponds to omitting the late-time

Hawking radiation from the entanglement wedge of QML+bath. In this regime, we will

have y±1 > 0.

We parameterize the distance from a bath point to the AdS boundary by specifying

the coordinate distance σ1 from the boundary to the bath, i.e., we set y±1 = u∓σ1. Similar

to eq. (2.24), we can identify three phases of the von Neumann entropy of the interval in

the bulk, which we label the same way: the quench phase, the scrambling phase, and the

late-time phase. The most important difference is in the Lorentzian cross-ratio, where we

must now account for the fact that the endpoints are not fixed on the boundary

η =
f(y+

1 )(x+
QES − x+

QES))

x+
QES(f(y+

1 )− x−QES)
(3.1)

The phase boundary between the quench and scrambling phases still lies at η = 1
2 . The

entropy functions in each phase now read

Sbulk, quench =
c

6
log

24πES
εc

y−1 f(y+
1 )√

f ′(y+
1 )

 (3.2)

Sbulk, scrambling =
c

6
log

24πES
εc

y−1 x
−
QES

(
f(y+

1 )− x+
QES

)
(x+

QES − x−QES)
√
f ′(y+

1 )

 (3.3)

Sbulk, late-time =
c

6
log

[
2
(
y−1 − y

−
QES

) (
x+

QES − f(y+
1 )
)

ε
(
x+

QES − x−QES

) √
f ′(y−QES)

f ′(y+
1 )

]
(3.4)

Again we need to find the location of the new quantum extremal surface x±QES by minimizing

the generalized entropy (∂±Sgen = 0). Before we move to finding the solutions, let’s first

comment on the effect of taking the point x1 into the bath region, i.e.,

y±1 = u∓ σ1 . (3.5)

It is obvious this operation has nontrivial effect on the location of the quantum extremal

surface and bulk entropy because the entropy in the three cases all depend on both y±1 .

However, the effect from y−1 only appears in Sgen as a term like{
c
6 log

(
y−1
)

for x−QES < 0 < t < x+
QES ,

c
6 log

(
y−1 − y

−
QES

)
for 0 < x−QES < t < x+

QES .
(3.6)

If the above contribution is negligible, it is easy to claim that the effect from moving the

endpoint to the bath corresponds to a reparameterization, changing u to u−y0. At leading

order, this is what happens, as we will now explain.

As before, the bulk entropy in the quench phase is independent of the location of the

quantum extremal surface. Again the dilaton term is minimized at the bifurcation point

– 22 –



J
H
E
P
0
3
(
2
0
2
0
)
1
5
2

x± = ± 1
πT0

, so this is the location of the quantum extremal surface in the quench phase.

The generalized entropy in this quench (η ≤ 1
2) phase reads

Sgen, quench =
φ̄r

4GN

2πT0 + 2k log

24πES
εc

y−1 f(y+
1 )√

f ′(y+
1 )

 . (3.7)

which reduces to the AdS-boundary case when we take the limit y± ∼ u or σ1 → 0, as

expected. The cross-ratio region η ≤ 1
2 that defines the quench phase is equivalent to

f(y+
1 ) ≤ 1

3πT0
, y+

1 = u− σ1 ≤ f−1

(
1

3πT0

)
. (3.8)

The location of the quantum extremal surface in the scrambling phase and with σ1 > 0 is

delayed with respect to the σ1 = 0 solution, because the solutions to the extrema equations

(0 = ∂±Sgen), which read

0 =
(πT0x

−
QES)2 − 1

x+
QES − x−QES

+ k
x−QES − f(y+

1 )

f(y+
1 )− x+

QES

, (3.9)

0 =
1− (πT0x

+
QES)2

x+
QES − x−QES

+ k
x+

QES

x−QES

(3.10)

only depend on f(y+
1 ). The location is similar to eq. (2.34) after making the replacement

u→ y+
1 , t→ f(y+

1 ), i.e.,

x±QES = x±QES(f(y+
1 )) . (3.11)

Although the location of the quantum extremal surface is simply delayed by σ1, the gen-

eralized entropy still has the non-trivial term from log y−1 as we claimed before:

Sgen, scrambling ≈
φ̄r

4GN

[
2πT0 + 2k log

(
24πES
εc

u+ σ1

πT1

√
f ′(u− σ1)

)
+ κ

]
, (3.12)

where κ is defined in eq. (2.42) and we have assumed η ≥ 1
2 and u� 1. This extra term is

still sub-leading, with the full generalized entropy dominated by the linear growth at early

times u� 1
k .

Similar to the σ1 = 0 case, the transition between the quench and scrambling phases

happens at the point where

Sgen, scrambling = Sgen, quench ←→ y+
QS = uQS . (3.13)

where the equivalence is exact because of the cancellation of log y− in

Sgen,scrambling − Sgen,quench. Just like the σ1 = 0 case considered in section 2, the quantum

extremal surface is at the bifurcation point until uAB and then jumps to x± (y+) in

eq. (2.34). This marks the transition between the quench phase and the scrambling phase.

In the late time phase, the quantum extremal surface is located after the shock, and

the extremum equations 0 = ∂±Sgen can be expanded into first order in k to read

0 ≈ 2πT1
e−

k
2
y−QES

t∞ − x−QES

− k

x+
QES − f(y+

1 )
, (3.14)

0 ≈ 4πT1(t∞ − x+
QES)e−

k
2
y−QES +

k

2
(t∞ − x−QES) . (3.15)
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Figure 12. Left: the numerical results for uPage on the dependence on σ1 and the comparison

with analytical result defined in (3.19). Right: uPage − σ1.

This leads to the linear solution

x+
QES =

4

3
t∞ −

1

3
f(y+

1 ) +O(k(t∞ − f(y+
1 ))) , (3.16)

y−QES = y+
1 − uHP +

k

2

(
uHP −

1

2πT1

)(
uHP − y+

1

)
+O(k2) . (3.17)

The generalized entropy in the late time phase is given by eq. (2.39)

Slinear ≈
φ̄r

4GN

[
2πT1 − kπT1(u− σ1 − uHP) + k log

(
8k(uHP + 2σ1)2

√
2e3ε2(πT1)

)
+O(k2 log(k))

]
.

(3.18)

With the new approximations (3.18), we can also define the Page time for this late-

radiation-excised bath with fixed δ as

uPage(σ) ≈ 2

3

T1 − T0

T1k
+
uHP

3
+ σ +

2

3πT1
log

(√
8kπT1

3
√

2e

(uHP + 2σ)

(u0
P + 2σ)

c

6πES

T0

T1 − T0

)

+
k

6πT1

5

(T1 − T0)π
+O(T1 − T0) ,

(3.19)

with the crossing condition Slinear = Sgen, scrambling. It is clear that it is just the uPage + σ

with corrections from one log term which is decreasing with the increase of σ. As a final

check, in figure 12 we compare the numerical results for the Page time with the analytical

approximation.

