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We study the lepton flavor violating decays such as μ → eγ, τ → eγ, τ → μγ in the three-loop radiative
seesaw model proposed by Krauss, Nasri, and Trodden. In this model, the relevant coupling constants are
larger for the heavier scalars that run inside loop diagrams to generate the appropriate magnitude of
neutrino masses. Imposing a criterion that all the coupling constants must be small enough to be treated
perturbatively, we find an upper bound on the mass of one of the scalars. By combining it with neutrino
mass parameters, we derive lower bounds on the branching ratios of the lepton flavor violating processes.
In a case with the inverted mass ordering and best-fit neutrino oscillation parameters, one of the lower
bounds is Brðμ → eγÞ > 1.1 × 10−13, which is within the reach of the MEG II experiment.
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I. INTRODUCTION

The origin of the neutrino masses has been a big mystery
in the Standard Model (SM) of particle physics and indicates
new physics. Several mechanisms are proposed to explain
the tininess of the neutrino masses in the literature. For
example, the seesaw model is a popular one in that the
enormous Majorana neutrino mass scale suppresses the mass
scale of the light neutrinos [1–4]. The Majorana mass is
naturally required to be larger than 106 GeV.
Utilizing the higher-loop suppression is an alternative

approach; the neutrino mass matrix is radiatively generated
in models along this line. A. Zee proposed the first concrete
model in 1980 [5], and many models have been proposed
since then [6–11]. A comprehensive review is provided, for
example, in Ref. [12]. Since the new particles are relatively
light and have large couplings with the SM particles, those
models are testable by experiments.
There is a class of models, the so-called radiative seesaw

models, where right-handed neutrinos are introduced
[9–11]. To avoid their tree-level contribution to the neutrino
masses, additional Z2 symmetry will be necessary, and
the right-handed neutrinos have an odd charge. The Z2

symmetry simultaneously guarantees the stability of the
lightest right-handed neutrino, and it can be dark matter.
The Krauss-Nasri-Trodden (KNT) model is an example

of the radiative seesaw model, where the neutrino masses
are generated via the three-loop diagrams [9]. This model
includes right-handed neutrinos; new scalar particles S1
and S2. Because of the three-loop suppression, the coupling
constants in this model tend to be as large as Oð1Þ if the
new particles are as heavy as TeV. The perturbative treat-
ment breaks down when the coupling constants are much
larger than Oð1Þ. In order to avoid this, the coupling
constants are preferred to be smaller than one. It indicates
that the new particle mass scale will have an upper bound.
On the other hand, the new particles cause lepton flavor
violating (LFV) processes such as μ → eγ, τ → eγ, and
τ → μγ [13–15], and it is more significant for the lighter
new particles.
In this paper, we study the details of these constraints

in the KNT model. We first show the feature of the loop
function, and show that it provides the upper bound on the
mass of S1. Then we study the lower limit of the predicted
LFV processes. In the KNT model, the Yukawa matrix with
S1 has an asymmetric flavor structure, and we can use a
valuable technique provided in Ref. [16] to determine the
parameters in the Yukawa matrices. We derive the lower
bounds on the branching ratios of LFV decays. For the case
with the three right-handed neutrinos and the inverted mass
ordering, the lower bounds are Brðμ → eγÞ > 1.1 × 10−13,
Brðτ → eγÞ > 1.5 × 10−14, and Brðτ → μγÞ > 3.7 × 10−13

when neutrino oscillation parameters are best-fit values.
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Interestingly, the lower bound of Brðμ → eγÞ is within the
reach of the MEG II experiment [17].
This paper is organized as follows. In Sec. II we briefly

introduce the model, and we describe the neutrino mass
matrix. In Sec. III we discuss the upper bound on the mass
of S1. In Sec. IV we derive the lower bound of the LFV
branching ratios induced by the S1 exchange. In Sec. V we
consider a benchmark scenario and discuss the S2 con-
tribution to Brðτ → μγÞ. We give a conclusion in Sec. VI.

