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In this paper, utilizing the generalized off shell Helmholtz free energy, we explore the topological
numbers of the four-dimensional static accelerating black hole and its AdS extension, as well as the static
charged accelerating black hole and its AdS extension. Our analysis reveals a profound and significant
impact of the acceleration parameter on the topological numbers associated with the static black holes; and
different values (nonzero) of the acceleration parameter do not affect the topological numbers of the
corresponding four-dimensional static accelerating black holes. In addition, we demonstrate that the
electric charge parameter has an important effect on the topological number of the static neutral
accelerating black holes, and the cosmological constant has a remarkable influence on the topological
number of the static accelerating black hole. Furthermore, it is interesting to observe that the difference
between the topological number of the asymptotically flat static accelerating black hole and that of its
corresponding asymptotically flat static nonaccelerating black hole is always unity, and the difference
between the topological number of the asymptotically AdS static accelerating black hole and that of its
corresponding asymptotically AdS static nonaccelerating black hole is always −1. This new observation
leads us to conjure that it might be valid also for other accelerating black holes. Of course, this captivating
conjecture requires empirical verification through comprehensive investigation into the topological
numbers of other accelerating black holes and their corresponding usual counterparts.
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I. INTRODUCTION

In the big family of four-dimensional black hole
solutions in General Relativity, in addition to the
Schwarzschild black hole and Taub–Newman-Unti-
Tamburino (Taub-NUT) spacetime [1,2], another simplest
exact vacuum solution is the C-metric [3–6], which
represents an accelerating black hole. In fact, it had already
been shown [3,7] that the C-metric solution describes a pair
of causally separated black holes which accelerate away
from each other due to the presence of strings or struts that
are represented by conical singularities. Later, it was shown
[8] that the C-metric can be derived from the metric of two
superposed Schwarzschild black holes by assuming that the
mass and location of one of them approaches infinity in an
appropriate way. In recent years, aspects of the accelerating
black holes, including global causal structure [9], quantum
thermal properties [10], holographic heat engines [11,12],

black hole shadows [13], holographic complexity [14,15],
and so on, have been investigated extensively. In particular,
thermodynamics of the AdS4 C-metric were figured out
first in Ref. [16] and then well-addressed in Refs. [17–24],
where the first law of thermodynamics [25,26] and
the Bekentein-Smarr mass formula [27] as well as the
Christodoulou-Ruffini-type squared-mass formula [28,29]
are properly extended to accelerating, charged, and rotating
black holes.
Naturally, the establishment of the above mass formulas

is not the only aspect of the investigation of black hole
thermodynamics. Recently, topology has attracted a lot of
attention as a mathematical tool to explore the thermody-
namic properties of black holes [30–46].1 Remarkably, a
novel approach proposed in Ref. [54] has emerged to
examine the thermodynamic topological properties of black
holes. This approach interprets black hole solutions as
topological thermodynamic defects, establishes topological
numbers, and subsequently categorizes black holes into
three distinct classes based on their respective topo-
logical numbers. This groundbreaking methodology has
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1One can also apply topology to study the light rings [47–51]
and the timelike circular orbits [52,53].
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illuminated new facets of our understanding of the funda-
mental properties of black holes and gravity. The topo-
logical approach outlined in Ref. [54] has gained
widespread acceptance due to its adaptability and simplic-
ity. Consequently, it has been successfully employed to
investigate the topological numbers associated with various
well-known black hole solutions [55–68]. However, the
topological number of the accelerating black holes remains
virgin territory; it deserves to be explored deeply which
motivates us to conduct the present work.
In this paper, we shall investigate the topological number

associated with the four-dimensional static accelerating
black hole and its AdS extension, as well as the static
charged accelerating black hole and its AdS extension. This
paper aims to fill the gap in the existing literature by
examining the influence of the acceleration parameter on
the topological number of black holes, a facet that has been
overlooked so far. The findings of this research will provide
valuable insights into the crucial role played by the
acceleration parameter in determining the topological
number of static black holes and their AdS counterparts
within the framework of the Einstein-Maxwell gravity
theory. We shall witness a constant unity in the difference
of the topological number between the asymptotically flat
static accelerating black hole and its corresponding asymp-
totically flat static nonaccelerating black hole. Additionally,
we shall observe a consistent −1 difference in the topo-
logical number between the asymptotically AdS static
accelerating black hole and its corresponding asymptoti-
cally AdS static nonaccelerating black hole. We conjecture
that they may also be valid for other accelerating
black holes.
The remaining part of this paper is organized as follows.

In Sec. II, we present a brief review of the thermodynamic
topological approach outlined in Ref. [54]. In Sec. III,
we first investigate the topological number of the four-
dimensional static accelerating black hole by considering
the simplest static C-metric solution, and then extend it to
the case of the static AdS C-metric solution with a nonzero
negative cosmological constant. In Sec. IV, we discuss the
topological number of the four-dimensional charged accel-
erating black hole by considering the Reissner-Nordström
C-metric (RN C-metric) solution, and then extend it to the
RN-AdS C-metric case. Finally, our conclusion and out-
look are given in Sec. V.