3.1.1 Time evolution of σPage

Armed with the approximate solution (3.19), we can fix a time slice u after the Page time

and ask how far into the bath we need to move to arrive at the Page transition. To fix the

notation, we will say that this happens at

y+
Page ≡ u− σPage , (3.20)

We can thus consider the evolution of the distance of the second endpoint to AdS boundary

σPage such that

u− σPage − uPage =
2

3πT1

(
log

(
uHP + 2σPage

uHP

)
− log

(
uPage + 2σPage

uPage

))
, (3.21)
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Figure 13. The red line indicates the evolution of σPage. It starts from the boundary point at u =

uPage and evolve with time u. Finally approach the another null surface with shift 2
3πT1

log
(
uPage

uHP

)
.

which is derived from the approximation of y+
Page and uPage. It is still hard to solve the

above equation for σPage. However, let’s first comment on its speed with respect to u, i.e.,

∂uσPage =

(
1 +

4

3πT1

uPage − uHP

(uHP + 2σPage)(uPage + 2σPage)

)−1

< 1 , (3.22)

which approaches 1 when σPage →∞. In order to get insight on the simple form of σPage, we

consider three different regions for σPage using the separation of scales: 1
πT1
� uHP � uPage.

First of all, if we start from a small σPage, it is easy to find for σ < uHP

σPage(σ) '
(

1 +
4

3πT1

uPage − uHP

uPageuHP

)−1

(u− uPage) , (3.23)

where the coefficient is a little bit smaller than one. Then we can move to the middle

region with the approximate solution for uHP < σ < uPage:

σPage '
(

1− 4

3πT1uPage

)−1(
u− uPage −

2

3πT1
log

uHP + 2(u− uPage)

uHP

)
. (3.24)

Note that although the coefficient looks larger than 1, it is easy to check that with the

logarithmic correction, the velocity in this region still satisfies ∂uσPage < 1.
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Finally we arrive at the region with σPage > uPage, one can still find a linear result when

uPage < σ:

σPage ' u− uPage −
2

3πT1
log

(
uPage

uHP

)
+

uPage − uHP

3πT1(u− uPage)
. (3.25)

So we can find that the evolution of σPage is time-like, however, in this regime, it quickly

approaches a null line as the last term decays as u − uPage grows. We note that the third

term above represents a (small) finite shift of the asymptotic line above the simple leading

approximation σPage ' u − uPage. We show a sketch of the evolution of σPage in figure 13,

summarizing our results here.

In closing here, we comment that a similar but even simpler conclusion applies to the

transition between the quench and scrambling phases. Recall that this transition occurs

at u = uQS defined in eq. (2.47). Then on later time slices, we push σ1 into the bath and

define σQS in analogy with σPage, i.e., σQS is the value of σ on a constant u slice where

the transition between the quench and scrambling branches occurs. From eq. (3.13), it is

straightforward to show that σQS exactly satisfies the simple relation

σQS = u− uQS . (3.26)

3.1.2 Importance of the early radiation

So far we have seen how much of the later radiation can be discarded while still being able

to reconstruct the interior of the black hole with the remaining radiation + QML. This was

done by starting at some time slice after the Page time and removing an interval of the bath

starting from the AdS-bath juncture until the generalized entropy of the late-time branch

matches the entropy of the scrambling branch. That is, we found the point x+
1 = f(y+

1 ) in

the bath such that

SQES′−1 = SQES−1 , (3.27)

where x+
QES′ is at the extrema of the generalized entropy with one endpoint before the

shock, and x+
QES is at the extrema of the generalized entropy with both endpoints after

the shock. This allows us to remove part of the bath close to AdS that is not essential

for black hole interior reconstruction. We can now ask the question of how much of the

early-radiation regime of the bath we can remove while still keeping information about

the black hole interior. That is, we consider a bath interval B0 = [σ1 = σPage(u), σ2] on a

constant time slice u, and ask how close can we move σ2 to the initial endpoint while still

being able to reconstruct the black hole interior. Unsurprisingly, we must place σ2 near

the shockwave falling into the bath, since more distant points are out of causal contact

with the quench point. However, we will also find that σ2 must be positioned slightly to

the right of the shock, i.e., we need to keep all of the early radiation.

As above, consider an interval of the bath B0 = [σ1 = σPage(u), σ2], and then in terms

of the null coordinates, the endpoints are positioned at y±1 = u ∓ σPage and y±2 = u ∓ σ2.

Now we ask for the smallest of σ2 such that

Sgen
QES′′ + S1−2 = Sgen

QES−1 + S2 (3.28)

where xQES′′ is at the bifurcation point and xQES is at the extrema of the late time gener-

alized entropy. This is illustrated in figure 14.
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Figure 14. The smallest connected bath interval B0 that, together with the QML, still has enough

information to reconstruct the black hole interior with is the one in which the generalized entropy

in the two channels depicted are equal.

We begin by assuming that y2 is close to spacelike infinity of the bath, so that y−2 > 0,

y+
2 < 0, and see how much closer to AdS we can bring it without losing the information

required to reconstruct the interior of the black hole. After the coordinate transforma-

tion (2.12) and the Weyl rescaling required to bring to the evaporating black hole model,

we find the generalized entropy for these two channels read

Sgen
QES′′ + S1−2 =

c

6
log

24πES
cε2

−y+
2 x

+
1 (y−2 − y

−
1 )√

f ′(y+
1 )

+
φ(xQES′′)

4GN
, (3.29)

Sgen
QES−1 + S2 =

c

6
log

 2

ε2

(y−1 − y
−
QES)(x+

QES − x+
1 )(y−2 − y

+
2 )
√
f ′(y−QES)

(x+
QES − x−QES)

√
f ′(y+

1 )


+
φ(xQES)

4GN
. (3.30)

The value of the dilaton at the bifurcation xQES′′ is

φ(xQES′′) = φ0 + 2πT0φ̄r . (3.31)

The dilaton at the extremal point xQES is given by eq. (2.60) to first order in k. The

position x0 of the extremal surface in eq. (2.53) to leading order in k is

x+
QES ≈ t∞ , y−QES ≈ y+

1 − uHP . (3.32)

Using the leading order in eq. (2.50) and its derivative

f ′(u)

t∞ − f(u)
≈ 2πT1 , (3.33)

we find ∆Sgen = Sgen
QES′′ + S1−2 − Sgen

QES−1 − S2 is

4GN
φ̄r

∆Sgen =

(
2π(T0 − T1) + kπT1(3y+

1 + uHP ) +
k

2
log 2e

)
+ 2k log

(
6πES
c

−y+
2 x

+
1 (y−2 − y

−
1 )

(y−1 − y
+
1 + uHP )(y−2 − y

+
2 )

)
+O(k2) ,

(3.34)

where we have used φ̄r
4GN

= c
12k .
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The very large negative cπ
6k (T0 − T1) term is offset by the cπ

4kT1y
+
1 term because we are

choosing y+
1 = uPage(σPage)−σPage where uPage can be read off eq. (3.19). Plugging the value

of y±1 and y±2 , we find

4GN
φ̄r

∆Sgen = 2k log

(
8

3
√
πT1t∞

T0

T1 − T0

(σ2 − uPage)(σ2 − σPage)

(2σPage + u0
P )(2σ2)

