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Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model and Polyakov linear sigma-model (PLSM) has been utilized in studying
QCD phase-diagram. From quasi-particle model (QPM) a gluonic sector is integrated into LSM.The hadron resonance gas (HRG)
model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models
with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange
condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary
is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-
energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from
PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal
models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL
and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due
the very heavy quark masses implemented in both models.

1. Introduction

At large momentum scale, quantum chromodynamics
(QCD) predicts asymptotic freedom [1, 2] or a remarkable
weakening in the running strong coupling. Accordingly,
phase transition takes place from hadrons in which quarks
and gluons are conjectured to remain confined (at low
temperature and density) to quark-gluon plasma (QGP)
[3, 4], in which quarks and gluons become deconfined (at
high temperature and density) [5]. Furthermore, at low
temperature, the QCD chiral symmetry is spontaneously
broken; SU(𝑁𝑓)𝐿 × SU(𝑁𝑓)𝑅 → SU(𝑁𝑓)𝑉. In this limit,
the chiral condensate remains finite below the critical
temperature (𝑇𝑐). The broken chiral symmetry is restored at
high temperatures. The finite quark masses explicitly break
QCD chiral symmetry.

Nambu-Jona-Lasinio (NJL) model [6] describes well the
hadronic degrees of freedom. Polyakov Nambu-Jona-Lasinio
(PNJL) model [7–9] takes into consideration the quark

dynamics [10] and has been utilized to study the QCD phase-
diagram [11, 12]. Also, linear-𝜎model (LSM) [13] can be used
in mapping out the QCD phase-diagram.

Many studies have been performed on LSM like 𝑂(4)

LSM [13] at vanishing temperature, 𝑂(4) LSM at finite
temperature [14, 15], and SU(𝑁𝑓)𝑅 × SU(𝑁𝑓)𝐿 LSM for𝑁𝑓 =
2, 3, and 4 quark flavors [16–19]. In order to obtain reliable
results, extended LSM to PLSM can be utilized, in which
information about the confining glue sector of the theory is
included in form of Polyakov loop potential.The latter can be
extracted from pure Yang-Mills lattice simulations [20–23].
Also, the Polyakov linear sigma-model (PLSM) and Polyakov
quark meson model (PQM) [24–26] deliver reliable results.
Furthermore, the quasi-particle model (QPM) [27, 28] was
suggested to reproduce the lattice QCD calculations [29, 30],
in which two types of actions are implemented; the lattice
QCD simulations utilizing the standard Wilson action and
the ones with renormalization improved action.
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In the present work, we integrate the gluonic sector of
QPM into LSM [31] (QLSM) in order to reproduce the
recent lattice QCD calculations [32]. In QLSM [31], the
Polyakov contributions to the gluonic interactions and to
the confinement-deconfinement phase transition are entirely
excluded. Instead we just add the gluonic part of QPM.
Therefore, the quark masses should be very heavy. We will
comment on this, later on. In Section 3, we outline the QLSM
results. They are similar to that of PNJL. This might be inter-
preted due the very heavy quarkmasses implemented in both
models. Similar approach has been introduced in [33]. The
authors described inclusion of gluonic Polyakov loop, which
is assumed to generate a large gauge invariance and lead to a
remarkablemodification in hadron thermodynamics. A quite
remarkable bridging between PNJLmodel quantumand local
Polyakov loop and HRG model has been introduced [34]. A
large suppression of the thermal effects has been reported
and it was concluded that the center symmetry breaking
becomes exponentially small with increasing the masses of
constituent quarks. In other words, the chiral symmetry
restoration becomes exponentially small with increasing the
pion mass.

The hadron resonance gas (HRG) model gives a good
description for the thermal and dense evolution of various
thermodynamic quantities in the hadronic matter [35–43].
Also, it has been successfully utilized to characterize the
conditions deriving the chemical freeze-out at finite den-
sities [44]. In light of this, the HRG model can be well
used in calculating the thermal and dense dependence of
quark-antiquark condensate [45]. The HRG grand canonical
ensemble includes two important features [38]: the kinetic
energies and the summation over all degrees of freedom
and energies of the resonances. On the other hand, it is
known that the formation of resonances can only be achieved
through strong interactions [46]; resonances (fireballs) are
composed of further resonances (fireballs), which in turn
consist of resonances (fireballs) and so on. In other words,
the contributions of the hadron resonances to the partition
function are the same as that of free (noninteracting) particles
with an effectivemass. At temperatures comparable to the res-
onance half-width, the effectivemass approaches the physical
one [38]. Thus, at high temperatures, the strong interactions
are conjectured to be taken into consideration through the
inclusion of heavy resonances. It is found that the hadron
resonances with masses up to 2GeV are representing suitable
constituents for the partition function [35–43]. In such a way,
the singularity expected at theHagedorn temperature [35, 36]
can be avoided and the strong interactions are assumed to be
taken into consideration. Nevertheless, validity of the HRG
model is limited to the temperatures below the critical one,
𝑇𝑐.

In the present paper, we review PLSM, QLSM, PNJL,
and HRG with respect to their descriptions for the chiral
phase transition. We analyse the chiral order-parameter
𝑀(𝑇), the normalized net-strange condensate Δ 𝑞,𝑠(𝑇), and
the chiral phase-diagram and compare the results with the
lattice QCD [47–49]. The present work is organized as
follows. In Section 2, we introduce the different approaches
SU(3) PLSM [50] (Section 2.1), QLSM (Section 2.2), PNJL

(Section 2.3), and HRG (Section 2.4). The corresponding
mean field approximations are also outlined. Section 3 is
devoted to the results. The conclusions and outlook will be
given in Section 4.

2. SU(3) Effective Models

2.1. Polyakov Linear Sigma-Model (PLSM). As discussed in
[31, 50], the Lagrangian of LSM with 𝑁𝑓 = 3 quark flavors
and𝑁𝑐 = 3 (for quarks, only) color degrees and with quarks
coupled to Polyakov loop dynamics was introduced in [26, 51]

L = Lchiral −U (𝜙, 𝜙
∗
, 𝑇) , (1)

where the chiral part of the Lagrangian of the SU(3)𝐿×SU(3)𝑅
symmetric linear sigma-model Lagrangian with 𝑁𝑓 = 3 is
[52, 53] Lchiral = L𝑞 +L𝑚. The first term is fermionic part
(2) with a flavor-blind Yukawa coupling 𝑔 of the quarks. The
second term is mesonic contribution (3):

L𝑞 = ∑
𝑓

𝜓𝑓 (𝑖𝛾
𝜇
𝐷𝜇 − 𝑔𝑇𝑎 (𝜎𝑎 + 𝑖𝛾5𝜋𝑎)) 𝜓𝑓, (2)

L𝑚 = Tr (𝜕𝜇Φ
†
𝜕
𝜇
Φ − 𝑚

2
Φ
†
Φ) − 𝜆1 [Tr (Φ

†
Φ)]

2

− 𝜆2Tr (Φ
†
Φ)
2
+ 𝑐 [Det (Φ) + Det (Φ†)]

+ Tr [𝐻 (Φ + Φ
†
)] .

(3)

The summation ∑𝑓 runs over the three flavors (𝑓 = 1, 2, 3

for the three quarks 𝑢, 𝑑, and 𝑠). The flavor-blind Yukawa
coupling 𝑔 should couple the quarks to the mesons. The
coupling of the quarks to the Euclidean gauge field 𝐴𝜇 =

𝛿𝜇0𝐴0 is given via the covariant derivative 𝐷𝜇 = 𝜕𝜇 −

𝑖𝐴𝜇[20, 21]. In (3),Φ is a complex 3×3matrix which depends
on the 𝜎𝑎 and 𝜋𝑎 [53], where 𝛾

𝜇 are Dirac 𝛾 matrices, 𝜎𝑎 are
the scalar mesons, and 𝜋𝑎 are the pseudoscalar mesons:

Φ = 𝑇𝑎𝜙𝑎 = 𝑇𝑎 (𝜎𝑎 + 𝑖𝜋𝑎) , (4)

where 𝑇𝑎 = 𝜆𝑎/2 with 𝑎 = 0, . . . , 8 are the nine generators
of the U(3) symmetry group and 𝜆𝑎 are the eight Gell-
Mann matrices [13]. The chiral symmetry is explicitly broken
through