II. A BRIEF REVIEW OF THERMODYNAMIC
TOPOLOGICAL APPROACH

In this section, we give a brief review of the novel
thermodynamic topological approach. According to
Ref. [54], we begin by introducing the generalized off
shell Helmholtz free energy

F ¼ M −
S
τ

ð1Þ

for a black hole thermodynamical system with the mass M
and the entropy S, where τ is an extra variable that can be
viewed as the inverse temperature of the cavity surrounding
the black hole. Only when τ ¼ T−1, the generalized
Helmholtz free energy (1) manifests its on shell character-
istics and converges to the standard Helmholtz free energy
F ¼ M − TS of the black hole [18,69–72].
In Ref. [54], a key vector ϕ is defined as

ϕ ¼
�
∂F
∂rh

;− cotΘ cscΘ
�
: ð2Þ

Within the given framework, the parameters are subject to
the conditions 0 < rh < þ∞ and 0 ≤ Θ ≤ π. It is impor-
tant to highlight that the component ϕΘ exhibits divergence
at Θ ¼ 0 and Θ ¼ π, implying an outward direction of the
vector in these particular scenarios.
A topological current can be established through the

utilization of Duan’s theory [73–75] on ϕ-mapping topo-
logical currents in the following manner:

jμ ¼ 1

2π
εμνρεab∂νna∂ρnb: μ; ν; ρ ¼ 0; 1; 2; ð3Þ

Here, we have ∂ν ¼ ∂=∂xν and xν ¼ ðτ; rh;ΘÞ. The unit
vector n is formulated as n ¼ ðnr; nΘÞ, where nr ¼ ϕrh=kϕk
and nΘ ¼ ϕΘ=kϕk. It is evident that the conservation of the
aforementioned current (3) can be easily demonstrated,
leading to ∂μjμ ¼ 0. Furthermore, it can be promptly shown
that the topological current represents a δ-function of the
field configuration [49,74,75]

jμ ¼ δ2ðϕÞJμ
�
ϕ

x

�
; ð4Þ

where the three-dimensional Jacobian Jμðϕ=xÞ fulfills
εabJμðϕ=xÞ ¼ εμνρ∂νϕ

a
∂ρϕ

b. It becomes evident that the
value of jμ vanishes only when ϕaðxiÞ ¼ 0, allowing us to
derive the topological numberW in the subsequent manner,

W ¼
Z
Σ
j0d2x ¼

XN
i¼1

βiηi ¼
XN
i¼1

wi: ð5Þ

In the given context, βi represents the positive Hopf index,
serving as a count for the number of loops formed by the
vector ϕa within the ϕ-space as xμ revolves around the zero
point (ZP) zi. Simultaneously, ηi ¼ signðJ0ðϕ=xÞziÞ ¼ �1

denotes the Brouwer degree, and wi denotes the winding
number associated with the ith zero point of ϕ enclosed
within the domain Σ. Furthermore, in the case that two
distinct closed curves, denoted as Σ1 and Σ2, encompass the
identical zero point of ϕ, it follows that the corresponding
winding number must be equivalent. Conversely, if there

DI WU PHYS. REV. D 108, 084041 (2023)

084041-2



exists no zero point of ϕ within the enclosed region, it is
imperative that W ¼ 0.
It is important to emphasize that the local winding

number wi can serve as a valuable tool for characterizing
the local thermodynamic stability. Thermodynamically
stable black holes correspond to positive values of wi,
while unstable black holes correspond to negative values.
On the other hand, the global topological number W
represents the difference between the numbers of thermo-
dynamically stable and unstable black holes within a
classical black hole solution at a fixed temperature [54].
Hence, the local winding number not only allows for
differentiation between different phases of black holes
(stable or unstable) within the same black hole solution
at a specific temperature, but it also facilitates the classi-
fication of black hole solutions based on the global
topological number. Moreover, based on this classification,
black holes with the same global topological number
exhibit similar thermodynamic properties, even if they
belong to different geometric classes.

III. STATIC NEUTRAL ACCELERATING
BLACK HOLES

In this section, we will investigate the topological
number of the four-dimensional static neutral accelerating
black hole by considering the simplest static C-metric
solution, and then extend it to the case of the static AdS
C-metric solution with a nonzero negative cosmological
constant.