)
+O(k2) , (3.35)

where we have used uPage = uPage(σPage) to simplify the equation and once again u0
P in

eq. (2.63) is the leading order approximation to uPage. The (T1 − T0)(u0
P + 2σPage) term in

the denominator is small, and the only term that can offset this to bring the argument of

the logarithm close to one is y+
2 = σ2 − uPage. But this requires us to anchor the end of

the bath interval a distance ∼ (T1− T0)u/T1 to the right of the shock. The takeaway from

this calculation is that we can remove most of the bath behind the shock. This should be

expected because these intervals do not capture any of the radiation of the evaporating

black hole, so they should not be essential for interior reconstruction. We can now consider

what happens when the point x2 crosses the shock, and see if we can remove any more of

the bath interval. This would amount to removing some of the early radiation after the

evaporation began. In terms of the calculation, the difference now is that x+
2 > 0 and

therefore z̄ =
(

12π
c ES

)−2 i
x+ so that the expressions for the generalized entropies of the two

channels in eqs. (3.29) and (3.30) is now

Sgen
QES′′ + S1−2 =

c

6
log

 2

ε2
(x+

1 − x
+
2 )(y−2 − y

−
1 )√

f ′(y+
1 )f ′(y+

2 )

+
φ(xQES′′)

4GN
,

Sgen
QES−1 + S2 =

c

6
log

24πES
cε2

y−2 x
+
2 (y−1 − y

−
QES)(x+

QES − x+
1 )
√
f ′(y−QES)

(x+
QES − x−QES)

√
f ′(y+

1 )f ′(y+
2 )


+
φ(xQES)

4GN
.

(3.36)

Using the position of the extremal surface in eq. (2.53), the approximation in eq. (2.50)

and plugging the positions of the endpoints y1 and y2 the difference in the entropies of the

two channels ∆Sgen is

4GN
φ̄r

∆Sgen = 2k log

((
c

12πES

)2 8πT1

3
√
πT1t∞

T0

T1−T0

(x+
1 −x

+
2 )(σ2−σPage)

(uPage +σ2)x+
2 (2σPage +u0

P )

)
+O(k2) .

(3.37)

The term in the denominator
(

12πES
c

)2
(T1 − T0)(u0

P + 2σPage) ∼ E4
Sk/c

2T 3
1 is very large

and needs to be canceled by the separation y+
2 of the point y2 from the shock. Taking the

ansatz y+
2 = d η with

η =

(
c

12πES

)2 8πT1

3(u0
P + 2σPage)

√
πT1t∞

T0

T1 − T0
.

(
cT1

6ES

)4 πT1

k
� 1 , (3.38)
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Figure 15. Smallest connected intervals that, together with QML, are able to reconstruct a part

of the black hole interior. The left endpoint σPage follows the path illustrated in figure 13, while the

right endpoint is anchored very close to the shockwave, as described by eq. (3.40).

we find that y−2 = 2uPage − d η and x+
2 = y+

2 + O((y+
2 )3) = dη + O(η3). Solving for

∆Sgen = 0 then gives

d = x+
1

uPage − σPage

2uPage

− x+
1

uPage − σPage

2uPage

uPage(x
+
1 + 2uPage) + σPage(x

+
1 − 2uPage)

4u2
Page

η +O(η2) .

(3.39)

Hence we find that the right endpoint must indeed anchored very close to the shock wave

(at y+
shock = 0). That is,

y+
2 = x1

uPage − σPage

2uPage

η ∼
(
cT1

6ES

)4 πT1

k
� t∞ . (3.40)

Figure 15 shows the smallest connected intervals that are able to reconstruct a portion of

the black hole interior.

3.1.3 Redundancy of the encoding

In examining the holographic entanglement and the corresponding entanglement wedge for

QML+bath, we found that the information needed to reconstruct interior of the black hole is

encoded in a region in the bath extending from σPage ' u−uPage to σshock = u on a given time

slice u in the bath.13 However, as may be expected for holography [54–56], we will see that

this encoding is redundant, here and in the next subsection. In this subsection, we examine

the question of removing a smaller interval from the shortest connected bath interval that

13Recall that y± ≡ u∓ σ, so that increasing positive σ corresponds to moving further into the bath.
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Figure 16. Excising the largest possible hole H1 from the smallest possible interval B0 = B1,1 ∪
H1 ∪B1,2 of the bath such that recoverability of the black hole interior is preserved. Minimizing of

B0 i.e., setting σ1 = σPage, allows us to equate the difference in generalized entropies of the first line

with the differences in von Neumann entropies in the second line; maximization of H1 is determined

by the equality of latter branches.

can still recover the black hole interior.14 While in the following two subsections we will be

working with the early-time protocol in mind for concreteness, the results in this subsection

are qualitatively similar if we started from the shortest connected intervals in the late-time

protocol of section 3.2, and in fact the main conclusion of subsection 3.1.4 in eqs. (3.50)

and (3.55) is quantitatively the same.

Let us denote the bath interval described above as B0 = [σPage, σshock]. Now we ask how

large a hole H1 can we remove from B0 while still preserving recoverability of the black hole

interior? The desired configuration of HRT surfaces is sketched in the top left illustration

of figure 16. We are now left with two disjoint intervals in the bath B1,1 = [σ1 = σPage, σ2]

and B1,2 = [σ3, σ4 = σshock], which combined with QML are still able to reconstruct the

black hole interior. To determine the allowed size and position of the hole, i.e., to determine

the allowed values of σ2 and σ3, we must compare the contributions of the different HRT

surfaces. For example, the desired configuration (in the top left of figure 16) is given by

SQES−1,2−3,4 = SQES−1 + S2−3 + S4 , (3.41)

where we have indicated the contributions of the separate components of the HRT surface

on the right. For example, S4 is the contribution of the geodesic connecting y4 to the ETW

brane, while SQES−1 corresponds to the generalized entropy which includes the length of

the geodesic connecting σ1 to the QES and also the dilaton contribution at the latter point.

Now the competing configuration which limits the size of the hole is shown in the top right

illustration of figure 16, and the corresponding holographic entropy is given by

SQES′,1−2,3−4 = SQES′ + S1−2 + S3−4 . (3.42)

In this case, QES′ indicates that the quantum extremal surface is distinct from that ap-

pearing in eq. (3.41). In fact, in this configuration, QES′ corresponds to the bifurcation

surface of the original black hole on the Planck brane.

14If one is favorably inclined to puns, one might call this process “lyft”ing, since we are on our way to

überholography.
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A priori it may seem that comparing the entropies in eqs. (3.41) and (3.42) will require

some numerical analysis, however, the present comparison is simplified because we have

chosen σ1 = σPage. This point marks the precise transition between two competing sets of

HRT surfaces, as illustrated in figure 14. Hence at this precise point, we have

SQES−1 + S4 = SQES′ + S1−4 . (3.43)

Substituting this expression into eq. (3.41) and taking the difference then yields

SQES−1,2−3,4 − SQES′,1−2,3−4 = S1−4 + S2−3 − S1−2 − S3−4 , (3.44)

as illustrated by the bottom illustration of figure 16. Note that the latter (3.44) is controlled

entirely by the positions of the points in the bath, which are fixed, i.e., the transition

between the two branches in the top of figure 16 is completely independent of the physics

on the Planck brane, i.e., of QES and QES′.15

Hence in eq. (3.44), we are simply comparing the lengths of the corresponding HRT

surfaces. This comparison can be made in terms of the z coordinates, where the transition

occurs at
|z2 − z3|2

|z4 − z3|2
|z4 − z1|2

|z2 − z1|2
= 1 , (3.45)

or in the y± coordinates, where

y−3 − y
−
2

y−4 − y
−
3

f(y+
2 )− f(y+

3 )

f(y+
3 )− f(y+

4 )

y−4 − y
−
1

y−2 − y
−
1

f(y+
1 )− f(y+

4 )

f(y+
1 )− f(y+

2 )
= 1 . (3.46)

Now, of course, the width of our hole H1, i.e., |σ3−σ2|, depends on how it is positioned

within the original interval B0 = [σPage, σshock]. As an example, in figure 17, we consider

B0 with σPage = 0, i.e., u = uPage,
16 and explore the maximum width of the interval that

can be removed as a function of the center of the interval. In the figure, we see that the

optimal choice, i.e., the largest hole, is when we position the hole at the center of B0. In

the figure, we see that in this optimal configuration, we can remove approximately 10% of

the region B0. The width of the hole shrinks rapidly as σc approaches either σPage or σshock

— see further comments below. We can interpret this shrinking as indicating that the

information in both the early Hawking radiation (near the shock) and the later radiation

(near σPage) are extremely important in reconstructing the black hole interior.

