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We investigate the transport properties within a holographic model characterized by a novel gauge-axion
coupling. A key innovation is the introduction of the direct coupling between axion fields, the anti-
symmetric tensor, and the gauge field in our bulk theory. This novel coupling term leads to the emergence
of nondiagonal components in the conductivity tensor. An important characteristic is that the off-diagonal
elements manifest antisymmetry. Remarkably, the conductivity behavior in this model akin to that of Hall
conductivity. Additionally, this model can also achieve metal-insulator transition.
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I. INTRODUCTION

Gauge/gravity duality, which stands by now as one of the
most powerful tools in theoretical physics, provides a deep
and fundamental connection between quantum field theory
(QFT) and gravity [1–4]. This correspondence has revealed
some universal properties in strongly coupled quantum
many-body systems and has provided important insights
into phenomena such as transport properties without quasi-
particle excitations, novel mechanisms for superconduc-
tivity, and quantum phase transitions (QPTs) [5,6].
Transport is an inherent characteristic of a system,

capable of revealing its universal behavior. Extensive study
on transport properties has been conducted, as compre-
hensively reviewed in [5–9]. The Kovtun-Son-Starinets
density (KSS) is the most successful example, representing
the gradient between the shear viscosity and entropy
density ratios [10,11]. The KSS density has attracted
significant attention because it establishes a lower bound
for the ratio of shear viscosity to entropy density in any
system. This lower bound, known as the KSS bound,
provides valuable insights into the behavior of strongly
interacting systems and has led to advancements in our
understanding of phenomena like the quark-gluon plasma
produced in heavy-ion collisions.

To model more realistic systems, we usually need to
introduce the momentum dissipation, which removes the
δ-function that appears at zero frequency in the electric
conductivity of translation-invariant holographic systems.
A simple yet significant mechanism incorporating the
momentum dissipation is to introduce spatially linear
dependent scalar fields, known as axionic fields [12]. The
holographic axions model has been extensively applied to
address various topics, including the behavior of strange
metals [13–15] and the mechanisms underlying coherent
and incoherent metals [16,17]. However, it is important
to note that when measuring in terms of the chemical
potential of the dual field theory, i.e., the system is in the
grand canonical ensemble, the direct current (dc) conduc-
tivity of the 4-dimensional holographic system remains a
nonvanishing constant independent of temperature [12].
Additionally, it is worth mentioning that a lower bound
for the dc conductivity exists in this holographic dual
system [18]. Consequently, this simple holographic axion
model does not exhibit a metal-insulator transition (MIT).
In the spirit of effective holographic low energy theories,

it is interesting and natural to study the effect of higher-
derivative terms of axion fields and the gauge-axion
coupling [19–26]. Recent studies have revealed that the
inclusion of higher-derivative terms in the holographic
effective theory can violate the lower bound of dc con-
ductivity in the conventional axion model [12], providing a
more realistic framework to model insulating states with
zero dc conductivity at zero temperature. These higher-
derivative terms significantly affect the lower bound of
charge diffusion [21,27,28], while leaving the upper bound
of charge diffusion and energy diffusion unchanged [23].
This framework allows for the implementation of a
MIT [20]. Furthermore, two sets of massless axionic fields
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were considered in this framework [29,30]. The first axion
field provides a mechanism for momentum dissipation,
while the second axion field introduces an elastic mechani-
cal deformation. The electrical conductivity of this case
exhibites anomalous inverse Hall conductivity [29,30].
Additional discussions of holographic magnetotransport
can be referred to [31–34]. In this paper, we propose a novel
form of gauge-axion coupling that effectively mimics the
effect of a magnetic field.
The structure for this paper is as follows. In Sec. II, we

propose a novel holographic effective model, in which a
direct coupling between axion fields, the antisymmetric
tensor, and the gauge field in introduced. Then the analy-
tical black brane solution is worked out. Moving on to
Sec. III, we derive the expressions for dc conductivities and
engage in a brief discussion of their properties. In Sec. IV,
we scrutinize the electric conductivities’ characteristics,
addressing the MIT within both the grand canonical
and canonical ensembles. Section V delves into the explo-
ration of the analogous magnetic effects of our model,
accompanied by a comparison with the dyonic model. A
comprehensive holographic renormalization procedure is
meticulously carried out in appendix.

II. THE HOLOGRAPHIC FRAMEWORK

We propose a novel holographic effective model, for
which the action is

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R−2Λ−

1

4
F2−VðX0Þ−

J
2
Tr½XF�

�
: ð1Þ

The above action includes a Uð1Þ gauge field Aμ, which is
associated with the field strength F ¼ dA, and the axion
fields ϕI with I ¼ 1, 2. The axion fields are incorporated
into the aforementioned action through the potential VðX0Þ
and the coupling Tr½XF�, which are described in the
following forms:

X0 ¼
1

2
δIJ∂μϕ

I
∂νϕ

Jgμν; δIJ ¼
�
1 0

0 1

�
ð2aÞ

Tr½XF� ¼ ϵIJ∂μϕ
I
∂νϕ

JFμν; ϵIJ ¼
�

0 1

−1 0

�
ð2bÞ

where δIJ is the identity matrix and ϵIJ is the antisymmetry
Levi-Civita symbol. The term VðX0Þ exclusively involves
the axion fields and has been extensively studied in the
holographic effective axions model [19–26]. In the effec-
tive theory we are investigating, the key innovative aspect is
the gauge-axion coupling term, represented as Tr½XF�. This
novel coupling term breaks time reversal invariance, which
is discussed in the appendix.
Usually, the gauge-axion coupling involves the coupling

between the axion fields and the “stress tensor” of the gauge

fieldF2 through the form as Tr½XF2� ¼ δIJ∂μϕ
I
∂νϕ

JFμαFν
α,

or more direct coupling as XF2 [19,21]. However, in our
model, the axion fields are directly coupled to the gauge field
strength Fμν. In fact, a more general coupling term, such
as θIJ∂μϕ

I
∂νϕ

JFμν with an arbitrary 2 × 2 matrix θIJ, is
equivalent for the antisymmetry of Fμν. This novel coupling
term produces an equivalent effect to that of a magnetic field,
which becomes evident in the subsequent analysis of dc
conductivity.
From the above action (1), the equations of motion can

be derived as follows:

∇μðV 0
∂
μϕI þ J ϵIJ∂νϕ

JFμνÞ ¼ 0; ð3aÞ

∇μðFμν þ J ϵIJ∂μϕI
∂
νϕJÞ ¼ 0; ð3bÞ

Rμν −
1

2
Rgμν þ Λgμν ¼ Tμν; ð3cÞ

where V 0 ¼ dV=dX0 and the energy-momentum tensor Tμν

reads as:

Tμν ¼ −
1

2
gμν

�
1

4
F2 þ VðX0Þ þ

J
2
Tr½XF�

�

þ 1

2
FμρFν

ρ þ 1

2
V 0ðXÞ∂μϕI

∂νϕI

þ J
2

�
ϵIJ∂βϕ

I
∂νϕ

JFβ
μ þ ϵIJ∂βϕ

I
∂μϕ

JFβ
ν

�
: ð4Þ

The model admits asymptotically AdS charged black
brane solutions with the cosmological constant Λ ¼ −3.
For arbitrary choice of the potential function VðX0Þ, they
take the form:

ds2 ¼ 1

u2

�
−fðuÞdt2 þ 1

fðuÞ du
2 þ dx2 þ dy2

�
;

A ¼ AtðuÞdtþ Bxdy; ð5aÞ

fðuÞ¼u3
Z

u

1

1

4

�
B2þ2J α2Bþq2þ2Vðα2ξ2Þ

ξ4
−
12

ξ4

�
dξ;

ð5bÞ

AtðuÞ ¼ μ − qu; ϕ1 ¼ αx; ϕ2 ¼ αy; ð5cÞ

where uh denotes the horizon location. μ and q are the
chemical potential and the charge density, respectively. α
stands for the strength of the momentum dissipation. The
temperature of the black brane is given by

T ¼ −
f0ðuhÞ
4π

¼ 3

4πuh
−
q2u3h
16π

−
Vðα2u2hÞ
8πuh

−
α2BJu3h

8π
−
B2u3h
16π

;

ð6Þ
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Throughout this paper, we will choose VðX0Þ ¼ X0. In
the equilibrium state, leveraging the renormalization out-
comes, we can derive the energy density ε ¼ hTtti ¼ −2f3
and mechanical pressure P ¼ hTxxi ¼ −f3. Furthermore,
expressions for the entropy density s, temperature T, energy
density ε, and charge density q of the system can be
formulated as:

s¼4π

u2h
;

T¼ 1

4πuh

�
3−

α2u2h
2

−
u2hμ

2þB2u4hα
2þ2BJ u4hα

2

4

�
; ð7Þ

ε ¼ 2

u3h

�
1 −

α2u2H
2

þ μ2u2h þ B2u4h þ 2BJ α2u4h
4

�
;

q ¼ μ

uh
: ð8Þ

Therefore, the thermodynamic pressure P can be deter-
mined using the relation εþ P ¼ Tsþ qμ as follows:

P ¼ 1

u3h

�
1þ α2u2h

2
þ μ2u2h − 3Bu4h − 6BJ α2u4h

4

�
: ð9Þ

Then, it is straightforward to obtain the expression of the
thermodynamic potential FðT; V; μ; BÞ using the relation
FðT; V; μ; BÞ ¼ −PV, where V ¼ R

dxdy denotes the
space volume. It is worth noting that the thermodynamic
potential can also be worked out through the relation
FðT; V; μ; BÞ ¼ −T lnZ ¼ −TSE, where SE represents
the renormalized Euclidean on-shell action. Furthermore,
we can validate that these thermodynamic quantities adhere
to the following thermodynamic laws:

−
∂F
∂V

¼ P; −
1

V
∂F
∂T

¼ s; −
1

V
∂F
∂μ

¼ q: ð10Þ

Utilizing the expression of the thermodynamic potential
F, the magnetization density m can be computed as
follows:

m ¼ −
1

V
∂F
∂B

¼ −ðBþ J α2Þuh: ð11Þ

When the coupling term is absent, i.e., J ¼ 0, the magneti-
zation density m reduces the case of the Einstein-Maxwell
theory as elucidated in [5]. Notably, even in the absence of
a magnetic field, the magnetization density m0 ¼ −J α2uh
persists within the system.
In addition, we would like to address the disparity

between mechanical pressure and thermodynamic pressure,
which is:

P − P ¼ 1

u3h

�
α2u2h − B2u4h − 2BJ α2u4h

�
: ð12Þ

The difference encompasses the contributions from the
magnetic field, the axion field and the coupling term J .
When the coupling term is absent, the difference has been
discussed in [5,35].
In the absence of an external magnetic field B, it is

evident from the expression (5b) that the novel coupling
term Tr½XF� has no effect on the background. Conse-
quently, the solution described above reduces to a simple
Reissner-Nordstrom-AdS (RN-AdS) black brane with axi-
ons [12]. However, it is important to note that this coupling
can significantly change the transport behaviors, leading
to an off-diagonal electrical conductivity. To better discern
the impact of the coupling term on the system, we will
consistently deactivate the magnetic field B.

III. DC CONDUCTIVITIES

In this section, we will employ the standard membrane
technique [36–38] to calculate the dc conductivities of the
dual field theory. To this end, we turn on the following
consistent perturbations around the background:

δAi ¼ ð−Ei þ AtðuÞζiÞtþ δaiðuÞ;

δgti ¼
1

u2
ð−ζifðuÞtþ htiðuÞÞ;

δgui ¼
huiðuÞ
u2

;

δϕi ¼ δϕiðuÞ; ð13Þ

where the index i ¼ x, y labels the spatial directions. Ei
represents the external electric field, while ζi ≡ −∇iT=T
denotes the thermal gradient. We would like to emphasize
that, because of the novel coupling term, there are always
both electric and heat currents along the y direction, with
nonzero values. Therefore, for consistency, perturbations
along the y direction must be activated to work out the
conductivity matrix.
We can use the generalized Ohm’s law to calculate the

corresponding conductivity coefficients:

�
J

Q

�
¼

�
σ αT

ᾱT κ̄T

��
E

−ð∇TÞ=T

�
; ð14Þ

where J and Q are electric and heat currents, respectively.
σ and κ̄ represent the electric conductivity and the thermal
conductivity, respectively. On the other hand, α and ᾱ
denote the thermoelectric conductivity and its reciprocal,
where α ¼ ᾱ. Since the bulk currents are conserved, we can
evaluated them at the horizon. Consequently, we can obtain
the following expressions for the conductivities:

σxx ¼ σyy ¼
ðV 0 − J 2α2u2hÞðμ2 þ α2V 0Þ

α2ðJ 2μ2u2h þ V 02Þ ; ð15Þ
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σxy ¼ −σyx ¼
J μuhðμ2 þ 2α2V 0 − J 2α4u2hÞ

α2ðJ 2μ2u2h þ V 02Þ ; ð16Þ

αxx ¼ αyy ¼
4πμðV 0 − α2J 2u2hÞ
α2uhðJ 2μ2u2h þ V 02Þ ; ð17Þ

αxy ¼ −αyx ¼
4πJ ðμ2 þ α2V 0Þ
α2ðJ 2μ2u2h þ V 02Þ ; ð18Þ

κ̄xx ¼ κ̄yy ¼
ð4πÞ2TV 0

α2u2hðJ 2μ2u2h þ V 02Þ ; ð19Þ

κ̄xy ¼ −κ̄yx ¼
ð4πÞ2TJ μ

α2uhðJ 2μ2u2h þ V 02Þ ; ð20Þ

where V 0 ¼ V 0ðα2u2hÞ.
An intriguing characteristic we observe is their off-

diagonal nature, displaying an antisymmetric conductivity
behavior, specifically σxy ¼ −σyx. As we know, there are
two main mechanisms that can lead to a nonvanished
off-diagonal conductivities. One comes from an external
magnetic field, the other arises from the anisotropy of the
dual system (see, for instance, [29,38–40]). However, in the
latter case, the conductivity matrix is symmetric, with
σxy ¼ σyx [39], which differs from the earlier mentioned
results. On the contrary, the Hall conductivities adhere to the
antisymmetric relation σxy ¼ −σyx. Hence, we can interpret
our findings as “internal” Hall conductivities, with the
coupled axion fields acting as an “induced” magnetic field.
There is also the possibility of having an anomalous
conductivity, which in the holographic model can be realized
by adding a F ∧ F term to the gravity action [41–47].

IV. THE PROPERTIES OF THE ELECTRIC
CONDUCTIVITIES

In this section, we will delve into the properties of the
electric conductivities in our study. Throughout this paper,
we will choose VðX0Þ ¼ X0. Then the longitudinal con-
ductivity, σxx, takes on the following specific form:

σxx ¼
ðα2 þ μ2Þð1 − J 2α2u2hÞ

α2ðJ 2μ2u2h þ 1Þ ; ð21aÞ

¼ ðα2 þ q2u2hÞð1 − J 2α2u2hÞ
α2ðJ 2q2u4h þ 1Þ ; ð21bÞ

and the Hall conductivity, σxy, has the form:

σxy ¼
J μuhðμ2 þ 2α2 − J 2α4u2hÞ

α2ðJ 2μ2u2h þ 1Þ ; ð22aÞ

¼ J qu2hðq2u2h þ 2α2 − J 2α4u2hÞ
α2ðJ 2q2u4h þ 1Þ : ð22bÞ

Notice that Eqs. (21a) and (22a) are formulated in terms of
the chemical potential μ, while Eqs. (21b) and (22b) are
expressed in terms of the charge density q. We will now
analyze two cases of the holographic dual system: one with
a fixed chemical potential, corresponding to the grand
canonical ensemble, and the other with a fixed charge
density, corresponding to the canonical ensemble.

A. Grand canonical ensemble

In this subsection, we will investigate the transport
properties of this holographic system at the grand canonical
ensemble, i.e., for a fixed chemical potential μ. When we
work in the grand canonical ensemble, we can adopt the
chemical potential as the scaling unit, setting it to μ ¼ 1.
Consequently, Eqs. (21a) and (22a) become

σxx ¼
ðα2 þ 1Þð1 − J 2α2u2hÞ

α2ðJ 2u2h þ 1Þ ; ð23aÞ

σxy ¼
J uhð1þ 2α2 − J 2α4u2hÞ

α2ðJ 2u2h þ 1Þ : ð23bÞ

From Eq. (23a), it becomes evident that in order to
prevent negative longitudinal conductivity, a constraint of
1 − J 2α2u2h should be imposed when the horizon uh attains
its maximum value, i.e., u2hðT ¼ 0Þ ¼ 12=ð2α2 þ 1Þ. This
constraint leads to a bound on the parameter J as follows:

J 2 ≤
1

6
þ 1

12α2
: ð24Þ

It is easy to find that there is a most stringent constraint
applicable to all values of α given by:

J 2 ≤ 1=6: ð25Þ

We would like to point out that the aforementioned
constraint (24) also ensures the positivity of σxy=J . This
implies that for J > 0, an electric field along the positive
x-axis will induce a current in the positive y-axis direction.
Conversely, for J < 0, an electric field along the positive
x-axis will result in a current opposite to the direction of the
y-axis, which is similar to the effects of Lorentz forces.
Subsequently, we present the dependence of the longi-

tudinal conductivity, σxx, and the Hall conductivity, σxy, on
the disorder strength α while keeping the coupling param-
eter J and temperature fixed in Fig. 1. Our findings
indicate a decreasing trend in both the longitudinal and
Hall conductivities with increasing α, signifying the sup-
pression of conductivity by disorder. This observation is
consistent with conventional axion models such as those
found in [12,19–26].
Furthermore, we depict the relationship between the

longitudinal conductivity and the Hall conductivity with
respect to the coupling parameter J while keeping the
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disorder strength α and temperature fixed (Fig. 2). Our
observations reveal that within the regime of small J
values, the longitudinal conductivity decreases, whereas the
Hall conductivity increases as J is raised. During this
phase, the coupling term J plays a role akin to the Lorentz
force induced by a magnetic field. However, as J enters the
large regime, both the longitudinal and Hall conductivities
are suppressed by the increasing coupling strength J . This
behavior may resemble the dominant onset of the vortex
magnetoresistance effect.
Now, we would like to study the transport behavior of

