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Abstract: In this paper, we pursue the investigation of a generic non-linear extension of
axionic electrodynamics in a Carroll-Field-Jackiw (CFJ) scenario that implements Lorentz-
symmetry violation (LSV). The model we inspect consists of an arbitrary non-linear elec-
trodynamic action coupled to the axion field in presence of an anisotropy four-vector that
realizes the breaking of Lorentz symmetry under the particle point of view. For the sake
of our considerations, the non-linear electromagnetic field is expanded around a constant
and uniform magnetic background up to second order in the propagating photon field. The
focus of our attention is the study of the material properties of the vacuum in the particular
case of a space-like CFJ 4-vector. The dispersion relations associated to the plane wave
solutions are explicitly worked out in two situations: the magnetic background perpendicular
and parallel to the wave direction. We extend these results to consider the analysis of the
birefringence phenomenon in presence of non-linearity, the axion and the LSV manifested
through the spatial anisotropy. Three specific proposals of non-linear electrodynamics are
contemplated: Euler-Heisenberg (EH), Born-Infeld (BI) and the Modified Maxwell electrody-
namics (ModMax). Throughout the paper, we shall justify why we follow the unusual path
of connecting, in a single Lagrangian density, three pieces of physics beyond the Standard
Model, namely, non-linearity, axions and LSV. We anticipate that we shall not be claiming
that the simultaneous introduction of these three topics beyond the Standard Model will
bring new insights or clues for the efforts to detect axions or to constrain parameters associate
to both non-linear electrodynamics and LSV physics. Our true goal is to actually inspect and
describe how axionic, non-linear and LSV effects interfere with one another whenever physical
entities like group velocity, refraction indices, birefringence and effective masses of physical
excitations are computed in presence of an external constant and homogeneous magnetic field.
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1 Introduction

The strong CP problem is still an intriguing question in the Standard Model (SM) of elementary
particles. Certainly, the mechanism proposed by Peccei and Quinn is the most popular and
elegant approach to solve this issue by introducing the axions [1, 2]. We should point out here
that there are, however, other resolutions to solve the strong CP problem without introducing
new particles beyond the Standard Model, as one may find in the articles of refs. [3–6]. The
Axion-like Particles (ALPs) has been the subject of investigation in diverse branches of the
high energy physics. A good motivation is that such particles are strong candidates for the
dark matter content [7–9]. Furthermore, ALPs naturally arise in string theories [10].

Over the past decades, a considerable effort has been made for the detection of ALPs,
both in astrophysical experiments [11–15] and in particle accelerators [16–19]. The challenge is
that the ALPs couple very weakly to the SM matter, so the bounds obtained have a stringent
parameter space. For example, the CAST experiment that searches for ALPs produced in
the solar core provides a well-established limit for the ALP-photon interaction with coupling
constant gaγ ≃ 0.66×10−10 GeV−1 and ALP mass restricted to ma < 0.02 eV at 95% C.L. [14].
We also highlight that ALPs can be produced by ALP-photon conversion in the presence of an
intense magnetic background field, as described by the Primakoff process. There is also a great
deal of interest in looking for ALPs with very small masses, the so-called ultra-light Axions
(ULAs). They are particles with mass in the broad range of 10−33 eV ≲ ma ≲ 10−18 eV. The
search for ULAs involves cosmological observations from the cosmic microwave background
(CMB) and the large-scale structure (LSS). A thorough review is provided in ref. [20].

In presence of intense magnetic fields close to the Schwinger’s critical magnetic field,
i.e., |B|S = m2

e/qe = 4.41 × 109 T, non-linear effects acquire relevance [21]. In the work [22],
a general approach has been followed to investigate ALPs in non-linear electrodynamic
scenarios, where some optical properties of the vacuum have been investigated, such as the
vacuum magnetic birefringence (VMB) and Kerr effect. Furthermore, it has been shown that
the presence of the axion generates dispersion relations that depend on the wavelength, so
that dispersive refractive indices show up that would not be present if only non-linearity were
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considered. In a seminal work [23], the authors connected axionic physics with the Euler-
Heisenberg electrodynamics and discussed birefringence experiments, photon-axion conversion,
as well as the axion-graviton conversion in the vicinity of stars with an intense magnetic fields.

It is well-known that the ALP-photon conversion in a magnetic background changes
the optical properties of the vacuum. Therefore, the measure of the VMB can provide
bounds on the axion mass and coupling constant gaγ [24–26]. Although VMB is an effect
predicted by quantum electrodynamics (QED), there is still no experimental evidence of
its existence produced in laboratories. The PVLAS collaboration was one of the most
notable projects in this search, having ended its activity in 2017 after 25 years of efforts to
measure the birefringence and vacuum dichroism phenomena, providing very reliable limits
for such quantities [27–29]. Even so, indirect evidence of vacuum birefringence was found
from measurement of optical polarization of the neutron star RX J1856.5–3754 [30].

At this stage, it is worthy mentioning that the axionic interaction term can be generated
via radiative corrections in a theory with Lorentz symmetry violation (LSV) [31]. Although
Lorentz invariance is a fundamental invariance principle in elementary particle physics and in
Einstein’s classical General Relativity, it is known that, for a quantum theory of gravity, such
invariance may not hold any longer. For example, in string theories [32–36], it is estimated
that there should be small violations of Lorentz symmetry next to the Planck energy scale,
namely, EP l = 1019 GeV. This would occur in the early universe. In this perspective, we are
motivated to study which influence a LSV background would have on an axionic theory. To
generalize our approach, we consider that the electrodynamics model may have non-linear
contributions. Although, in specific cases, one can easily reduce to the usual Maxwell’s
theory. Moreover, we point out that LSV theories introduce an anisotropy in space-time,
such that is reasonable to obtain a birefringence effect [37, 38]. This characteristic added
to the non-linear ALP-photon mixing model [22] generates a very rich effective model with
implications in the optical properties of the vacuum. In particular, for the LSV term, we
adopt the Carroll-Field-Jackiw (CFJ) electrodynamics [39], which is a generalization of a
Chern-Simons term for (3 + 1) dimensions. For the consistency of the model, a quadrivector
is introduced that guarantees the gauge symmetry of the theory, but does not preserve
the Lorentz and CPT symmetry. The CFJ term appears in the CPT-odd gauge sector of
the Standard Model Extension (SME). This model developed by Colladay and Kosteletsky
describes a general action with terms that violate Lorentz and CPT symmetry [40, 41].

There is a rich literature on the CFJ electrodynamic model. In the work [42], limits were
obtained for the CFJ Lorentz-breaking parameter in the time-like case through laboratory
experiments such as quantum corrections to the spectrum of the hydrogen atom, electric
dipole moment, as well as the interparticle potential between fermions. Studies on the possible
effects of contributions of the CFJ model for the cosmic microwave background (CMB) were
carried out in ref. [43]. Recently, in the supersymmetry scenario, the gauge boson-gaugino
mixing was investigated by taking into account the effects of the LSV due to a CFJ term [44].
We also highlight that there is a connection between the axionic theory and Lorentz and
CPT-violation. For example, in ref. [45], the author establishes this connection by embedding
Carroll-Field-Jackiw (CFJ) electrodynamics in a premetric framework. The fact is used that
in CFJ electrodynamics the constraint ∂µvν − ∂νvµ = 0 allows writing the Lorentz-breaking
vector as the gradient of a scalar vµ = ∂µϕ; so, in performing this redefinition in the pre-metric
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Lagrangian, the axionic interaction term naturally arises. However, this approach does not
provide a dynamics for the axion. Also, the corresponding energy-momentum tensor does
not depend on the axion field. Furthermore, the author discussed the relation between the
birefringence phenomenon with Lorentz and CPT symmetry violation. It is possible to
associate the non-observation of birefringence with the preservation of these symmetries. For
more details on LSV, we indicate the review [46] and references therein.