The resulting plot in the left panel of figure 17 is almost symmetric about the

midpoint. The small asymmetry (shown in the right panel) is due to the nonlinearities

of the mapping f(y+
i ). Interestingly, this asymmetry is eliminated if we use the small k

approximation:17 f(u) ' 1
πT∞

tanh (πT∞u) where T∞ = 1
πt∞

= I1

[
2πT1
k

]
/I0

[
2πT1
k

]
. With

15However, if instead, σ1 was placed closer to the end of the bath (i.e., closer to QMR), then eq. (3.43)

would no longer hold and comparing eqs. (3.41) and (3.42) would no longer be as simple.
16Note that there is no real loss of generality with this choice. Moving to a later time slice simply shifts

the parameters to u′ = uPage +∆u, σ′Page ' ∆u and σ′shock = uPage +∆u, which corresponds to just shifting

y−1,2 by a constant while leaving y+
1,2 unchanged. However, we observe that eq. (3.46) is invariant under a

constant shifts in y− and so our analysis here would be unchanged.
17For the parameters in table 1, the difference between the full f(u) and this approximation is less that

an fraction of a percent, i.e., |f(u)− fapprox(u)|/|f(u)| . 0.0015%.
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Figure 17. To the left, maximum width w of the hole H1 removed from the bath region B0 as a

function of the center of the interval σc. To the right, asymmetry in the maximum width about

σc = σshock/2. Here we consider the time slice u = uPage so that B0 = [σPage = 0, σshock = uPage].

this approximation, the identity tanh(x) − tanh(y) = sech(x) sech(y) sinh(x − y) can be

used to simplify eq. (3.46) as

y−3 − y
−
2

y−4 − y
−
3

sinh(y+
2 − y

+
3 )

sinh(y+
3 − y

+
4 )

y−4 − y
−
1

y−2 − y
−
1

sinh(y+
1 − y

+
4 )

sinh(y+
1 − y

+
2 )

= 1 . (3.47)

Further, for the example shown in figure 17,18 we then substitute y±1 = uPage,

y±2 = uPage ∓ (σc − w/2), y±3 = uPage ∓ (σc + w/2) and (y+
4 , y

−
4 ) = (0, 2uPage), which yields

w

uPage − σc − w/2
sinhw

sinh(uPage − σc − w/2)

uPage

σc − w/2
sinhuPage

sinh(σc − w/2)
= 1 . (3.48)

Clearly, the resulting expression is invariant under σc → uPage − σc, i.e., the corresponding

plot is exactly symmetric about the midpoint σc = uPage/2. Hence in this approximation,

the importance of the information in both the early and later Hawking radiation is equally

weighted for the reconstruction of the black hole interior.

In closing this section, we note that the initial and final slopes of the curve in the

left panel of figure 17 are universal for holographic CFTs. This is because the question

of how large a hole can be exciseded near the endpoint of an interval without triggering

a phase transition is one which probes the UV entanglement structure. To see this, let

us, without loss of generality, take in the r.h.s. of eq. (3.44) the endpoints, σ2 and σ3, of

the hole to be very close to the endpoint σ1 = σPage. Maximizing the size of the hole to

the verge of triggering the transition between the two branches amounts to setting the

r.h.s. of eq. (3.44) to zero. In the limit of the hole tending towards the point σ1, we have

S1−4 = S3−4; moreover, the dependence of S3−4 on point σ3 is extremely weak relative

to the dependence of S1−2 and S2−3 on the location and size of the hole. Thus, we find

that S1−2 ∼ S2−3 for maximally-sized holes close to σ1. Since these latter entropies probe

short distances, this relation gives the same constraint on points σ1,2,3 as in the vacuum

case, i.e., |σ1 − σ2| ∼ |σ2 − σ3|. This corresponds to slopes of ±2/3 at the endpoints of

figure 17, i.e., near σ1, we have w ' 2
3(σc−σ1) while near σ4, w ' 2

3(σ4−σc). These results

might be contrasted with the largest holes that can be removed from B0 in these limits,

18Again, the general result corresponds to shifting all the points to the left by ∆u = u− uPage.
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i.e., w < 2(σc − σ1) and w < 2(σ4 − σc). This comparison gives a quantitative measure

that the w is indeed shrinking rapidly near the endpoints of B0, as commented above.

3.1.4 Überholography

Having considered removing a single hole from the bath region B0 = [σPage, σshock], it is

natural to generalize our analysis to arbitrarily many holes. Specifically, one may ask:

what is the smallest total length of disconnected regions in B0 needed, in conjunction with

QML, to reconstruct the interior of the black hole? In fact, by an iterative process where, at

each step, a hole is punched into each connected region in this bath region, this total length

can be reduced arbitrarily close to zero. This procedure was designated ‘überholography’,

where a bulk region is encoded in a subset of the boundary with lower (fractal) dimension

than the dimension of the boundary [4].

We illustrate this process in figure 18a. We begin, as in section 3.1.2, with the small-

est interval B0 on a constant time slice of the bath such that the black hole interior can

be recovered from QML and B0. For concreteness, we have positioned the first endpoint

min(B0) = σPage at the AdS-bath boundary in figure 18 — we find qualitatively similar re-

sults when this endpoint is chosen inside the bath. In the first round of the iterative process,

we punch a maximally-sized hole H1 into the initial interval B0 while preserving recover-

ability of the black hole interior, as discussed in section 3.1.3. What remains is the union

B1 = B0 \ H1 = B1,1 ∪ B1,2 of two intervals B1,1, B1,2. Before proceeding to the inductive

step, we emphasize again that the task of maximizing H1 can be reduced into a simple prob-

lem that involves comparing channels of the Von Neumann entropy of the disconnected re-

gion B1, as written in eq. (3.44) and illustrated in the first equality of figure 16. A similar re-

duction can be made in all further iterative steps of the hole-punching procedure, so that we

need only consider Von Neumann entropy channels of the surviving region Bn in the bath.19

Due to the maximization of the hole H1, the two channels shown in the last line of

figure 16 give the same entropy. For the inductive step, it is simplest to consider the

second channel shown. Since, in this channel, the entanglement wedges for B1,1 and B1,2

are disconnected, we may separately consider punching maximally-sized holes in B1,1 and

B1,2. Thus, the process described in the previous paragraph can be repeated, now with

B1,1 or B1,2 taking the place of B0. Indeed, this procedure may be performed iteratively:

given a disconnected region Bn = Bn,1 ∪ · · · ∪ Bn,2n composed of intervals Bn,m, we may

punch a maximally-sized hole Hn+1,m into each Bn,m while maintaining recoverability of

the black hole interior; the result is a smaller region Bn+1 = Bn \ Hn+1, where Hn+1 =

Hn+1,1 ∪ · · · ∪Hn+1,2n .