this system. To identify the metallic and insulating phases,
we adopt a widely used operational definition, as described
in several holographic references [20,25,36,40,45,48–60].
Specifically, ∂Tσxx < 0 will indicate the metallic phase,
while ∂Tσxx > 0will indicate the insulating phase. Figure 3
illustrates the temperature dependence of σxx for different
values of J and α. It is evident that as the temperature
decreases, σxx also decreases. This observation suggests
that the holographic system under investigation displays an
insulating behavior.
We can also analytically calculate the temperature

derivative of σxx at finite temperature as

∂Tσxx ¼
32πJ 2u3hð1þ α2Þ2

α2ð12þ 2α2u2h þ u2hÞð1þ J 2u2hÞ2
: ð26Þ

It is evident that ∂Tσxx > 0, indicating that this holographic
dual system indeed demonstrates insulating behavior,
which aligns with the findings presented in Fig. 3. Addi-
tionally, we have observed that in the high-temperature
limit, σxx approaches a maximum value as

σðT → ∞Þ ¼ 1þ 1

α2
: ð27Þ

This indicates an upper bound for the conductivity, which is
dependent on α but independent of J . This result is in
agreement with the behavior depicted in Fig. 3.
It is also interesting to investigate the conductive

behavior at zero temperature. Figure 3 demonstrates that
in certain parameter region, σxx can approach zero in the
limit of zero temperature, indicating the emergence of an
ideal insulator. Next, we will delve into a comprehensive
analysis of the zero-temperature conductivity behavior. To
this end, we can analytically work out the expression of the
longitudinal conductivity at zero temperature, which takes
the form:

σxxðT ¼ 0Þ ¼ ð1þ α2Þð1þ 2α2ð1 − 6J 2ÞÞ
2α4 þ α2ð1þ 12J 2Þ : ð28Þ

First, when we take the upper bound of the constraint (25),
i.e., J 2 ¼ 1=6, it becomes evident from Eq. (28) that

FIG. 1. The longitudinal conductivity, σxx, and the Hall conductivity, σxy, as functions of the disorder strength α in the grand canonical
ensemble. Here we have keep the coupling parameter J and the temperature fixed.

FIG. 2. The longitudinal conductivity, σxx, and the Hall conductivity, σxy, as functions of the coupling strength J in the grand
canonical ensemble. Here we have keep the disorder strength α and the temperature fixed.
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σxxðT ¼ 0Þ that σxxðT ¼ 0Þ decreases with increasing dis-
order strength α and eventually tends to zero in the large α
limit, indicating the emergence of an ideal insulator. This
process is prominently illustrated in Fig. 4. In this case, the
realization of the ideal insulator is predominantly driven by
the strength of disorder.
Moreover, for cases where J 2 < 1=6, the conductivity

σxxðT ¼ 0Þ remains positive for all values of α, bounded by
σxxðT ¼ 0Þ ¼ 1–6J 2. Consequently, the dual system is
regarded as a poor insulating phase. An illustrative instance
of this is presented in Fig. 4, where we consider J ¼ 0.2.
In instances where J 2 > 1=6, σxxðT ¼ 0Þ approaches

zero at a finite value of α as shown in Fig. 4 for J ¼ 0.5,
implying the potential attainment of an ideal insulator.
However, it is important to emphasize that this ideal
insulating phase is not primarily driven by disorder but
might be associated with some dynamical instabilities.
In fact, from Eq. (28), it becomes evident that when the
relation J 2 ¼ 1=6þ 1=ð12α2Þ is satisfied, σxx ¼ 0 in the
zero temperature limit.
In conclusion, the holographic dual system (1) in the

grand canonical ensemble demonstrates insulating behavior
irrespective of the disorder strength α and the coupling
parameter J . However, at zero temperature, the dual
system displays either ideal or poor insulating behavior,
contingent upon the value of J . Specifically, an ideal

insulating phase can be realized either when J 2 ¼ 1=6
with large α or when J 2 ¼ 1=6þ 1=ð12α2Þ. Conversely, in
instances where J 2 < 1=6, the dual system exhibits poor
insulating properties.

B. Canonical ensemble

In this subsection, we turn to the canonical ensemble,
within which we are able to set the charge density as q ¼ 1.
Consequently, in this scenario, the conductivities can be
expressed as follows:

σxx ¼
ðα2 þ u2hÞð1 − J 2α2u2hÞ

α2ðJ 2u4h þ 1Þ ; ð29aÞ

σxy ¼
J u2hðu2h þ 2α2 − J 2α4u2hÞ

α2ðJ 2u4h þ 1Þ : ð29bÞ

To guarantee the non-negativity of σxx, even when u2h
takes its maximum value of u2h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4 þ 12

p
− α2, which

corresponds to the scenario of zero temperature, the
following constraint comes into play:

J 2 ≤
1

12
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4 þ 12

p

12α2
: ð30Þ

Different from the case of the grand canonical ensemble,
under the above constraint, the Hall conductivity σxy is also
positive. In addition, similarly to the scenario in the grand
canonical case, we find that there is also a tightest
constraint J 2 ≤ 1=6, which is available for all α.
We also illustrate how the longitudinal conductivity and the

Hall conductivity vary on the disorder strength α or the
coupling parameterJ while keeping the other parameters and
the temperature fixed, which are showcased in Figs. 5 and 6.
We observe that the dependence of the longitudinal conduc-
tivity and the Hall conductivity on the disorder strength α or
the coupling parameter J is similar to the case in the grand
canonical ensemble studied in the above subsection.
Next, we will delve into studying the transport properties

of this holographic dual system in the canonical ensemble.

FIG. 3. The temperature behaviors of σxx for various α and J .