A. C-metric black hole

An accelerating black hole can be described by the
metric [6,76,77]

ds2¼ 1

Ω2

�
−fðrÞdt2þ dr2

fðrÞþr2
�
dθ2

gðθÞþgðθÞsin2θdφ
2

K2

��
;

ð6Þ

where

fðrÞ ¼ ð1 − A2r2Þ
�
1 −

2m
r

�
;

gðθÞ ¼ 1þ 2mA cos θ; Ω ¼ 1þ Ar cos θ;

in which K is the conical deficit of the spacetime, m and A
are the mass and acceleration parameters, respectively.
The thermodynamic quantities are [18,19]

M ¼ m
K
; μ� ¼ 1

4

�
1 −

1� 2mA
K

�
;

T ¼ m
2πr2h

−
ðrh −mÞA2

2π
; S ¼ πr2h

Kð1 − A2r2hÞ
; ð7Þ

where μ� are the tensions of the conical deficits on the
north and south poles, rh are the locations of the event and
Cauchy horizons that satisfy the equation: fðrhÞ ¼ 0.
It is a simple matter to check that the above thermo-

dynamic quantities simultaneously fulfil the first law and
the Bekenstein-Smarr relation

dM ¼ TdS − λþdμþ − λ−dμ−; ð8Þ

M ¼ 2TS; ð9Þ

where the thermodynamic lengths [17]

λ� ¼ rh
1� Arh

−m ð10Þ

are conjugate to the tensions μ�.
In the subsequent step, we will derive the topological

number of the four-dimensional C-metric black hole. The
evaluation of the Helmholtz free energy for this black hole
can be carried out by utilizing the Euclidean action as
follows:

IE ¼ 1

16π

Z
M
d4x

ffiffiffi
g

p
Rþ 1

8π

Z
∂M

d3x
ffiffiffi
h

p
ðK −K0Þ; ð11Þ

where h is the determinant of the induced metric hij, K is
the extrinsic curvature of the boundary, and K0 is the
subtracted one of the massless C-metric solution as the
reference background. The calculation of the Euclidean
action integral yields the following result for the Helmholtz
free energy

F ¼ IE
β
¼ m

2K
¼ M − TS; ð12Þ

where β ¼ 1=T being the interval of the time coordinate.
Furthermore, the last equality of Eq. (12) is valid using
the results of Eq. (7). Therefore, the conical singularity (the
(λ� − μ�)-pairs) has no effect on the calculation of the
Helmholtz free energy of the C-metric black hole. It is
interesting to make a comparison of the above discussions
with our recent works [67,68] on the thermodynamic
topology of four-dimensional Taub-NUT spacetimes,
where the new conjugate (ψ −N )-pair is introduced in
the expressions of the Taub-NUT spacetimes. Replacing T
with 1=τ in Eq. (12) and substituting m ¼ rh=2, thus the
generalized off shell Helmholtz free energy is

F ¼ M −
S
τ
¼ rh

2K
−

πr2h
ð1 − A2r2hÞKτ

: ð13Þ

Using the definition of Eq. (2), the components of the
vector ϕ can be easily obtained as follows:
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ϕrh ¼ 1

2K
−

2πrh
ðA2r2h − 1Þ2Kτ

; ð14Þ

ϕΘ ¼ − cotΘ cscΘ: ð15Þ

By solving the equation: ϕrh ¼ 0, one can get a curve on
the rh − τ plane. For the four-dimensional static accelerat-
ing black hole, one can arrive at

τ ¼ 4πrh
ðA2r2h − 1Þ2 : ð16Þ

Note that Eq. (16) consistently reduces to the result
obtained in the case of the four-dimensional
Schwarzschild black hole [54] when the acceleration
parameter A vanishes.
Under the assumption of Ar0 ¼ 1 for the four-

dimensional C-metric black hole (other values of A do
not affect the topological number of this black hole), we
plot Figs. 1 and 2 to visualize key aspects. These figures
depict the zero points of the component ϕrh and the
behavior of the unit vector field n on a portion of the
Θ − rh plane, with τ ¼ 20r0. Here, r0 corresponds to an
arbitrary length scale determined by the size of a cavity that
encloses the static accelerating black hole. From Fig. 1,
one can easily observe that there are one thermo-
dynamically stable and one thermodynamically unstable
four-dimensional C-metric black hole for any value of τ.
Therefore, it is evident that the C-metric black hole exhibits
distinct behavior compared to the Schwarzschild black hole
(which always exist one Schwarzschild black hole for any
value of τ) [54], emphasizing the significant impact of the
acceleration parameter on the thermodynamical stability
of the static neutral black hole. Consequently, it would
be intriguing to explore deeper into the topological proper-
ties of black holes with unusual horizon topologies,
such as planar [78], toroidal [79], hyperbolic [80],

ultraspinning black holes [81–90], and NUT-charged
spacetimes [91–95].
In Fig. 2, the zero points are located at ðrh=r0;ΘÞ ¼

ð0.62; π=2Þ, and ð1.39; π=2Þ, respectively. Consequently,
the winding numbers wi for the blue contours Ci can be
interpreted as follows: w1 ¼ −1, w2 ¼ 1, which deviate
from those associated with the Schwarzschild black
hole [54]. Regarding the topological global properties,
the topological number W ¼ 0 for the four-dimensional
C-metric black hole can be readily observed from
Fig. 2, which also distinguishes it from the topological
number of the Schwarzschild black hole (W ¼ −1). Thus, it
can be indicated that not only do the C-metric black hole
and the Schwarzschild black hole exhibit clear differences
in terms of geometric topology, but they also belong to
different categories from the thermodynamic topological
perspective.