Before going on and starting to work out the developments of our paper, we would like to
call into question our motivation to bring together three different physical scenarios beyond the
Standard Model in a single Lagrangian, namely: axions, non-linear electrodynamic extensions
and Lorentz-symmetry violating physics (LSV is here realized by means of the Carroll-Field-
Jackiw term). The usual procedure is to consider each of these physical situations separately,
once we expect that their respective individual effects correspond to tiny corrections to
current physics. Connecting these three diverse physics in a single action might appear as
a waste of efforts or, simply, an exercise to mix up different effects. Nevertheless, what we
truly wish by coupling axions to non-linear electrodynamics and LSV physics is to show
how the parameters associated to the axion and LSV sectors couple to external electric and
magnetic fields whenever non-linearity is considered. Actually, the main effort we endeavor is
to inspect how the magnetic background field may broaden the effects of the tiny axionic and
LSV parameters on physical properties such as birefringence, refractive indices, dichroism
and group velocity. This is investigated with the help of the dispersion relations we shall
derive in different situations characterized by particular configurations of external fields. And
to enforce our claim to consider the simultaneous presence of these three sorts of effects, we
gather some works in refs. [47–50]. In these papers, non-linear quantum electrodynamics,
axion electrodynamics and LSV are studied in Condensed Matter scenarios such as Dirac and
Weyl semimetals and topological magnetic materials. We are then motivated to assume that
topological materials appear as a natural laboratory that justify the inspection of how the
effects of non-linearity, axions and LSV interfere with each other. Cosmology provides another
viable scenario that may justify efforts in the quest for the interference between the three
effects we are here discussing. In refs. [20, 51–54], we cast reference works that support our
proposal. Finally, knowing that non-linearity, axions and LSV are issues currently investigated
in connection with astrophysical structures [55–57], we can also elect Astrophysics as another
field of interest to study the concomitant presence of these three issues and how they affect
each other in the study of the propagation of electromagnetic waves in the QED vacuum.

In this contribution, we investigate the propagation effects of a general axionic non-linear
ED in presence of a CFJ term. As mentioned, the CFJ introduces the 4-vector that breaks the
Lorentz symmetry, and the isotropy of the space-time. We introduce a uniform magnetic field
expanding the propagating field of the model up to second order around this background field.
The properties of the medium are discussed in presence of the magnetic background. We
obtain the dispersion relations of the linearized theory in terms of the magnetic background,
the CFJ 4-vector, and the axion coupling constant. The case of a space-like quadrivector
is analysed, such that the plane wave frequencies are functions of the wave vector (k), the
magnetic background (B), and the CFJ background vector (v). Thereby, we consider two
cases: (a) when k, B and v are perpendiculars, and (b) when k is parallel to B, but both
vectors remain perpendicular to v. The solutions of these cases define the perpendicular
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and parallel frequencies, respectively. Using these dispersion relations, we calculate the
birefringence through the perpendicular and parallel refractive indices. We apply our results
to the non-linear electrodynamics of Euler-Heisenberg [58], Born-Infeld [59], and Modified
Maxwell (ModMax) [60–62].

This paper is organized according to the following outline: in section 2, the axionic
non-linear theory is presented with the CFJ term in an electromagnetic background field.
In section 3, we consider a purely magnetic background field and obtain the permittivity
and permeability tensors, as well as the dispersion relations associated with the plane wave
solutions. Next, in section 4, the birefringence phenomenon is discussed in the framework
of Euler-Heisenberg, Born-Infeld, and ModMax electrodynamics. Finally, the Conclusions
and Perspectives are cast in section 5.

We adopt the natural units in which ℏ = c = 1, 4πϵ0 = 1, and the electric and magnetic
fields have squared-energy dimension. Thereby, the conversion of Volt/m and Tesla (T) to
the natural system is as follows: 1 Volt/m = 2.27 × 10−24 GeV2 and 1 T = 6.8 × 10−16 GeV2,
respectively. The metric convention is ηµν = diag (+1,−1,−1,−1).

2 The non-linear axion-photon electrodynamics including the
Carroll-Field-Jackiw term

We initiate with the description of the model whose Lagrangian density reads as follows:

L = Lnl(F0,G0) + 1
2 (∂µϕ)2 − 1

2 m2 ϕ2 + g ϕG0 + 1
4 ϵµνκλ vµ A0ν F0κλ − Jµ A µ

0 , (2.1)

where Lnl(F0,G0) denotes the most general Lagrangian of a non-linear electrodynamics that
is function of the Lorentz- and gauge-invariant bilinears: F0 = −1

4 F 2
0µν = 1

2
(
E2

0 − B2
0
)

and
G0 = −1

4 F0µνF̃ µν
0 = E0 · B0. These definitions introduce the antisymmetric field strength

tensor as F µν
0 = ∂µA ν

0 − ∂νA µ
0 =

(
−E i

0 ,−ϵijkB k
0

)
, and the correspondent dual tensor is

F̃ µν
0 = ϵµναβF0αβ/2 =

(
−B i

0 , ϵijkE k
0

)
, which satisfies the Bianchi identity ∂µF̃0µν = 0. The

CFJ term introduces the background 4-vector vµ = (v0, v) whose components do not depend
on the space-time coordinates. It has mass dimension in natural units and is responsible for
the Lorentz symmetry violation in the gauge sector of the model. In addition, ϕ is the axion
scalar field with mass m, and g is the non-minimal coupling constant (with length dimension)
of the axion with the electromagnetic field, i.e., the usual coupling with the G0-invariant in
the axion-photon model. There are many investigations and experiments to constraint the
possible regions in the space of the parameters g and m, which still remains with a wide
range of values, depending on the phenomenological scale in analysis.

We expand the abelian gauge field as A µ
0 = aµ + A µ

B , in which aµ is the photon
4-potential, and A µ

B denotes a background potential. In this conjecture, the tensor F µν
0

is also written as the combination F µν
0 = fµν + F µν

B , in which fµν = ∂µaν − ∂νaµ =(
−ei,−ϵijkbk

)
is the EM field strength tensor that propagates in the space-time, and

F µν
B =

(
−Ei,−ϵijkBk

)
corresponds to the EM background field. The notation of the

4-vector and tensors with index (B) indicates that it is associated with the background.
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At this stage, we consider the general case in which the background depends on the space-
time coordinates. Under this prescription, we also expand the Lagrangian (2.1) around the
background up to second order in the propagating field aµ to yield the expression

L(2) = −1
4 c1 f 2

µν − 1
4 c2 fµν f̃µν + 1

8 QBµνκλ fµνfκλ

+1
2

(
∂µϕ̃

)2
− 1

2 m2 ϕ̃2 − 1
2 g ϕ̃ F̃Bµν fµν + 1

4 ϵµνκλ vµ aν fκλ − J̄ν aν , (2.2)

where J̄ν = Jν − ∂µ (HBµν) − vµF̃Bµν represent an effective external current that couples
to the photon field; it includes an eventual matter current and the contributions that stem
from the background electromagnetic fields. The tensors associated with this electromagnetic
background are defined in what follows:

HBµν = c1 FBµν + c2 F̃Bµν + g2

m2 GB F̃Bµν , (2.3a)

QBµνκλ = d1 FBµν FBκλ + d2 F̃Bµν F̃Bκλ + d3 FBµν F̃Bκλ + d3 F̃Bµν FBκλ . (2.3b)

The axion field is shifted as ϕ → ϕ̃ + ϕ0 in order to eliminate the g ϕGB term that would
appear in the Lagrangian (2.2). The coefficients c1, c2, d1, d2 and d3 are evaluated at E
and B, as follows:

c1 = ∂Lnl
∂F0

∣∣∣∣
E,B

, c2 = ∂Lnl
∂G0

∣∣∣∣
E,B

, d1 = ∂2Lnl
∂F2

0

∣∣∣∣∣
E,B

, d2 = ∂2Lnl
∂G2

0

∣∣∣∣∣
E,B

, d3 = ∂2Lnl
∂F0∂G0

∣∣∣∣∣
E,B

,

(2.4)
that depend on the EM field magnitude and may also be functions of the space-time
coordinates. Following the previous definitions, the background tensors satisfy the properties
HBµν = −HBνµ, whereas QBµνκλ is symmetric under exchange µν ↔ κλ, and antisymmetric
under µ ↔ ν and κ ↔ λ. Note that the current Jµ couples to the external potential A µ

B , but
this term and Lnl (FB,GB) are irrelevant for the field equations in which we are interested.

Using the minimal action principle by varying aµ, the Lagrangian (2.2) yields the EM
field equations with source J̄µ

∂µ
[

c1 fµν + c2 f̃µν − 1
2 QBµνκλ fκλ

]
+ vµ f̃µν = −g (∂µϕ̃) F̃Bµν + J̄ν , (2.5)

and the Bianchi identity remains the same one for the photon field, namely, ∂µf̃µν = 0.
The action principle in relation to ϕ̃ in (2.2) yields the axion field equation evaluated at
the EM background: (

□ + m2
)

ϕ̃ = −1
2 g F̃Bµν fµν . (2.6)

Since we consider a uniform magnetic background field, the c2- and d3-coefficients of the
expansion vanish for most examples of non-linear EDs known in the literature, such as Euler-
Heisenberg, Born-Infeld, ModMax, Logarithmic and some others, where the corresponding
non-linear Lagrangian densities depend on the square of the G-invariant. These considerations
simplify the results that we shall work out in the next sections ahead. The usual axionic
ED coupled to the CFJ-term is recovered whenever d1 → 0, d2 → 0 and c1 → 1 in all the
cases of non-linear ED mentioned previously.
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3 The dispersion relations in presence of a uniform magnetic field

In this section, we obtain the dispersion relations of the axion and photon fields in a uniform
magnetic background. Thus, we can take E = 0 in the equations of the section 2. Thereby,
from now on, all the coefficients defined in (2.4) are not space-time dependent; they actually
depend only on the magnetic vector B. We start the description of the field propagating
with the equations written in terms of e and b, in the presence of constant and uniform
magnetic background field. For the analysis of the free wave propagation, we just consider
the linear terms in e, b and ϕ̃, as well as, the equations with no source, J̄ = 0 and ρ̄ = 0.
Under these conditions, the electrodynamics equations in terms of the propagating vector
field are read below:

∇ · D = v · b , (3.1a)

∇× e + ∂b
∂t

= 0 , (3.1b)

∇ · b = 0 , (3.1c)

∇× H + v × e = v0 b + ∂D
∂t

, (3.1d)

where the vectors D and H are, respectively, given by

D = c1 e + d2 B (B · e) + g ϕ̃ B , (3.2a)
H = c1 b − d1 B (B · b) . (3.2b)

The scalar field equation (2.6) in terms of the magnetic background field leads to(
□ + m2

)
ϕ̃ = g (e · B) . (3.3)

We substitute the plane wave solutions of e, b and ϕ̃ in the field equations (3.1a)–(3.1d)
and (3.3). Eliminating conveniently the amplitudes of b and ϕ̃ in terms of the electric field
amplitude, the wave equation in the momentum space is read below:

M ij(ω, k) e j
0 = 0 , (3.4)

where e j
0 (j = 1, 2, 3) are the components of the electric amplitude, and the matrix elements

M ij are given by

M ij(ω, k) = a δij + b ki kj + c Bi Bj + d (B · k)
(
Bi kj + Bj ki

)
− i ϵijm

(
v0 km − ω vm

)
,

(3.5)

whose the coefficients a, b, c are defined by

a = ω2 − k2 + d (k × B)2 , (3.6a)

b = 1 − d B2 , (3.6b)

c = ξ(ω, k) ω2 − d k2 , (3.6c)

ξ(ω, k) = f + g2
a

k2 − ω2 + m2 , (3.6d)
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in which d := d1/c1, f := d2/c1 and ga :=
√

g2/c1 for simplicity in the equations. Thus, the
non-linearity evaluated on the magnetic background is manifested in the parameters d and
f , and the coupling constant ga corrects the axion coupling constant with the coefficient c1.
Notice that the b-coefficient depends only on the magnetic background, but the others one
depends on the ω-frequency and on the k-wave vector.

Back to the expressions of D and H in (3.2a)–(3.2b) with the plane wave solutions, the
components of D and H in terms of the electric and magnetic amplitudes can be written as

Di = ϵij(k, ω) ej and Hi = (µij)−1 bj , (3.7)

where ϵij and (µij)−1 are the permittivity and permeability (inverse) tensors, respectively,

ϵij(k, ω) = c1 δij + c1 ξ(k, ω) Bi Bj , (3.8a)
(µij)−1 = c1 δij − d1 Bi Bj . (3.8b)

The permeability tensor is obtained by computing the inverse of (3.8b)

µij = 1
c1

(
1 − d B2) δij + d Bi Bj

1 − d B2 . (3.9)

Notice that the electric permittivity depends on the ω-frequency and the k-wave vector
due to the axion coupling g ̸= 0. Also, the definition of these tensors do not include the
components of the CFJ 4-vector vµ. Thereby, this LSV scenario does not contribute with
the physical properties of the tensors.

According to the works of refs. [63–65], the v0-component may induce contributions
that violate the causality and stability. For this reason, we shall adopt a space-like CFJ
4-vector, i.e., v0 = 0 in the matrix element M ij from eq. (3.5). The dispersion relations
come from the non-trivial solutions to the wave equation (3.5). The condition for non-trivial
solutions is det M ij = 0; for the space-like case of the CFJ background, it is reduced to
an ω-polynomial equation:

a3 + a2
[
b k2 + 2d (B · k)2

]
+ ac

[
a B2 + b(B × k)2

]
− a d2 (B · k)2 (B × k)2

−
[
av2 + c(B · v)2

]
ω2 − (v · k) [ b(v · k) + 2d (B · k) (B · v) ] ω2 = 0 .