At each step, we may define the quantities

rn =
|Bn|
|Bn−1|

, αn =
log 2

log 2
rn

(3.49)

19Indeed, the problem would be identical to the vacuum case considered in [4] save for the conformal

transformation taking z to x, y coordinates.
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(a) Interval of the bath needed to reconstruct black hole interior, iteratively hole-punched.
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(b) Parameter α, defined in eq. (3.49), which,

in the infinite iteration limit, gives the frac-

tal dimension of the bath region needed to

recover the black hole interior.
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Figure 18. Iterative process of punching maximally-sized holes into the interval of the bath

needed (together with QML) to reconstruct the black hole interior. Here, the original interval of

the bath under consideration stretches from the AdS-bath boundary to the shock on the time slice

corresponding to the Page time on the boundary.

describing the rate at which the total length |Bn| of the region in the bath shrinks over

iterations. In figure 18b, we plot αn, showing that it approaches the constant value

α∞ = αPP ≡
log 2

log(
√

2 + 1)
≈ 0.786 (3.50)

obtained for the CFT vacuum in [4]. Thus, we find that the region B∞ of the bath

needed, with QML, to recover the black hole interior exhibits uberholography — it has

zero total length. Moreover, as we shall show momentarily, α∞ gives the fractal dimension

d(B∞) of B∞. Hence, we see that B∞ has the same fractal dimension α∞ = αPP as for

uberholography in the vacuum case. The universality of αPP may be explained by the

fact that the UV entanglement excised by uberholography is determined predominantly
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by the vacuum entanglement structure. Explicitly, for our case, despite the conformal

transformation from eq. (3.45) to eq. (3.46), for small interval sizes, eq. (3.46) still reads

as though it were comparing vacuum entropy channels:

|y2 − y3|2|y1 − y4|2

|y3 − y4|2|y1 − y2|2
+O

(
f ′′ · (distance between points)

)
= 1. (3.51)

It is straight-forward to show that α∞ gives the dimension of B∞ by making use of

the fact that the ratio
maxm |Bn,m|
minm |Bn,m| of maximal and minimal lengths of the consituents of

Bn approaches a constant in the infinite iteration limit n → ∞, as verified in figure 18c.

Recall that the (Minkowski) dimension of the set B∞ is defined to be

d(B∞) ≡ lim
ε→0

logN(ε)

log(1/ε)
, (3.52)

where N(ε) is the minimal number of ε-diameter balls (in this case, ε-length intervals)

needed to cover B∞. For any small ε, it is possible to find the first iteration n = n+(ε) such

that maxm |Bn,m| ≤ ε and also the last iteration n = n−(ε) such that ε ≤ minm |Bn,m|.
Since maxm |Bn,m| and minm |Bn,m| differ only by a constant factor in the n→∞ limit, it

follows that

n± ∼ log(ε)

log(rn±/2)
(3.53)

where rn/2 gives the factor by which the average length of single intervals shrinks over the

nth iteration. By monotonicity in N(ε), we also have

2n
− ≤ N

(
min
m
|Bn−,m|

)
≤ N(ε) ≤ N

(
max
m
|Bn+,m|

)
≤ 2n

+
. (3.54)

Using eqs. (3.53) and (3.54), we have from eq. (3.52) and the definition (3.50) of α∞,

d(B∞) = α∞ (3.55)

as claimed. Eqs. (3.50) and (3.55) are the main results of this subsection. Lastly, we

emphasize once again that despite the fact that we have started from the shortest connected

intervals of the early-time protocol, the results are the same if we start from the shortest

connected intervals of the late-time protocol of section 3.2.

3.2 Late-time protocol: forgetting the early-time radiation

In section 3.1, we asked the question of how much of the bath is required to reconstruct the

interior of the black hole in combination with QMLwhile focusing on the Hawking radiation

emitted at early times. A different approach is to ask how much of the early-time radiation

can we ignore but still keep the ability to reconstruct the interior of the black hole. Con-

cretely, we can anchor σ1 = 0 for times later than uPage and see how small σ2 can be while

still keeping the recoverability of the black hole interior. The two competing channels are

the same as the ones in the early-time protocol, and are illustrated in figure 14. The differ-

ence is that the left endpoint of the bath interval is now anchored at the AdS-bath junction,

i.e., σ1 = 0, and the right endpoint is no longer anchored at the shock, i.e., σ2 < σshock.
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Figure 19. The time evolution of y+2 with dependence on ∆u = u− uPage. The red line is derived

from the direct numerical calculation, while the blue line represents eq. (3.59).

As in eq. (3.28), we need to consider the equivalence condition,

Sgen
QES′′ + S1−2 − Sgen

QES−1 − S2 = 0 (3.56)

with the new endpoints, which is equivalent to

2k log

(
12πES
c

f(y+
2 )y−2(

t− f(y+
2 )
)
σ2

)

= 2πT0 −
φ(x±QES)

φ̄r
+ 2k log

 (x+
QES − x−QES)

(y−1 − y
−
QES)(x+

QES − x+
1 )
√
f ′(y−QES)

 ,

(3.57)

where the dilaton is derived in eq. (2.60) and the bulk entropy on the right hand side is

as in eq. (2.56). The above equation can not be solved analytically in general, and so we

examine different for different regimes of ∆u ≡ u− uPage.

When ∆u is smaller than the Hayden-Preskill scrambling time uHP, the distance of the

right endpoint of the bath interval to the shock y+
2 is still very small. This is shown in the

plateau region in the beginning of figure 20. For y+
2 � t∞, we can use20

x+
2 = f(y+

2 ) ≈ t∞ tanh

(
y+

2

t∞

)
,

log

(
f(y+

2 )y−2(
t− f(y+

2 )
)
σ2

)
≈ log

y+
2

t∞
+ log 2 +

y+
2

2u
+
y+

2

t∞
≈ log

y+
2

t∞
+ log 2 .

(3.58)

Solving for ∆S = 0 then leads to the solution

y+
2 (u) ≈ ct∞

223/4πESuHP

exp

[
1

4
+
π(T0 − T1)

k
+
πT1

2
(3u+ uHP)

+
k

8

(
− 1

πT1
+ (3− 2πT1uHP)(u− uHP)

)]
,

(3.59)

20This approximation only works for small y+
2 . In previous sections, we dealt with times u of the order

of the Page time or larger, and then (2.50) is a much better approximation.
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Figure 20. The time evolution of y+2 with dependence on ∆u = u − uPage. Left: the numerical

results from the full linear generalized entropy. The horizontal line indicates the y+2 = uPage. Right:

black curve shows the results with exponential dilaton term. The horizontal line represents the

limit of y+2 defined in (3.65).

for u . uHP. As expected, we find an exponential increase of y+
2 (u) for early times. The

comparison with numerical results are shown in figure 19.

