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1 Introduction

Weakly interacting massive particles (WIMPs) are among the best motivated dark matter
(DM) candidates. As is well known, DM particles annihilating into lighter particles with
coupling strength of order unity undergo a non-relativistic freeze-out in the primordial
thermal bath of the Universe, leaving a relic density of the order of the observed one if the
DM mass is roughly around the electroweak scale. This “WIMP miracle” has triggered vast
experimental effort in DM searches — see [1–6] for reviews. In particular, over the past
years, direct and indirect detection experiments have reached the sensitivity necessary to
probe this paradigm in many different contexts. Collider experiments also offer possibilities
of tests. A number of explicit models have been already excluded, whereas many other
ones could be seriously tested in the near future.

In many models WIMPs annihilate into SM fermions via a t- or s-channel mediator.
If this mediator is sufficiently heavy, it can be integrated out, leading to a local effective
interaction. Thus in this case the (tree level) phenomenology of the model reduces to the
one that can be obtained from the effective field theory (EFT) for DM annihilation. As
is well-known too, in this case one can get a one-to-one relation between the annihilation
rate fixed by the relic density constraint and direct, indirect as well as collider signals.1

1Actually, the criteria of having a sufficiently heavy mediator for the EFT to be valid depends on the
process considered, see e.g. [7–9].
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In this work we are interested in effective interactions involving charged SM fermions
(f) and DM fermions (χ), of the general form L ⊃ GχOχfO′f with O and O′ any possible
operators. From the relic density constraint, the dimensional coupling G is typically of the
order of 10−1GF × (mχ/100 GeV) where GF is the Fermi constant and mχ is the DM mass.
If the SM fermion is a light quark and DM lies around the electroweak scale, such values
of G have already been ruled out by recent direct detection experiments for operators that
lead to spin-independent (SI) cross sections on nuclei. These are in particular the XENON-
1T [10], LUX [11] and PandaX-II [12] experiments which have now put upper limits on the
SI DM-nucleon cross section down to ∼ 10−46cm2 for mχ ranging from tens to hundreds of
GeV. However, WIMPs are not necessarily expected to dominantly couple to light quarks.
For other SM fermions (e.g. f = e, µ, τ, c, b, t, νe, νµ, ντ ), direct detection bounds are
generally weaker. In addition, various operators may lead to spin-dependent (SD) cross
sections, for which the experimental sensitivity is weaker.

An interesting possibility to improve the direct detection sensitivity in such cases
stems from the fact that WIMPs might have electromagnetic dipole moments. In fact,
various electromagnetic form factors (electric/magnetic dipoles, anapole, charged radius)
of WIMPs have been considered in the literature [13–33]. Early studies [17–20, 24] consid-
ered them as a solution to resolve the discrepancy between DAMA/CoGeNT signals and
null results of other DM searches, though this has been since then well excluded. Collider,
γ-ray, and CMB searches for dipole interacting DM have been studied in refs. [20, 21].
More recently, ref. [28] considered leptophilic DM and showed that its loop-induced elec-
tromagnetic dipoles led to restrictive direct detection bounds.2

In this work, instead of considering that the annihilation induced by the dipoles (into
SM charged particles via photon exchange) is responsible for the relic density, as in many
of these works (e.g. [15, 17–20]), or instead of assuming a specific model, we will start
from the effective four-fermion operators, as ref. [16] considered. The question we ask
is: once the coefficients of the effective operators are fixed by the relic density, what
are the values of the dipoles one can expect at the one-loop level and what are their
phenomenological consequences (mainly for direct detection)? The answer to this question
is not straightforward because a procedure which would consist in simply computing the
loop diagram resulting from closing the charged fermion line of the 4-fermion operator,
and attaching an external photon to this fermion line, does not necessarily lead to the
dipoles that would be generated in the UV complete theory that is at the origin of these
operators. To understand better this issue we will consider a particularly simple example
where the 4-fermion operator is induced by the t-channel exchange of a heavy mediator.
As we will show, for most operators the calculation of this contact interaction loop diagram
(which corresponds to taking in the heavy mediator propagator only the first term in q2/M2

expansion, (i.e. 1/(q2−M2)→ −1/M2) leads to vanishing dipoles. However, the integration
of the loop diagram with the full t-channel propagator (which corresponds to take higher
order q2/M2 expansion terms) gives non-vanishing dipoles. In a full Effective Field Theory

2Beyond the WIMP regime, there has been growing interest in electromagnetic dipoles of sub-GeV DM
due to potential connections with CMB/LSS observations, stellar physics, and the intensity frontier searches
— see, e.g., [29–31, 33].

– 2 –



J
H
E
P
1
1
(
2
0
2
1
)
1
5
6

this would correspond to taking also the loop contribution of higher dimensional operators.
Moreover, as we will show too (considering explicit UV model examples), a UV complete
theory is in general not expected to give only the 4-fermion interaction operator in the low
energy limit. It may lead to other operators (in particular involving the photon field) whose
loop contribution also gives dipole contributions (i.e. operators whose coefficients are not
fixed by the relic density constraint and thus UV complete model dependent, that is to say
unknown from the low energy point of view). In this work we will argue that despite of
these issues, when we replace the contact interaction by the full heavy mediator propagator,
the dipoles one gets are generic of what we can typically expect in UV complete models.
To show that, one will also compute the dipoles considering explicit scalar or vector boson
mediators (what we call “simplified models”) and examples of UV complete models, and
compare the results.

We then study the implication of non-vanishing dipole for direct detection. We find
that the magnitude of the non-vanishing loop-induced dipoles, typically of the order of
10−20 ecm (or 10−20mf/mχ ecm), implies that DM-nucleus scattering via dipole interac-
tions could be probed within current and future experimental sensitivities. In particular
for operators involving heavy quarks or charged leptons, or when the DM-nucleus cross
section is SD at tree level, this might provide the best possibility of probing these interac-
tions and thus possibly the origin of the DM relic density. This stems from the fact that
for low nuclear recoil energies the cross section is considerably enhanced by the exchange
of a massless (photon) mediator.

The paper is organized as follows. In section 2, we present a complete description of the
most general four-fermion interactions of DM fermions with SM fermions, and determine
the interaction strength required to produce the observed relic abundance. In section 3, we
compute the loop-induced electromagnetic dipoles of DM by closing charged fermion loops,
which we do, as said above, at various levels, including calculations for contact interactions,
s- and t-channel energy-dependent effective interactions, explicit scalar or vector boson
mediators, and UV complete examples. The comparison of these various levels is quite
interesting in our opinion. In section 4 we briefly summarize the typical magnitude of the
dipoles one can expect when the four-fermion interaction strength is determined by the relic
abundance. In section 5, the resulting magnitude of electromagnetic dipoles is confronted
with direct detection limits obtained by investigating the recoil spectra of dipole-interacting
DM. We conclude in section 6 and delegate the loop calculation details to the appendix.