II. THE KNT MODEL

We consider the KNT model [9]. Two charged scalars
S1, S2, and nN right-handed neutrinos NI (I ¼ 1;…nN) are
introduced. It is known that nN ≥ 2 is necessary to
reproduce the neutrino mass matrix consistent with the
neutrino oscillation experiments [18]. The discrete Z2

symmetry

Z2∶ fS2; NIg → f−S2;−NIg; ð1Þ

is imposed to forbid the Dirac masses of neutrinos. This
symmetry also guarantees the stability of the lightest Z2

odd particle, which is a dark matter candidate. Therefore,
the lightest Z2 odd particle should be electrically neutral,
and its relic abundance in the early Universe should be less
than the observed dark matter relic abundance, Ωh2 ≃ 0.1.
The standard model Lagrangian is extended by the terms

LKNT ¼ hij
2
Lc
i iτ2LjS

þ
1 þ g�IjN

c
IlRjS

þ
2

þmNI

2
Nc

INI þ H:c: − V: ð2Þ

We choose the flavor basis such that both the charged
lepton mass matrix and the right-handed neutrino mass
matrix are diagonal with real and positive elements. The
lepton doublet is L ¼ ðνL;lLÞ, and the convention of the
neutrino mixing matrix is

U ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

1
CA
0
B@

eiη 0 0

0 1 0

0 0 eiη
0

1
CA: ð3Þ

In this model, the neutrino mass matrix arises from the
three-loop diagram shown in Fig. 1, and each element is
given by [13]

Mab ¼
λS

4ð4πÞ3mS1

X
I;j;k

mljmlkhajhbkgIjgIkfðxI; yÞ; ð4Þ

xI ≡m2
NI

m2
S2

; y≡m2
S1

m2
S2

; ð5Þ

where fðx; yÞ is the loop function, and λS is a coupling
constant of the scalar quartic coupling included in the
potential V as

V ⊃
λS
4
ðS−1 Þ2ðSþ2 Þ2 þ H:c: ð6Þ

Here, we discuss the behavior of the loop function fðx; yÞ
and show that there is an upper bound on fðx; yÞ. The loop
function is calculated as1

fðx; yÞ ¼
ffiffiffi
x

p
8y3=2

Z
∞

0

dr
Jðr; yÞ2
rðrþ xÞ ; ð7Þ

Jðr; yÞ ¼ q ln

�
y
q

�
þ y
q
ln½q� þ ð1þ rÞ ln

�
1þ r
y

�
; ð8Þ

q ¼ 1

2

�
1þ rþ yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ rþ yÞ2 − 4y

q �
: ð9Þ

FIG. 1. The diagram relevant to the neutrino mass matrix in the
KNT model.

1There is an additional term ln½rðηþ − 1Þð1 − η−Þ� in the
definition of Iðr; yÞ ¼ −Jðr; yÞ=r in Ref. [14], where
ηþ ¼ ðq − yÞ=r, η− ¼ ð1=q − 1Þy=r. We confirmed that this
term is identically zero.
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Note that our definition of the loop function is different from
the one in Ref. [13]. The function f is related to the function
F in Ref. [13] as f ¼ mS1

mS2
F. This redefinition is convenient

to discuss the mass bound on the new particles. As shown in
Figs. 2 and 3, the value of f is saturated. On the other hand,
F is not bounded from above.
This property of f can be analytically understood as

follows. First, we consider the x dependence of fðx; yÞ for a
fixed value of y. The asymptotic behavior of f is given by

fðx; yÞ ∝ ffiffiffi
x

p ðx ≪ 1Þ; ð10Þ

fðx; yÞ ∝ 1ffiffiffi
x

p ðx ≫ 1; x ≫ yÞ; ð11Þ

so limx→0 fðx; yÞ ¼ 0 and limx→∞ fðx; yÞ ¼ 0. Thus f has
a maximum when y is fixed. Second, we consider the
y dependence for a fixed x. For y ≪ 1,

fðx; yÞ ∝ ffiffiffi
y

p ðln yÞ2 → 0ðy → 0Þ; ð12Þ

is satisfied, while one can find Fðx; yÞ ∝ ðln yÞ2 which
diverges in the limit of y → 0. For y ≫ 1, we find

fðx; yÞ ¼ 1

8

ffiffiffi
x
y

r Z
∞

0

dt
½ðtþ 1Þ lnðtþ 1Þ − t ln t�2

tðtþ x=yÞ ; ð13Þ

where we put t≡ r=y. We can see that f depends only on
x=y when y ≫ 1. Focusing on the case of x ≪ y, we find