B. AdS C-metric black hole

In this subsection, we will extend the above discussions
to the cases of the static neutral AdS accelerating black hole
by considering the four-dimensional AdS C-metric black
hole, whose metric is still given by Eq. (6), but now

fðrÞ ¼ ð1 − A2r2Þ
�
1 −

2m
r

�
þ r2

l2
;

in which the AdS radius l is associated with the thermo-
dynamic pressure P ¼ 3=ð8πl2Þ of the four-dimensional
AdS black hole [96–98].

C–metric

0 10 20 30 40 50
0

1

2

3

4

5

FIG. 1. Zero points of the vector ϕrh shown in the rh − τ plane
with Ar0 ¼ 1. There are one thermodynamically stable and one
thermodynamically unstable four-dimensional C-metric black
hole for any value of τ. Obviously, the topological number is:
W ¼ 1 − 1 ¼ 0.

FIG. 2. The red arrows represent the unit vector field n on a
portion of the rh − Θ plane for the four-dimensional C-metric
black hole with Ar0 ¼ 1 and τ=r0 ¼ 20. The ZPs marked with
black dots are at ðrh=r0;ΘÞ ¼ ð0.62; π=2Þ, and ð1.39; π=2Þ,
respectively. The blue contours Ci are closed loops enclosing
the zero points.
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The thermodynamic quantities are [18]

M ¼ mα

K
; μ� ¼ 1

4

�
1 −

1� 2mA
K

�
;

T ¼ r3h þml2

2παr2hl
2
−
ðrh −mÞA2

2πα
; S ¼ πr2h

Kð1 − A2r2hÞ
;

V ¼ 4π

3αK

�
r3h

ð1 − A2r2hÞ2
þmA2l4

�
; P ¼ 3

8πl2
;

λ� ¼ 1

α

�
rh

1 − A2r2h
−m

�
1� 2Al2

rh

��
; ð17Þ

where the rescaled factor α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2l2

p
.

It is easy to verify that the above thermodynamic
quantities obey the differential first law and integral
Bekenstein-Smarr mass formula simultaneously,

dM ¼ TdSþ VdP − λþdμþ − λ−dμ−; ð18Þ

M ¼ 2TS − 2VP: ð19Þ

Now, we explore the topological number of the four-
dimensional static-neutral accelerating AdS black hole. In
order to get the result of the Helmholtz free energy, one can
calculate the Euclidean action integral [18]

IE ¼ 1

16π

Z
M
d4x

ffiffiffi
g

p �
Rþ 6

l2

�

þ 1

8π

Z
∂M

d3x
ffiffiffi
h

p �
K −

2

l
−
l
2
RðhÞ

�
; ð20Þ

where K and RðhÞ are the extrinsic curvature and Ricci
scalar of the boundary metric hμν, respectively. To eliminate
the divergence, the action encompasses not only the
standard Einstein-Hilbert term but also includes the
Gibbons-Hawking boundary term and the corresponding
AdS boundary counterterms [99–103].
With the help of the above expressions in Eq. (17) and

utilizing m ¼ rh=2þ r3h=½2ð1 − α2r2hÞl2�, the Helmholtz
free energy of the four-dimensional AdS C-metic black
hole reads

F ¼ IE
β
¼ mα

2K
−

1

2αKl2

�
r3h

ð1 − A2r2hÞ2
þmα2l4

�

¼ M − TS ¼ M
2
− VP; ð21Þ

where, similar to the case of the four-dimensional C-metric
black hole in the last subsection, the conical singularity also
has no effect on the calculation of the Helmholtz free
energy.
Replacing T with 1=τ and substituting l2 ¼ 3=ð8πPÞ into

Eq. (21), then the generalized off shell Helmholtz free
energy simply reads

F ¼ M −
S
τ

¼ rh
24K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 −

6A2

πP

r �
3þ 8πPr2h

1 − A2r2h

�
−

πr2h
ð1 − A2r2hÞKτ

:

ð22Þ

Therefore, the components of the vector ϕ are computed as
follows:

ϕrh ¼ 1

24KðA2r2h−1Þ2
"
−8

ffiffiffiffiffiffi
2π

p
Pr2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π−

3A2

P

r
ðA2r2h−3Þ

þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16−

6A2

πP

r
ðA2r2h−1Þ2

#
−

2πrh
ðA2r2h−1Þ2Kτ ; ð23Þ

ϕΘ ¼ − cotΘ cscΘ; ð24Þ

thus one can calculate the zero point of the vector field
ϕrh as

τ¼−
24π

3
2rhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π− 3A2

2P

q
½8πPr2hðA2r2h−3Þ−3ðA2r2h−1Þ2�

; ð25Þ

which consistently reduces to the one obtained in the four-
dimensional Schwarzschild-AdS4 black hole case [58]
when the acceleration parameter A is turned off. We point
out that the generation point satisfies the constraint con-
ditions given by