(3.10)

Back to eqs. (3.6a)–(3.6d), notice that the coefficient a takes into account non-linearity
by means of the piece d (B × k)2 = d [ B2 k2 − (B · k)2], b incorporates non-linearity in
the piece d B2. The coefficient c, on the other hand, splits into non-linearity (the d- and
f -terms) and axionic (the axion mass, m, and the coupling constant, ga) effects: c = (f ω2 −
d k2) − g2

a ω2/(ω2 − k2 − m2). Finally, the LSV appears represented by the background
vector, v. It is worthy to remark that no term in the dispersion relation (3.10) couples
the three effects together. We actually mean that non-linearity, axionic and LSV effects
interfere with one another only in pairs. No term is present in which parameters of the
three different effects appear grouped together in a product. However, below, in discussing
the effective masses of axion-photon coupled system, it will become clear that three effects
mix up to give these effective masses.
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We would like to point out that, if only non-linearity is considered, the dispersion relations
do not exhibit momentum dependence, so no dispersive effect shows up. By introducing
the axion sector, the profile changes and dispersive effects emerges. Now, if LSV is also
considered in addition to non-linearity and axionic physics, not only dispersion is enforced,
but another fact should be highlighted: photonic dispersion relations show that the modulus
of the LSV background vector, |v| = v, along with the axion mass endows the photon with an
effective mass, meff . For instance, let us consider the rest frame (k = 0 with the identification
ω2 = m2

eff), as well as B = B ẑ and v = v ŷ in eq. (3.10). Therefore, it is possible to show
that the effective masses for the photon and the axion correspond to the roots of the equation

(1 + f B2) m4
eff −

[
(1 + f B2) m2 + g2

a B2 + v2

c2
1

]
m2

eff + m2 v2

c2
1

= 0 . (3.11)

The solutions of this quartic equation are

m2
eff(1) = (1 + f B2) m2 + g2

a B2 + v2/c2
1

2 (1 + f B2)

−

√(
(1 + f B2)m2 + g2

a B2 + v2/c2
1
)2 − 4m2v2 (1 + f B2) /c2

1
2 (1 + f B2) , (3.12a)

m2
eff(2) = (1 + f B2) m2 + g2

a B2 + v2/c2
1

2 (1 + f B2)

+

√(
(1 + f B2)m2 + g2

a B2 + v2/c2
1
)2 − 4m2v2 (1 + f B2) /c2

1
2 (1 + f B2) . (3.12b)

In the limit ga → 0, the first solution (3.12a) is reduced to

meff(1) = v√
c1(c1 + d2 B2)

, (3.13)

whereas, when v → 0, the effective mass is null. Consequently, in the uncoupled limit
(ga → 0), the CFJ parameter (v) gives an effective mass with the correction of the non-
linearity evaluated at the magnetic background field. Considering the same limit of v → 0,
the second solution (3.12b) is reduced to the expression

meff(2) =
√

m2 + g2 B2

c1(c1 + d2 B2) , (3.14)

where the axion mass, and the coupling constant have a fundamental role for the effective
mass. Thus, the axion mass is corrected by the coupling constant and by the magnetic field. In
the uncoupled limit, ga → 0, the second root (3.12b) yields the axion mass, i.e., meff(2) = m.

Now let us return to eq. (3.10). The general solution is quite involved in view of the
coefficients (3.6a)–(3.6d). For simplicity, we consider the two cases below:

(a) The case of the vectors B, k and v perpendiculars among themselves: B · k = B · v =
k · v = 0. Considering this condition, the equation (3.10) is reduced to:

ω2
⊥

[
ω2
⊥ − k2 + d B2 k2

] [(
1 + ξ B2

)
ω2
⊥ − k2 − v2

]
= 0 , (3.15)
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where we denote the perpendicular frequency ω⊥, and B, k and v are the magnitudes
of the previous vectors. The first solution is ω⊥ = 0, and the non-trivial solutions
from (3.15) are given by

ω1⊥(k) = k
√

1 − d B2 , (3.16a)

ω2⊥(k) =

{
k2 + v2 + g2

a B2 + (1 + f B2)(k2 + m2)
2 (1 + f B2)

−
√

(k2 + v2 + g2
a B2 + (1 + f B2)(k2 + m2))2 − 4 (1 + f B2) (k2 + m2) (k2 + v2)

2 (1 + f B2)

}1/2

,

ω3⊥(k) =

{
k2 + v2 + g2

a B2 + (1 + f B2)(k2 + m2)
2 (1 + f B2)

+
√

(k2 + v2 + g2
a B2 + (1 + f B2)(k2 + m2))2 − 4 (1 + f B2) (k2 + m2) (k2 + v2)

2 (1 + f B2)

}1/2

.

(3.16b)

The analysis of the limits to establish comparisons with the results in the literature is
immediate. The limits f → 0 and c1 = 1 yield the dispersion relations of the axionic ED
coupled to CFJ term in the presence of an external magnetic field. Furthermore, if we also
take ga → 0, the dispersion relations are reduce to ω2⊥(k) =

√
(k2 + v2)(1 + f B2)−1

and ω3⊥(k) =
√

k2 + m2 for m > v. Note that in ω2⊥(k), occurs the characteristic effect
of CFJ, where the Lorentz-breaking parameter gives a small mass for the photon. These
results confirm the roots of the eq. (3.11) in the rest frame (k = 0). The usual Maxwell
limit reduces all the frequencies to: ω1⊥(k) = ω2⊥(k) = k and ω3⊥(k) =

√
k2 + m2.

The refractive (perpendicular) index are defined by

ni⊥(k) = |k|
ωi⊥(k) , (i = 1, 2, 3) . (3.17)

(b) The second case consists in considering v orthogonal to both B and k, but B parallel
to k: B · v = k · v = 0 and B · k = B k. In this case, the equation (3.10) is

ω2
∥

(
ω2
∥ − k2

) [ (
1 + ξ B2

) (
ω2
∥ − k2

)
− v2

]
= 0 , (3.18)

where ω∥ is now the frequency for B parallel to k. The trivial solution is ω∥ = 0, and
the others solutions are read below:

ω1∥(k) = k , (3.19a)

ω2∥(k) =
{ (

2k2 + m2) (1 + f B2)+ v2 + g2
a B2

2 (1 + f B2)

−

√
[ g2

a B2 + m2(1 + f B2) ]2 + 2v2 g2
a B2 − 2v2 m2 (1 + f B2) + v4

2 (1 + f B2)


1/2

,

– 9 –



J
H
E
P
0
5
(
2
0
2
4
)
0
2
9

ω3∥(k) =
{ (

2k2 + m2) (1 + f B2)+ v2 + g2
a B2

2 (1 + f B2)

+

√
[ g2

a B2 + m2(1 + f B2) ]2 + 2v2 g2
a B2 − 2v2 m2 (1 + f B2) + v4

2 (1 + f B2)


1/2

.

(3.19b)

The first solution (3.19a) is the usual photon DR due to B × k = 0 in the a-parameter
in (3.6a). The limits of f → 0 and c1 = 1 also recover the DRs of the axionic ED
coupled to CFJ term in the presence of the external magnetic field B. The limit ga → 0,
when the axion is decoupled from the CFJ ED, the DRs are reduced to the results:
ω2∥(k) =

√
k2 + v2 (1 + f B2)−1 and ω3∥(k) =

√
k2 + m2 for m > v. This confirm the

same results recovered in the case (a). The correspondent refractive (parallel) index are
defined by

ni∥(k) = |k|
ωi∥(k) , (i = 1, 2, 3) . (3.20)

where we must substitute the DRs (3.19a)–(3.19b). Notice that, in both the cases (a)
and (b), the refractive index of the medium depends on the modulus k, so, consequently,
it depends on the wavelength, as λ = 2π/|k|.