fðx; yÞ ∝
ffiffiffi
x
y

r
→ 0 ðy → ∞Þ: ð14Þ

Thus, f has a maximum when x is fixed.
From the above discussion we expect that fðx; yÞ is

maximized for x ∼ y ≫ 1. As shown in Eq. (13), fðx; yÞ
depends only on x=y for y ≫ 1. Using numerical evaluation
we find that fðx; yÞ is saturated to 1.044 as shown in Fig. 3
in the direction of x=y ≃ 101.47. As a conclusion, we obtain
the upper bound of fðx; yÞ as

fðx; yÞ < 1.05: ð15Þ

III. UPPER BOUND ON S1 MASS

Let us adopt a criterion that all the dimensionless
coupling constants in the Lagrangian Eq. (2) are less than
unity. If a coupling constant is larger thanOð1Þ, it blows up
quickly by renormalization group running and then the
perturbative treatment is broken down. To avoid that we
take into account the ansatz, and we show that it leads to the
upper bound on the mass scale of new particles.
In Eq. (4) we can naturally expect that the terms

proportional to me get strong suppression, and we can
ignore such terms. In this approximation, three components
of the neutrino mass matrix are given by

Mμμ ¼
λSm2

τh223
4ð4πÞ3mS1

XnN
I¼1

g2I3fðxI; yÞ; ð16Þ

Mμτ ¼ −
λSmμmτh223
4ð4πÞ3mS1

XnN
I¼1

gI2gI3fðxI; yÞ; ð17Þ

Mττ ¼
λSm2

μh223
4ð4πÞ3mS1

XnN
I¼1

g2I2fðxI; yÞ: ð18Þ

The observed neutrino oscillation data need that these
components are the same order, in spite of Mμμ ∝ m2

τ ,
Mττ ∝ m2

μ. It requires that some of the Yukawa couplings

FIG. 2. Contour plot of fðx; yÞ. It has maximal value 1.044
when x=y ¼ 101.47, y ≫ 1.

FIG. 3. Loop function fðx; yÞ with x=y ¼ 101.47. The horizon-
tal line shows the upper bound 1.05. The loop function becomes
constant for large y [see Eq. (13)].
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gI2 are much larger than the other elements gI3, so we
impose the perturbativity condition to gI2.
By using the triangle inequality, the ansatz jgI2j < 1, and

the upper bound of fðxI; yÞ [Eq. (15)], we find

����
X
I

g2I2fðxI; yÞ
���� ≤

X
I

jgI2j2fðxI; yÞ <
X
I

fðxI; yÞ

< 1.05neff ; ð19Þ

where neff denotes the number of right-handed neutrinos
that contribute to the summation. If N1 is dark matter, we
need mN1

<mS2 (i.e., x1 < 1), then fðx1;yÞ≪1.05 (y ≫ 1)
as shown in Fig. 2. Thus, g212fðx1; yÞ is negligible in Mττ

and

neff ≤ nN − 1 ð20Þ

is satisfied. By using the inequality (19) and λS < 1, we
obtain a upper bound on mS1 as

mS1 <
m2

μjh23j2
4ð4πÞ3jMττj

1.05neff

¼ 7.39 × 104 GeV

�
0.02 eV
jMττj

	
jh23j2neff : ð21Þ

Similar upper bounds can be obtained by using the other
components Mμτ and Mμμ:

mS1 < 7.39 × 104 GeV

�
0.02 eV
jMμτj

	
jh23j2n0eff

�
gI3;max

mμ=mτ

	
;

ð22Þ

mS1 < 7.39 × 104 GeV

�
0.02 eV
jMμμj

	
jh23j2n00eff

�
gI3;max

mμ=mτ

	
2

;

ð23Þ

where n0eff and n00eff are the number of the right-handed
neutrinos that contribute the corresponding neutrino mass
components. These bounds depend on the maximal value
of jgI3j (denoted by gI3;max), so we focus on the bound (21).
Since gI3;max is expected to be the order of mμ=mτ as
indicated in Eqs. (16)–(18) [and also the example (72)],
these bounds are the same order as the inequality (21).
The bounds (22) and (23) can be significant when Mττ is
suppressed.
The size of Mττ is determined by the light neutrino

masses and the mixing matrix elements as

Mττ ¼ m1U2
31 þm2U2

32 þm3U2
33: ð24Þ

In the KNT model, the Yukawa matrix hij is antisymmetric,
so the determinant of the neutrino mass matrix vanishes.