∂τ

∂rh
¼ 0;

∂
2τ

∂r2h
> 0; ð26Þ

and the annihilation point obeys the constraint conditions
as follows:

∂τ

∂rh
¼ 0;

∂
2τ

∂r2h
< 0: ð27Þ

Considering the pressure as Pr20 ¼ 0.01 and the accel-
eration parameter Ar0 ¼ 0.2 for the four-dimensional AdS
C-metric black hole (other values of A do not influence its
topological number), we illustrate the zero points of ϕrh in
the rh − τ plane in Fig. 3, and the unit vector field n in
Fig. 4 with τ ¼ 20r0, 21r0, and 22r0, respectively.
From Figs. 3 and 4, one can observe that for these values
of Pr20 and Ar0, one generation point and one annihilation
point can be found at τ=r0 ¼ τa=r0 ¼ 20.75 and
τ=r0 ¼ τb=r0 ¼ 21.77, respectively. It is evident that there
exists a small black hole branch for τ < τa, three distinct
black hole branches for τa < τ < τb, and one large black
hole branch for τ > τb. Computing the winding number w
for these three black hole branches, we find that both the
small and large black hole branches have w ¼ −1 (thermo-
dynamically unstable), while the intermediate black hole
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branch has w ¼ 1 (thermodynamically stable). Thus, the
AdS4 C-metric black hole consistently maintains a topo-
logical number of W ¼ −1, in contrast to the four-
dimensional C-metric black hole discussed in the previous
subsection, which possesses a topological number of zero.
Therefore, from a thermodynamic topological standpoint,
these aforementioned two black holes represent distinct
categories of black hole solutions, indicating the impor-
tance of the cosmological constant in determining the
topological number for the static neutral accelerating
black hole. Furthermore, since the topological number of
the Schwarzschild-AdS4 black hole is zero, while that
of the AdS4 C-metric black hole is −1, it can be inferred
that the acceleration parameter has a remarkable effect on
the topological classification of the four-dimensional static
uncharged AdS black hole.

IV. STATIC CHARGED ACCELERATING
BLACK HOLES

In this section, we turn to discuss the topological number
of the four-dimensional charged accelerating black hole by
considering the RN C-metric solution, and then extend
it to the RN-AdS C-metric case with a nonzero negative
cosmological constant.

A. RN C-metric black hole

A static charged accelerating black hole is represented by
the metric and the Abelian gauge potential [6]

ds2 ¼ 1

Ω2

�
−fðrÞdt2 þ dr2

fðrÞ þ r2
�
dθ2

gðθÞ

þ gðθÞsin2θ dφ
2

K2

��
; ð28Þ

FIG. 4. The red arrows represent the unit vector field n on a
portion of the rh − Θ plane. The ZPs marked with black dots are at
ðrh=r0;ΘÞ ¼ ð1.70; π=2Þ, ð1.98; π=2Þ, ð4.37; π=2Þ, ð5.57; π=2Þ,
ð6.41; π=2Þ, for ZP1, ZP2, ZP3, ZP4, and ZP5, respectively. The
blue contours Ci are closed loops surrounding the zero points.

SBH

LBH

IBH

19 20 21 22 23
0

2

4

6

8

FIG. 3. Zero points of the vector ϕrh shown on the rh − τ plane
with Pr20 ¼ 0.01, and Ar0 ¼ 0.2 for the four-dimensional AdS
C-metric black hole. The red solid, blue dashed, and black
solid lines are for the large black hole (LBH), intermediate black
hole (IBH), and small black hole (SBH), respectively. The
annihilation and generation points are represented by red and
black dots, respectively. Clearly, the topological number is:
W ¼ −1þ 1 − 1 ¼ −1.
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F ¼ dB; B ¼ q
r
dt; ð29Þ

where

fðrÞ¼ð1−A2r2Þ
�
1−

2m
r
þq2

r2

�
;

gðθÞ¼1þ2mAcosθþq2A2cos2θ; Ω¼1þArcosθ;

in which K is the conical deficit of the charged accelerating
black hole, m, q, A are the mass, the electric charge and the
acceleration parameters, respectively.
The thermodynamic quantities are [19]

M ¼ m
αK

; μ� ¼ 1

4

�
1 −

1� 2mAþ q2A2

K

�
;

T ¼ mrh − q2

2παr3h
−
ðrh −mÞA2

2πα
; Q ¼ q

K
;