2 Framework

2.1 Effective interactions of DM

We start with the most general four-fermion interactions of Dirac DM (χ) and SM fermions
(f) [16, 34–38]:

L ⊃ GF
∑
a

χΓaχ fΓa(εa + ε̃aiaγ
5)f , (2.1)

where the Γa matrices (with a = S, P , V , A, T ) span all the 16 possible independent
combinations of Dirac matrices:

ΓS = I, ΓP = iγ5, ΓV = γµ, ΓA = γµγ5, ΓT = σµν . (2.2)
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We refer to the above five possible bi-linear products of Dirac spinors as scalar, pseudo-
scalar, vector, axial-vector, and tensor interactions. In eq. (2.1), we have normalized the
interaction strength by the Fermi constant GF since in the WIMP paradigm, the interac-
tions are typically of this magnitude. Potential deviations are absorbed into the dimen-
sionless constants εa and ε̃a. Note that in eq. (2.1) we have inserted an ia factor, which is
defined as iS,P,T = i and iV,A = 1, so that the various terms are hermitian, with εa and
ε̃a real numbers — for further discussions see e.g. refs. [39, 40]. For tensor interactions,
one could consider adding γ5 between χ and χ but the operator χσµνγ5χ fσµνf is actually
identical3 to χσµνχ fσµνγ5f . Hence eq. (2.1) provides a complete description of all possible
Lorentz-invariant four-fermion interactions. This set of effective operators has also been
frequently used for DM collider searches and direct detection — see e.g. refs. [16, 34–38].
Note importantly that the S, P and T operators are not SM gauge invariant, but could be
generated through electroweak symmetry breaking, see the discussion in section 3.4.

In the SM fermion chiral basis, one can also write eq. (2.1) as

L ⊃ GF
[
εLSχχ fRfL + εLPχiγ

5χ fRfL

+ εLV χγ
µχ fLγµfL + εLAχγ

µγ5χ fLγµfL

+ εLTχσ
µνχ fRσµνfL + (L↔ R)

]
, (2.3)

where fL,R ≡ PL,Rf , PL,R ≡ (1∓ γ5)/2, εLa and εRa are linear combinations of εa and ε̃a:

εS = 1
2(εLS + εRS ) , ε̃S = i

2(εLS − εRS ) , (2.4)

εP = i

2(εLP − εRP ) , ε̃P = −1
2 (εLP + εRP ) , (2.5)

εV = 1
2(εLV + εRV ) , ε̃V = 1

2(εRV − εLV ) , (2.6)

εA = 1
2(εRA − εLA) , ε̃A = 1

2(εLA + εRA) , (2.7)

εT = 1
2(εLT + εRT ) , ε̃S = i

2(εLT − εRT ) . (2.8)

Given the chiral structure of the SM, and the fact that most results are symmetric under
L↔ R, in this work we will adopt the chiral basis. Note that while εa and ε̃a in eq. (2.1)
are real and independent of each other, εLa and εRa in the chiral basis are either complex
conjugate of each other (εRS = εL∗S , εRP = εL∗P , εRT = εL∗T ), or real and independent (εRV =
Re
[
εRV

]
, εLV = Re

[
εRV

]
, εRA = Re

[
εRA

]
, εLA = Re

[
εRA

]
). Hence the full set of ε’s in the chiral

basis still contains 10 real independent parameters.

2.2 DM relic abundance

The relic abundance of χ via the standard freeze-out mechanism is approximately given by
(see e.g. [41])

Ωχh
2 ' 0.12xf.o

23

√
g?

10
1.7× 10−9GeV−2

〈σv〉
, (2.9)

3This can be seen as follows. In the chiral basis, one can expand it as χσµνγ5χ fσµνf = (−χRσµνχL +
χLσ

µνχR) (fRσµνfL + fLσµνfR). Since the cross terms vanish (according to Fierz transformations),
χRσ

µνχLfLσµνfR = χLσ
µνχRfRσµνfL = 0, the remaining terms imply χσµνγ5χ fσµνf = χσµνχ fσµνγ

5f .

– 4 –



J
H
E
P
1
1
(
2
0
2
1
)
1
5
6

where xf.o ≡ Tf.o/mχ is the ratio of the freeze-out temperature Tf.o to the WIMP mass
mχ; g? is the effective number of relativistic degrees of freedom in the thermal bath at
freeze-out; and 〈σv〉 is defined as [42, 43]

〈σv〉 ≡ n−2
EQ

∫
|M|2dΠ1dΠ2dΠ3dΠ4(2π)4δ4f1f2 , (2.10)

nEQ ≡
∫

2E1dΠ1f1 , dΠi ≡
gid

3pi
(2π)32Ei

. (2.11)

Here subscripts 1, 2, · · · , and 4 denote quantities of the first, second, · · · , and the fourth
particles in χ + χ → f + f ; δ4 is short for δ4(p1 + p2 − p3 − p4); f1 (f2) is the thermal
distribution function of χ (χ); and gi denotes the internal degree of freedom of the i-th
particle. The squared amplitudes |M|2 has been evaluated and summarized in table 1.

For P , V , T interactions, the annihilation amplitudes are of the s-wave type and
consequently are nearly constant in the non-relativistic regime. In this case, we can neglect
the velocity dependence and reduce eq. (2.10) to

〈σv〉 ≡ 1
4m2

χ

∫
|M|2dΠ3dΠ4(2π)4δ4 = |M|2

32πm2
χ

. (2.12)

For S and A interactions, we have |M|2 ∝ v2 (p-wave annihilation) and hence the
integration is somewhat more complicated. Assuming Maxwell-Boltzmann distributions
for f1 and f2, eq. (2.10) can be reduced to [43]

〈σv〉 ≡ 1
8m4

χTK
2
2 (mχ/T )

∫ ∞
4m2

χ

σ
√
s
(
s− 4m2

χ

)
K1

(√
s/T

)
ds. (2.13)

Here K1 and K2 are K-type Bessel function of orders 1 and 2, s = (p1+p2)2 = 4m2
χ+m2

χv
2,

and σ is the total annihilation cross section [44]:

σ =
∫ |M|2

16πs
(
s− 4m2

χ

)dq2, (2.14)

where q2 = (p3−p1)2 ≈ −m2
χ(1−v cos θ), with θ the angle between p1 and p3. Integrating

q2 from −m2
χ(1 + v) to −m2

χ(1− v), we obtain results for σ that are given in table 1.
Plugging the results for σ into eq. (2.13) with v → m−1

χ

√
s− 4m2

χ, we can integrate
eq. (2.13) analytically by noticing that for any value of p > −1,∫ ∞

4m2

(
s− 4m2

)p
K1

(√
s/T

) 1√
s
ds = 21+2pT (mT )pKp (2m/T ) Γ(1 + p), (2.15)

where Γ is the Euler gamma function. The results for 〈σv〉 are then expanded in T/m and
summarized in table 1.