We now move on to later times, when ∆u is of the order of the Page time, but still

less than O(k−1 log k). The above approximation of eq. (3.58) will break down. For times

with ∆u comparable to the Page time we find numerically that the separation increases

linearly with ∆u, as can be seen in figure 20. We now proceed to show this linear behavior

analytically. Using the results of section 2.2 in eqs. (2.60) and (2.56), the only new term

we need to consider are

log

(
f(y+

2 )y−2(
t− f(y+

2 )
)
σ2

)
≈ log

(
u+ σ2

2σ2

)
+

4πT1

k

(
1− e−

k
2

(u−σ2)
)
,

log
(√

f ′(u)
)
≈ log 2 +

k

8πT1
− ku

4
− 2πT1

k

(
1− e−

ku
2

)
,

(3.60)

where we have taken the approximation f(y−+) ≈ t∞ for u− σ � t∞, which is satisfied in

the region with linear behavior. We also note that the log
(
u+σ2
2σ2

)
is a small contribution

because of the log function and σ also increase with u. Furthermore, if we take the small

ku expansion again and keep the liner terms, this approximations leads us to the following

solution

σ2 (u) =
T1 − T0

2T1k
+

1

4
(u− uHP) +

1

2πT1
log

(
16ESπuHP(u+ σ̄2)

(2e)1/4cσ̄2

)
− k

8
u2

HP +O(k) , (3.61)

where σ̄2 = T1−T0
2T1k

+ 1
4 (u− uHP) is the leading order term of σ2(u).21 It is straightforward

to add higher k corrections to this approximation, but we only need the first order terms

to show that σ2 depends almost linearly in u for ∆u of the order of the Page time and up

to O(k−1). Thus, in this regime, we find a linear evolution for the distance of the endpoint

of the bath interval to the shock:

y+
2 (u) = u− σ2(u) ' 3

4
(u− uPage) , (3.62)

21The u dependence inside the log is very small, since for ∆u much larger than uPage we have

log (u+σ2)
σ
≈ log 5.
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Figure 21. The dotted line in the right figure illustrates the evolution of y±2 with respect of time

u. The left figure is the linear region with the approximation of y+2 described by eq. (3.62).

where the slope is fixed to be 3
4 at leading order, and we have ignored the correction from

order of O(k).22 The linear behavior is illustrated in figure 21.

For very late times of O(k−1), the small ku approximation in e.g., eq. (2.61) breaks

down. This is due to the breakdown of the dilaton approximation in eq. (2.60). The correct

expression for times of O(k−1) is

φ ≈ φ̄r
(

2πT1e
− k

2
y−QES − k

2
log 2e

)
. (3.63)

Correspondingly, the linear decrease of generalized entropy is replaced by a much slower

exponential decrease. Using the improved dilaton contribution in eq. (3.63), as well as the

approximation in eq. (3.60), we can solve eq. (3.57) numerically and plot the results in

figure 20. Focusing on the large u limit, we can give an approximation for the surface y+
2

at very late time with u� k−1

y+
2 ≈

2

k
log

 16πT1

4πT1(2T1 − T0) + 4k log
(

16ESπuHP
c

)
− k(1 + 4πT1uHP − log 8)− 2πT1k2u

 .

(3.64)

This surface is becoming null for very large u. In an approximation that holds up to late

times of order u ∼ O(k−1 log T1
k ),23 the asymptotic behaviour is

y+
2 '

2

k
log

(
4T1

2T1 − T0

)
+O(1) . (3.65)

22The approximation is in ∂uy
+
2 (u) ≈ 1

4
e
− k

2
(y−

QES
−y+2 )

∂uy
−
QES + 1

2
e−

k
2

(u−y+2 ), reducing to 3
4

when u is

order uPage and to 0 for ku� 1.
23Note that we can not simply take u to infinity to derive this leading order behaviour because the semi-

classical model will break down in the late-late-time regime with u � k log T1
k

. Here we assume u ∼ y−QES

approaches the very late-time limit. However, this formula (3.65) does not hold for u→∞.
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We observe that the order-one correction above is also a constant, however, u-dependent

terms appear on the right-hand side at order k.

Before closing here, let us also comment on the late-time protocol applied to the

quench-scrambling phase transition. The calculation to find the behavior of the right

endpoint with u > uQS is similar to the one for the Page transition carried earlier in

this section. However, the result is that as we increase the time up to the Page time,

the distance of the right point to the shock y+
2 (u) starts from a very small value i.e.,

σshock − σ2 ∼
(
cT1
6ES

)2
t∞ � t∞ and then decreases exponentially for uQS < u < uPage.

That is, the left boundary very quickly approaches the null curve defined by the shock,

i.e., σ2 ' u. This contrasting behavior originates from the increase of bulk entropy in

scrambling phase, i.e., the linear term in eqs. (2.36) and (2.39).

3.2.1 Redundancy and efficiency of encoding

With the protocol introduced above, we found that we can reconstruct the black hole

interior with the bath interval B̃1 = [σ1 = 0, σ2 = σTurn(u)], where σTurn is the minimum

value of σ2 defined by eq. (3.62), i.e.,

σTurn = (1− γ)u+ γ uPage , γ =
3

4
(3.66)

where γ receives corrections at order k which only become relevant at times of order k−1,

and which slowly change the slope to zero at very late times of order k−1 log T1
k . Therfore

σTurn defines a time-like boundary for the endpoints of these minimal intervals, as shown

in figure 21. Assuming the information flows at the speed of light,24 this result points to

a redundancy of the encoding of the black hole interior. That is, the black hole interior

is encoded in the Hawking radiation emitted over many finite time intervals, but at times

much later than the Page time uPage. In general, if we begin to collect the radiation at an

arbitrary time uinitial > uPage and we can reconstruct the black hole interior with radiation

collected (at σ1 = 0) in the time interval [uinitial, ufinal] with

ufinal =
uinitial

γ
+ uPage . (3.67)

This time ufinal is determined by the intersection of the null ray entering the bath at uinitial

with the curve σTurn, such that all of the information flowing into the bath in the above

time interval is captured in the interval [0, σTurn(uinitial)] on this final time slice.

As a concrete example, we can discard all of the Hawking radiation emitted before

uPage, but we are still able to reconstruct the black hole interior by collecting the radiation

emitted in u ∈ [uPage, uPage,1] where uPage,1 − uPage = uPage/γ. Further, this process can be

repeated again, i.e., we discard the radiation before uPage,1 but the black hole interior is

recovered if we collect the subsequent radiation up to a time uPage,2. Repeating the process

repeatedly, one finds that

uPage,n − uPage,n−1 =
uPage

γn
. (3.68)

24As indicated by the evolution of σPage in section 3.1.1.
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Since γ < 1, these intervals are becoming longer and longer. This suggests that while

the information about the black hole interior is still encoded in the radiation collected at

later times, the density of this information becomes less dense at much later times. That

is, the encoding of the information is becoming less efficient at later times — see further

comments in section 4.

These results depend on the simple linear growth of σTurn in eq. (3.66). However,

we also showed above that this behaviour breaks down at late times, with this boundary

approaching a null curve (3.65) at very late times — see figure 21. This means that the

size of the successive intervals, i.e., uPage,n − uPage,n−1, would grow even more quickly than

the geometric behaviour shown in eq. (3.68). With the final asymptotic expansion of σTurn

following a null curve, we would conclude that for times beyond

umax '
2

k
log

(
4T1

2T1 − T0

)
, (3.69)

we could never collect enough information to reconstruct the black hole interior. This

conclusion should be tempered by the fact that our semi-classical understanding of the

AEM4Z model will break down at times of order u & k−1 log T1
k . Combining eq. (3.69)

with the expressions for uPage,n following from eq. (3.66),25 suggests a finite redundancy of

the encoding of the black hole interior in the Hawking radiation with

nmax '
log (2uPage/k)

log γ
. (3.70)

More precisely, the black hole information is encoded in a finite number of distinct time

intervals roughly given by eq. (3.70).