It means that m1 ¼ 0 for the normal ordering (NO) case
and m3 ¼ 0 for the inverted ordering (IO) case. Since the
Majorana phases have not been restricted by the experi-
ments, the range of jMττj is determined by the triangle
inequality,

jm2jU32j2−m3jU33j2j≤ jMττj≤m2jU32j2þm3jU33j2 ðNOÞ;
ð25Þ

jm1jU31j2−m2jU32j2j≤ jMττj≤m1jU31j2þm2jU32j2 ðIOÞ:
ð26Þ

By using the best-fit values (with Super-Kamiokande
atmospheric data) in Ref. [19], one finds

0.0180 eV ≤ jMττj ≤ 0.0238 eV ðNOÞ; ð27Þ

0.0126 eV ≤ jMττj ≤ 0.0291 eV ðIOÞ; ð28Þ

so we use jMττj ¼ 0.02 eV as a benchmark.
In the IO case, by choosing δ ∼ π, η ∼ π

2
and tuning the

other mixing parameters, Mττ can be much smaller than
0.0126 eV. The following discussion includes such a case.
Note that even if Mττ ¼ 0, mS1 satisfies the bounds (22)
and (23) coming from the other components.

IV. LEPTON FLAVOR VIOLATING DECAYS

A. Lower bounds on branching ratios

In this section, we discuss the LFV constraint on the
model. We focus on the LFV branching ratios of li → ljγ.
The decay width is given by

Γðli → ljγÞ ¼
αem
4

m5
li
ðjAij

L j2 þ jAij
R j2Þ; ð29Þ

where Aij
R and Aij

L are

Aij
R ¼ 1

16π2m2
S2

XnN
I¼1

g�IigIjF2ðxIÞ; ð30Þ

Aij
L ¼ 1

16π2m2
S1

X3
k¼1

hikh�jkF2ð0Þ ¼
1

192π2m2
S1

hilh�jl; ð31Þ

where l ≠ i, j. In the above expression, the loop function
F2ðxÞ is defined as [20]2

F2ðxÞ ¼
2x2 þ 5x − 1

12ðx − 1Þ3 −
x2 logðxÞ
2ðx − 1Þ4 : ð32Þ

2This function F2ðxÞ differs from the F1ðxÞ in Ref. [14] by
factor 2, i.e., F2ðxÞ ¼ 1

2
F1ðxÞ.
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By using the decay rate

Γðli → ljννÞ ≃
G2

Fm
5
li

192π3
; ð33Þ

we obtain the branching ratio

Brðli → ljγÞ ¼
Γðli → ljγÞ
Γðli → ljνν̄Þ

Brðli → ljνν̄Þ

¼ 48π3αem
G2

F
ðjAji

L j2 þ jAij
R j2ÞBrðli → ljνν̄Þ:

ð34Þ

First, let us consider the S2 contribution AR. In general,
there is only a trivial bound jAij

R j ≥ 0, and we use it in this
section. For example, if we set gI1 ¼ 0, A21

R ¼ A31
R ¼ 0 is

realized. With this choice of the couplings, however,
another column gI2 or gI3 cannot be zero simultaneously
to reproduce the rank two neutrino mass matrix, so τ → μγ
can be significant. We will discuss this point in Sec. V.
Next, we consider the S1 exchanging contribution AL.

As shown in Ref. [16], any off-diagonal component hij
cannot be zero to produce neutrino oscillation parameters.
Furthermore, AL is proportional to m−2

S1
, while mS1 has an

upper bound [Eq. (21)]. Therefore, AL has a nontrivial
lower bound.
By imposing Eq. (21) and jAij

R j ≥ 0 to Eq. (34), we find

Brðli → ljγÞ

>
αem

768πG2
F

�
4ð4πÞ4Mττ

1.05neffm2
μh223

	
4

jhilhjlj2Brðli → ljνν̄Þ

¼ 7.45 × 10−16
jhilhjlj2
jh23j8n4eff

� jMττj
0.02 eV

	
4

Brðli → ljνν̄Þ:

ð35Þ

The ranges of hij are determined by neutrino oscillation
parameters. We define k and k0 as

k≡ h12
h23

; k0 ≡ h13
h23

; ð36Þ

and by solving Eq. (4), they can be expressed by the
neutrino mass matrix components as3

k ¼ MeμMμτ −MeτMμμ

MμμMττ −M2
μτ

; ð37Þ

k0 ¼ MeμMττ −MeτMμτ

MμμMττ −M2
μτ

: ð38Þ

The ranges of these parameters significantly depend on the
neutrino mass ordering.
For the NO case, the 3σ ranges of k and k0 are 0.27 ≤

jkj ≤ 0.67 and 0.26 ≤ jk0j ≤ 0.66 [16]. Since jkj, jk0j < 1,
the perturbativity should be imposed to the largest compo-
nent: jh23j < 1. By this condition, the factor of hij in the
branching ratios have to satisfy

jh23h13j2
jh23j8

¼ jk0j2
jh23j4

> jk0j2; ð39Þ

jh23h12j2
jh23j8

¼ jkj2
jh23j4

> jkj2; ð40Þ

jh12h13j2
jh23j8

¼ jkk0j2
jh23j4

> jkk0j2: ð41Þ

Finally, using the best-fit values of the experimental
data [21]

Brðμ → eνν̄Þ ¼ 1; ð42Þ

Brðτ → eνν̄Þ ¼ 0.1782� 0.0004; ð43Þ

Brðτ → μνν̄Þ ¼ 0.1739� 0.0004; ð44Þ

we obtain

Brðμ→ eγÞ> 5.0×10−18
� jMττj
0.02 eV

	
4
�
neff
2

	
−4
� jk0j
0.329

	
2

;

ð45Þ

Brðτ→ eγÞ> 3.0×10−18
� jMττj
0.02 eV

	
4
�
neff
2

	
−4
� jkj
0.600

	
2

;

ð46Þ

Brðτ → μγÞ > 3.2 × 10−19
� jMττj
0.02 eV

	
4
�
neff
2

	
−4

×

� jkj
0.600

	
2
� jk0j
0.329

	
2

; ð47Þ

where k and k0 are factored out by using best-fit values.
For the IO case, the 3σ ranges of k and k0 are

3.9 ≤ jkj ≤ 5.3 and 4.0 ≤ jk0j ≤ 5.4 [16]. Using the best-
fit parameters, we obtain jkj ¼ 4.31 and jk0j ¼ 5.01. Since
jk0j > jkj; 1, we impose the perturbativity condition as
jh13j < 1. By this condition, we obtain

jh23h13j2
jh23j8

¼ jk0j6
jh13j4

> jk0j6; ð48Þ3It can be derived straightforwardly using Eqs. (10) and (11) in
Ref. [16].
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jh23h12j2
jh23j8

¼ jkj2jk0j4
jh13j4

> jkj2jk0j4; ð49Þ

jh12h13j2
jh23j8

¼ jkj2jk0j6
jh13j4

> jkj2jk0j6: ð50Þ

By substituting these inequalities to Eq. (35), the lower
bounds are

Brðμ → eγÞ > 7.4 × 10−13
� jMττj
0.02 eV

	
4
�
neff
2

	
−4
� jk0j
5.01

	
6

;

ð51Þ

Brðτ → eγÞ > 9.7 × 10−14
� jMττj
0.02 eV

	
4
�
neff
2

	
−4

×

� jkj
4.31

	
2
� jk0j
5.01

	
4

; ð52Þ

Brðτ → μγÞ > 2.4 × 10−12
� jMττj
0.02 eV

	
4
�
neff
2

	
−4

×

� jkj
4.31

	
2
� jk0j
5.01

	
6

: ð53Þ

In the case with three right-handed neutrinos neff ≤ 2
and the best-fit neutrino oscillation parameters jMττj ≥
0.126 eV [see Eq. (28)], the bounds are

Brðμ → eγÞ > 1.1 × 10−13; ð54Þ

Brðτ → eγÞ > 1.5 × 10−14; ð55Þ

Brðτ → μγÞ > 3.7 × 10−13: ð56Þ

As a whole, the bounds are more severe for the IO
case than the NO case. It comes from the fact that h23 is
smaller for the IO case to produce the neutrino mass matrix.
Even the bounds for the NO case, however, are much
stronger than the contribution of active neutrinos
Brðμ → eγÞ < 10−54 [22–26].