Using the results for 〈σv〉 with Tf.o ' mχ/23 (the typical freeze-out temperature) in
eq. (2.9), we obtain

Ωχh
2 ' 0.12

(
100 GeV
mχ

)2 ∣∣∣∣∣ ε?aεL,Ra
∣∣∣∣∣
2

, (2.16)
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S P V A T

|M|2/
∣∣∣GFm2

χε
L,R
a

∣∣∣2 2v2 8 16 2v2(1 + cos2 θ) 32

σ/
∣∣∣GFm2

χε
L,R
a

∣∣∣2 v
4πs

1
πsv

2
πsv

v
3πs

4
πsv

〈σv〉/
∣∣∣GFm2

χε
L,R
a

∣∣∣2 3
8πTm

−3
χ

1
4πm

−2
χ

1
2πm

−2
χ

1
2πTm

−3
χ

1
πm
−2
χ

ε?a 0.49 0.13 0.089 0.43 0.063

Table 1. Annihilation amplitudes (|M|2), cross sections (σ), thermally averaged cross sections
(〈σv〉), and benchmark values of ε?a used in eq. (2.16) for the five types of effective interactions.
We neglected the mass of the final states and assume that the annihilating DM particles are non-
relativistic with v being their relative velocity. The results have been expanded in v and only
leading-order terms are retained. Results for εRa and εLa are identical.

where ε?a denotes benchmark values: ε?S = 0.49, ε?P = 0.13, ε?V = 0.089, ε?A = 0.43, and
ε?T = 0.063. Note that ε?a for a = S or A is generally larger than for other cases because
the cross section is velocity suppressed, which implies that they would freeze out at higher
temperatures for the same coupling strength. Hence to reach the same relic abundance
(i.e. same freeze out temperature), the coupling needs to be larger.

3 Loop-induced electromagnetic interactions

In the presence of any of the χ-χ-f -f interactions formulated in eq. (2.1) or eq. (2.3), we
can close the fermion lines of f and attach a photon external line, as illustrated in figure 1.
This generally leads to loop-induced electromagnetic interactions of χ.

By closing the loop, one gets an amplitude which takes the general form,

iMloop = iu2Fµu1εµ , (3.1)

where u2, u1, εµ represent the three external lines and Fµ denotes the vertex function.
The most general form of Fµ that respects Lorentz and electromagnetic gauge invariance
can be decomposed as a combination of four terms, each one with its own form factor (see
e.g. [45, 46]):

Fµ = FQ(q2)γµ + FM (q2)iσµνqν + FE(q2)σµνγ5qν + FA(q2)(q2γµ − qµ/q)γ5 , (3.2)

where q ≡ p1 − p2 is the photon momentum. In the limit of q2 → 0, the four form factors
FQ(0), FM (0), FE(0), and FA(0) correspond to the electric charge, magnetic dipole, electric
dipole and anapole of χ, respectively. For simplicity, we denote

dM ≡ FM (0) , dE ≡ FE(0) . (3.3)

In this work, we do not consider the electric charge and anapole of χ because the former
remains zero at loop levels if DM is electrically neutral at tree level and the latter causes
suppressed signals in DM direct detection. This suppression can be seen from the form

– 6 –



J
H
E
P
1
1
(
2
0
2
1
)
1
5
6

χ f

χ f

q
19931126

γ

χ

χ

p1

p2

k1

k2

close ff lines⇒

(a) (b) (c) (d)

=

Figure 1. Loop-induced electromagnetic interactions. In the presence of effective χ-χ-f -f interac-
tions where χ is a DM fermion and f is a SM fermion, the f and f lines can be closed to form a
loop diagram, which after attaching a photon line can generate electric and/or magnetic dipoles of
DM. The UV structure of the effective vertex, which is important for the loop-induced dipoles, in
simplified models typically can be one of the four diagrams, (a)–(d).

of the FA term of eq. (3.2), which in the low-q2 regime is proportional to q2. This O(q2)
coefficient will be canceled by the photon propagator which is proportional to O(q−2).
Indeed, ref. [28] has shown that the effect of anapole in direct detection is nearly equivalent
to that of contact interactions. Thus, unlike with dipoles, the direct detection does not
profit from the several orders of magnitude enhancement related to the 1/q2 behavior of
the amplitude, see below. Neutral χ might possess a non-vanishing charge radius defined
as dFQ(q2)/dq2|q2→0. Its effect in direct detection is also suppressed for the same reason.4

As emphasized in the introduction, in this section we will compute the dipoles resulting
from figure 1 at various levels. First we will simply consider the loop diagrams over the
4-fermion interactions. In the second step (section 3.2) we replace the constant dimensional
coupling of the 4-fermion interactions by an energy-dependent one that behaves like an s-
or t-channel propagator. By performing the calculation for each operator, we obtain the
dipole “building blocks” for the cases where the contact interactions would be induced at
tree level. These are building blocks in the sense that considering explicit scalar or vector
boson mediator setups, which will be considered in the third step (see section 3.3), the
dipole results are simply some combinations of these building block results obtained in
section 3.2. Finally we consider examples of UV complete model calculations in section 3.4
and compare with previous results.