𝐻 = 𝑇𝑎ℎ𝑎, (5)

which is a 3 × 3matrix with nine parameters ℎ𝑎. Three finite
condensates 𝜎0, 𝜎3, and 𝜎8 are possible, because the finite
values of vacuum expectation of Φ and Φ are conjectured
to carry the vacuum quantum numbers and the diagonal
components of the explicit symmetry breaking term, ℎ𝑎,
where ℎ0 ̸= 0, ℎ3 = 0, and ℎ8 ̸= 0, and squared tree
level mass of the mesonic fields 𝑚2, two possible coupling
constants𝜆1 and 𝜆2, Yukawa coupling𝑔, and a cubic coupling
constant 𝑐 can be estimated as follows: 𝑐 = 4807.84MeV,
ℎ1 = (120.73)

3MeV3, ℎ𝑠 = (336.41)
3MeV3, 𝑚2 =

−(306.26)
2MeV2, 𝜆1 = 13.48, and 𝜆3 = 46.48 and 𝑔 = 6.5.
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In order to get a good analysis it is more convenient to
convert the condensates 𝜎0 and 𝜎8 into a pure nonstrange 𝜎𝑥
and strange 𝜎𝑦 condensates [54]:

(
𝜎𝑥

𝜎𝑦
) =

1

√3
(
√2 1

1 −√2
)(

𝜎0

𝜎8
) . (6)

The second term in (1),U(𝜙, 𝜙∗, 𝑇), represents Polyakov
loop effective potential [20], which agrees well with the
nonperturbative lattice QCD simulations and should have
𝑍(3) center symmetry as pure gauge QCD Lagrangian does
[8, 24]. In the present work, we use the potential 𝑈(𝜙, 𝜙∗, 𝑇)
as a polynomial expansion in 𝜙 and 𝜙∗ [8, 9, 55, 56]:

U (𝜙, 𝜙∗, 𝑇)

𝑇4
= −

𝑏2 (𝑇)

2

𝜙

2
−
𝑏3

6
(𝜙
3
+ 𝜙

∗3
)

+
𝑏4

4
(
𝜙

2
)
2
,

(7)

where

𝑏2 (𝑇) = 𝑎0 + 𝑎1 (
𝑇0

𝑇
) + 𝑎2 (

𝑇0

𝑇
)

2

+ 𝑎3 (
𝑇0

𝑇
)

3

. (8)

In order to reproduce pure gauge lattice QCD thermody-
namics and the behavior of the Polyakov loop as a function
of temperature, we use the parameters 𝑎0 = 6.75, 𝑎1 = −1.95,
𝑎2 = 2.625, 𝑎3 = −7.44, 𝑏3 = 0.75, and 𝑏4 = 7.5. For
a much better agreement with the lattice QCD results, the
deconfinement temperature 𝑇0 in pure gauge sector is fixed
at 270MeV.

2.1.1. Polyakov Linear Sigma-Model (PLSM) in Mean Field
Approximation. In thermal equilibrium the grand partition
function can be defined by using a path integral over the
quark, antiquark, and meson fields:

Z = Tr exp[−
(Ĥ − ∑𝑓=𝑢,𝑑,𝑠 𝜇𝑓N̂𝑓)

𝑇
]

= ∫∏
𝑎

D𝜎𝑎D𝜋𝑎 ∫D𝜓D𝜓

⋅ exp[

[

∫
𝑥
(L + ∑

𝑓=𝑢,𝑑,𝑠

𝜇𝑓𝜓𝑓𝛾
0
𝜓𝑓)

]

]

,

(9)

where ∫
𝑥
≡ 𝑖 ∫

1/𝑇

0
𝑑𝑡 ∫

𝑉
𝑑3𝑥 and𝑉 is the volume of the system.

𝜇𝑓 is the chemical potential for 𝑓 = (𝑢, 𝑑, 𝑠). We consider
symmetric quarkmatter and define a uniform blind chemical
potential 𝜇𝑓 ≡ 𝜇𝑢,𝑑 = 𝜇𝑠. Then, we evaluate the partition
function in themean field approximation [53, 57].We can use
standard methods [58] in order to calculate the integration.
This gives the effective potential for the mesons.

We define the thermodynamic potential density of PLSM
as

Ω(𝑇, 𝜇) =
−𝑇 lnZ

𝑉

= 𝑈(𝜎𝑥, 𝜎𝑦) +U (𝜙, 𝜙
∗
, 𝑇) + Ω𝜓𝜓.

(10)

Assuming degenerate light quarks, that is, 𝑞 ≡ 𝑢, 𝑑, the quarks
and antiquarks contribution potential is given as [51]

Ω𝜓𝜓 = −2𝑇𝑁𝑞 ∫
𝑑3�⃗�

(2𝜋)
3
{ln [1 + 3 (𝜙 + 𝜙∗𝑒−(𝐸𝑞−𝜇)/𝑇) 𝑒−(𝐸𝑞−𝜇)/𝑇 + 𝑒−3(𝐸𝑞−𝜇)/𝑇]

+ ln [1 + 3 (𝜙∗ + 𝜙𝑒−(𝐸𝑞+𝜇)/𝑇) 𝑒−(𝐸𝑞+𝜇)/𝑇 + 𝑒−3(𝐸𝑞+𝜇)/𝑇]}

− 2𝑇𝑁𝑠 ∫
𝑑3�⃗�

(2𝜋)
3
{ln [1 + 3 (𝜙 + 𝜙∗𝑒−(𝐸𝑠−𝜇)/𝑇) 𝑒−(𝐸𝑠−𝜇)/𝑇 + 𝑒−3(𝐸𝑠−𝜇)/𝑇]

+ ln [1 + 3 (𝜙∗ + 𝜙𝑒−(𝐸𝑠+𝜇)/𝑇) 𝑒−(𝐸𝑠+𝜇)/𝑇 + 𝑒−3(𝐸𝑠+𝜇)/𝑇]} ,

(11)

where𝑁𝑞 = 2, 𝑁𝑠 = 1, and the valence quark and antiquark
energy for light and strange quark are as follows: 𝐸𝑞 =

√�⃗�2 + 𝑚2𝑞 and 𝐸𝑠 = √�⃗�2 + 𝑚2𝑠 , respectively. Also, as per [54]
the light quark sector (13) decouples from the strange quark
sector (𝑚𝑠) and light quark mass 𝑚𝑞 gets simplified in this
new basis to

𝑚𝑞 = 𝑔
𝜎𝑥

2
, (12)

𝑚𝑠 = 𝑔
𝜎𝑦

√2
. (13)

The purely mesonic potential is given as

𝑈(𝜎𝑥, 𝜎𝑦) =
𝑚2

2
(𝜎
2
𝑥 + 𝜎

2
𝑦) − ℎ𝑥𝜎𝑥 − ℎ𝑦𝜎𝑦

−
𝑐

2√2
𝜎
2
𝑥𝜎𝑦 +

𝜆1

2
𝜎
2
𝑥𝜎
2
𝑦

+
1

8
(2𝜆1 + 𝜆2) 𝜎

4
𝑥 +

1

4
(𝜆1 + 𝜆2) 𝜎

4
𝑦.

(14)

We notice that the sum in (7), (11), and (14) gives the
thermodynamic potential density similar to (10), which
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has seven parameters 𝑚2, ℎ𝑥, ℎ𝑦, 𝜆1, 𝜆2, 𝑐, and 𝑔, two
unknown condensates 𝜎𝑥 and 𝜎𝑦, and two order parame-
ters for the deconfinement 𝜙 and 𝜙∗. The six parameters
𝑚2, ℎ𝑥, ℎ𝑦, 𝜆1, 𝜆2, and 𝑐 are fixed in the vacuum by six
experimentally known quantities [53]. In order to evaluate
the unknown parameters𝜎𝑥, 𝜎𝑦, 𝜙, and𝜙

∗, weminimize the
thermodynamic potential (10) with respect to 𝜎𝑥, 𝜎𝑦, 𝜙, and

𝜙∗, respectively. Doing this, we obtain a set of four equations
of motion:

𝜕Ω

𝜕𝜎𝑥
=
𝜕Ω

𝜕𝜎𝑦
=
𝜕Ω

𝜕𝜙
=
𝜕Ω

𝜕𝜙∗

min
= 0, (15)

where min means 𝜎𝑥 = 𝜎𝑥, 𝜎𝑦 = 𝜎𝑦, 𝜙 = 𝜙, and 𝜙∗ = 𝜙
∗
are

the global minimum:

ΩPLSM = U (𝜙, 𝜙, 𝑇) +
𝑚2

2
(𝜎
2
𝑥 + 𝜎

2
𝑦) − ℎ𝑥𝜎𝑥 − ℎ𝑦𝜎𝑦 −

𝑐

2√2
𝜎
2
𝑥𝜎𝑦 +

𝜆1

2
𝜎
2
𝑥𝜎
2
𝑦 +

1

8
(2𝜆1 + 𝜆2) 𝜎

4
𝑥 +

1

4
(𝜆1 + 𝜆2) 𝜎

4
𝑦

− 2𝑇𝑁𝑞 ∫
𝑑3�⃗�

(2𝜋)
3

{{

{{

{

ln[[

[

1 + 3(𝜙 + 𝜙
∗
𝑒
−(𝐸𝑞−𝜇)/𝑇)𝑒

−(𝐸𝑞−𝜇)/𝑇 + 𝑒
−3(𝐸𝑞−𝜇)/𝑇]]

]

+ ln[[

[

1 + 3(𝜙
∗
+ 𝜙𝑒

−(𝐸𝑞+𝜇)/𝑇)𝑒
−(𝐸𝑞+𝜇)/𝑇 + 𝑒

−3(𝐸𝑞+𝜇)/𝑇]]

]

}}

}}

}

− 2𝑇𝑁𝑠 ∫
𝑑3�⃗�

(2𝜋)
3

{{

{{

{

ln[[

[

1 + 3(𝜙 + 𝜙
∗
𝑒
−(𝐸𝑠−𝜇)/𝑇)𝑒

−(𝐸𝑠−𝜇)/𝑇 + 𝑒
−3(𝐸𝑠−𝜇)/𝑇]]

]

+ ln[[

[

1 + 3(𝜙
∗
+ 𝜙𝑒

−(𝐸𝑠+𝜇)/𝑇)𝑒
−(𝐸𝑠+𝜇)/𝑇 + 𝑒

−3(𝐸𝑠+𝜇)/𝑇]]

]

}}

}}

}

.

(16)

Accordingly, the chiral order parameter can be deduced as

𝑀PLSM = 𝑚𝑠
⟨𝜓𝜓⟩PLSM

𝑇4
=
𝑚𝑠

𝑇4
𝜕ΩPLSM
𝜕𝑚𝑙

. (17)

2.2. Linear Sigma-Model and Quasi-Particle Sector (QLSM).
When the Polyakov contributions to the gluonic interactions
and to the confinement-deconfinement phase transition are
entirely excluded, the Lagrangian of LSM with 𝑁𝑓 = 3

quark flavors and 𝑁𝑐 = 3 (for quarks, only) color degrees
of freedom, where the quarks couple to the Polyakov loop
dynamics, has been introduced in [26, 51]

L = Lchiral −U (𝜙, 𝜙
∗
, 𝑇) . (18)

The main original proposal of the present work is the
modification of (18):

L = Lchiral −Ug (𝑇, 𝜇) , (19)

where the chiral part of the LagrangianLchiral = L𝑞 +L𝑚 is
of SU(3)𝐿×SU(3)𝑅 symmetry [52, 53]. Instead ofU(𝜙, 𝜙∗, 𝑇),
the gluonic potentialUg(𝑇, 𝜇), which is similar to the gluonic
sector of the quasi-particle model, is inserted (review (33)).
The Lagrangian with𝑁𝑓 = 3 consists of two parts: fermionic
and mesonic contributions (2) and (3), respectively.

Some details about the quasi-particle model are in order.
The model gives a good phenomenological description for

lattice QCD simulation and treats the interacting massless
quarks and gluons as noninteracting massive quasi-particles
[59]. The corresponding degrees of freedom are treated in a
similar way as the electrons in condensed matter theory [60];
that is, the interaction with the medium provides the quasi-
particles with dynamical masses. Consequently, most of the
interactions can be taken into account. When confronting it
to the lattice QCD calculations, the free parameters can be
fixed. The pressure at finite 𝑇 and 𝜇 is given as

𝑝 = ∑
𝑖=𝑞,𝑔

𝑝𝑖 − 𝐵 (𝑇, 𝜇) ,

𝑝𝑖 =
𝑔𝑖

6𝜋2
∫
∞

0
𝑘
4
𝑑𝑘

1

𝐸𝑖 (𝑘)
[𝑓
+
𝑖 (𝑘) + 𝑓

−
𝑖 (𝑘)] ,

(20)

where the function 𝐵(𝑇, 𝜇) stands for bag pressure at finite
𝑇 and 𝜇 which can be determined by thermodynamic self-
consistency and 𝜕𝑝/𝜕Π𝑎 = 0; the stability of 𝑝 with respect
to the self-energies (Π𝑎) and the distribution function for
bosons and fermions, ±, respectively, is given as

𝑓
±
𝑖 (𝑘) =

1

exp ((𝐸𝑖 (𝑘) ∓ 𝜇) /𝑇) ± 1
. (21)
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The quasi-particle dispersion relation can be approximated
by the asymptotic mass shell expression near the light cone
[27, 28]:

𝐸
2
𝑖 (𝑘) = 𝑘

2
+ 𝑚

2
𝑖 (𝑇, 𝜇) = 𝑘

2
+ Π𝑖 (𝑘; 𝑇, 𝜇) + (𝑥𝑖𝑇)

2
, (22)

where Π𝑖(𝑘; 𝑇, 𝜇) is the self-energy at finite 𝑇 and 𝜇 and 𝑥2𝑖 is
a factor taking into account the mass scaling as used in the
lattice QCD simulations. In other words, 𝑥2𝑖 was useful when
the lattice QCD simulations have been performed with quark
masses heavier than the physical ones. In the present work,
the gluon self-energies Π𝑔(𝑘; 𝑇, 𝜇) are relevant [61]:

Π𝑔 (𝑘; 𝑇, 𝜇) = ([3 +
𝑁𝑓

2
]𝑇

2
+

3

2𝜋2
∑
𝑓

𝜇
2
𝑓)

𝐺2

6
, (23)

where the effective coupling 𝐺 at vanishing chemical poten-
tial is given as

𝐺
2
(𝑇) =

{{

{{

{

𝐺
2
2loop (𝑇) , 𝑇 ≥ 𝑇𝑐,

𝐺22loop (𝑇) + 𝑏 (1 −
𝑇

𝑇𝑐
) , 𝑇 < 𝑇𝑐

. (24)

And the two-loop effective coupling 𝐺22loop(𝑇) reads [27]

𝐺
2
2loop (𝑇) =

16𝜋
2

𝛽0 ln (𝜉2)
[1 − 2

𝛽1

𝛽20

ln (ln (𝜉2))
ln (𝜉2)

] ,

𝜉 = 𝜆
𝑇 − 𝑇𝑠

𝑇𝑐
,

(25)

and 𝑇𝑠 is a regulator at 𝑇𝑐. The parameter 𝜆 is used to adjust
the scale as found in lattice QCD simulations. These two
parameters are not very crucial in the present calculations.
The regulator and scale are controlled by the condensates
(𝜎𝑥 and 𝜎𝑦) and the order parameters (𝜙 and 𝜙∗), which
are given as function of temperature and baryon chemical
potential. The 𝛽 function [62] depends on the QCD coupling
𝐺, 𝛽 = 𝜕𝐺/(𝜕 ln(Δ 𝜇)), with Δ 𝜇 being the energy scale. It is
obvious that the QCD coupling in (24) and (25) is given in 𝑇-
dependence, only. In calculating𝛽 = 𝜕𝐺/(𝜕 ln(Δ 𝜇)) at finite 𝜇
it is apparently needed to extend𝐺 to be 𝜇-dependent, as well.
The two-loop perturbation estimation for 𝛽 functions gives

𝛽0 =
1

3
(11𝑛𝑐 − 2𝑛𝑓) ,

𝛽1 =
1

6
(34𝑛

2
𝑐 − 13𝑛𝑓𝑛𝑐 + 3

𝑛𝑓

𝑛𝑐
) .

(26)

2.2.1. Linear Sigma-Model and Quasi-Particle Sector (QLSM)
in Mean Field Approximation. As in Section 2.1.1 and (9),
we derive the thermodynamic potential density in the mean
field approximation.This consists of three parts: mesonic and
quasi-gluonic potentials in additional to the quark potential:

Ω(𝑇, 𝜇) =
−𝑇 ln (𝑍)

𝑉

= 𝑈 (𝜎𝑥, 𝜎𝑦) + 𝑈𝑔 (𝑇, 𝜇) + Ω𝜓𝜓.

(27)

(i) First, the quark potential part [53] is

Ω𝑞𝑞 (𝑇, 𝜇𝑓)

= 𝑑𝑞𝑇 ∑
𝑓=𝑢,𝑑,𝑠

∫
∞

0

𝑑3𝑘

(2𝜋)
3
ln [1 − 𝑛𝑞,𝑓 (𝑇, 𝜇𝑓)]

+ ln [1 − 𝑛𝑞,𝑓 (𝑇, 𝜇𝑓)] .