To close this section, in possess of the set of dispersion relations (3.16) and (3.19),
we call back one of the motivations to do this work, namely, to keep track of how the
three different physical scenarios we bring together in the action of eq. (2.1) interfere
with one another, which is manifested by means of the terms coupling the parameters
of the different scenarios. Keeping in mind that the coefficients c1, f and d express the
non-linearity and that ga incorporates the axion-photon coupling and the coefficient
c1, the presence of the denominator (1 + fB2), common to all frequency solutions,
in combination with the terms in m2, v2, gaB2, fB2m2 and fB2m2v2, as it appears
in eqs. (3.16a)–(3.16b) and (3.19a)–(3.19b), shows in an explicit way how the three
different physics mix among themselves to produce tiny effects in optical quantities like
phase and group velocities and refraction indices. The explicit forms of the coefficients
in terms of the non-linear electrodynamic models of Euler-Heisenberg, Born-Infeld
and ModMax will be shown in the next section, namely, by equations (4.7), (4.12)
and (4.18), respectively.

4 The birefringence phenomenon

Birefringence is an optical property of an anisotropic medium expressed by the dependence
of the refractive index on the polarization and direction of propagation of an electromagnetic
wave. Just to recall, the polarization conventionally refers to the configuration of the electric
field of the wave. However, in the previous section, we have worked out refraction indices
associated to the propagation of the waves in two situations: perpendicular and parallel to
the background magnetic field: k · B = 0 and k · B = |k||B|, respectively, with no reference
to the polarization established by the electric field. Eqs. (3.17) and (3.20) explicitly show
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how the non-linearity — manifested by the external magnetic field — the axion parameters
and the LSV vector interfere with one another in the expressions for the perpendicular and
parallel refraction indices. And we would like to stress that we are here adopting the point
of view that the phenomenon of birefringence manifests itself by the difference between the
refractive indices of eqs. (3.17) and (3.20), as defined below,

∆nij(k) = ni∥(k) − nj⊥(k) , (i, j = 1, 2, 3) , (4.1)

where we are contemplating the cases in which i = j and i ̸= j; in general, ∆nij ̸= 0, and
it depends on the wavelength, which characterizes dispersive propagation. Notice also that
∆nij ̸= ∆nji according to the definition (4.1). The difference between the refraction indices
in these situations is exclusively due to the choice of the wave propagation direction with
respect to the external B-field.

Substituting the results from the previous section, the variation of refractive index in
the case of i = j are read

∆n11 = 1 − 1√
1 − d B2

, (4.2a)

∆n22(k) ≃
√

1 + f B2

1 + f B2 + v2/k2 −
√

1 + f B2

1 + v2/k2

[
1 + g2

a B2/2
m2 + f B2(k2 + m2) − v2

]
, (4.2b)

∆n33(k) ≃ 1
(1 + m2/k2)3/2

m2 − v2

(1 + f B2)m2 − v2
g2

a B2/2
m2 + f B2(k2 + m2) − v2 , (4.2c)

where we have considered that ga is very weak in comparison with the squared inverse of the
magnetic background (g2

a B ≪ 1). The birefringence effects for i ̸= j are read below:

∆n12(k) ≃ 1 −
√

1 + f B2

1 + v2/k2

[
1 + g2

a B2/2
m2 + f B2(k2 + m2) − v2

]
, (4.3a)

∆n21(k) ≃
√

1 + f B2

1 + f B2 + v2/k2 − 1√
1 − d B2

, (4.3b)

∆n13(k) ≃ 1 − 1√
1 + m2/k2

[
1 − g2

a B2/2
m2 + f B2 (k2 + m2) − v2

]
, (4.3c)

∆n31(k) ≃ 1√
1 + m2/k2 − 1√

1 − d B2
− m2 k

(k2 + m2)3/2
g2

a B2/2
m2(1 + f B2) − v2 , (4.3d)

∆n23(k) ≃
√

1 + f B2

1 + f B2 + v2/k2 − 1√
1 + m2/k2

[
1 − g2

a B2/2
m2 + f B2(k2 + m2) − v2

]
, (4.3e)

∆n32(k) ≃
√

1 + f B2

1 + v2/k2 − 1√
1 + m2/k2 − g2

a B2/2
[(1 + f B2)m2 − v2]

m2 k

(k2 + m2)3/2

− g2
a B2/2

m2 + f B2(k2 + m2) − v2

√
1 + f B2

1 + v2/k2 . (4.3f)

Turning off the magnetic background (B → 0), birefringence emerges in all the results with
limB→0 ∆nij ̸= 0, for i ̸= j, and limB→0 ∆nij = 0 for i = j. Therefore, in this limit of
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B → 0, the birefringence phenomenon appears only due to the axion mass and the CFJ
parameter. Only the expression (4.2a) does not depend on the wavelength. For the usual
Maxwell ED coupled to the axion and the CFJ term, the limits of c1 → 1, d → 0 and
f → 0 yield the results below:

∆n11 = 0 , (4.4a)

∆n22(k) ≃ − 1√
1 + v2/k2

g2 B2

2 (m2 − v2) , (4.4b)

∆n33(k) ≃ 1
(1 + m2/k2)3/2

g2 B2

2 (m2 − v2) , (4.4c)

∆n12(k) ≃ 1 − 1√
1 + v2/k2

[
1 + g2 B2

2 (m2 − v2)

]
, (4.4d)

∆n21(k) ≃ 1√
1 + v2/k2 − 1 , (4.4e)

∆n13(k) ≃ 1 − 1√
1 + m2/k2

[
1 − g2 B2

2 (m2 − v2)

]
, (4.4f)

∆n31(k) ≃ 1√
1 + m2/k2 − 1 − g2 B2

2 (m2 − v2)
m2 k

(k2 + m2)3/2 , (4.4g)

∆n23(k) ≃ 1√
1 + v2/k2 − 1√

1 + m2/k2

[
1 − g2 B2

2 (m2 − v2)

]
, (4.4h)

∆n32(k) ≃ 1√
1 + v2/k2 − 1√

1 + m2/k2

− g2 B2

2 (m2 − v2)
m2 k

(1 + m2/k2)3/2 − g2 B2

2 (m2 − v2)
1√

1 + v2/k2 , (4.4i)

where now the parameters g, B and the v-CFJ have a fundamental rule for the birefringence
phenomenon. It is worth to highlight that if we consider a massless axion, the birefringence
is null only in (4.4g). The limit ga → 0, for which we have a non-linear ED coupled to the
CFJ term, the results (4.2a)–(4.3f) are reduced to

∆n11 = 1 − 1√
1 − d B2

, (4.5a)

∆n22(k) =
√

1 + f B2

1 + f B2 + v2/k2 −
√

1 + f B2

1 + v2/k2 , (4.5b)

∆n33(k) = 0 , (4.5c)

∆n12(k) = 1 −
√

1 + f B2

1 + v2/k2 , (4.5d)

∆n21(k) =
√

1 + f B2

1 + f B2 + v2/k2 − 1√
1 − d B2

, (4.5e)

∆n13(k) = 1 − 1√
1 + m2/k2 , (4.5f)
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∆n31(k) = 1√
1 + m2/k2 − 1√

1 − d B2
, (4.5g)

∆n23(k) =
√

1 + f B2

1 + f B2 + v2/k2 − 1√
1 + m2/k2 , (4.5h)

∆n32(k) =
√

1 + f B2

1 + v2/k2 − 1√
1 + m2/k2 . (4.5i)

In this case, the non-linearity plays a key role in the birefringence phenomenon. We shall
discuss ahead birefringence by contemplating three non-linear electrodynamic models: Euler-
Heisenberg, Born-Infeld and ModMax ED.