4For a scalar DM candidate the coupling to the photon that could be loop induced from an effective
operator (i.e. φ†

DMφDM f̄f or φ†
DMφDM f̄γ5f), coupling it in pairs to a pair of charged fermions, would lead

to suppressed direct detection in a similar way, as it would induce only a charged radius. For a Majorana
DM candidate, as is well known, dipole interactions identically vanish, and an anapole leads to suppressed
direct detection in a similar way than for a Dirac fermion.
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3.1 Loop integrals with contact interactions

Assuming that the blue blob in figure 1 is a contact interaction which is independent of
the loop momentum, the amplitude of the loop diagram reads

iMloop = iu2Γau1

∫
d4k

(2π)4 tr
[

1
/k2 −mf

ieQfγ
µ 1
/k1 −mf

Γ̃a
]
GXεµ, (3.4)

where Γa and Γ̃a denote possible Dirac matrices according to eq. (2.3), k = p1−k1 = p2−k2
with p1,2 and k1,2 already indicated in figure 1, and GX denotes the strength of the four-
fermion effective interaction. A straightforward loop calculation with a constant GX gives

iMloop
constant GX========⇒

dM , dE = 0 for a = S, P, V,A

dM , dE = divergent for a = T
. (3.5)

The result can be understood as follows. Factorizing out the photon polarization 4-vector
εµ, by construction the integral must be proportional to the external 4-momentum, but
for all S, P , V and A cases the loop integral presents a shift symmetry which means that
the result is the same as in the case that the photon has vanishing 4-momentum. Only for
the tensor case do we get a non vanishing result. However in this case the result we get is
divergent:

(dM , dE) = eQfGF
4π2 (εLT + εRT , −iεLT + iεRT )mfC

(s) for a = T , (3.6)

where C(s) ≡ 1
ε + log(µ2/m2

f ), and µ and ε are defined by dimensional regularization:
d4k/(2π)4 → µ2εd4−2εk /(2π)4−2ε. This divergence can be cancelled by divergences coming
from additional loop contributions that should be present when integrating out the heavy
states in a given UV complete theory (for instance from loop contributions of other opera-
tors involving not only the 4 fermions but also the photon field, see the discussion towards
the end of the appendix). This shows that to consider an EFT with only the 4-fermion
interactions as we do in this subsection is not consistent. Other operators contributing to
the dipoles at one loop must necessarily also exist in some cases in a fully consistent EFT
treatment, bringing additional finite contributions. However from the low energy point
of view the coefficients of these operators are unknown, unlike the one of the 4-fermion
interaction which is assumed to dominate the DM freeze-out process.

3.2 Including t- and s-channel energy dependence

The fact that considering only the loop controbutions over the 4-fermion interactions we
got vanishing dipoles for the S, P , V and A 4-fermion operators could suggest that it is
hopeless to get observable effects related to these operators via the dipoles they induce.
However we would like to stress that this is not true at all. Different ways to induce the
same 4-fermion operators after integrating out the heavy states, can give different results
for figure 1 (i.e. when not integrating out the heavy fields). To show that, let us consider
possible UV behavior of the effective interactions, which usually originate from integrating

– 8 –
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an s- or t-channel propagator. Hence, instead of considering GX as a constant in eq. (3.4),
we consider plugging the following two forms of GX with s- or t-channel energy dependence:

G
(t)
X = 1

t−m2
φ

, G
(s)
X = 1

s−m2
φ

, (3.7)

where t = (p1 − k1)2 and s = (p1 − p2)2 are Mandelstam variables5 and mφ is an energy
scale which will be related to a mediator mass. Performing the loop integration with the
above energy dependence included, we obtain the results in table 2. As is shown in this
table, although the two cases at low energies lead to the same four-fermion operators, they
do not lead to the same dipoles. For the s-channel case one gets the same results as for
the contact interaction cases in section 3.1. In particular one gets vanishing results for the
S, P , V and A cases because introducing the s-channel energy dependence does not spoil
the momentum shift symmetry in the loop integral. This can also be understood by noting
that the diagram in this case contains a self-energy loop which cannot give rise to a σµν .
For the tensor case instead one can get a dipole as the effective operator already contain a
σµν to start with. It is divergent as in the contact interaction case.6

Instead, for the t-channel case a magnetic or an electric dipole is always induced (even if
never both), depending on the operator considered. In all cases this allows non-suppressed
direct detection signals as we will see below. Baring cancellations this implies that any
UV complete model generating any one of these operators through a t-channel transition
can be efficiently probed via direct detection, see below. This is presumably also the case
for models where the effective interactions would be induced at loop level, such as through
box diagrams (but we will not explicitly check this statement here). Note that for this
t-channel case all the results are obtained finite. It is noteworthy that the loop-induced
dipoles for the S, P and T cases are proportional to mf while for the other two cases they
are proportional to mχ. This is due to the well-known chirality-flipping nature of S, P , T
interactions — see discussions in ref. [47].

In summary, inserting the energy-dependent (s- or t-channel) GX , we get either van-
ishing or non-vanishing dipoles. The non-vanishing dipoles are given by

dM,E = eQfGF
16π2 ×O(εa)×

mχ for a = V, A

mf for a = S, P, T
, (3.8)

where the O(εa) part has been specified in table 2.

5Note that when the tree-level diagrams are interpreted as DM annihilation,we flip the direction of p2

and obtain s = (p1 + p2)2 which is the conventional definition of s as the Mandelstam variable.
6Note that the tensor operator cannot result from a simple tree level s-channel exchange, but must be

induced e.g. from a loop diagram coupling the s-channel mediator to the pair of DM particles and from
another loop diagram coupling the s-channel mediator to the pair of SM fermions. This case is thus of
limited interest. Tensor interactions are generated in an easier way from tree level t-channel (through Fierz
transformation) or one loop box diagrams. Thus we will not elaborate more on this case. At a very rough
level one can expect constraints on this case similar to the ones obtained below for the t-channel T case.
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S P V A T

d
(t)
M /

(
eQfGF

16π2

)
(εLS + εRS )mf 0 1

3(εLV + εRV )mχ −(εLA − εRA)mχ 4(εLT + εRT )mfC
(t)

d
(t)
E /

(
eQfGF

16π2

)
0 −(εLP + εRP )mf 0 0 −4i(εLT − εRT )mfC

(t)

d
(s)
M /

(
eQfGF

16π2

)
0 0 0 0 4(εLT + εRT )mfC

(s)

d
(s)
E /

(
eQfGF

16π2

)
0 0 0 0 −4i(εLT − εRT )mfC

(s)

Table 2. Loop-induced electromagnetic dipoles obtained for the various operators assuming a t-
or s-channel energy dependence for their coupling strengths. Here d(t)

M and d
(t)
E are generated by

the t-channel G(t)
X , and d

(s)
M and d

(s)
E by the s-channel G(s)

X — see in eq. (3.7). C(t) and C(s) are
given by C(t) ≡ 1 + log(m2

f/m
2
φ), C(s) ≡ 1

ε + log(µ2/m2
f ), with µ and ε defined by the dimensional

regularization d4k/(2π)4 → µ2εd4−2εk /(2π)4−2ε.