(28)

It is obvious that Ω𝜓𝜓 is equivalent to Ω𝑞𝑞. The occupation
quark/antiquark numbers read

𝑛𝑞|𝑞,𝑓 (𝑇, 𝜇𝑓) =
1

1 + exp [(𝐸𝑞,𝑓 ± 𝜇𝑓) /𝑇]
, (29)

and antiquarks 𝑛𝑞,𝑓(𝑇, 𝜇𝑓) ≡ 𝑛𝑞,𝑓(𝑇, −𝜇𝑓), respectively. The
number of internal quark degrees of freedom is denoted by
𝑑𝑞 = 2 and𝑁𝑐 = 6 (for quarks and antiquarks). The energies
are given as

𝐸𝑞,𝑓 = √𝑘2 + 𝑚2𝑓, (30)

with the quark masses 𝑚𝑓 which is related to 𝑚𝑞 and 𝑚𝑠 for
𝑢-, and 𝑑-, and 𝑠-quarks, respectively. As given, the latter are
proportional to the 𝜎-fields:

𝑚𝑞 = 𝑔
𝜎𝑥

2
,

𝑚𝑠 = 𝑔
𝜎𝑦

√2
,

(31)

where the Yukawa coupling 𝑔 = 8.3. The symbols for the
chiral condensates, 𝜎𝑥 and 𝜎𝑦 for light- and strange-quarks,
respectively, are kept as in the literature.

(ii) Second, the purely mesonic potential part reads

𝑈(𝜎𝑥, 𝜎𝑦) =
𝑚2

2
(𝜎
2
𝑥 + 𝜎

2
𝑦) − ℎ𝑥𝜎𝑥 − ℎ𝑦𝜎𝑦

−
𝑐

2√2
𝜎
2
𝑥𝜎𝑦 +

𝜆1

2
𝜎
2
𝑥𝜎
2
𝑦

+
(2𝜆1 + 𝜆2) 𝜎

4
𝑥

8
+
(𝜆1 + 𝜆2) 𝜎

4
𝑦

4
.

(32)

(iii) Third, the quasi-gluonic potential part is constructed
from (22), (21), and (20):

𝑈𝑔 = −
𝑑𝑔

6𝜋2
∫
∞

0
𝑘
4
𝑑𝑘

1

𝐸𝑖
[

1

exp ((𝐸𝑖 − 𝜇) /𝑇) − 1

+
1

exp ((𝐸𝑖 + 𝜇) /𝑇) − 1
] .

(33)

In (33), the degeneracy factor 𝑑𝑔 = 8 and two parameters
𝜆 and 𝑇𝑠, which were given in (25), should be fixed in order
to reproduce the lattice QCD calculations. Here, we find that
𝜆 = 2.0 and 𝑇𝑠 = 0.0MeV give excellent results.



6 Advances in High Energy Physics

When adding the three potentials given in (33), (32), and
(28), the thermodynamics and chiral phase translation can
be analysed. The resulting potential ΩQLSM can be used to
determine the normalized net-strange condensate and chiral
order parameter (51):

ΩQLSM =
𝑚2

2
(𝜎
2
𝑥 + 𝜎

2
𝑦) − ℎ𝑥𝜎𝑥 − ℎ𝑦𝜎𝑦 −

𝑐

2√2
𝜎
2
𝑥𝜎𝑦

+
𝜆1

2
𝜎
2
𝑥𝜎
2
𝑦 +

1

8
(2𝜆1 + 𝜆2) 𝜎

4
𝑥 +

1

4
(𝜆1 + 𝜆2) 𝜎

4
𝑦

− 𝑇
𝑑𝑞

2𝜋2
∫
∞

0
𝑘
2
𝑑𝑘 [2 ln (1 − 𝑓−𝑞 (𝑇, 𝜇))

+ 2 ln (1 − 𝑓+𝑞 (𝑇, 𝜇)) + ln (1 − 𝑓−𝑠 (𝑇, 𝜇))

+ ln (1 − 𝑓+𝑠 (𝑇, 𝜇))]

− 3𝜋
2
𝑑𝑔 ∫

∞

0
𝑘
4
𝑑𝑘 [(𝑒

𝜔𝑔(𝑇,𝜇)/𝑇 − 1)𝜔𝑔 (𝑇, 𝜇)]
−1
,

(34)

where

𝑓
±
𝑞 (𝑇, 𝜇) =

1

𝑒
(√(1/4)𝑔2𝜎𝑥(𝑇,𝜇)

2+𝑘2±𝜇)/𝑇
+ 1

,

𝑓
±
𝑠 (𝑇, 𝜇) =

1

𝑒
(√(1/2)𝑔2𝜎𝑦(𝑇,𝜇)

2+𝑘2±𝜇)/𝑇
+ 1

,

𝜔𝑔 (𝑇, 𝜇) =
[
[

[

𝑘
2

+
8𝜋2 ((9/2𝜋2) 𝜇 + (𝑁𝑓/2 + 3) 𝑇

2) (1 − 3 (34𝑁2𝑐 − 13𝑁𝑐𝑁𝑓 + 3 (𝑁𝑓/𝑁𝑐)) ln (ln
2
(𝜉2)) / (11𝑁𝑐 − 2𝑁𝑓)

2
ln2 (𝜉2))

(11𝑁𝑐 − 2𝑁𝑓) ln
2
(𝜉2)

]
]

]

1/2

.

(35)

𝜉 is function of 𝑇 and the quark masses should be very heavy.
The QLSM results are similar to that of PNJL, Section 3.
This might be interpreted due the very heavy quark masses
implemented in both models.

2.3. Polyakov Nambu-Jona-Lasinio (PNJL) Model. The
Lagrangian of PNJL reads [63, 64]

L = ∑
𝑓=𝑢,𝑑,𝑠

𝜓𝑓𝛾𝜇𝑖𝐷
𝜇
𝜓𝑓 −∑

𝑓

𝑚𝑓𝜓𝑓𝜓𝑓 +∑
𝑓

𝜇𝛾0𝜓𝑓𝜓𝑓

+
𝑔𝑆

2
∑

𝑎=0,...,8

[(𝜓𝜆
𝑎
𝜓)
2
+ (𝜓𝑖𝛾5𝜆

𝑎
𝜓)
2
]

− 𝑔𝐷 [det𝜓𝑓𝑃𝐿𝜓𝑓 + det𝜓𝑓𝑃𝑅𝜓𝑓]

−U (𝜙 [𝐴] , 𝜙 [𝐴] , 𝑇) ,

(36)

where the matrices 𝑃𝐿,𝑅 = (1 ± 𝛾5)/2 are chiral projectors,
U(𝜙[𝐴], 𝜙[𝐴], 𝑇) is the Polyakov loop potential (Landau-
Ginzburg type potential), and 𝐷𝜇 = 𝜕𝜇 − 𝑖𝐴4𝛿𝜇4 stand
for gauge field interactions. The mass of a particular flavor
is denoted by 𝑚𝑓, where 𝑓 = 𝑢, 𝑑, 𝑠. The two coupling
constants 𝑔𝐷 and 𝑔𝑆, 𝜆

𝑎, are Gell-Mann matrices [13] and 𝛾𝜇
are Dirac 𝛾matrices.Themodel is not renormalizable so that
we have to use three-momentum cutoff regulator Λ in order
to keep quark loops finite.