(a) The Euler-Heisenberg ED is described by the Lagrangian:

LEH(F ,G) = F + 2α2

45m4
e

(
4F2 + 7G2

)
, (4.6)

where α = e2 = (137)−1 = 0.00729 is the fine structure constant, and me = 0.5 MeV is
the electron mass. Taking this Lagrangian and applying the expansion presented in
section 2, the coefficients read as below:

dEH ≃ 16α2

45m4
e

and fEH ≃ 28α2

45m4
e

, (4.7)

for a weak magnetic field. Substituting these coefficients in (4.2a)–(4.2c), we obtain

∆n
(EH)
11 ≃ −8α2B2

45m4
e

, (4.8a)

∆n
(EH)
22 ≃ −14α2B2

45m4
e

1
(1 + v2/k2)3/2 + g2 B2

2 (m2 − v2)
1

(1 + m2/k2)3/2 , (4.8b)

∆n
(EH)
33 ≃ g2 B2

2 (m2 − v2)
1

(1 + m2/k2)3/2 , (4.8c)

∆n
(EH)
12 ≃ 1 − 1√

1 + v2/k2

[
1 + 14α2B2

45m4
e

+ g2B2

2 (m2 − v2)

]
, (4.8d)

∆n
(EH)
21 ≃ 1√

1 + v2/k2 − 1 − 8α2B2

45m4
e

, (4.8e)

∆n
(EH)
13 ≃ 1 − 1√

1 + m2/k2

[
1 − g2 B2

2 (m2 − v2)

]
, (4.8f)

∆n
(EH)
31 ≃ 1√

1 + m2/k2 − 1 − 8α2B2

45m4
e

− g2 B2

2 (m2 − v2)
m2 k

(k2 + m2)3/2 , (4.8g)

∆n
(EH)
23 ≃ 1√

1 + v2/k2 − 1√
1 + m2/k2

[
1 − g2 B2

2 (m2 − v2)

]
, (4.8h)

∆n
(EH)
32 ≃ 1√

1 + m2/k2 − 1√
1 + v2/k2

[
1 + 14α2B2

45m4
e

+ g2 B2

2 (m2 − v2)

]

− g2 B2

2 (m2 − v2)
m2 k

(k2 + m2)3/2 , (4.8i)
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where we have neglected terms with α2 g2. Using the parameters previously defined,
the solution (4.8a) yields the numeric value

|∆n
(EH)
11 |

B2 ≃ 8α2

45m4
e

= 5.3 × 10−24 T−2 , (4.9)

that is of the same order of the result presented by the PVLAS-FE experiment for
vacuum magnetic birefringence, i.e., ∆nPVLAS-FE/B2 = (19± 27)× 10−24 T−2 [27]. The
result (4.8b) contains the contribution of g2, and also of the v-parameter, whereas the
variation ∆n

(EH)
33 is proportional to g2 B2 and it does not depend on α. Turning off

the magnetic background, we obtain ∆n
(EH)
ii = 0. In this limit, the CFJ v-parameter

contributes to the birefringence in ∆n
(EH)
ij (i ̸= j), as follows:

lim
B→0

∆n
(EH)
12 = −∆n

(EH)
21 = 1 − k√

k2 + v2
, (4.10a)

lim
B→0

∆n
(EH)
13 = −∆n

(EH)
31 = 1 − k√

k2 + m2
, (4.10b)

lim
B→0

∆n
(EH)
23 = −∆n

(EH)
32 = k√

k2 + v2
− k√

k2 + m2
. (4.10c)

These conditions constrain the CFJ parameter to depend on the range of the axion
mass. This is the case of a ultra-light axion (ULA), candidate to DM, with mass
lower-bounded according to m ≳ 10−22 eV (2σ) from non-linear clustering [20], to be
compared with v ≲ 10−23–10−25 GeV [42]. Notice that the limit B → 0 is equivalent to
the cases in which the non-linearity is absent (α ≃ 0), and also when the axion coupling
constant disappears (g → 0). Thus, the only parameters that remain are v and the
axion mass. The mass for the free axion is not a sufficient parameter to guarantee
birefringence, whereas if we have only the v-parameter, the birefringence of the CFJ
ED is recovered [39].

(b) The Born-Infeld ED is governed by the Lagrangian:

LBI(F ,G) = β2

 1 −
√

1 − 2F
β2 − G2

β4

 , (4.11)

where β is the critical field of this model and has squared mass dimension. The usual
Maxwell ED is recovered whenever β → ∞. This is the well motivated non-linear theory
in which a point-like charge exhibits a finite electric field at the origin. A maximum
electric field produces a finite self-energy for the electron that fixes the BI-parameter
at β = 1.187 × 1020 V/m, that in MeV scale is

√
β = 16 MeV [59]. As an example in

accelerators, the ATLAS collaboration constraints the β-parameter in the stringent
bound of

√
β ≳ 100 GeV through the light-by-light scattering in Pb-Pb collisions [66].

Since our analysis is associated with the propagation effects in the linearized BI ED,
we consider the BI β-parameter in the low-energy scale,

√
β = 16 MeV. We understand

that, upon the inclusion of radiative corrections, the renormalization group equations
must exhibit a running of the β-parameter with energy and the external magnetic field,
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since the latter is present in the propagators and interactions vertices. This then means
that the β-parameter is not a fixed universal parameter, but should run with both the
energy and the external magnetic field whenever we go beyond the tree-level. Moreover,
in a BI ED coupled to the matter sector, as in the electroweak case with a non-linear
realization of the hypercharge U(1)-factor, non-perturbative effects must be included
such that the choice

√
β ≳ 100 GeV may be justified. We would to finally point out that

in the work of ref. [67], the reader may find the microscopic origin of the Born-Infeld
action as described in the framework of string theory. The microscopic origin of the
CFJ term, whose effects we are inspecting in presence of the Born-Infeld Lagrangian,
can also backed in a string scenario [32].