B. Constraints on the parameters

Experimental upper limits of the LFV branching ratios
(90% confidence level) are [21,27,28]

Brðμ → eγÞ < 4.2 × 10−13; ð57Þ

Brðτ → eγÞ < 3.3 × 10−8; ð58Þ

Brðτ → μγÞ < 4.4 × 10−8: ð59Þ

These lepton flavor violations will be explored by many
future experiments. The sensitivity of MEG II on this
μ → eγ mode is expected to be 6 × 10−14 [17]. The

sensitivity of Belle-II on the LFV mode with τ is estimated
to Oð10−9Þ–Oð10−10Þ [29]. In this subsection, we focus on
μ → eγ and consider the IO case.
To see the behavior of the lower bound, we write jMττj

explicitly,

jMττj ¼ jm1ðs12s23 − c12s13c23eiδÞ2e2iη
þm2ðc12s23 þ s12s13c23eiδÞ2j: ð60Þ

It largely depends on δ and η. For example, if δ ∼ π and
η ∼ π=2, a cancellation can happen.
In Fig. 4, we plot the lower bound in the δ-η planes using

the bound (51) and Eq. (60). Figs. 4(a) and 4(b) are the
cases that oscillation parameters are set to the best-fit
values. Most regions of the parameters are already excluded
by the constraint from the MEG experiment (blue region).
In particular, if δ is also the best-fit value, neff ¼ 1 is
excluded, and neff ¼ 2 can be excluded by MEG II. As we
stated, the region including δ ¼ π and η ¼ π=2 is uncon-
strained by the LFV experiments.
We also searched for the neutrino parameters that

minimizes the right-hand side of the inequality (51) within
two standard deviation ranges.4 We found that parameters

Δm2
21 ¼ 7.03 × 10−5 eV2; Δm2

32 ¼ −2.442 × 10−3 eV2;

θ12 ¼ 35.01°; θ23 ¼ 47.1°; θ13 ¼ 8.84°;

δ ¼ 222°; η ¼ 79.1° ð61Þ

realize the minimum,

Brðμ → eγÞ > 1.0 × 10−14n−4eff : ð62Þ

Figures 4(c) and 4(d) show the lower bound with these
parameters (except δ and η). The unconstrained regions are
enlarged, but the MEG II experiment can probe most
regions even in these conservative cases.
The Majorana phase is searched by neutrinoless double-

beta decay experiments, and they are sensitive to the ee
component of the neutrino mass matrix,

Mee ¼ ðm1c212e
2iη þm2s212Þc213: ð63Þ

This is independent from δ, and determined by η. We can
express η by jMeej as

cos 2η ¼ 1

2m1m2s212c
2
12

�jMeej2
c413

−m2
1c

4
12 −m2c412

	
: ð64Þ

The range of jMeej which satisfies jcos 2ηj ≤ 1 is (using the
best-fit values)

4To obtain the ranges, we simply multiplied the standard
deviation in Ref. [19] by two. We chose two standard deviations
because the constraints on Brðμ → eγÞ are given at 90% C.L.
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0.0187 eV ≤ jMeej ≤ 0.0484 eV: ð65Þ

We plot the lower bound of Brðμ → eγÞ as a function of
jMeej and δ in Fig. 5.
The present upper limit on jMeej by neutrinoless double

beta decay experiments is 66 to 155 meV [30], so they
do not constrain the range given by Eq. (65). The
sensitivities of future experiments (90% C.L.) are, however,
19 meV–46 meV (SNOþ Phase II [31]), 5.7 meV–
17.7 meV (nEXO, after 10 years of data taking [32]), so
the all range of jMeej can be searched. These experiments,

in combination with neutrino oscillation and LFV experi-
ments, can exclude the KNTmodel with nN ¼ 3 even if δ is
not the best-fit value today. For instance, if neutrinoless
double-beta decay experiments find jMeej ¼ 45 meV and
neutrino oscillation experiments show the mass ordering is
inverted, the KNT model with nN ¼ 3 predicts too large
Brðμ → eγÞ and the model is excluded.