3.3 Simplified models with explicit mediators

In the previous subsection we computed the dipoles obtained for each four-fermion operator
with s- or t-channel energy dependence. In this subsection we consider simplified models
(in analogy to the concept of simplified models in collider searches for DM [48–54]) with
explicit mediators that do induce these operators via t or s-channel exchange of scalar or
vector boson mediators. The results we get for these simplified models are combination of
the ones obtained in the previous subsection for the S, P , V , A and T operators. These
results remain “simplified” because they are limited to the loop contribution of diagrams
where the photon is attached to the charged fermion propagator.

At tree level, there are four simple ways to open the four-fermion operator interactions,
via (a) a t-channel scalar mediator, (b) a t-channel vector mediator, (c) an s-channel scalar
mediator, (d) an s-channel vector mediator — all are presented in figure 1. There could
be more complex ways. For instance, the effective vertex could be generated by a box
diagram, which is beyond the scope of this work.

Let us denote the scalar mediator by φ and the vector mediator by φµ. The most
general couplings for cases (a)-(d) can be formulated as follows

L ⊃



χφ(gLPL + gRPR)f + h.c. case (a)
χγµφµ(gLPL + gRPR)f + h.c. case (b)
χ(gL,χPL + gR,χPR)χφ+ (χ→ f) case (c)
χγµφµ(gL,χPL + gR,χPR)χ+ (χ→ f) case (d)

, (3.9)

where gL and gR are two generic couplings. They can be complex numbers. For example,
pseudo-scalar couplings corresponds to Re(gL) = Re(gR) = 0 and Im(gL) = −Im(gR) 6= 0.

Attaching an external photon to the charged fermion in the loop, and performing the
loop integral, the results we obtain for cases (a)–(d), are given in table 3.

For cases (a) and (b) which are t-channel, we find that the Lagrangian generally gener-
ates magnetic and electric dipoles (dM and dE), depending on the following combinations
of couplings:

g2 ≡ gLg∗L + gRg
∗
R , g2

+ ≡ gLg∗R + gRg
∗
L , g2

− ≡ i(gLg∗R − gRg∗L) . (3.10)
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case dM/
(

eQf
16π2m2

φ

)
dE/

(
eQf

16π2m2
φ

)
(a) −g2

+mf

(
3
4 + ln mf

mφ

)
+ 1

6mχg
2 g2

−mf

(
3
4 + ln mf

mφ

)
(b) −g2

+mf + 2
3mχg

2 −g2
−mf

(c) or (d) 0 0

Table 3. Electromagnetic dipoles generated by the loop diagram in figure 1 for cases (a)–(d).

For cases (c) and (d) which are s-channel, we find that the above Lagrangian always
leads to vanishing dipoles. The reason for this has been previously discussed in section 3.2.
For case (c), one can note in addition that the loop would imply an effective mixing φ∂µAµ
(or equivalently ∂µφAµ) between the scalar φ and the photon Aµ, which has to be zero given
that the photon has no longitudinal polarization. For case (d), the Lorentz structure of the
loop can be generally written as gµνΠ1 + qµqνΠ2 where Π1 and Π2 are q2-dependent scalar
quantities. Following the notations in eq. (3.1), when combined with u2γ

µu1 (assuming
gL,χ = gR,χ), only the gµνΠ1 part remains due to u2/qu1 = 0. Hence it only contributes to
the form factor FQ in eq. (3.2) and only gives rise to the charge radius of χ, not dipoles.
If u2γ

µu1 is replaced with u2γ
µγ5u1, then it gives rise to FA, the anapole of χ.

The results obtained for simplified models, table 3, are combinations of the results
obtained using energy-dependent effective interactions, table 2 of section 3.2, via some
Fierz transformations. To show that let us integrate out φ (or φµ) in eq. (3.9) we obtain
the following four-fermion interactions:

Leff = 1
m2
φ

χΓ(gLfL + gRfR)(g∗LfL + g∗RfR)Γχ , (3.11)

where Γ = 1 or γµ for case (a) or (b) respectively. Performing Fierz transformations,7

the effective interaction for case (a) can be expressed in the form of eq. (2.3) with the ε’s
given by εLS εLP εLV εLA εLT

εRS εRP εRV εRA εRT

 = − 1
8GFm2

φ

 2gLg∗R 2igLg∗R 2|gL|2 2|gL|2 gLg
∗
R

2gRg∗L −2ig∗LgR 2|gR|2 −2|gR|2 gRg∗L

 . (3.12)

For case (b), the corresponding ε’s are given by εLS εLP εLV εLA εLT

εRS εRP εRV εRA εRT

 = − 1
2GFm2

φ

 2gLg∗R −2igLg∗R −|gL|2 |gL|2 0

2gRg∗L 2ig∗LgR −|gR|2 −|gR|2 0

 . (3.13)

Using eqs. (3.12)–(3.13) and table 2, one can immediately see (with the replacement
g2/m2

φ → εGF ) that the dipoles obtained in this way are exactly identical to those in
table 3. For example, according to table 2, only V and A interactions leads to dM ∝ mχ.
Hence the mχ term in dM for case (a) should be proportional to(1

3ε
L
V + 1

3ε
R
V − εLA + εRA

)
mχ ∝

1
6mχ(|gL|2 + |gR|2) , (3.14)

which is consistent with table 3.
7We use the coefficients in ref. [55], page 65.
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Table 2 can also be used to show that the electric dipoles in table 3 should be propor-
tional tomf only. This is because according to table 2 electric dipoles can only be generated
by P and T interactions, which as previously mentioned always leads to dE ∝ mf .

3.4 UV complete example

The results obtained via the simplified model approach in section 3.3 may still differ from
what one would get in a UV complete model. Since DM is neutral and the SM fermions
are charged, the t-channel heavy mediator has necessarily a non-vanishing electric charge.
Thus in a UV complete model there are necessarily extra diagrams in which the photon is
attached to the heavy mediator instead of the SM charged fermion. This implies that in
the low energy limit the UV complete model also induces dipole contributions which do
not reduce to a loop over the 4-fermion interaction. However, unlike for the electric charge
operator induced at one loop (for which charge conservation enforces the cancellation of
these diagrams, see the end of the appendix) we do not expect in general that for dipoles
these extra diagrams could induce any large destructive interference for the dipole induced
(given in particular the chiral structure of the SM), or even largely change the results. To
illustrate this, we consider one example of the many possibilities listed in eq. (3.9), i.e. the
(a) model with couplings to right-handed SM charged fermion:

L ⊃ gRχfRφ+ h.c. (3.15)

By integrating out the heavy scalar boson, this interaction induces the following 4-fermion
interaction