The Polyakov loop potential is given by [65]

U (𝜙, 𝜙, 𝑇)

𝑇4
= −

𝑏2 (𝑇)

2
𝜙𝜙 −

𝑏3

6
(𝜙
3
+ 𝜙

3
) +

𝑏4

4
(𝜙𝜙)

2 (37)

with

𝜙 =
𝑇𝑟𝑐𝐿

𝑁𝑐
,

𝜙 =
𝑇𝑟𝑐𝐿

†

𝑁𝑐
,

𝑏2 (𝑇) = 𝑎0 + 𝑎1 (
𝑇0

𝑇
) + 𝑎2 (

𝑇0

𝑇
)

2

+ 𝑎3 (
𝑇0

𝑇
)

3

,

(38)

𝑏3 and 𝑏4 being constants, and we choose the following
fitting values for the potential parameters: 𝑎0 = 6.75, 𝑎1 =

−1.95, 𝑎2 = 2.625, 𝑎3 = −7.44, 𝑏3 = 0.75 , 𝑏4 = 7.5, and
𝑇0 = 187MeV. These are adjusted to the pure gauge lattice
data such that the equation of state and the Polyakov loop
expectation values are reproduced.
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2.3.1. Polyakov Nambu-Jona-Lasinio (PNJL) Model in Mean
Field Approximation. The thermodynamic potential density
of PNJL is defined as

Ω = U [𝜙, 𝜙, 𝑇] + 2𝑔𝑆 ∑
𝑓=𝑢,𝑑,𝑠

𝜎
2
𝑓 −

𝑔𝐷

2
𝜎𝑢𝜎𝑑𝜎𝑠

− 6∑
𝑓

∫
Λ

0

𝑑3𝑝

(2𝜋)
3
𝐸𝑝𝑓Θ(Λ −

�⃗�
)

− 2∑
𝑓

𝑇∫
∞

0

𝑑3𝑝

(2𝜋)
3
ln [1

+ 3 (𝜙 + 𝜙𝑒
−(𝐸𝑝𝑓−𝜇)/𝑇) 𝑒

−(𝐸𝑝𝑓−𝜇)/𝑇 + 𝑒
−3(𝐸𝑝𝑓−𝜇)/𝑇]

− 2∑
𝑓

𝑇∫
∞

0

𝑑
3
𝑝

(2𝜋)
3
ln [1

+ 3 (𝜙 + 𝜙𝑒
−(𝐸𝑝𝑓+𝜇)/𝑇) 𝑒

−(𝐸𝑝𝑓+𝜇)/𝑇 + 𝑒
−3(𝐸𝑝𝑓+𝜇)/𝑇] ,

(39)

where 𝐸𝑝𝑓 = √𝑝2 +𝑀2
𝑓
is the single quasi-particle energy,

𝜎2𝑓 = 𝜎2𝑢 + 𝜎2𝑑 + 𝜎2𝑠 , and from isospin symmetry, 𝜎𝑞 = 𝜎𝑢 =

𝜎𝑑. In the above integrals, the vacuum integral has a cutoff Λ
whereas themediumdependent integrals have been extended
to infinity. By the self-consistent gap equation, the quarkmass
can be estimated:

𝑀𝑓 = 𝑚𝑓 − 2𝑔𝑆𝜎𝑓 +
𝑔𝐷

2
𝜎𝑓+1𝜎𝑓+2, (40)

where 𝜎𝑓 = ⟨𝜓𝑓𝜓𝑓⟩ denotes the chiral condensate of quark
with flavor 𝑓 and other parameters are listed out in Table 1
[63, 64]. For isospin symmetry, we define the light and
strange-quark masses as

𝑀𝑠 = 𝑚𝑠 − 2𝑔𝑆𝜎𝑠 +
𝑔𝐷

2
𝜎
2
𝑞 ,

𝑀𝑞 = 𝑚𝑞 − 2𝑔𝑆𝜎𝑞 +
𝑔𝐷

2
𝜎𝑞𝜎𝑠.

(41)

Here, we notice the strong dependence on the 𝜎-fields.
Now, we have all the PNJL model parameters except

𝜎𝑞, 𝜎𝑠, 𝜙, and 𝜙, which can be estimated from minimizing
the thermodynamic potential (43) with respect to 𝜎𝑞, 𝜎𝑠, 𝜙,
and 𝜙, respectively. Doing this, we obtain a set of four
equations of motion:

𝜕Ω

𝜕𝜎𝑥
=
𝜕Ω

𝜕𝜎𝑦
=
𝜕Ω

𝜕𝜙
=
𝜕Ω

𝜕𝜙

min
= 0. (42)

Table 1: Parameters of the SU(3) PNJL model.

𝑚𝑢 [MeV] 𝑚𝑠 [MeV] Λ [MeV] 𝑔𝑆Λ
2

𝑔𝐷Λ
5

5.5 134.758 631.357 3.664 74.636

Then, the potential of the PNJL model reads

ΩPNJL = U [𝜙, 𝜙, 𝑇] + 2𝑔𝑆 ∑
𝑓=𝑢,𝑑,𝑠

𝜎
2
𝑓 −

𝑔𝐷

2
𝜎𝑢𝜎𝑑𝜎𝑠

− 6∑
𝑓

∫
Λ

0

𝑑3𝑝

(2𝜋)
3
𝐸𝑝𝑓Θ(Λ −

�⃗�
) − 2∑

𝑓

𝑇∫
∞

0

𝑑3𝑝

(2𝜋)
3

⋅ ln [1 + 3 (𝜙 + 𝜙𝑒−(𝐸𝑝𝑓−𝜇)/𝑇) 𝑒−(𝐸𝑝𝑓−𝜇)/𝑇

+ 𝑒
−3(𝐸𝑝𝑓−𝜇)/𝑇] − 2∑

𝑓

𝑇∫
∞

0

𝑑3𝑝

(2𝜋)
3
ln [1

+ 3 (𝜙 + 𝜙𝑒
−(𝐸𝑝𝑓+𝜇)/𝑇) 𝑒

−(𝐸𝑝𝑓+𝜇)/𝑇 + 𝑒
−3(𝐸𝑝𝑓+𝜇)/𝑇] .

(43)

Having completed the introduction of both PLSM and PNJL,
it is in order now to discuss central 𝑍(3) symmetry related
to the Polyakov loop. It has been shown that the SU(3) color-
singlet has 𝑍(3) symmetry through the normalized charac-
ter in the fundamental representation of SU(3), Φ(𝜃1, 𝜃2).
This becomes equivalent to an ensemble of Polyakov loop
[66]. Furthermore, it was concluded that Φ(𝜃1, 𝜃2) can be
taken as an order parameter for color-confinement to color-
deconfinement phase transition; that is, the center symmetry
is spontaneously broken at high temperatures.

Reference [67] introduced an attempt to resolve some
incongruities within NJL and PNJL. It was argued that
by integrating corresponding extremum conditions, the
thermodynamic potential is directly obtained, where the
integration constant can be fixed from Stefan-Boltzmann
law. Keeping the regulator finite at finite temperature and
chemical potential is the main advantage of this approach.

2.4. Hadron Resonance Gas (HRG) Model. Treating hadron
resonances as a free (noninteracting) gas [35–39] is conjec-
tured to give an accurate estimation for the thermodynamic
pressure below 𝑇𝑐. It has been shown that thermodynamics
of strongly interacting system can also be approximated as
an ideal gas composed of hadron resonances with masses
≤2GeV [38, 68]; that is, confined QCD matter (hadrons)
is well modelled as a noninteracting gas of resonances. The
grand canonical partition function reads

𝑍 (𝑇, 𝜇, 𝑉) = Tr [exp(𝜇𝑁−𝐻)/𝑇] , (44)

where 𝑇(𝜇) is temperature (chemical potential). The Hamil-
tonian (𝐻) is given as the kinetic energies of the relativistic
Fermi and Bose particles.

The main motivation of using𝐻 is that

(i) it contains all relevant degrees of freedomof confined,
strongly interacting QCDmatter,
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(ii) it implicitly includes interactions, especially the ones
leading to formation of resonances,

(iii) it gives a quite satisfactory description of the particle
production in heavy-ion collisions.

With these assumptions, the thermodynamics resulted from
single-particle partition functions 𝑍1𝑖 :

ln𝑍 (𝑇, 𝜇𝑖, 𝑉)

= ∑
𝑖

±
𝑉𝑔𝑖

2𝜋2
∫
∞

0
𝑘
2 ln{1 ± exp [

𝜇𝑖 − 𝜀𝑖 (𝑘)

𝑇
]} 𝑑𝑘,

(45)

where 𝜀𝑖(𝑘) = (𝑘2 + 𝑚2𝑖 )
1/2 is the 𝑖th particle dispersion

relation, 𝑔𝑖 is spin-isospin degeneracy factor, and ± stands for
bosons and fermions, respectively.

For hadron resonances which are not yet measured,
experimentally, a parametrization for a total spectral weight
has been proposed [69] as a recent estimation for Hagedorn
mass spectrum [70, 71]. In the present work, we merely
include known (measured) hadron resonances with mass
≤2GeV. This mass cutoff is assumed to define the validity
of HRG in modelling the hadronic phase. Resonances with
heavier masses diverge all thermodynamic quantities at the
Hagedorn temperature [35, 36].

Very recently, it has been shown that indeed the viral
expansion is a reliable way to include hadron resonances,
because the phase shift is a directly accessible quantity in
experiments [72]. For instance, for accurate isospin-averaged
observables, the scalar-isoscalar 𝑓0(500) (𝜎 meson) reso-
nance and scalar𝐾∗(800) should not be included in the HRG
model.