V. DARK MATTER PROPERTY AND LFV

In this section we discuss a case that Brðμ → eγÞ is close
to the lower bound given in the previous section to avoid
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FIG. 4. Contour plots of the lower bounds on Brðμ → eγÞ in the inverted mass ordering cases. neff (≤ nN − 1) is the number of right-
handed neutrinos that contribute toMττ. In cases (a) and (b), the other neutrino oscillation parameters are fixed to the best-fit values [19].
In cases (c) and (d), they are chosen to realize minimal Brðμ → eγÞ within two standard deviations. The blue regions are already
excluded by MEG [27]. The green regions can be excluded by MEG II [17]. The solid- and dashed-vertical lines indicate the best-fit
value and 2σ ranges of δ. (a) neff ¼ 1, best-fit. (b) neff ¼ 2, best-fit. (c) neff ¼ 1, minimal. (d) neff ¼ 2, minimal.
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severe experimental constraints. As stated after Eq. (34),
the A32

R term in the Brðτ → μγÞ can be large in this situation.
The loop function F2 in AR is monotonically decreasing,
so the lightest right-handed neutrino N1 contributes to
τ → μγ dominantly. We first discuss a constraint on N1 as
dark matter, then show minimal Brðτ → μγÞ with explicit
parameters in the allowed region.

A. Dark matter bound

In the KNT model, the lightest Z2 odd particle is stable.
When the Z2 odd particle mass spectrum satisfies
mN1

< mS2 , N1 is the dark matter candidate. The thermal
relic abundance of N1 in the early Universe is constrained
as ΩN1

h2 ≲ 0.1. The abundance approximately depends on
the annihilation cross section σv as

ΩN1
h2 ∼ 0.1

�
3 × 10−26 cm3=s

σv

	
; ð66Þ

so σv ≳ 3 × 10−26 cm3=s is needed.
In the most region of the parameter space, the dominant

annihilation mode is N1N1 → lil̄j via t- and u-channel
exchanges of S2. The cross section is given by

σv ≃
m2

N1
ðm4

N1
þm4

S2
Þ

8πðm2
N1

þm2
S2
Þ4 xf

X3
i¼1

X3
j¼1

jg�1ig1jj2; ð67Þ

where xf ≡ Tf=mN1
is determined by the freeze-out

temperature of N1, Tf, and xf ∼ 1=20. When mN1
≃mS2
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FIG. 5. Contour plots of the lower bound on Brðμ → eγÞ in the IO case. Notation is same as Fig. 4. The Majorana phase η is converted
to jMeej by Eq. (64). (a) neff ¼ 1, best-fit. (b) neff ¼ 2, best-fit. (c) neff ¼ 1, minimal. (d) neff ¼ 2, minimal.
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is satisfied, the coannihilation process with S2 gives a
significant contribution.
In Fig. 6, we show the contours of σv=

P
i

P
j jg�1ig1jj2 in

the mN1
−mS2 plane. For g11 ¼ 0, the dark matter abun-

dance condition and the perturbativity jg12j < 1, jg13j < 1
give mN1

≤ mS2 ≲ 750 GeV.

B. Benchmark example

Let us define our benchmark point. To take Brðμ → eγÞ
as small as possible, we need large loop functions
fðx2;3; yÞ, i.e., mN2;3

¼ 5.43mS1 ≫ mS2 , and large cou-
plings. We choose

mS1 ¼ 8.74× 104 GeV; MN2
¼MN3

¼ 4.75× 105 GeV;

λS ¼maxðjhijjÞ ¼ 1; ð68Þ

and parametrize the Yukawa matrix gIjðnN ¼ 3Þ as

g ¼

0
B@

0 g12 g13
0 1 g23
0 1 g33

1
CA; ð69Þ

where we set gI1 ¼ 0 to suppress the S2 exchange con-
tribution to μ → eγ. Once we input the neutrino masses,
the parameters in the mixing matrix, and mS2 , the param-
eters hij, g23, g33 are determined by the procedure given in
Ref. [16]. On the other hand, mN1

, g12, g13 are almost
irrelevant to the neutrino mass matrix, since the N1

contribution to the neutrino mass matrix is significantly
suppressed due to fðx1; yÞ ≪ fðx2; yÞ ¼ fðx3; yÞ. The
parameters g23 and g33 are related to the neutrino mass
components as