Leff = −GXχPRf fPLχ, (3.16)

where GX = gRg
∗
R/m

2
φ. One can reformulate it to the form in eq. (2.1) via Fierz transfor-

mation:8

Leff =1
4GXχγ

µχfRγµfR −
1
4GXχγ

µγ5χfRγµfR. (3.17)

Eq. (3.17) contains two types (V and A) of effective interactions, with the following ε’s:

εLV = 0, εRV = 1
4GX/GF ,

εLA = 0, εRA = −1
4GX/GF . (3.18)

According to section 3.3, the loop diagram obtained by closing the fermion line and
attaching an external photon line leads to

d
(f)
M = −1

6mχ ·
e|gR|2Qf
16π2m2

φ

, (3.19)

where the superscript (f) indicates that it is from the f -photon coupling. Alternatively,
one can use Fierz transformations and table 2 in a way similar to the calculation from
eq. (3.11) to eq. (3.13) to obtain the dipole. This leads to exactly the same result.

8See, e.g., ref. [55], page 65.
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The other diagram with the photon coupled to φ leads to (see appendix A for the
calculation):

d
(φ)
M = 1

12mχ ·
e|gR|2Qφ
16π2m2

φ

, (3.20)

where Qφ is the electric charge of φ.
Note that each of these diagrams gives a finite contribution to the dipoles but a UV

divergent contribution to the electric charge operator. According to eqs. (A.12) and (A.13),
the divergent part of the total amplitude reads:

Mdivergent = e|gR|2

16π2 u2γ
µu1εµ

( 1
2εQf + 1

2εQφ
)
, (3.21)

which cancels out due to electric charge conservation, Qφ +Qf = 0.
Combining eqs. (3.19) and (3.20) with Qφ = −Qf , the total contribution to the mag-

netic dipole reads:

dM = −1
4mχ ·

e|gR|2Qf
16π2m2

φ

. (3.22)

We see that the actual magnetic dipole is 50% higher than the result obtained using table 2
or table 3. Therefore, when using table 2 or table 3, one should keep in mind that the results
may be changed due to new contributions in UV complete calculations (from the EFT
point of view, they correspond to loop contributions on extra operators whose coefficients
are a priori unknown). Nevertheless, the results of table 2 and table 3, which are based
on considerations starting from effective four-fermion operators (whose coefficients can
be estimated from the relic density constraint), provide correct estimates of the order of
magnitude of the dipoles. In other words, one cannot exclude that specific UV models
would give quite different results between both approaches but this explicit example shows
that in simple frameworks this is not the case.

Note that, as another example of UV model, a purely left-handed interaction involving
a SM fermion doublet and a scalar doublet instead of fR and φ+ in eq. (3.15) gives the
same dipoles as the purely right-handed case of eq. (3.15). Note also that for s-channel
UV complete models the mediator is neutral and the photon cannot be attached to the
mediator. Hence there is no such extra diagram. Thus for the (c) and (d) models above
the full UV complete results are the same as the ones obtained in section 3.3.

4 Expected magnitude of electromagnetic dipoles

The relic abundance constraint, Ωχh
2 ' 0.12, requires that the ε coefficients of the effective

operators are typically of the order of a few (or tens of ) percent — see table 1 and
eq. (2.16). By requiring that Ωχh

2 ' 0.12 is correctly produced, according to eq. (2.16),
we can obtain expected values for the dipoles. We will do that at the level of the building
blocks of section 3.2. By replacing εL,Ra in table 2 with 100 GeV ·m−1

χ ε?a, we obtain

|d(t)
M | ≈

4.3× 10−21|Qf | ecm for a = V

6.2× 10−20|Qf | ecm for a = A
, (4.1)
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where ecm ≡ e× cm ≈ 15350.3 eV−1 is a commonly used unit for electromagnetic dipoles.
The result is almost independent of mχ and mf . It only depends on the electric charge of
the SM fermion involved, Qf , which can be 2/3 (for f = u, c, t), −1/3 (for f = d, s, b), or
−1 (for f = e, µ, τ).

For S, P , and T interactions, the dipoles depend on mf . Since in this work we
require that χχ→ ff is responsible for the relic abundance, we concentrate on cases with
mχ & mf . With this assumption, one can still apply ε

L/R
a = 100 GeV · m−1

χ ε?a to the
remaining dipoles:

|d(t)
M | ≈ 7.2× 10−20|Qf |

mf

mχ
ecm, for a = S , (4.2)

|d(t)
E | ≈ 1.8× 10−20|Qf |

mf

mχ
ecm, for a = P , (4.3)

|d(t)
E,M | ≈ 3.7× 10−20|Qf |

mf

mχ
ecm, for a = T . (4.4)

5 Electromagnetic dipoles in direct detection

In direct detection experiments, the differential event rate of DM-nucleus scattering9 can
be evaluated via (see e.g. [44, 56]):

dR

dEr
= NTnχε(Er)

∫
dσ

dEr
vf⊕(v)Θ(v − vmin)d3v . (5.1)

Here Er is the nuclear recoil energy; NT is the total number of target nuclei; nχ is the local
DM number density; ε(Er) is the detection efficiency; dσ

dEr
is the differential cross section;

f⊕(v) is the DM velocity distribution in the Earth frame; vmin is the minimal velocity to
generate a given Er,

vmin =
√
mNEr
2µ2

χN

, (5.2)

where mN is the nucleus mass and µχN ≡ mχmN/(mχ +mN ) is the DM-nucleus reduced
mass. For the local DM density we take nχ = ρχ/mχ and ρχ = 0.4 GeV/cm3 [57].

The DM velocity distribution f⊕(v) is often parametrized by a truncated Maxwellian
distribution in the frame of the Galaxy and then boosted to the Earth frame. The specific
form reads

f⊕(v) = 1
Nf

exp
[
− ṽ

2

v2
0

]
Θ(vesc − ṽ) , (5.3)

where ṽ = |v + v⊕| and |v⊕| ≈ 240 km/s is the velocity of the Earth with respect to
the Galaxy; vesc ≈ 550 km/s is the escape velocity of the Galaxy; v0 = 220 km/s is
the mean velocity of the Maxwellian distribution. The Nf factor normalizes f⊕ so that∫
f⊕(v)d3v = 1:

Nf = π3/2v3
0

[
erf
(
vesc
v0

)
− 2√

π

vesc
v0

exp
(
−v

2
esc
v2

0

)]
. (5.4)

9In ref. [16], it was pointed out for leptophilic DM that DM-nucleus scattering largely dominates over
DM-electron scattering (for DM masses beyond GeV) and this is expected here too for the same reasons.
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The differential cross sections for DM-nucleus scattering via dipoles read [17, 21]:

dσM
dEr

≈ d2
M

αZ2 F 2
E

Er

[
1− Er

2mNv2

(
1 + 2mN

mχ

)]
+ d2

M

αGF 2
M

2mNv2 , (5.5)

dσE
dEr

≈ d2
E

αZ2

Erv2F
2
E . (5.6)

Note the 1/Er dependence of these differential cross sections, stemming from the propaga-
tor of the (massless) photon. As compared to a standard WIMP case, where the particle
exchanged with the nucleon has typically an electroweak scale mass, this will largely boost
the number of events in direct detection events, since the recoil energy considered in these
experiments is typically of order 5-50 keV (see below). This explains why below the con-
straints from direct detection through dipoles will be competitive, despite the fact that
they involve loop suppressed quantities.