FIG. 4. σxxðT ¼ 0Þ as a function of α for various coupling
parameters J in the grand canonical ensemble.
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To this end, we we will derive the expression of ∂Tσxx as
follows:

∂Tσxx¼−
32πu3hðJ 2ðJ 2α4−1Þu4h−4J 2α2u2hþ1−J 2α4Þ

α2ð1þJ 2u4hÞ2ð12þ3u4hþ2α2u2hÞ
:

ð31Þ

From the equation above, we observe that in order to
investigate the temperature-dependent behaviors of σxx, our
focus should primarily be on analyzing the numerator:

Yðu2hÞ ¼ J 2ð1 − J 2α4Þu4h þ 4J 2α2u2h þ J 2α4 − 1: ð32Þ

Notice that Yðu2hÞ is a quadratic function of u2h. We can
work out the roots of Yðu2hÞ ¼ 0, which are given by:

u2h ¼ ð1þ J α2Þ=ðJ 2α2 − J Þ; ð33aÞ

u2h ¼ ð1 − J α2Þ=ðJ 2α2 þ J Þ: ð33bÞ

Without loss of generality, we assume J ≥ 0 and catego-
rize our analysis into two distinct case: J α2 < 1 and
J α2 > 1, for further discussions. We visually represent
the behavior of Yðu2hÞ in Fig. 7.

FIG. 5. The longitudinal conductivity, σxx, and the Hall conductivity, σxy, as functions of the disorder strength α in the canonical
ensemble. Here we have keep the coupling parameter J and the temperature fixed.

FIG. 6. The longitudinal conductivity, σxx, and the Hall conductivity, σxy, as functions of the coupling strength J in the grand
canonical ensemble. Here we have keep the disorder strength α and the temperature fixed.

FIG. 7. Yðu2hÞ varies with respect to u2h. The left panel corresponds to J α2 < 1, while the right panel is for J α2 > 1.
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Before we proceed, it is important to note that uh
increases from zero, corresponding to the high-temperature
case, to a certain finite value of uh, indicating the zero-
temperature case. Now, we turn to the analytical study of
the conductivity behavior of this system. First, when the
maximun value of u2h, which is u

2
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4 þ 12

p
− α2 at zero

temperature, is smaller than the positive root, ∂Tσxx is

consistently negative for J α2 < 1 or positive for J α2 > 1.
This indicates that the system exhibits metallic behavior for
J α2 < 1 and insulating behavior for J α2 > 1. Otherwise,
when the maximum value exceeds the positive root, the
multiple phases can be observed. We present all possible
scenarios in the following list based on different parameter
regions:

J α2 < 1

8<
:

ð1Þ 1−J α2

J 2α2þJ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4 þ 12

p
− α2 dσ

dT < 0 always

ð2Þ 1−J α2

J 2α2þJ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4 þ 12

p
− α2 dσ

dT > 0 → dσ
dT < 0 from T ¼ 0 to highT

J α2 > 1

8<
:

ð3Þ 1þJ α2

J 2α2−J >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4 þ 12

p
− α2 dσ

dT > 0 always

ð4Þ 1þJ α2

J 2α2−J <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4 þ 12

p
− α2 dσ

dT < 0 → dσ
dT > 0 from T ¼ 0 to highT

Case (1) corresponds to a metallic phase, and case (3)
corresponds to an insulating phase. In case (2), as the tem-
perature decreases, the system transitions from the metallic
phase to the insulating phase. Conversely, in case (4), the
electrical conductivity behavior exhibits the opposite trend
compared to case (2). In other words, as the temperature
decreases in case (4), the system undergoes a transition
from the insulating phase to the metallic phase.
However, it is important to note that case (4) does not

exist, as demonstrated in the following proof. From (30)
and the condition J α2 > 1, we derive the following
inequalities:

J 2 ≤
1

12
þ 1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12

α4

r
<

1

12
þ 1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12J 2

p
;

which implies J 2 < 1=4. On the other hand, we have

1þ J α2

J 2α2 − J
¼ 1

J

�
1þ 2

J α2 − 1

�
>

1

J
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4 þ 12

p
− α2 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J 2
þ 12

r
−

1

J

and therefore, the condition 1=J >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=J 2 þ 12

p
− 1=J

is satisfied when J 2 < 1=4, which establishes the claim.
For the sake of visualization, we illustrate the first three

cases in Fig. 8. As shown in Fig. 8, it is evident that the
ideal insulator state can be achieved in both case (2) and
case (3).

V. ANALOGOUS MAGNETIC EFFECT

As mentioned in Sec. III, it has been noted that the
conductivities within the holographic system exhibit off-
diagonal behavior, notably σxy ¼ −σyx, a phenomenon
induced by the novel coupling term Tr½XF�. In this section,
we will delve into its analogous magnetic effects and
explore the distinctions between the magnetic effects
arising from an external magnetic field and those originat-
ing from this novel coupling term.

A. Analogous magnetic effect

Let us consider the following replacement:

VðX0Þ → VðX0Þ þ
1

2
J 2X2

0; J →
B
α2

; ð34Þ

FIG. 8. σxx as a function of T for different three different cases.
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where B represents an equivalent magnetic field. Then, the
conductivities (15) and (16) change to

σxx ¼ σyy ¼
α2V 0ðB2u2h þ α2V 0 þ μ2Þ
ðB2u2h þ α2V 0Þ2 þ B2u2hμ

2
; ð35Þ

σxy ¼ −σyx ¼
BμuhðB2u2h þ 2α2V 0 þ μ2Þ
ðB2u2h þ α2V 0Þ2 þ B2u2hμ

2
: ð36Þ

refer to [29]. We observe that the obtained result coin-
cides with that derived from the action (1) with J ¼ 0,
but with an external magnetic field A ¼ Atdtþ Bxdy.
Therefore, we can interpret J α2 as an effective magnetic
field B. As the coupling does not affect the back-
ground solution, the effective magnetic field J α2 is
induced by the external electrical perturbation. It may
represent some induced magnetic momentum of the dual
systems.
The thermal and thermoelectric conductivities also

exhibit the similar characteristics to the electric conductiv-
ities: the off-diagonal nature with an antisymmetric behav-
ior. When we apply the replacement (34), both the thermal
and thermoelectric conductivities transform into those
derived from the action (1) with J ¼ 0, but with the
inclusion of an external magnetic field B.
Given the presence of an analogous magnetic effect

within this dual system, it becomes intriguing to examine
the inverse Hall angle, defined as cotΘ≡ σxx=σxy,
which can be used to measure the relative magnitudes of
these two conductivities. We focus on the inverse Hall
Angle at zero temperature, which can be expressed as
follows:

cotΘ ¼ −
ðμ2 þ α2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 2α2

p
ððμ2 þ 2α2Þ − 12α2J 2Þ

2
ffiffiffi
3

p
J μð12α4J 2 − ðμ2 þ 2α2Þ2Þ :