S ¼ πr2h
Kð1 − A2r2hÞ

; Φ ¼ q
αrh

; ð30Þ

where the factor α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2A2

p
, rh are the locations of the

event and Cauchy horizons that obey the horizon equa-
tion, fðrhÞ ¼ 0.
It is easy to verify that the above thermodynamic

quantities satisfy the differential first law and the integral
Bekenstein-Smarr relation simultaneously

dM ¼ TdSþΦdQ − λþdμþ − λ−dμ−; ð31Þ

M ¼ 2TSþΦQ; ð32Þ

with the thermodynamic lengths

λ� ¼ 1 ∓ Arh
αð1þ q2A2Þ

�
rh − 2mþ m

1� Arh

�
ð33Þ

being conjugate to the tensions μ�.
For the four-dimensional RN C-metric black hole, the

expression of the Gibbs free energy can be obtained from
the Euclidean action

IE ¼ 1

16π

Z
M
d4x

ffiffiffi
g

p ðR − F2Þ þ 1

8π

Z
∂M

d3x
ffiffiffi
h

p
ðK −K0Þ;

ð34Þ

where h represents the determinant of the induced metric
hij, K denotes the extrinsic curvature of the boundary, and
K0 signifies the subtracted value of the massless C-metric
solution used as the reference background. Thus, the Gibbs
free energy reads

G ¼ IE
β
¼ r2h − q2

4αKrh
¼ M − TS −ΦQ ¼ M −ΦQ

2
; ð35Þ

where β ¼ T−1 denotes the interval of the time coordinate,
the last two equalities are valid with the thermodynamic
variables in Eq. (30) as required. In addition, it is easy to
see that the conical singularity also has no effect on the
calculation of the Gibbs free energy in this case.
Next, we will investigate the topological number of the

four-dimensional static charged accelerating black hole. We
note that the Helmholtz free energy is given by

F ¼ GþΦQ ¼ M − TS: ð36Þ

It is very easy to obtain the generalized off shell Helmholtz
free energy as

F ¼ M −
S
τ
¼ r2h þ q2

2αKrh
−

πr2h
ð1 − A2r2hÞKτ

: ð37Þ

Then, the components of the vector ϕ are

ϕrh ¼ r2h − q2

2αKr2h
−

2πrh
ðA2r2h − 1Þ2Kτ

; ð38Þ

ϕΘ ¼ − cotΘ cscΘ: ð39Þ

Thus, by solving the equation, ϕrh ¼ 0, one can compute
the zero point of the vector field ϕ as

τ ¼ 4παr3h
ðr2h − q2ÞðA2r2h − 1Þ2 : ð40Þ

We point out that Eq. (40) consistently reduces to the one
obtained in the case of the four-dimensional RN black hole
[54] when the accelerating parameter A vanishes.
For the four-dimensional RN C-metric black hole, we

take Ar0 ¼ 1, q=r0 ¼ 1, and plot the zero points of the
component ϕrh in Fig. 5, and the unit vector field n with
τ=r0 ¼ 20 in Fig. 6, respectively. By the way, we also point
out that different values (nonzero) of the acceleration
parameter A do not affect the topological number of the
four-dimensional RN C-metric black hole. Obviously, there
is only one thermodynamically stable four-dimensional RN
C-metric black hole for any value of τ. Based upon the local
property of the zero point, one can obtain the topological
numberW ¼ 1 for the four-dimensional RN C-metric black
hole, which is different from that of the four-dimensional
RN black hole (W ¼ 0) [54]. This fact indicates that
the acceleration parameter parameter plays an crucial
role in determining the topological number of the
four-dimensional static-charged black hole. In addition,
compared with the four-dimensional RN black hole which
has a topological number of zero, it can be inferred that the
electric charge parameter also has an important effect on the
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topological number for the four-dimensional C-metric
black hole.

B. RN-AdS C-metric black hole

In this subsection, we will extend the discussions in the
last subsection to the cases of the static charged accelerat-
ing AdS black hole by considering the four-dimensional
RN-AdS C-metric black hole, whose metric and the
Abelian gauge potential are still given by Eqs. (28) and
(29), but now

fðrÞ ¼ ð1 − A2r2Þ
�
1 −

2m
r

þ q2

r2

�
þ r2

l2
:

The thermodynamic quantities are [19]

M ¼ m½1 − A2l2ð1þ A2q2Þ�
αK

; S ¼ πr2h
Kð1 − A2r2hÞ

;

T ¼ 1

4πα

�
−2A2rh

�
1 −

2m
rh

þ q2

r2h

�
þ 2ð1 − A2r2hÞ

�
m
r2h

−
q2

r3h

�
þ 2rh

l2

�
;

Q ¼ q
K
; Φ ¼ q

αrh
; P ¼ 3

8πl2
;

V ¼ 4πl4

3αKr5h

n
4m2r2h þmrh

	
A2ð1þ A2q2Þr4h − 4r2h − 4q2


þ ðr2h þ q2Þ2
o
;