In eqs. (5.5)–(5.6), α = 1/137, Z is the atomic number, FE and FM are two nuclear
form factors, and G is a dimensionless quantity depending on the nuclear spin J and the
nuclear magnetic dipole dN [17]:

G = 2(J + 1)
3J

(
dNA

dn

)2
≈ 7256.78 (for Xe) , (5.7)

where dn = e/(2mp) is the nuclear magneton, and A is the mass number. For the nuclear
form factors, we adopt the following approximate expressions [17]:

FE = 3
[sin(qr)− qr cos(qr)

(qr)3

]
e−q

2s2
, (5.8)

FM = sin(qr̃)
qr̃

Θ(qr̃ < 2.55) + 0.21Θ(2.55 < qr̃ < 4.5) , (5.9)

where r = 1.12A1/3 fm, r̃ = A1/3 fm, s = 1 fm, and q =
√

2ErmN . The Θ function takes
either the value 1 or the value 0, depending on whether the condition it involves is satisfied.
For Xe targets, qr̃ < 4.5 corresponds to Er < 117 keV, which in practice is always satisfied.

In the magnetic dipole cross section (5.5) we have included both SI (∝ F 2
E) and SD

(∝ F 2
M ) parts because they can be equally important. For example, when mχ = mN and

v = 1.2vmin, the ratio of the two parts at Er = 30 keV is about 1.6. For the electric
dipole cross section (5.6) we have neglected a possible SD contribution because it is highly
suppressed. The fundamental reason for this is that electric charges of nucleons can be
added coherently, unlike magnetic moments of nucleons. As a consequence, the electric
dipole cross section is generally much larger than the magnetic one when dM ' dE .

For both eqs. (5.5) and (5.6), the velocity dependence can be written as follows:

dσ

dEr
= 1
v2

(
dσg
dEr

+ v2 dσh
dEr

)
, (5.10)

where dσg/dEr and dσh/dEr are velocity independent. Substituting eq. (5.10) into eq. (5.1),
we obtain

dR

dEr
= NTnχε(Er)

[
dσg
dEr

g(vmin) + dσh
dEr

h(vmin)
]
, (5.11)
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Figure 2. Results of g(vmin) and h(vmin) in eqs. (5.12) and (5.13).
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Figure 3. Event rates for DM-nucleus scattering via magnetic and electric dipoles compared with
the standard (contact-interaction) case. Shown examples take dM = 5×10−20 ecm, dE = 1×10−22

ecm, σn = 10−46 cm2, and mχ = 100GeV. Dashed curves assume ideal detection efficiency and
solid curves take the XENON-1T detection efficiency [10] into account.

where

g(vmin) ≡
∫
v−1f⊕(v)Θ(v − vmin)d3v , (5.12)

h(vmin) ≡
∫
vf⊕(v)Θ(v − vmin)d3v , (5.13)

can be computed independently of the cross section and of the kinematics of DM-nucleus
scattering. When numerically evaluating the integrals, we take eq. (5.3) with ṽ = (v2 +
v2
⊕ − 2vv⊕ cos θ)1/2 where θ is the angle between v⊕ and v, and integrate θ from 0 to π, v
from 0 to v0 + vesc. The results are presented in figure 2.

Using eq. (5.11), we plot in figure 3 the differential event rates (dashed curves) for
dM = 5 × 10−20 ecm, dE = 1 × 10−22 ecm, assuming mχ = 100GeV and a 103 kg liquid
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Xe target. For comparison, we also present a curve for the following SI contact-interacting
cross section:

dσcontact
dEr

= σn
mNA

2F 2
E

2µ2
χnv

2 , (5.14)

where µχn = mχmn/(mχ + mn) is the DM-nucleon reduced mass. For the DM-nucleon
cross section σn we have taken the typical value that can be probed by direct detection
experiment today, σn = 10−46 cm2. For the solid curves in figure 3, we have included the
detection efficiency of XENON-1T, which is taken from figure 1 in ref. [10]. The range of
relevant recoil energy in direct detection experiments is relatively narrow, as below ∼ 5 keV
and above ∼ 50 keV the efficiency is suppressed (compare dashed and solid lines in figure 3).
As can be seen in this figure too, within this range, the dipole lines display, as expected,
an extra 1/Er dependence with respect to the contact interaction case.

As a result of this relatively narrow range of recoil energy, it is possible to recast
the XENON-1T bounds obtained for a contact interaction into bounds holding for the
massless mediator (∝ 1/Er) case of interest here. To this end, we apply a spectrum-
fitting technique previously adopted in ref. [60], namely using eq. (5.14) to fit the dipole-
interacting recoil spectra. Specifically, for a given set of dM (dE) and mχ, one can cor-
respondingly find values of σn and m′χ (usually different from mχ) that minimizes the
integral

∫
(dRdipole/dEr − dRcontact/dEr)2 dEr where dRdipole/dEr and dRcontact/dEr are

the dipole- and contact-interacting spectra (including the detection efficiency). The mini-
mization is performed under an additional constraint that their total rates are equal. We
find that after the minimization, the two spectra are usually very close, with relative differ-
ences typically below 20%, which is consistent with the conclusion in ref. [60]. By mapping
dM (dE)-mχ to σn-m′χ and taking the XENON-1T limit from ref. [10], we obtain the bounds
on dM and dE , presented in figure 4. For comparison, we also show in figure 5 other known
bounds on DM electromagnetic dipoles from indirect detection, CMB observations, and
collider searches. These bounds in the WIMP regime are known to be much weaker than
that from direct detection.