The HRGmodel has been used in calculating the higher-
order moments of the particle multiplicity, in which a
grand canonical partition function of an ideal gas with
experimentally observed states up to a certain mass cutoff
is utilized [44]. The HRG model has been successfully
utilized in characterizing two different conditions generating
the chemical freeze-out at finite densities, namely, constant
normalized-entropy density 𝑠/𝑇

3 = 7 [73–76], constant
product of kurtosis and variance 𝜅𝜎2 = 0 [77], and constant
trace-anomaly (𝜖 − 3𝑝)/𝑇4 = 7/2 [78]. As introduced in
[76], the third freeze-out conditions, which is characterized
by constant 𝑠/𝑇3 is accompanied by constant 𝑠/𝑛.

Our HRG model was used to study the possible differ-
ences between the behavior of light ⟨𝑞𝑞⟩ = ⟨𝑢𝑢⟩ = ⟨𝑑𝑑⟩ and
strange ⟨𝑠𝑠⟩ quark-antiquark condensates in hadron phase.
The contribution to the pressure due to a particle of mass𝑚ℎ,
baryon charge 𝐵, isospin 𝐼3, strangeness 𝑆, and degeneracy 𝑔
is given by

Δ𝑝 =
𝑔𝑚2ℎ𝑇

2

2𝜋2

∞

∑
𝑛=1

(−𝜂)
𝑛+1

𝑛2
exp (𝑛

𝐵𝜇𝐵 − 𝐼3𝜇𝐼 − 𝑆𝜇𝑆

𝑇
)

⋅ 𝐾2 (𝑛
𝑚ℎ

𝑇
) ,

(46)

where 𝐾𝑛(𝑥) is the modified Bessel function. In hadrons, the
isospin is an almost exact symmetry.

The quark-antiquark condensates are given by the deriva-
tive of (46) with respect to the constituent quark masses:

⟨𝑞𝑞⟩ = ⟨𝑞𝑞⟩0 +∑
ℎ

𝜕𝑚ℎ

𝜕𝑚𝑞

𝜕Δ𝑝

𝜕𝑚ℎ
,

⟨𝑠𝑠⟩ = ⟨𝑠𝑠⟩0 +∑
ℎ

𝜕𝑚ℎ

𝜕𝑚𝑠

𝜕Δ𝑝

𝜕𝑚ℎ
,

(47)

where ⟨𝑞𝑞⟩0 and ⟨𝑠𝑠⟩0 are light and strange quark-antiquark
condensates in vacuum, respectively [45]. It was found that
at small chemical potential the strange quark-antiquark
condensate is larger than the light one. At large chemical
potential, such difference gradually diminishes.

Some authors still prefer to take into account repulsive
(electromagnetic) van der Waals interactions in order to
compensate the strong interactions in hadron matter [78].
Accordingly, each resonance constituent is allowed to have an
eigen-volume. Thus, such total volume should be subtracted
from the fireball volume or that of the heat bath. Also,
considerablemodifications in thermodynamics of hadron gas
including energy, entropy, and number densities are likely.
The hard-core radius of hadron nuclei can be related to the
multiplicity fluctuations.

About ten years ago, Tawfik derived 𝑆-matrix for the
HRGmodel [38], which describes the scattering processes in
the thermodynamical system [79]. Accordingly, (45) can be
written as an expansion of the fugacity term:

ln𝑍(int) (𝑉, 𝑇, 𝜇) = ln𝑍(id) (𝑉, 𝑇, 𝜇)

+

∞

∑
]=2
𝑎] (𝑇) exp(

𝜇]

𝑇
) ,

(48)

where 𝑎](𝑇) are the virial coefficients and the subscript ]
refers to the order of multiple-particle interactions:

𝑎] (𝑇)

=
𝑔𝑟

2𝜋3
∫
∞

𝑀]

𝑑𝑤 exp{−
𝜀𝑟 (𝑤)

𝑇
}∑
𝑙

(2𝑙 + 1)
𝜕

𝜕𝑤
𝛿𝑙 (𝑤) .

(49)

The sum runs over the spatial waves. The phase shift 𝛿𝑙(𝑤)

of two-body inelastic interactions, for instance, depends on
the resonance half-width Γ𝑟 and spin and mass of produced
resonances:

ln𝑍(int) (𝑉, 𝑇, 𝜇)

= ln𝑍(id) (𝑉, 𝑇, 𝜇)

+
𝑔𝑟

2𝜋3
∫
∞

𝑀]

𝑑𝑤
Γ𝑟 exp {(−𝜀𝑟 (𝑤) + 𝜇𝑟) /𝑇}
(𝑀𝑟 − 𝑤)

2
+ (Γ𝑟/2)

2
.

(50)

In (50), by replacing 𝜇 by −𝜇, the antiparticles are taken into
consideration. For a narrow width and/or being at low tem-
perature, the virial term decreases so that the nonrelativistic
ideal partition function of hadron resonances with effective
masses 𝑀] is obtained. This means that the resonance
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contributions to the partition function are the same as that
of massive free resonances. At temperatures comparable to
Γ𝑟, the effective mass approaches the physical one. Thus, we
conclude that, at high temperatures, the strong interactions
are taken into consideration via heavy resonances (45), that
is, Hagedorn picture.We therefore utilise the grand canonical
partition function (48) without any corrections.

In order to verify this picture, Tawfik checked the ability
ofHRGwith finite-volume constituents in reproducing lattice
QCD thermodynamics [78]. At radius 𝑟 > 0.2 fm, the
disagreement becomes obvious and increases with increas-
ing 𝑟. At high temperatures, the resulting thermodynamics
becomes nonphysical. It was concluded that the excluded
volume seems to be practically irrelevant. It has a negligible
effect, at 𝑟 ≤ 0.2 fm. On the other hand, a remarkable devi-
ation from the lattice QCD calculations appears, especially
when the radius 𝑟 becomes large.

In the present work, the chiral parameters, 𝑀(𝑇) and
Δ 𝑞,𝑠(𝑇), see Section 3, are extracted from HRG assuming
fully and partially chemical nonequilibrium [80]. There is
no difference when 𝛾𝑆 = 1.0 and when it is allowed to
have values different from unity, where 𝛾𝑞 and 𝛾𝑆 refer to
nonequilibrium treatment or occupation factors for light
and strange quarks, respectively. These two parameters enter
(45) after raising them to exponents reflecting the light and
strange quarks contents of 𝑖th hadron. They are identical
to the fugacity factor and therefore are multiplied to the
exponential function.

3. Results

A systematic comparison between PLSM, PNJL, QLSM, and
HRG is presented. It intends to calculate two chiral quantities,
the order-parameter 𝑀(𝑇), and the normalized net strange
and net nonstrange condensate Δ 𝑞,𝑠(𝑇). The results will be
confronted to the lattice QCD simulations [47–49].The com-
parison with the lattice should signal which model is close
to the lattice and, on the other hand, offers differentiation
between the SU(3) effective models themselves.

3.1. Chiral Order-Parameter 𝑀(𝑇). The chiral order-
parameter 𝑀(𝑇) was originated in lattice techniques [81].
The latter calculates dimensionless quantities in units of
lattice spacing rather than physical units. The lattice spacing
can then be converted into the physical units. 𝑀(𝑇) relates
the light quark condensate to the strange quark mass:

𝑀(𝑇) = 𝑚𝑠
⟨𝜓𝜓⟩𝑙

𝑇4
, (51)

where 𝑚𝑠 is the strange quark physical mass which is fixed
here to 138MeV in order to get the ratio of light and
strange quark masses 𝑚𝑙/𝑚𝑠 = 0.037. Also, we notice that
the dimensionless 𝑀(𝑇) depends on the thermal behavior
of the light quark condensate ⟨𝜓𝜓𝑙⟩. In lattice QCD, the
chiral condensate remains finite. But it contains contributions
which would diverge in the continuum limit. Therefore,
it requires renormalization, in particular an additive and
multiplicative renormalization. In order to remove, at least,

the multiplicative renormalization factor, we take into con-
sideration (51) as a definition for the order parameter. The
light quark condensate itself can be calculated from the
potential, PLSM (16), QLSM (34), PNJL (43), and HRG (47).
Accordingly, we estimate (51) from the four models and then
compare themwith the latticeQCDcalculations, Figure 1.We
find that this chiral order parameter in the SU(3) effective
models and first-principle lattice QCD simulations [47, 48]
rapidly decreases with increasing 𝑇.

Comparing with the lattice QCD [47], the best agreement
is found with PLSM, but PLSM underestimates the recent
lattice QCD [48]. In fact, the lattice calculations [48] lay on
top of all curves from the SU(3) effective models. This might
be originated to the specific configurations of the lattices
and the actions implemented in each simulation, Section 3.1.
The other effective models lay below the two sets of lattice
calculations.