Of course, there is nothing special about these intervals [uPage,n+1, uPage,n]. As indicated

in eq. (3.67), we can reconstruct the black hole interior with radiation collected in general

time intervals [uinitial, ufinal], beginning at any arbitrary uinitial > uPage. Further, on the time

slice u = ufinal, we could remove intermediate segments between σ1 = 0 and σ2 = ufinal −
uinitial as in section 3.1.3 or even implement the überholography process as in section 3.1.4.

Of course, this indicates that the reconstruction of the black hole interior does not require

all of the radiation in the time interval [uinitial, ufinal]. Rather, the überholography process

suggests collecting the radiation on some fractal subset of this time interval. All of these

considerations certainly point to a remarkable redundancy in time for the encoding in the

Hawking information of information about the black hole interior. It would be interesting

to understand if and how this pattern of redundancies is manifest in other models of black

hole evaporation.

4 Discussion

In this paper, we examined the flow of information in black hole evaporation as described by

the AEM4Z model [2, 3]. This model involves two systems: JT gravity coupled to a two-

dimensional holographic CFT, and an infinite bath, comprised of the same holographic

25Explicitly, one finds that uPage,n = 1−γn+1

γn (1−γ)
uPage.
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CFT on a half-line. The former is prepared as an eternal black hole, which is dual to

a thermofield-double state entangling QML and QMR, while the bath is prepared in its

vacuum state. These two systems are connected by a quantum quench, and the subsequent

evolution of the entanglement entropy of QML+bath subsystem exhibits three phases: the

quench phase, in which the QES on the Planck brane is fixed at the bifurcation surface

of the initial black hole; the scrambling phase, in which the QES moves slowly away from

this bifurcation surface; and the late-time phase, in which QES is just behind the event

horizon of the evaporating black hole.

In the example of the eternal AdS2 black hole with reflecting boundary conditions

at the asymptotic boundary, the QES for QML (or QMR) alone will be the bifurcation

surface. Hence the information in this subsystem can be used to reconstruct the exterior

region on the left (or right) side of the black hole. That is, the entanglement wedge for

QML is the entire region outside of the left event horizon, as shown in the left plot in

figure 11. Considering the information flow after the quench, since the position of the QES

for the QML+bath subsystem is fixed in the initial quench phase, the Hawking radiation

is carrying negligible information into the bath. That is, any information about the black

hole interior would only be at order one in the large c expansion of the holographic CFT.26

The onset of the scrambling phase marks the time when the Hawking radiation begins

to contain information about the interior. In the scrambling phase, the information flow is

detected by the QES, and is order c, but Hawking radiation absorbed by the bath only car-

ries enough information for QML+bath to reconstruct a small additional region behind the

horizon of the left side (and to the past of the shockwave), as illustrated in the middle plot

in figure 11. However, once the black hole has passed the Page transition and entered into

the late-time phase, the QES jumps to be behind the right event horizon (and to the fu-

ture of the shockwave), and so the bath has acquired enough information for QML+bath to

reconstruct a much larger portion of the black hole interior (see the right plot in figure 11).

Let us comment on the HRT surfaces and the encoding of the black hole interior in

the late-time phase (see figure 2). We note that in this regime, the black hole interior

provides a classic example of the quantum error correcting encoding that is characteristic

of holography [54, 55]. We are considering three subsystems of the boundary, QML, QMR

and the bath. In this configuration the information about the black hole interior cannot be

recovered from any one of these subsystems; however, combining any two of them allows us

to reconstruct the interior information. In our discussion, the focus was on the combination

QML+bath, but a quick examination of the HRT surfaces in figure 2 shows that it is also

included in the entanglement wedges of either QML+QMR or QMR+bath.

However, the above discussion is not complete. Eventually, on a time scale much larger

than those considered here, the bath on its own will make a Page transition. Initially, the

bath is in the analog of the quench phase with the HRT surface sketched in the left panel of

figure 22. It then makes a transition to a late-time phase with the HRT surfaces sketched

in the right panel, where a quantum extremal island [3] has formed. Here we implicitly

26In the analysis of [2] for a general CFT, the QES already begins to move away from the bifurcation

surface during the quench phase. Of course, there is also a smooth cross-over between the quench and

scrambling phases in their model.
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Figure 22. Quench (left) and late-time (right) phases for the entropy of the bath.

assume a large intrinsic gravitational entropy for the JT model, i.e., we are assuming that

S0 = φ0/(4GN) � 1 in eq. (2.13).27 This contribution to the generalized entropy adds a

heavy penalty for HRT surfaces which end on the Planck brane, and so it would delay the

onset of the late-time phase and the appearance of the quantum extremal island. Note that

the transitions in the main text (for the entropy to QML+bath), one is always comparing

branches where a single HRT geodesic ends on the Planck brane and so S0 did not play a

role. Further, one can argue that if S0 & ∆S (the change in the black hole entropy gener-

ated by the shock wave, i.e., in going from T0 to T1), then the branch corresponding to the

scrambling phase never dominates and so the Page transition corresponds to going directly

from the quench branch to the late-time branch. Of course, in the latter phase with the

quantum extremal island, the bath by itself now encodes sufficient information to recon-

struct a portion of the black hole interior. The fact that this other Page transition takes

place much later suggests that early-time scrambling is important for the reconstruction of

the black hole interior, as suggested in [1]. It would be interesting to repeat the detailed

analysis that we have performed in this paper considering just the bath on its own.

As the QML+bath system continues to evolve beyond the Page time, the wedge region

grows relatively slowly as the bath continues to absorb more Hawking radiation. That is,

the information carried by the radiation coming after the Page transition is less important

for the reconstruction of the black hole interior. Eventually, one expects the entanglement

wedge of the QML+bath subsystem to extend to the right boundary of the AdS2 geometry

at t∞ (where the dilaton vanishes), but we can not trust the model to these very late times.

However, a more appropriate comment might be to say that the information is less densely

encoded in the late-time radiation — see further comments below.

In this late-time phase, we found in sections 3.1 and 3.1.2 that the information needed

to reconstruct the black hole interior propagates at nearly the speed of light into the bath.

That is, (a large portion of) the black hole interior could be reconstructed using the Hawk-

ing radiation captured on the time slice u = uPage between σ1 = 0 and σ2 = uPage, together

with QML. However, on a later time u > uPage, we could reproduce essentially the same

reconstruction using the Hawking radiation captured between σ1 = σPage ' u − uPage and

σ2 = σshock = u instead.28 Of course, this is consistent with the information being carried

27A standard assumption is that φ0 � φr/ε in the spacetime regions of interest [19] — see eq. (2.13).
28Of course, it is reasonable to expect that no information about the black hole interior is encoded in the
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into the bath by massless right-moving quasi-particles in the two-dimensional CFT [52].