The coefficients of the expansion around the magnetic background are

dBI = 1
β2 + B2 and fBI = 1

β2 , (4.12)

in which both the coefficients go to zero when β → ∞. Substituting these results
in (4.1), the solutions for the birefringence in the BI theory (when g2 B ≪ 1) are
given by

∆n
(BI)
11 = 1−

√
1 + B2

β2 , (4.13a)

∆n
(BI)
22 (k) ≃

√
B2 + β2

B2 + β2 + v2β2/k2

− 1√
1 + v2/k2

√1 + B2

β2 + g2 B2(B2 + β2)/2
(m2 − v2)β2 + (k2 + m2) B2

 , (4.13b)

∆n
(BI)
33 (k) ≃ g2 B2

2(k2 + m2)3/2
1√

1 + B2/β2

× m2B2(k2 + m2)(B2 + 2β2) + (m2 − v2)(k2 + m2 + v2)β4

[ m2B2 + (m2 − v2)β2 ][ (k2 + m2)B2 + (m2 − v2)β2 ] , (4.13c)

∆n
(BI)
12 (k) = 1− 1√

1 + v2/k2

√1 + B2

β2 + g2 B2(B2 + β2)/2
(m2 − v2)β2 + (k2 + m2) B2

 , (4.13d)

∆n
(BI)
21 (k) ≃

√
B2 + β2

B2 + β2 + v2β2/k2 −
√

1 + B2

β2 , (4.13e)

∆n
(BI)
13 (k) ≃ 1− k√

k2 + m2

1− g2 B2β2/2
(m2 − v2)β2 + (k2 + m2) B2

√
1 + B2

β2

 , (4.13f)

∆n
(BI)
31 (k) ≃ 1√

1 + m2/k2 −
√

1 + B2

β2

− g2 B2β2/2
(m2 − v2)β2 + m2 B2

√
1 + B2

β2
m2 k

(k2 + m2)3/2 , (4.13g)
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∆n
(BI)
23 (k) ≃

√
B2 + β2

B2 + β2 + v2β2/k2 − 1√
1 + m2/k2

1− g2 B2

2 (m2 − v2)

√
1 + B2

β2


− g2 B2

2 (m2 − v2)
B2 k

√
k2 + m2

B2(k2 + m2) + (m2 − v2)β2

√
1 + B2

β2 , (4.13h)

∆n
(BI)
32 (k) ≃ 1√

1 + m2/k2 − 1√
1 + v2/k2

√
1 + B2

β2

[
1 + g2 B2 β2/2

(m2 − v2)β2 + (k2 + m2) B2

]

− g2 B2 β2/2
B2(k2 + m2) + (m2 − v2)β2

√
1 + B2

β2
m2 k

(k2 + m2)3/2 . (4.13i)

The limit β → ∞ recovers the results (4.4a)–(4.4i). For a weak magnetic background,
i.e., β ≫ B, the birefringence effect is residual in B2/β2 and also depends on the g2

coupling constant, for ∆n
(BI)
ii :

∆n
(BI)
11 ≃ − B2

2β2 , (4.14a)

∆n
(BI)
22 (k) ≃ − 1√

1 + v2/k2

[
B2

2β2 + g2 B2

2(m2 − v2)

]
, (4.14b)

∆n
(BI)
33 (k) ≃ g2 B2 k

2(k2 + m2)3/2
k2 + m2 + v2

m2 − v2 . (4.14c)

In the limit B → 0, ∆n
(BI)
ii = 0 in the results (4.13a)–(4.13c). For the propagation

effects in a low energy scale, we use
√

β = 16 MeV associated with the electron’s
self-energy in BI ED. In this case, the solution (4.14a) has the numeric value

|∆n
(BI)
11 |

B2 ≃ 3.2 × 10−24 T−2 , (4.15)

that is the same order of the PVLAS-FE experiment. Notice also that, in the limit
v → 0 and considering B2/β2 ≈ 0, the expressions ∆n

(BI)
22 and ∆n

(BI)
33 in (4.14b)–(4.14c)

are reduced to the result obtained in the ref. [22], when k ≫ m ≫ v in the PVLAS-FE
experiment:

|∆n
(BI)
22 | ≃ ∆n

(BI)
33 ≃ g2B2

2m2 . (4.16)

When B → 0, the variations of ∆n
(BI)
ij (i ̸= j) are reduced to (4.10a)–(4.10c), that

confirms the birefringence depending on the CFJ v-parameter.

(c) The modified Maxwell (ModMax) ED is set by the Lagrangian

LMM(F ,G) = cosh γ F + sinh γ
√
F2 + G2 , (4.17)

where γ is a real and positive parameter of this theory. In the limit γ → 0, the ModMax
Lagrangian reduces to the Maxwell ED. This non-linear ED has been well motivated in
the literature due to the conformal invariance. Thus, it is the only non-linear ED that
preserve the duality and the conformal symmetries in the same Lagrangian [60].
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The coefficients of the expansion in the magnetic background, in this case, are

dMM = 0 and fMM = 2 eγ sinh γ

B2 . (4.18)

Thus, the variation of the refractive index for a weak axion-coupling constant are read
below:

∆n
(MM)
11 = 0 , (4.19a)

∆n
(MM)
22 (k) ≃ eγ√

e2γ + v2/k2 − eγ√
1 + v2/k2

[
1 + eγ g2 B2/2

e2γ (k2 + m2) − k2 − v2

]
, (4.19b)

∆n
(MM)
33 (k) ≃ 1

(1 + m2/k2)3/2
m2 − v2

e2γ m2 − v2
eγ g2 B2/2

e2γ (k2 + m2) − k2 − v2 , (4.19c)

∆n
(MM)
12 (k) ≃ 1 − eγ√

1 + v2/k2

[
1 + eγ g2 B2/2

e2γ (k2 + m2) − k2 − v2

]
, (4.19d)

∆n
(MM)
21 (k) ≃ eγ√

e2γ + v2/k2 − 1 , (4.19e)

∆n
(MM)
13 (k) ≃ 1 − 1√

1 + m2/k2

[
1 − eγ g2 B2/2

m2 − v2 + 2eγ sinh(γ)(k2 + m2)

]
, (4.19f)

∆n
(MM)
31 (k) ≃ 1√

1 + m2/k2 − 1 − eγ g2 B2/2
e2γ m2 − v2

m2 k

(k2 + m2)3/2 , (4.19g)

∆n
(MM)
23 (k) ≃ eγ√

e2γ + v2/k2

− 1√
1 + m2/k2

[
1 − eγ g2 B2/2

m2 − v2 + 2eγ sinh(γ)(k2 + m2)

]
, (4.19h)

∆n
(MM)
32 (k) ≃ 1√

1 + m2/k2 − eγ√
1 + v2/k2

[
1 + eγ g2 B2/2

e2γ (k2 + m2) − k2 − v2

]

− eγ g2 B2/2
e2γ m2 − v2

m2 k

(k2 + m2)3/2 . (4.19i)

The results (4.4a)–(4.4i) also are recovered in the limit γ → 0. Notice that, with γ ̸= 0,
the birefringence remains in the second solution (4.19b) when B → 0:

∆n
(MM)
22 (k) ≃ eγ√

e2γ + v2/k2 − eγ√
1 + v2/k2 , (4.20)

whereas ∆n
(MM)
33 = 0 in this limit. Again, ∆n

(MM)
33 is proportional to g2 B2, but in the

case of ModMax ED, the result constraints the axion mass and the v-CFJ parameter
with the γ-ModMax. The particular result (4.20) is the case in which the ModMax ED
is added to the CFJ term without the presence of the axion. The result (4.20) shows
the birefringence solution that depends directly on the v-CFJ, and on the γ-ModMax
parameters. When v → 0, the birefringence of (4.20) is equal to (4.19d). This is the
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simplest case of the pure ModMax ED. Turning off the magnetic background, the results
for ∆n