The four models PLSM, QLSM, PNJL, and HRG and
different sets of lattice calculations have different critical
temperatures. In Table 2, we list out the critical temperatures
corresponding to each order parameter. In determining
the pseudocritical temperatures, 𝑇𝜒, different criteria are
implemented. They are not only quite unorthodox but also
distinguishable from each other. Further details will be
elaborated in Section 3.3.

3.1.1. A Short Comparison between the Two Sets of Lattice
QCD Calculations. References [47, 48] presented results for
2 + 1 quark flavors, where all systematics are controlled,
the quark masses are set to their physical values, and the
continuum extrapolation is carried out. Larger lattices and
a Symanzik improved gauge besides a stout-link improved
staggered fermion action are implemented. Depending on
the exact definition of the observables, the remnant of the
chiral transition is obtained at 𝑇𝑐 = 150MeV. Extending
these results, the transition temperature was also determined
for small nonvanishing baryonic chemical potentials. At high
temperatures, the lattice pressure is found ∼30% lower than
the Stefan-Boltzmann limit.

Reference [49] used 2 + 1 quark flavors with physical
strange quark mass and almost physical light quark masses.
The calculations have been performed with two different
improved staggered fermion actions, the asqtad and p4
actions. Overall, a good agreement between results obtained
with these two𝑂(𝑎2) improved staggered fermion discretiza-
tion schemes is found. At high temperatures, the lattice
pressure is ∼14% lower than the Stefan-Boltzmann limit.

From this short comparison, we find the following.

(i) References [47, 48] implement Symanzik improved
gauge and stout-link improved staggered fermion
action. The resulting pressure is found ∼30% lower
than the Stefan-Boltzmann limit.

(ii) Reference [49] uses improved staggered fermion
actions: the asqtad and p4 actions. The resulting
pressure is ∼14% lower than the Stefan-Boltzmann
limit.
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Table 2: The pseudocritical temperatures 𝑇𝜒 as calculated from
PLSM, QLSM, PNJL, and HRG and the different sets of lattice QCD
calculations.

𝑇𝜒 [MeV] Order parameter
PLSM 164 Crossing of (𝜎𝑥, 𝜎𝑦) and (𝜙, 𝜙)

QLSM 200
(𝜎𝑥, 𝜎𝑦) and largest fluctuation

in𝑚2/𝜇
2

PNJL 217 Crossing of (𝜎𝑥, 𝜎𝑦) and (𝜙, 𝜙)
HRG 184 Vanishing ⟨𝜓𝜓⟩-condensate

LQCD [47] 156 at𝑚𝑠/𝑚𝑙 = 0.037 Sudden drop in𝑀(𝑇) and
Δ 𝑙,𝑠(𝑇)

LQCD [48] 165–170 Sudden drop in𝑀(𝑇) and
Δ 𝑙,𝑠(𝑇)

LQCD [49] 165 Sudden drop in𝑀(𝑇) and
Δ 𝑙,𝑠(𝑇)

3.1.2. Couplings in PLSM. In the effective models, the param-
eters, especially the couplings, are very crucial for the out-
come of the calculations. One of the motivations for the
present work is the failure of PLSM [50] in reproducing the
lattice QCD results [47–49] even with large coupling 𝑔. In
[50], 𝑔 ranges between 6.5 and 10.5. The first value was
enough to reproduce the lattice QCD calculations, PRD80,
014504 (2009), and PLB730, 99 (2014). Increasing 𝑔 to 10.5
does not enable PLSM to reproduce the other lattice simula-
tions [47–49]. Furthermore, through fitting with lattice QCD
calculations and experiments, the parameters of PLSM can be
estimated. This was described in details in [50, 53].

Scope of the present script is the regeneration for the
lattice QCD calculations [47–49]. In the present work, we
tackle this problem through comparison with various effec-
tivemodels. In doing this, we havemodified LSM and present
systematic analysis for two order parameters. We have added
to LSM the gluonic sector of the quasi-particle model. This
is the essential original proposal of the present script. Thus,
waiving details about PLSM itself are though as legitimated.
But for a complete list of the PLSM parameters, the readers
are kindly advised to consult [50, 53].

3.2. Normalized Net-Strange Condensate Δ 𝑞,𝑠(𝑇). Another
dimensionless quantity shows the difference between non-
strange and strange condensates:

Δ 𝑞,𝑠 (𝑇) =
⟨𝑞𝑞⟩ − (𝑚𝑞/𝑚𝑠) ⟨𝑠𝑠⟩

⟨𝑞𝑞⟩0 − (𝑚𝑞/𝑚𝑠) ⟨𝑠𝑠⟩0

, (52)

where ⟨𝑞𝑞⟩ (⟨𝑠𝑠⟩) are nonstrange (strange) condensates and
𝑚𝑞 (𝑚𝑠) are nonstrange (strange) masses. Using Ward iden-
tities and Gell-Mann-Oakes-Renner relation, expression (52)
might be given in terms of pion and kaon masses and their
decay constants [82]. Accordingly, the final results might be
scaled but their thermal behavior remains unchanged. The
lattice QCD calculations for Δ 𝑞,𝑠(𝑇) (solid circles) [47] and
(open circles) [49] are compared with the calculations from
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Figure 1: The thermal behaviour of the dimensionless chiral order
parameter, 𝑀, calculated as function of temperature from the four
SU(3) effective models, PLSM (solid curve), QLSM (dotted curve),
PNJL (double-dotted curve), and HRG (dash-double-dotted curve),
and compared with the lattice QCD calculations (solid circles) [47]
and (open circles) [48] at𝑚𝑙/𝑚𝑠 = 0.037.

PLSM (solid curve), QLSM (dotted curve), PNJL (double-
dotted curve), and HRG (dash-double-dotted curve) in
Figure 2.

It is obvious that PLSM agrees with the lattice results
[49] at low and also at high temperatures. Its ability to
reproduce the other set of lattice results [48] is limited
to the high temperatures. This might be originated in the
difference between the two sets of lattice QCD simulations,
Section 3.1.1. The HRG model agrees well with these lattice
calculations [48]. It is apparent that such agreement is limited
to temperatures below the critical value due to the limited
applicability of the HRG model. The remaining two models
PNJL and QLSM show qualitative thermal behavior as that
from the other effectivemodels and lattice calculations,which
can be described by large plateau at low temperatures, around
the critical temperature the values ofΔ 𝑞,𝑠(𝑇) decrease rapidly,
and at high temperature Δ 𝑞,𝑠(𝑇) vanishes but very slowly.
Both models are closer to [49] rather than to [48].

Both Figures 1 and 2 show that the PNJL model and
HRG model describe much better the LQCD data for
the magnetization and normalized net-strange condensate,
respectively, than for the chiral condensate. One should bear
in mind that the magnetizations have been simulated in a
different lattice than the one for the net-strange condensate.
Unfortunately, both quantities are not available from the same
lattice simulation.

3.3. QCD Chiral Phase-Diagram. For mapping out the QCD
chiral phase-diagram, various approaches are available. From
PLSM and PNJL, as they possess two order parameters,
one for strange and one for nonstrange chiral condensates,
hints about QCD chiral phase transition can be analysed.
Furthermore, PLSM and PNJL possess deconfinement order
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Figure 2: The thermal dependence of Δ 𝑞,𝑠 calculated from PLSM
(solid curve), QLSM (dotted curve), PNJL (double-dotted curve),
andHRG (dash-double-dotted curve) and compared with the lattice
QCD calculations (solid circles) [47] and (open circles) [49] at
𝑚𝑙/𝑚𝑠 = 0.037.

parameter because of the Polyakov loop potential. Therefore,
from strange and nonstrange chiral condensates, a dimen-
sionless quantity reflecting the difference between both con-
densates, Δ 𝑞,𝑠(𝑇), can be deduced as function of temperature
at fixed baryon chemical potential. Apparently, this signals
the QCD chiral phase transition. At the same value of baryon
chemical potential, we can also deduce the deconfinement
order parameter as function of temperature. At a fixed
baryon chemical potential, the thermal dependence of these
two quantities intersects with each other at a characterizing
point representing the phase transition. When repeating
this procedure at different values of the baryon chemical
potentials, we get a set of points representing theQCDphase-
diagram. The results are given in Figure 3, as solid curve for
PLSM and dotted curve for PNJL.