Similar behaviour was also recently observed in [16]. Of course, as shown in eq. (3.25)

(see also figure 13), there are corrections to σPage in the small k expansion. However,

the corrected (timelike) boundary still rapidly approaches a (slightly) shifted null ray. In

section 3.1.2, we also showed that the early Hawking radiation is extremely important in

the above reconstruction protocol. That is, the right boundary σ2 of the bath region must

be extremely close to the shockwave, i.e., σshock − σ2 ∼
(
cT1
6ES

)4
πT1
k � t∞ as in eq. (3.40).

The importance of the early and late time Hawking radiation in this protocol was

examined more closely in section 3.1.3, where we considered removing an intermediate

interval from the bath region — see figure 14. As shown in figure 17, the size of the

intermediate interval is maximal when it is at the center and quickly decreases as this

interval approaches either the shockwave or the boundary σPage. This is indicative of a

clear separation of the radiation into early and late pieces. Of course, the process of

systematically removing intermediate intervals from the bath region can be continued,

cutting out smaller and smaller subregions, as discussed in section 3.1.4. Repeating this

process ad infinitum, following [4], we produce a fractal structure which, in combination

with QML, contains enough information to reconstruct the interior of the black hole from

which the interior of the black hole can still be reconstructed. It is interesting that the

(Minkowski) dimension characterizing this fractal matches that found for the CFT vacuum

in [4]. This match arises because the very small intervals only probe the correlations of the

CFT deep in the UV, and these must match in both settings.

In section 3.2, we considered a different reconstruction procedure that focused on the

later radiation by anchoring the bath interval at σ1 = 0. We found that the minimal size

σ2 = σTurn for which the information in QML+bath still allowed us to reconstruct a large

portion of the black hole interior follows time-like boundary, as shown in figure 21. Using

eq. (3.66), we found a redundancy with the information about the black hole interior being

encoded in the Hawking radiation emitted in the time intervals [uPage,n+1, uPage,n] after the

Page time uPage.

Of course, this redundancy is consistent with the Hayden-Preskill thought experi-

ment [42]. The latter indicates that if a few qubits are dropped into an old black hole,

the information can be recovered after the scrambling time by combining (essentially) the

same number of qubits from the subsequent radiation with (all of) the early Hawking ra-

diation. However, the radiated qubits need not be those radiated immediately after the

scrambling time, but rather can be collected from the subsequent radiation at any time —

see also [57, 58]. From this perspective, the initial eternal black hole at temperature T0

plays the role of the old black hole and early radiation, i.e., QMR is the old black hole while

QML plays the role of the early radiation. The black hole is ‘rejuvenated’ by dropping in

the shock wave and the information can be recovered after uPage, which then plays the role

of the scrambling time in this discussion. However, as noted above, the information need

not be collected immediately after the Page time but in any sufficiently large interval after

uPage. This analogy might be made more precise by regarding the shock wave as a ‘heavy

diary’, as discussed in [1] — see also [59].

bath beyond the position of the shockwave, since this portion of the bath is not in causal contact with the

quench point.
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Of course, as indicated by eq. (3.68), or more generally by eq. (3.67), the length of the

time interval needed to collect sufficient information grows at later times. We suggested

that this indicates the encoding is becoming less dense or less efficient at later times.

However, the temperature of the black hole is (slowly) falling, and so one might wonder if

the reduction in the flux of Hawking radiation accounts for this effect. However, the flux

flowing into the bath (at σ1 = 0) is given by Ty+y+(u) ∼ T 2
1 e
−ku, as shown in eq. (2.7).

Hence this reduction only becomes noticeable on time scales of order u ∼ 1/k. A simple

calculation shows that an interval [0, σ2] needed to capture a fixed amount of Hawking

radiation, as counted by energy or number of quanta (i.e., E/Teff), barely exhibits any

growth at early times, i.e., in the regime where eq. (3.68) is valid.29 Hence the reduction

of Hawking radiation over time does not explain the growth of σTurn, and the natural

explanation is once again that the redundant encoding of information simply becomes

less efficient over time. However, we should note that the different time intervals are not

reconstructing precisely the same interior region. Rather the latter also grows with time,

and so this way partially account for the growth in σTurn.

We also note that the reduction of the Hawking flux, i.e., Ty+y+(u) ∼ T 2
1 e
−ku, is a

central factor in the nonlinear behaviour in the growth of σTurn found at time scales of

order u ∼ 1/k, as shown in figure 21. More directly in our calculations, the reduction

in the corresponding gravitational entropy (3.63) on the QES produces this effect. As a

result, σTurn(u) approaches a null ray, as shown in eq. (3.65), in this nonlinear regime.

We then infer that the information in the Hawking radiation is too depleted beyond umax

— see eq. (3.69) — to collect enough quanta to reconstruct the black hole interior. Of

course, our semi-classical understanding of the AEM4Z model breaks down at times of

order u & k log T1
k , and so nonperturbative effects may still allow for such a reconstruction.

In wrapping up this discussion, we reiterate that there is a remarkable redundancy

in the encoding of the black hole interior in the Hawking radiation. In section 3.1.4, we

explicitly showed that the interior information was still available after numerous subin-

tervals were gouged out of the initial parcel of radiation emitted between the quench and

uPage, to the point where it was reduced to a fractal structure. The reconstruction was also

possible with the radiation collected (at σ1 = 0) in the interval [uinitial, ufinal], beginning at

any arbitrary uinitial > uPage and with ufinal given by eq. (3.67). Again, the überholography

approach could again be applied to perforate any such interval with holes. It would, of

course, be interesting to understand if this pattern of redundancies appears in other models

of black hole evaporation.

In closing, we observe that our analysis in section 3 focused on the Page transition

between the scrambling and late-time transitions. However, this discussion can easily be

extended to the first transition between the quench and scrambling phases, corresponding

to the onset of scrambling, and the results are more or less the same. One important

difference is that the trajectory for the σQS analog of σPage in section 3.1.1 is null for all

times, unlike the trajectory of σPage which asymptotes towards a null path as is shown

in figure 13. As was noted towards the end of section 3.2, the position of the σTurn in

29Our conclusion assumes (T1 − T0)/T1 � 1 and uses uPage ∼ (T1 − T0)/(k T1) from eq. (2.62).
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the quench-to scrambling phase transition shows different behaviour to the σTurn of the

Page transition. In particular, as we increase the time from uQS up to the Page time

uPage, the distance of the right point to the shock y+
2 (u) starts from a very small value i.e.,

σshock − σ2 ∼
(
cT1
6ES

)2
t∞ � t∞ and then decreases exponentially. It was noted that the

contrasting behavior originates from the increase of bulk entropy in the scrambling phase,

i.e., the linear term in eqs. (2.36) and (2.39).

Furthermore, in our discussion, for simplicity we set the boundary entropy to zero,

i.e., log g = 0 in eq. (2.20). This choice does not affect the Page transition in any way, as

we have said. The reason is that neither of the two competing geodesics terminates on the

end-of-the-world brane in this case. However, the first (quench-to-scrambling) transition

will be shifted if we choose log g 6= 0. On the scrambling phase branch, bulk geodesic

connects a boundary point in the bath to the QES on the Planck brane. However, in the

quench phase, the HRT surfaces are comprised of two geodesics terminating on the ETW

brane. Therefore, the corresponding generalized entropy would be increased by a term

4 log g. If we consider figure 7, then the transition time would move to an even earlier time

(assuming that log g > 0).
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