μ� ¼ 1

4

�
1 −

1� 2mAþ q2A2

K

�
; ð41Þ

where the factor α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2l2ð1þ A2q2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2q2

p
,

and rh is the largest root of the horizon equation,
fðrhÞ ¼ 0. Then one can verify that the above thermody-
namical quantities completely satisfy both the first law and
the Bekenstein-Smarr mass formula

dM ¼ TdSþΦdQþ VdP − λþdμþ − λ−dμ−; ð42Þ

M ¼ 2TSþΦQ − 2VP; ð43Þ

with the thermodynamic lengths

λ� ¼ −
l2

ð1þ A2q2Þαr4h
h
2m2rhð1 − A2r2hÞ

þmðArh ∓ 1ÞðAr3h � 2A2q2r2h � 3r2h þ Aq2rh � q2Þ
� rhð1þ A2q2ÞðA3q2r3h � r2h − Aq2rh � q2Þ

i
; ð44Þ

being conjugate to the tensions μ�.
Now, we investigate the Gibbs free energy of the

four-dimensional RN-AdS C-metric black hole via the
Euclidean action integral. The expression of the Euclidean
action is given as

FIG. 6. The red arrows represent the unit vector field n on a
portion of the rh − Θ plane for the four-dimensional RN C-metric
solution with Ar0 ¼ 1, q=r0 ¼ 1, and τ=r0 ¼ 20. The ZP marked
with black dot is at ðrh=r0;ΘÞ ¼ ð1.59; π=2Þ. The blue contour C
is a closed loop enclosing the zero point.

RN–C–metric

0 10 20 30 40 50
0

1

2

3

4

5

FIG. 5. Zero points of the vector ϕrh shown in the rh − τ plane
with Ar0 ¼ 1 and q=r0 ¼ 1 for the four-dimensional RN
C-metric black hole. There is one thermodynamically stable
four-dimensional RN-C-metric black hole for any value of τ.
Obviously, the topological number is W ¼ 1.
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IE ¼ 1

16π

Z
M
d4x

ffiffiffi
g

p �
Rþ 6

l2
− F2

�

þ 1

8π

Z
∂M

d3x
ffiffiffi
h

p �
K −

2

l
−
l
2
RðhÞ

�
; ð45Þ

where K and RðhÞ are the extrinsic curvature and Ricci
scalar of the boundary metric hμν, respectively. Along with
the standard Einstein-Hilbert term, the action also contains
the Gibbons-Hawking boundary term and the correspond-
ing AdS boundary counterterms in order to eliminate
the divergence. Thus, the Gibbs free energy can simply
obtain as

G ¼ I
β
¼ mrh − q2

2αKrh
−
�
2m2

αKr3h
þ ðr2h þ q2Þ2

2αKr5h

þm½A2ð1þ A2q2Þr4h − 2r2h − 2q2�
αKr4h

�
l2

¼ M − TS −ΦQ ¼ M −ΦQ
2

− VP; ð46Þ

where β ¼ T−1 denotes the interval of the time coordinate,
the last two equalities are valid with the thermodynamic

variables in Eq. (41) as required. Furthermore, it is easy to
see that the conical singularity does not affect the calcu-
lation of the Gibbs free energy in this case either.
In order to establish the thermodynamic topological

number of the four-dimensional static charged accelerating
AdS black hole, we need to obtain the expression of the
generalized off shell Helmholtz free energy in advance. The
Helmholtz free energy is given by

F ¼ GþΦQ ¼ M − TS: ð47Þ

Using the definition of the generalized off shell Helmholtz
free energy (1) and l2 ¼ 3=ð8πPÞ, one can easily get

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π − 3ðA4q2 þ A2ÞP−1

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1þ A2q2Þ

p
Krh

�
r2h þ q2 þ 8πPr4h

3ð1 − A2r2hÞ
�

−
πr2h

ð1 − A2r2hÞKτ
: ð48Þ

Thus, the components of the vector ϕ are computed as
follows:

ϕrh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π − 6ðA4q2 þ A2ÞP−1

p
24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1þ A2q2Þ

p
ðA2r2h − 1Þ2Kr2h

h
3ðr2h − q2ÞðA2r2h − 1Þ2 − 8πPr4hðA2r2h − 3Þ

i
−

2π
3
2rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2q2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1þ A2q2Þ

p
ðA2r2h − 1Þ2Kτ

;

ϕΘ ¼ − cotΘ cscΘ:

So the zero point of the vector field ϕ is

τ ¼ −
24π

3
2r3h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ A2q2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π − 3ðA4q2 þ A2ÞP−1