ð37Þ

then we show the inverse Hall angle cotΘ as a function of
the coupling J in the grand canonical ensemble in Fig. 9.1

We observe that as J increases, the inverse Hall angle cotΘ
decrease, while maintaining a fixed disorder strength α.
However, as J decreases and approaches zero, we observe
a rapid increase in the inverse Hall angle, approaching
infinity. This suggests an increasingly pronounced Hall
conductivity σxy during the process of J approaching zero.
We would like to emphasize that the observed monotonic
decrease of the inverse Hall angle as J is increased aligns
with the behavior observed in the model with a magnetic
field [29,30]. This provides further confirmation that the

novel coupling term indeed induces an effect equivalent to
that of a magnetic field.

B. The electrical transports in a simple
dyonic model

In this subsection, we will provide a brief examination of
electrical transport behaviors within a simple dyonic model
employing conventional axion fields. These behaviors will
be studied within the canonical ensemble and then com-
pared to those exhibited by our present model with the
novel coupling term. For this simple dyonic model, which
refer to [36], the expressions for temperature and con-
ductivities are as follows:

T ¼ 1

4πuh

�
3 −

α2u2h
2

−
ð1þ B2Þu4h

4

�
ð38Þ

σxx ¼ σyy ¼
α2ðB2u2h þ α2 þ u2hÞ
ðB2u2h þ α2Þ2 þ B2u4h

ð39Þ

σxy ¼ −σyx ¼
Bu2hðB2u2h þ 2α2 þ u2hÞ
ðB2u2h þ α2Þ2 þ B2u4h

ð40Þ

Without loss of generality, we shall assume that B ≥ 0 in
the following.
When T ¼ 0, we find that u2h¼ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4þ12B2þ12

p
−α2Þ=

ð1þB2Þ, leading to the following expressions for the
conductivities at T ¼ 0:

σxxðT ¼ 0Þ ¼ α2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4 þ 12B2 þ 12

p

12B2 þ α4
ð41Þ

σxyðT ¼ 0Þ ¼ 12B
12B2 þ α4

ð42Þ

It is evident that both σxxðT ¼ 0Þ and σxyðT ¼ 0Þ are
strictly greater than zero, and σxxðT ¼ 0Þ exhibits a lower
bound of 1 as α increases.

FIG. 9. The inverse Hall angle as a function of coupling
parameter J for different α in the grand canonical ensemble
at T ¼ 0.

1The behavior of the inverse Hall angle exhibits similarity
within the canonical ensemble as well.
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Additionally, we calculate the derivatives of both con-
ductivities, σxxðT ¼ 0Þ and σxyðT ¼ 0Þ, with respect to α,
resulting in the following expressions:

dσxxðT ¼ 0Þ
dα

¼ 24αð12B4 þ B2ðα4 þ 12Þ − α4Þ
ð12B2 þ α4Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12B2 þ α4 þ 12

p ð43Þ

dσxyðT ¼ 0Þ
dα

¼ −
48Bα3

ð12B2 þ α4Þ2 ð44Þ

From the above equations and Fig. 10, we observe distinct
behaviors in σxxðT ¼ 0Þ and σxyðT ¼ 0Þ as α varies. For
B < 1, σxxðT ¼ 0Þ initially increases with rising α and then
decreases as α continues to increase. Conversely, when
B ≥ 1, σxxðT ¼ 0Þ consistently and monotonically in-
creases, eventually converging toward an upper limit of 1
for large values of α. These patterns are visually illustrated
in the left panel of Fig. 10. In contrast, σxyðT ¼ 0Þ
consistently decreases with increasing α, as shown in the
right panel of Fig. 10. Comparing this behavior with our
current model (see the left plot in Fig. 5), we observe that
σxxðT ¼ 0Þ behaves differently. Given that α represents
the strength of disorder, one would anticipate that con-
ductivities should always be suppressed by this disorder.
Therefore, the increase of σxx with α in the dyonic model
warrants further investigation.

We are also interested in studying the behavior of
σxxðT ¼ 0Þ and σxyðT ¼ 0Þ with respect to the external
magnetic field B. To achieve this, we will calculate their
derivatives with respect to B as follows:

dσxxðT ¼ 0Þ
dB

¼ −
12Bα2ð12B2 þ α4 þ 24Þ

ð12B2 þ α4Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12B2 þ α4 þ 12

p ð45Þ

dσxyðT ¼ 0Þ
dB

¼ 12ðα4 − 12B2Þ
ð12B2 þ α4Þ2 ð46Þ

It is evident that when B < α2=
ffiffiffiffiffi
12

p
, σxx decreases while

σxy increases with increasing B. This behavior can be
attributed to the deflection of charge carriers caused by the
Lorentz force. However, in the regime where B exceeds
α2=

ffiffiffiffiffi
12

p
, an intriguing phenomenon emerges: σxy unex-

pectedly decreases as B increases, mirroring the behavior in
our current model. This unexpected phenomenon warrants
further investigation and understanding.
We now shift our focus to investigate the temperature-

dependent behavior of conductivity, specifically σxx, within
the dyonic model. To achieve this, we will calculate the
derivative of σxx with respect to temperature T, as follows:

dσxx
dT

¼ 32πα2u3hððB3 þ BÞ2u4h þ ðB2 − 1Þα4 þ 2B2ðB2 þ 1Þα2u2hÞ
ð2B2α2u2h þ B2ðB2 þ 1Þu4h þ α4Þ2ð3ððB2 þ 1Þu4h þ 4Þ þ 2α2u2hÞ

ð47Þ

To determine whether dσxx=dT is positive or negative, we can equivalently assess the sign of the following quadratic
function:

YðuhÞ ¼ ðB3 þ BÞ2u4h þ ðB2 − 1Þα4 þ 2B2ðB2 þ 1Þα2u2h: ð48Þ
The roots of YðuhÞ ¼ 0 are readily identified as u2h ¼ −ðBþ 1Þk2=ðB3 þ BÞ and ð1 − BÞk2=ðB3 þ BÞ. Thus, we can draw
the following conclusion:

B < 1

8>><
>>:

ð1ÞB < 1; α4 > 12B2ðB2þ1Þ
1−B2

dσ
dT < 0 always

ð2ÞB < 1; α4 < 12B2ðB2þ1Þ
1−B2

dσ
dT > 0 → dσ

dT < 0 fromT ¼ 0 to highT

ð3ÞB > 1; dσ
dT > 0 always

FIG. 10. σxxðT ¼ 0Þ; σxyðT ¼ 0Þ as a function of α in the canonical ensemble.
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The behavior of σxxðTÞ is also clearly illustrated in Fig. 11.
Clearly, we observe that case (1) corresponds to a metallic
phase, while case (3) corresponds to an insulating phase. In
case (2), as the temperature decreases, the system under-
goes a transition from the metallic phase to the insulating
phase. These phenomena bear a resemblance to those
studied in Section IV. This, in turn, suggests that the novel
coupling J indeed plays a role analogous to that of an
external magnetic field.

VI. CONCLUSION AND DISCUSSION

In this work, we investigate the transport properties of a
holographic model featuring a novel gauge-axion coupling.
As a building block, we introduced a direct coupling
between the axion fields with the antisymmetric tensor
and the gauge field in our bulk theory.
Interestingly, the presence of the novel coupling term

gives rise to nondiagonal components in the conductivity
tensor. Furthermore, the diagonal elements exhibit sym-
metry, while the off-diagonal elements display antisym-
metry, i.e., σxx ¼ σyy; σxy ¼ −σyx, indicating that there
should not be anomalous Hall transitions as observed
in [39]. Notably, we did not introduce a magnetic field
into the background, yet the conductivity within this model
displays the behaviors akin to Hall conductivity.
For such a phenomenon, we interpret the result asso-

ciated with the gauge-axion coupling as the emergence of
an “induced”magnetic field. We postulate the presence of a
magnetic moment within the material, and when subjected
to an external electric field, this leads to the spontaneous

generation of a magnetic field within the material. We posit
that magnetoelectric coupling effects in strongly correlated
materials may offer an explanation for this observation. The
magnetoelectric coupling effect is a physical phenomenon
wherein a magnetic field influences the magnitude of elec-
tric polarization or an electric field impacts magnetization.
Notably, ferroelectric materials exhibit stable spontaneous
polarization and can be manipulated by an applied electric
field to generate an internal magnetic field. However,
experimental verification of the magnetoelectric coupling
effect remains elusive, and we anticipate that future
research will provide a more comprehensive understanding
and analysis of this phenomenon.

ACKNOWLEDGMENTS

This work is supported by the Natural Science
Foundation of China under Grant No. 12375055. J.-P. W.
is also supported by the Top Talent Support Program from
Yangzhou University.

APPENDIX: HOLOGRAPHIC
RENORMALIZATION

In this appendix, we present some valuable results
essential for carrying out the holographic renormalization
procedure. We begin with this process by presenting the
formulas for the metric, vector potential, and scalar field in
the Fefferman-Graham (FG) coordinate system:

ds2 ¼ 1

z2
ðdz2 þ gijðz; xÞdxidxjÞ; A ¼ Aiðz; xÞdxi;

ψ I ¼ ψ Iðz; xÞ; ðA1Þ

and their expansions near the boundary z ¼ 0:

gðz;xÞ¼g0ðxÞþg1ðxÞzþg2ðxÞz2þg3ðxÞz3þ��� ; ðA2aÞ

Aiðz;xÞ¼A0iðxÞþA1iðxÞzþA2iðxÞz2 � � � ; ðA2bÞ

ψ Iðz;xÞ¼ψ I
0þψ I

1ðxÞzþψ I
2ðxÞz2 � � � : ðA2cÞ

In addition, in the FG coordinate, the equations of motion
are expressed as follows:

−Tr
�
1

2
g−1g00

�
þ 1

4
Trðg0g−1g0g−1Þ þ 1

2z
Trðg0g−1Þ ¼ Λþ 3

z2
þ 1

2
ðψ 0

IÞ2 þOðz2Þ ðA3aÞ

gjkð−Dig0jk þDjg0ikÞ ¼ ψ 0
I∂iψ I þ z2FijA0j þ z2J

�
ϵIJψ 0

I∂
jψJFij þ ϵIJ∂iψ I∂

jψJA0
j

�þOðz3Þ ðA3bÞ

Rij½g� −
1

2
g00ij þ

1

2z
Trðg−1g0Þgij −

1

4
Trðg−1g0Þg0ij þ

1

z
g0ij þ

1

2
ðg0g−1g0Þij ¼

Λþ 3

z2
gij þ

1

2
∂iψ I∂jψ I þOðz2Þ; ðA3cÞ

FIG. 11. σxx as a function of T in the canonical ensemble.
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∂i

� ffiffiffiffiffiffi
−g

p ðA0i þ J ϵIJψ 0I
∂
iψJÞ� ¼ 0; ðA3dÞ

∂z

� ffiffiffiffiffiffi
−g

p ðA0i þ J ϵIJψ 0
I∂

iψJÞ
�þ ∂j

� ffiffiffiffiffiffi
−g

p ðF̃ji þ J ϵIJ∂jψ I∂
iψJÞ

� ¼ 0; ðA3eÞ

∂z

� ffiffiffiffiffiffi−gp
z2

�
aψ 0I þ z2J ϵIJA0i

∂iψ
J
��þ ∂i

� ffiffiffiffiffiffi−gp
z2

�
∂
iψ I − z2J ϵIJA0iψ 0J þ z2J ϵIJF̃ij

∂jψ
J
�� ¼ 0 ðA3fÞ

where the indices are raised and lowered using gij, which is
also employed for taking traces. Rij½g� is the Racci tensor of
gij, and F̃ij ≡ gimgjnFmn. By examining the equations of
motion near the boundary, one can determine the coef-
ficients that satisfy the following relations:

Λ ¼ −3; g1 ¼ 0; ψ I
1 ¼ 0; ðA4aÞ

g2ij ¼ −
�
Rð0Þ
ij ½g� −

Rð0Þ½g�
4

g0ij

�
þ 1

2
∂iψ

I
0∂jψ

I
0

−
1

8

�
∂kψ

I
∂
kψ I

0

�
g0ij; ðA4bÞ

ψ I
2 ¼

1

2
Dð0Þ

i Dð0Þiψ I
0; ðA4cÞ

Trðg−10 g3Þ ¼ 0; Dð0Þ
i Ai

1 ¼ 0; ðA4dÞ

Dð0Þjg3ij ¼ ψ I
3∂iψ

I
0 þ

1

3
F0ijA

j
1 þ

J
3

�
ϵIJ∂iψ

I
0∂jψ

J
0A

j
1

�
:

ðA4eÞ

Here, g0ij is employed for index raising and trace calcu-

lation. Rð0Þ
ij ½g�, Rð0Þ½g�, and Dð0Þ

i represent the Ricci tensor,
curvature scalar, and covariant derivative of g0ij, respec-
tively. Additionally, F0ij ¼ ∂iA0i − ∂jA0i.
With the asymptotic solution at hand, we can readily work

out the on-shell renormalized action, which is given by:

Sren ¼ Sþ
Z

d3x
ffiffiffiffiffiffi
−γ

p �
2K − 4 − R½γ� þ 1

2
γij∂iψ

I
∂jψ

I

�
;

ðA5Þ

Then, its variation can also be calculated as follows:

δSren ¼
Z

d3x
ffiffiffiffiffiffi
−γ

p �
−Kij þ Kγij − 2γij þ

�
Rij½γ� − R½γ�

2
γij

�
−
1

2
∂
iψ I

∂
jψ I þ 1

4
ðγmn

∂mψ
I
∂nψ

IÞγij
�
δγij

−
Z

d3x
ffiffiffiffiffiffi
−γ

p
nμðFμν þ JXμνÞδAν þ

Z
d3x

ffiffiffiffiffiffi
−γ

p �
−nμð∂μψ I þ J ϵIJFμν

∂νψ
JÞ − γijDiDjψ

I
�
δψ I ðA6Þ

The indices here are raised using γij, which represents the
components of the induced metric. The symbol nμ denotes
the outward-pointing unit normal vector of the boundary,
while γ signifies the determinant of γij, i.e., γ ¼ detðγijÞ. In
this context, Rð0Þ

ij ½γ�, Rð0Þ½γ�, and Di correspond to the Ricci
tensor, curvature scalar, and covariant derivative of γij,
respectively. On the other hand, Kij represents the compo-
nents of the external curvature Kμν ¼ γμαγνβ∇αnβ, and K
stands for ∇μnμ. Furthermore, in the Fefferman-Graham
coordinate system, δSren can be expressed as follows:

δSosren ¼
Z

d3x
ffiffiffiffiffiffiffiffi
−g0

p �
3

2
ðg−10 g3g−10 Þijδg0ij þ Ai

1δA0i

þ ð3ψ I
3 þ J ϵIJAi

1∂iψ
J
0Þδψ I

0

�
; ðA7Þ

And again, the indices are raised using g0ij. Therefore, we
can write the one point functions as

hTiji ¼ 2ffiffiffiffiffiffiffiffi−g0
p δSren

δg0ij
¼ 3ðg−10 g3g−10 Þij; ðA8aÞ

hJii ¼ 1ffiffiffiffiffiffiffiffi−g0
p δSren

δA0i
¼ gij0 A1j; ðA8bÞ

hOIi ¼ 1ffiffiffiffiffiffiffiffi−g0
p δSren

δψ I
0

¼ 3ψ I
3 þ J ϵIJAi

1∂iψ
J
0: ðA8cÞ

By virtue of (A4d) and (A4e), we can derive the Ward
identities as follows:

hTi
ii ¼ 0; Dð0Þ

i hJii ¼ 0;

Dð0Þ
j hTiji ¼ Fi

0jhJji þ hOIi∂iψ I
0: ðA9Þ

Note that the last identity can be rewritten as:

Dð0Þ
j hTiji¼ ðFi

0jþJ ϵIJ∂iψ I
0∂jψ

J
0ÞhJjiþ3ψ I

3∂
iψ I

0; ðA10Þ
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It implies that time reversal symmetry can be broken even
without the presence of an external magnetic field. For
instance, consider the case where Fx

0y ¼ 0. In the evolution
of the momentum density Txt, there are two couplings
to consider: Fx

0thJti and J ϵIJ∂xψ I
0∂jψ

J
0hJji. The first

coupling involves only the charge density hJti, thereby
preserving time reversal symmetry, whereas the second
coupling includes the charge current density hJxi and hJyi,
potentially leading to a breaking of time reversal symmetry.
This is the reason we observe σxy ¼ −σyx even in the
absence of an external magnetic field. Wewill elucidate this
point in what follows.
As we know, the off-diagonal elements of conductivity

satisfies σxy ¼ σyx under time reversal symmetry. This
comes from the property of the response function

χijðωÞ ¼ εiεjχjiðωÞ: ðA11Þ

where εi ¼ �1 is signature of the operator under time
reversal [5]. In our case, time reversal symmetry is broken.
A new symmetry that combining time reversal and
operation from J to −J are established. Consequently,
(A11) is replaced by χijðω;J Þ ¼ εiεjχjiðω;−J Þ, and we
have

σxyðω;J Þ ¼ σyxðω;−J Þ: ðA12Þ

This is similar to the result of the magnetic field leading
to the breaking of the time reversal invariant, i.e.,
χijðω; BÞ ¼ εiεjχjiðω;−BÞ. σxy is an odd function of J
[see Eq. (21)], so Eq. (A12) is visible obviously. Therefore,
we conclude that the breaking of time reversal symmetry is
responsible for the emergence of the antisymmetric con-
ductivity in our model.
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