(MM)
ij (i ̸= j) are reduced to

lim
B→0

∆n
(MM)
12 (k) = 1 − eγ√

1 + v2/k2 , (4.21a)

lim
B→0

∆n
(MM)
21 (k) = eγ√

e2γ + v2/k2 − 1 , (4.21b)

lim
B→0

∆n
(MM)
13 (k) = −∆n

(MM)
31 (k) = 1 − 1√

1 + m2/k2 , (4.21c)

lim
B→0

∆n
(MM)
23 (k) = eγ√

e2γ + v2/k2 − 1√
1 + m2/k2 , (4.21d)

lim
B→0

∆n
(MM)
32 (k) = 1√

1 + m2/k2 − eγ√
1 + v2/k2 , (4.21e)

where the γ-ModMax parameter plays a fundamental rule for the birefringence in the
results of ∆n

(MM)
12 , ∆n

(MM)
21 , ∆n

(MM)
23 and ∆n

(MM)
32 . If the CFJ v-parameter predominates

respect to the axion mass, both the γ- and v-parameters corroborate to the birefringence.
In the case of v → 0, just the ∆n

(MM)
12 and ∆n

(MM)
32 have the same birefringence of

∆n
(MM)
22 , that is, ∆n

(MM)
12 = ∆n

(MM)
32 = ∆n

(MM)
22 = 1 − eγ for the pure ModMax ED,

with m ≃ 0.
In the PVLAS-FE experiment, the wavelength corresponds to k = 0.25 eV in an

external magnetic field of Bext = 2.5 T. The axion parameter space (m, g) is quite
involved with many restrictions. For instance, let us consider the upper bound g < 6.4×
10−8 GeV−1 at 95% C. L., which is consistent with small axion mass m < 10−3 eV [27].
Moreover, for the Lorentz violating background, we shall also assume the upper bound
v < 10−23 GeV [46]. Using that ∆nPVLAS-FE/B2 = (19 ± 27) × 10−24 T−2, the term
that depends on the magnetic background in (4.19b) can be neglected, in which the
γ-parameter is constrained by the relation:

|1 − eγ | < 1.18 × 10−22 , (4.22a)

that for γ ≪ 1, we arrive at the following constraint for the γ-ModMax parameter

|γ| < 1.18 × 10−22 , (4.23)

which is compatible with the γ-result obtained in ref. [61].

5 Conclusions and perspectives

We propose a general non-linear electrodynamics coupled to a scalar axion to which we adjoin
the Carrol-Field-Jackiw (CFJ) term. We expand the Lagrangian of the model around a
uniform electromagnetic background field up to second order in the photon propagation field.
The CFJ term introduces a background 4-vector vµ = (v0, v), that consequently, breaks the
Lorentz symmetry in the theory. The case with only a uniform magnetic background field
(B) is analyzed, where the properties of the wave propagation are discussed. Thereby, we
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calculate the dispersion relations of the model for a space-like (v0 = 0) CFJ term. The wave
propagation is affected by three vectors B, k (wave vector) and v. The dispersion relations
are obtained for two cases: (a) when B, k and v are perpendicular among themselves, (b)
when v is perpendicular to B and k, but B and k are parallel vectors. These results allow us
to defined the refractive index of this medium, and posteriorly, we discuss the birefringence
phenomenon under these conditions. Since there are three different solutions for the dispersion
relations, we discuss the possible cases of birefringence, where the variation of the refractive
index in the medium is ∆nij = ni∥−ni⊥, with i, j = 1, 2, 3. We apply the birefringence results
for three cases of well-known non-linear ED in the literature: Euler-Heisenberg, Born-Infeld,
and the ModMax ED. When the non-linearity is null, the birefringence effect emerges due to
the axion coupling constant and the presence of the magnetic background. In some situations,
when the magnetic field is turned off, the birefringence is due to the CFJ parameter, the
axion mass and the parameter of the non-linear ED.

One of the solutions of Euler-Heisenberg ED exhibits the birefringence result ∆n
(EH)
11 /B2≃

5.3 × 10−24 T−2, that is compatible with the PVLAS-FE experiment for vacuum magnetic
birefringence, i.e., ∆nPVLAS-FE/B2 = (19 ± 27) × 10−24 T−2. The third solution (4.8c) shows
positive birefringence as function of the background magnetic field. In the case of the
Born-Infeld ED, one of solutions for the birefringence yields |∆n

(BI)
11 |/B2 ≃ 3.2 × 10−24 T−2,

when the Born-Infeld parameter is bounded by the finite electron’s self-energy. This numeric
value is of the same order of the value found in the PVLAS-FE experiment. The result
of ∆n33 is proportional to g2 B2 (axion coupling squared times the magnetic background
field) in all the non-linear EDs analyzed in this paper. In the case of the ModMax ED,
the birefringence described by ∆n

(MM)
22 constraints the ModMax parameter (γ). When the

solutions of ∆n
(MM)
ij , for i ̸= j, are analyzed, the v- and γ-parameters play a fundamental

rule in the case of ∆n
(MM)
12 , ∆n

(MM)
21 , ∆n

(MM)
23 and ∆n

(MM)
32 , in the ModMax ED. When the

magnetic background is turned off (that is equivalent to consider g → 0), and for a massless
axion, the birefringence emerges thanks to the v- and γ-parameters. In the simplest case
in which v ≃ 0 and γ ̸= 0, the birefringence in pure ModMax is recovered in the results
∆n

(MM)
12 = ∆n

(MM)
32 = ∆n

(MM)
22 = 1 − eγ , whereas the others contributions are nulls. Using

the PVLAS-FE experiment result in ∆n
(MM)
22 , and the axion-coupling g < 6.4 × 10−8 GeV−1

(with 95% C. L.), we obtain the upper bound γ < 1.18 × 10−22.
In addition, from the dispersion relations, we also show that the parameters of non-linear

ED, axion sector and LSV can combine together to generate effective masses for the photon
and axion fields. In connection with this special issue, let us recall that the stars — and
the Sun, in particular — with their large-scale magnetic fields are important astrophysical
sources of axions and low-mass ALPs, mainly through the Primakoff Effect. The photon-axion
conversion probability after traveling a distance in presence of a uniform magnetic field is
sensible to the axion mass. Now, due to the combination of effects as we are inspecting in this
paper, we expect that our expressions for the photon and axion effective masses may be used
to set bounds on the various parameters in future Helioscope and dark matter experiments.

In our purpose of investigating how different new physics interfere with one another
through the photon sector, we point out that, in an interesting recent article, Li and
Ma [68] pursue an inspection on the effects stemming from Loop Quantum Gravity (LQG)
corrections to both the photon and fermionic matter sectors of Electrodynamics. Among these
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corrections, there appears a non-linear (actually, cubic) term in the extended Ampère-Maxwell
equation. Though modulated by LQG parameters, very strong external magnetic fields at the
astrophysical or those generated in relativistic heavy ion colliders may be sufficient to enhance
the associated LQG effects and, therefore, one can compute how these latter effects contribute
to the axion physics through the photon-axion coupling, as we have considered here.

Finally, considering still our motivation to relate non-linear photon effects with axion
physics, we recall that we have here considered as electromagnetic backgrounds only constant
and uniform fields. It remains to be contemplated, for example, situations with non-uniform
external electric/magnetic fields that will be exchanging energy and momentum with the
photon-axion system, and to compute the modified dispersion relations, the corresponding
group velocities, refractive indices and birefringence which will become space-dependent as
a consequence of the non-uniformity of the background.
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