−
Mμμ

Mμτ
¼ mτ

mμ

X33

X23

; −
Mττ

Mμτ
¼ mμ

mτ

X22

X23

; ð70Þ

with

X22 ¼
X3
I¼1

g2I2fðxI; yÞ ≃ 2fðx2; yÞ;

X23 ¼
X3
I¼1

gI2gI3fðxI; yÞ ≃ ðg23 þ g33Þfðx2; yÞ;

X33 ¼
X3
I¼1

g2I3fðxI; yÞ ≃ ðg223 þ g233Þfðx2; yÞ: ð71Þ

By solving Eq. (70), g23 and g33 are determined. Taking
into account maxðjhijjÞ ¼ 1, the matrix h is also deter-
mined by Eqs. (36), (37), and (38).
For example, by using the best-fit neutrino parameters in

Ref. [19], η ¼ 1.29, and mS2 ¼ 300 GeV, we obtain

g ¼

0
B@

0 g12 g13
0 1 ð1.2þ 2.8iÞ × 10−2

0 1 ð8.1þ 3.5iÞ × 10−2

1
CA; ð72Þ

and

h ¼

0
B@

0 −0.860 1

0.860 0 −0.041þ 0.195i

−1 0.041− 0.195i 0

1
CA: ð73Þ

In this case, the branching ratio and the effective neutrino
mass are calculated as

Brðμ → eγÞ ¼ 1.2 × 10−13; ð74Þ

jMeej ¼ 0.0224 eV: ð75Þ

These are below the constraints today but can be tested in
future experiments.
In our benchmark case, the S1 contribution to the LFV

is suppressed enough to satisfy the current experimental
bound. Hereafter, we focus on the S2 contribution to the

FIG. 6. Contour of the minimal value of Brðτ → μγÞ (red lines).
The light-red region is already excluded by the BABAR experi-
ment [28]. The dark gray region shows where the charged
particle S2 is stable. The lines labeled “0.75” and “3” indicate
σv=ðP jg�1ig1jj2 ð10−26 cm3=sÞÞ, and the light-gray region upper
of the dot-dashed curve, either jg12j > 1 or jg13j > 1 is required to
satisfy ΩN1

h2 ≃ 0.1. The cyan region is excluded by the direct
search of the right-handed slepton at the LHC [33,34].
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LFV. There is no contribution to μ → eγ and τ → eγ
because of our ansatz gI1 ¼ 0, while contribution to
τ → μγ can be significant. In Fig. 6, we display the contour
of the minimal value of Brðτ → μγÞ for each parameter
point of ðmN1

; mS2Þ. We have taken into account our ansatz
that all the dimensionless coupling constants should be less
than one. For largermN1

andmS2 , jg12j2 þ jg13j2 needs to be
larger in order to reproduce the dark matter relic abundance.
In the upper region of the dot-dashed curve labeled “1.5”,
jg12j > 1 or jg13j > 1 is required. The left upper region of
the solid red curve is already excluded by the BABAR
experiment [28]. In near future, the experimental sensitivity
for Brðτ → μγÞ is expected to be improved factor 100 at
the Belle II experiment [29], and the wide region of the
parameter space can be explored.

VI. CONCLUSION

In this paper we have discussed the constraints on the
parameter space of the KNT model by taking into account
the perturbativity of the dimensionless coupling constants
and neutrino mass matrix components. We have found

that there are lower limits of the predicted Brðμ → eγÞ,
Brðτ → eγÞ, and Brðτ → μγÞ which are induced by the S1
scalar exchange. In the IO case, the bound on Brðμ → eγÞ
is so severe that the wide ranges of the Dirac and Majorana
CP phases are restricted. If the neutrino oscillation param-
eters are best-fit values in the IO case, neff ¼ 1 is already
excluded and neff ¼ 2 can be excluded by MEG II.
We have also considered the S2 contribution to τ → μγ in

a case with suppressed μ → eγ. We have shown that
Brðτ → μγÞ can be large enough that wide parameter
space can be tested by future experiments such as the
Belle II experiment. If mN1

; mS2 < 350 GeV, Brðτ → μγÞ
can be suppressed, but such light particles can be directly
searched at the LHC experiments or future eþe− collider
experiments.
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