p h
8πPr4hðA2r2h − 3Þ

þ 3ðq2 − r2hÞðA2r2h − 1Þ2
i
: ð49Þ

Similar to the procedure adopted before, for the four-
dimensional RN-AdS C-metric black hole, we show the
zero points of the component ϕrh with q ¼ r0, Ar0 ¼ 0.2,
and Pr20 ¼ 0.01 in Fig. 7, and the unit vector field n with
τ ¼ 22r0, q ¼ r0, Ar0 ¼ 0.2, and Pr20 ¼ 0.01 in Fig. 8. In
addition, we also point out that different values of A have
no effect on the topological number of the four-dimensional
RN-AdS C-metric black hole. Note that for these values of
q ¼ r0, Ar0 ¼ 0.2 and Pr20 ¼ 0.01, in Fig. 7, one
generation point can be found at τ=r0 ¼ τc=r0 ¼ 21.56,
and there are a thermodynamically unstable four-
dimensional RN-AdS-C-metric black hole and a thermo-
dynamically stable four-dimensional RN-AdS-C-metric
black hole when τ ¼ τ1. Based on the local property of
the zero points, we obtain the topological number of the
four-dimensional RN-AdS C-metric black hole is W ¼ 0,

while that of the RN-AdS black hole is W ¼ 1 [54].
Consequently, the introduction of the acceleration param-
eter brings about a substantial transformation in the
topological number of the four-dimensional RN-AdS black
hole. Moreover, the contrasting topological numbers

RN–AdS–C–metric

0 10 20 30 40
0

2

4

6

8

10

FIG. 7. Zero points of the vector ϕrh shown on the rh − τ plane
with q=r0 ¼ 1, Ar0 ¼ 0.2, and Pr20 ¼ 0.01 for the four-dimen-
sional RN-AdS C-metric solution. The generation point for this
black hole is represented by the black dot with τc. There are two
four-dimensional RN-AdS C-metric black holes when τ ¼ τ1.
Clearly, the topological number is W ¼ −1þ 1 ¼ 0.
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between the four-dimensional AdS C-metric black hole
(W ¼ −1) and the four-dimensional RN-AdS C-metric
black hole (W ¼ 0) underscores the noteworthy impact
of the electric charge parameter on the topological number
for the former. Furthermore, the topological number of
W ¼ 1 exhibited by the RN-C-metric black hole distin-
guishes it from the RN-AdS C-metric black hole (W ¼ 0),
emphasizing the important role played by the cosmological
constant in determining the topological number for the
four-dimensional RN-C-metric black hole.

V. CONCLUSIONS

The results we found in the current paper are presented in
Table I. Note that we have also included some known
results in the table for comparison purposes.
In this paper, employing the generalized off shell

Helmholtz free energy, we investigate the topological
numbers of the four-dimensional static accelerating black
hole and its AdS extension, along with the static charged
accelerating black hole and its AdS extension. We observe
that the four-dimensional C-metric black hole and the AdS4
RN-C-metric black hole fall under the same category of
topological classifications, as evidenced by their same
topological number of W ¼ 0. On the other hand, the
four-dimensional AdS C-metric black hole and the four-
dimensional RN C-metric black hole belong to other two
distinct topological categories, distinguished by their topo-
logical numbers of W ¼ −1 and W ¼ 1, respectively. By
the way, it is worth to noting that different values (nonzero)

of the acceleration parameter do not influence the topo-
logical number of the corresponding four-dimensional
static accelerating black hole.
Furthermore, itwill become apparent that the difference in

the topological number between the asymptotically flat
static accelerating black hole and its corresponding asymp-
totically flat static nonaccelerating black hole is consistently
unity. Moreover, we will take note of the difference in the
topological number between the asymptotically AdS static
accelerating black hole and its corresponding asymptotically
AdS static nonaccelerating black hole, which is always −1.
We conjecture that they might also hold for other accel-
erating black holes. However, the conjecture need to be
tested by further investigating the topological numbers of
many other accelerating black holes and their common
counterparts. Through our analysis, we uncover a profound
and significant impact of the acceleration parameter on the
topological characteristics of the static black holes.
Additionally, we provide evidence of the crucial role

played by the electric charge parameter in determining the
topological number for the static neutral accelerating black
holes. What is more, we emphasize the remarkable influ-
ence exerted by the cosmological constant on the topo-
logical number of the static accelerating black hole. A most
related issue is to extend the present work to the more
general rotating charged accelerating black holes.
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FIG. 8. The red arrows represent the unit vector field n on a
portion of the rh − Θ planewithq=r0 ¼ 1,Ar0 ¼ 0.2,Pr20 ¼ 0.01,
and τ=r0 ¼ 22 for the four-dimensional RN-AdS C-metric black
hole. The ZPs marked with black dots are at ðrh=r0;ΘÞ ¼
ð4.11; π=2Þ, ð5.78; π=2Þ for ZP1 and ZP2, respectively. The blue
contours Ci are closed loops surrounding the zero points.

TABLE I. The topological number W, numbers of generation
and annihilation points for static accelerating black holes and
their usual nonaccelerating counterparts.

BH solution W
Generation

point
Annihilation

point

C-metric 0 0 0
Schwarzschild [54] −1 0 0

AdS C-metric −1 1 or 0 1 or 0
Schwarzschild-AdS [41] 0 0 1

RN C-metric 1 0 0
RN [54] 0 1 0

RN-AdS C-metric 0 1 0
RN-AdS [54] 1 1 or 0 1 or 0
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