For the QCD chiral phase-diagram from QLSM, we
implement another method. As no Polyakov loop potential is
included, the QCD chiral phase-diagram is characterized by
the higher-order moments of particle multiplicity [31], which
are assumed to highlight various types of fluctuations in 𝑇

and 𝜇. Therefore, we utilize the possible fluctuations accom-
panying normalized second-order moment [31] in mapping
out the QCD chiral phase transition. The problematic of
determining pseudocritical temperature from the second
moment has been discussed in [83]. Accordingly, we observe
that the peaks corresponding to different temperatures are
conjectured to be characterized by different values of the
baryon chemical potentials, where the QCD chiral phase
transition is conjectured to occur. We analyse this depen-
dence at different values of the temperature𝑇.Then,we follow
the scheme to determine 𝑇 and 𝜇, which is characterized by
maximum 𝑚2/𝜇

2, where 𝑚2 is the second-order moment of
the particlemultiplicity.The results are illustrated in Figure 3,
as dash-dotted curve.
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Figure 3: The PLSM 𝑇-𝜇 chiral phase-diagram (lines with points),
with which the freeze-out parameters deduced from lattice theQCD
calculations [84–86] (band) and that from different thermal models
[87–89] (symbols) are compared.

For the HRG model, we map out the QCD chiral phase-
diagram by utilizing the quark-antiquark condensate as order
parameter [45]. It is assumed that the thermal dependence
of the quark-antiquark condensate remains finite in the
hadronic phase but vanishes at temperature higher than the
critical chiral temperature.The results are given in Figure 3 as
well, as double-dotted curve.

We can now shortly summarize the methods imple-
mented to determine the pseuodcritical temperatures.

(i) PLSM and PNJL: due to chiral and deconfinement
phase transitions for light and strange quarks,Δ 𝑞,𝑠(𝑇)
is determined as function of temperature at a fixed
baryon chemical potential, 𝜇. This signals the QCD
chiral phase transition. At the same value of 𝜇, the
deconfinement order parameter can be studied as
function of temperature, as well. Then, the thermal
dependence of these two quantities is conjectured to
intersect with each other at a characterizing point.
When repeating this procedure for different values of
𝜇, a set of points of pseudocritical temperatures 𝑇𝜒
and 𝜇 can be deduced.

(ii) QLSM: the normalized second-order moment of
particle multiplicity is implemented in mapping out
the QCD chiral phase transition. Peaks correspond-
ing to different temperatures are conjectured to be
characterized by different values of 𝑇𝜒 and 𝜇.

(iii) HRG: the quark-antiquark condensates are imple-
mented as order parameters. At vanishing and finite
𝜇, the thermal dependence of the quark-antiquark
condensate remains finite in the hadronic phase and
vanishes at temperature higher than the critical chiral
temperature, 𝑇𝜒.
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We observe that the chiral boundary from PLSM (solid
curve) is positioned within the upper band of the lattice
QCD calculations [84–86] and agrees well with the freeze-out
results deduced from the STARBESmeasurements (symbols)
[87]. The temperatures calculated from the HRG model by
using the quark-antiquark condensate as the order parameter
(double-dotted curve) [45] are higher than the chiral tem-
peratures from the PLSM and the freeze-out temperatures
calculated in the lattice QCD (band) and from the STAR
BES measurements (symbols). Despite this difference, the
corresponding 𝑇-𝜇 sets are very similar to that of the PLSM.
The results from PNJL and QLSM are higher than that from
the HRG model.

4. Conclusions and Outlook

In the present work, we report on a systematic comparison
between PLSM, PNJL, QLSM, and HRG in generating the
chiral quantities, order-parameter 𝑀(𝑇), and normalized
net-strange and non-strange condensates Δ 𝑞,𝑠(𝑇). Further-
more, we confront the results deduced from the four effective
models to the recent lattice QCD calculations in order to
distinguish between the models and to interpret the first-
principle lattice QCD calculations.

For the order-parameter 𝑀(𝑇), the best agreement is
found with PLSM, while the recent lattice QCD [48] lay
on top of all curves. This might be understood from the
lattice configurations and the actions implemented in the
simulations.The other effective models lay below the two sets
of the lattice calculations. We notice that the effective PLSM,
QLSM, PNJL and HRG and the different sets of the lattice
calculations have different critical temperatures, Table 2.

For the normalized net-strange and nonstrange conden-
sates Δ 𝑞,𝑠(𝑇), PLSM again gives an excellent agreement with
the lattice results [49] at low and high temperatures. But its
ability to reproduce the lattice simulations [48] is limited to
high temperatures.This might be originated in the difference
between the two sets of lattice QCD simulations. Further-
more, we find that the HRGmodel agrees well with the lattice
QCD calculations [48]. It is apparent that this is restricted
to temperatures below the critical value.The effective models
PNJL andQLSM show the same qualitative thermal behavior.
There is a large plateau at low temperatures. Around the
critical temperature the values of Δ 𝑞,𝑠(𝑇) decrease rapidly.
At high temperature, Δ 𝑞,𝑠(𝑇) vanishes but very slowly. The
effective models PNJL and QLSM are closer to [49] rather
than to [48].

In light of this, we conclude that the PLSM reproduces
𝑀(𝑇) and Δ 𝑞,𝑠(𝑇) as well. The HRG model is able to
reproduce Δ 𝑞,𝑠(𝑇), while PNJL and QLSM seem to fail.These
features and differences are present in the chiral phase-
diagram, Figure 3, as well.

In Section 3.3, we have introduced the various order
parameters used in the different models in order to deduce
𝑇 and 𝜇 of the QCD chiral phase transition. The strange
and non-strange chiral condensates and the Polyakov loop
potentials are utilized in PLSM and PNJL. The thermal
dependence of these two quantities are assumed to intersect
with each other at a characterizing point representing the

QCD chiral phase transition. For QLSM, no Polyakov loop
potential is included in, therefore, the chiral phase-diagram
is characterized by the higher-order moments of the particle
multiplicity. The possible fluctuations accompanying the
normalized second-order moment are assumed to map out
the QCD chiral phase transition. For the HRG model, we
utilize the quark-antiquark condensates as order parameter.

Again, we find that the PLSM chiral boundary (solid
curve) is located within the upper band of the lattice QCD
calculations and agrees well with the freeze-out results
deduced from the experiments and the thermal models
(symbols). It is obvious that the chiral temperature calculated
from the HRG model is larger than that from the PLSM.
This is also larger than the freeze-out temperatures calculated
in the lattice QCD (band) and from the experiments and
the thermal models (symbols). Despite this difference, the
corresponding 𝑇 and 𝜇 sets are very similar to that from
the PLSM. This might be explained as follows. The 𝑇 and
𝜇 are calculated using different order parameters: In HRG
vanishing quark-antiquark condensate but in PLSM crossing
(equalling) chiral condensates and Polyakov loop potentials
can be utilized in determining both chiral 𝑇 and 𝜇. The latter
assumes that the two phase transitions, the chiral and the
deconfinement, occur at the same temperature. The earlier
deals with the chiral phase transition independent on the
confinement-deconfinement one.

The results from the two models PNJL and QLSM show
the same qualitative behavior. The chiral temperatures are
higher than that from the PLSM and HRG. This might be
interpreted due to the heavy quark masses implemented in
both models.

Any model comparison with lattice results should span
as much as possible of the parameter space. Even with the
narrow parameter space explored in the present paper, we
would like to highlight that the results are limited. But, with
reference to previous work [50], the parameters alone are not
able to explain the diversity with the results in this study.
We have to attack essential components of LSM and integrate
gluonic sector taken from the quasi-particle models.
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[85] Y. Aoki, S. Borsányi, S. Dürr et al., “The QCD transition
temperature: results with physical masses in the continuum
limit II,” Journal of High Energy Physics, vol. 2009, no. 6, article
088, 2009.

[86] A. Bazazov, T. Bhattacharya, M. Cheng et al., “Chiral and
deconfinement aspects of the QCD transition,” Physical Review
D, vol. 85, no. 5, Article ID 065503, 37 pages, 2012.

[87] A. Tawfik and E. Abbas, “Thermal description of particle
production in Au-Au collisions at RHIC energies (STAR),”
Physics of Particles and Nuclei Letters, vol. 12, no. 4, pp. 521–531,
2015.

[88] F. Becattini,M. Bleicher, T. Kollegger, T. Schuster, J. Steinheimer,
and R. Stock, “Hadron formation in relativistic nuclear colli-
sions and the QCD phase diagram,” Physical Review Letters, vol.
111, Article ID 082302, 2013.

[89] R. Stock, F. Becattini, M. Bleicher, T. Kollegger, T. Schuster, and
J. Steinheimer, “Hadronic freeze-out in A+A collisions meets
the lattice QCD Parton-Hadron transition line,” in Proceedings
of the 8th International Workshop on Critical Point and Onset of
Deconfinement (CPOD ’13), p. 11, Napa, Calif, USA,March 2013.