Figure 4 shows that the possibility that the axial operators would be responsible for the
observed DM relic density is already excluded by direct detection experiments within the
6.8 GeV < mχ < 1.9 TeV range for charged leptons. Future experiments such as XENON-
nT will enlarge this range significantly. For the vector case, although it is beyond the
current best limit from XENON-1T, future XENON-nT will be able to probe the range
11.8 GeV < mχ < 205 GeV. The axial case is more constrained than the vector one because
it requires a larger coefficient to account for the relic density constraint due to p-wave
annihilation, see eq. (2.16) and table 1. For the S, P and T cases the additional mf/mχ

dependence of the dipoles decreases the sensitivity for high values of mχ but boosts it for
low values. The sensitivity also splits among generations of fermions. Taking the tensor
case in the right panel of figure 4 as an example, XENON-1T has excluded mχ . 189GeV
for f = µ while for f = τ this bound increases to mχ . 1.2TeV. The future experiment
XENON-nT will be able to improve the mass bound by roughly a factor of three.

The four fermion interactions also induce fluxes of cosmic rays from the annihilation
into charged fermion they induce today at tree level in the galactic center and dwarf
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Figure 5. Comparison of direct detection bounds with other known bounds on DM elec-
tric/magnetic dipoles. The direct detection bounds (XENON-1T) are the same as those in figure 4.
The CMB bound is taken from ref. [21]. The indirect detection bounds, taken from ref. [59], are
derived from FERMI-LAT constraints on γ-rays from the Galaxy (labelled as FERMI-Galaxy) and
dwarf Spheroidal galaxies (FERMI-dSphs). The collider bound is obtained from LHC mono-jet
searches [32].

galaxies. Indirect detection experiments give upper bounds on these fluxes which are
generally translated into upper bounds on the annihilation cross section assuming Ωχh

2 =
0.12 (i.e. not looking at the implications that this annihilation cross section could have on
the relic density). In figure 6 we show for the V case how these bounds compare with the
bounds that can be obtained on the same cross sections from the bound that direct detection
set on the dipoles and thus on the coefficient of the four-fermion operators (assuming
Ωχh

2 = 0.12 anyway there too). As figure 6 shows, despite that at tree level direct detection
experiments are not much sensitive to the four-fermion operators for charged leptons or
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Figure 6. Direct detection bounds on 〈σv〉 in comparison with indirect detection bounds, both
obtained assuming Ωχh2 = 0.12. For direct detection, we take the XENON-1T/nT bounds on dM
obtained in figure 4 and recast them to bounds on ε’s according to table 2, and further to bounds on
〈σv〉 according to table 1, assuming a = V /A. For indirect detections, the “indirect-dwarf” bounds
are taken from ref. [61], and “indirect-GC” from [62], assuming that DM annihilates to τ+τ−, µ+µ−

or bb. The horizontal line shows the thermal cross section value.

heavy quarks, when the loop-induced dipoles are taken into account, direct detection offers
competitive constraints on such operators in comparison with indirect detection. For the
A case (and similarly for the S case) indirect detection constraints are known to be weak
as in this case the annihilation is of the p-wave type. But the bounds from dipole induced
direct detection remains fully relevant, as given in figure 6 too.

Explicit UV complete models can be constrained according to the combination of
effective operators they lead to. For the model considered in section 3.4, which in a charac-
teristic way gives both V and A interactions with similar weights, we show in figure 7 upper
bounds on the Yukawa coupling y of eq. (3.15), using the dipoles obtained in eq. (3.19)
(EFT) and eq. (3.22) (UV). As previously discussed in section 3.4, the difference between
the two approaches shown in figure 7 is small. The current XENON-1T limit excludes the
mass range 8.1 GeV . mχ . 94 GeV while future XENON-nT will be able to probe the
6.2 GeV . mχ . 843 GeV range.

As mentioned in the introduction, ref. [16] also studied the direct detection signals that
could be induced by four-fermion effective operators (involving two charged leptons) via
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Figure 7. Constraints on the UV complete model defined in eq. (3.15) for any charged lepton f and
mφ = 2mχ. EFT/UV indicates that the curve takes the loop-induced dipole in eq. (3.19)/(3.22).

DM-photon interactions induced at the one-loop level. This calculation was done by calcu-
lating the loop directly from the 4-fermion operator. This corresponds essentially to what
we did in section 3.1, i.e. to what we get for the s-channel case.10 The two-step calculation
we did, calculating first the various moments that are induced and subsequently computing
what it gives for direct detection (instead of calculating directly the direct detection cross
section) is useful as it identifies for each case what kind of electromagnetic interactions
is induced (with what it implies for each of these interactions). Phenomenologically fig-
ure 4 also shows that the dramatic improvements of direct detection experiments in the
last decade imply that the cases with chirality-flip suppressions (i.e. the S, P and T cases)
are also testable (see e.g. the scalar case for f = τ in figure 4). As also shown above,
electromagnetic interactions induced at the one-loop level are relevant not only for charged
leptons but also for the heavy quark case.11

6 Conclusion

In the presence of four-fermion effective interactions of dark matter (DM) with Standard
Model (SM) fermions, electromagnetic dipoles of DM can easily be generated, due to the
loop process illustrated in figure 1. This is the case in particular if the operators are
generated through the exchange of a t-channel mediator. We study systematically for
all possible effective interactions the loop-induced dipoles and find that, if they are not
identically vanishing, the electromagnetic dipoles in the WIMP paradigm are typically of
the order of 10−21 (10−20) ecm for vector (axial-vector) interactions, or of 10−20mf/mχ

ecm for scalar, pseudo-scalar, and tensor interactions, see eqs. (4.1)–(4.4). Calculations for
a UV complete model give very similar results.

10At one loop one is left therefore with a vanishing contribution for the S, P and A operators and a
suppressed charge radius contribution for the V operator.

11For this case, it would be interesting to compute the loop-level direct detection signals that are induced
via gluon exchange rather than photon exchange, which is beyond the scope of this work.
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Via photon exchange such values imply observable nuclear recoil signals in direct detec-
tion experiments. This provides (or will provide) the most stringent constraints for various
operators, in particular for axial or scalar operators, as well as for operators involving for
instance muons. So far XENON-1T has excluded the loop-induced electromagnetic dipoles
for some types of effective interactions in certain mass ranges — see figure 4. Future multi-
ton liquid xenon experiments with substantially improved sensitivity will be able to probe
the dipoles for all types of effective interactions over much broader mass ranges.
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A Loop calculations

In this appendix, we present the details of our loop calculations. Starting from eq. (3.4),
we first compute the traces:

tr
[

1
/k2 −mf

γµ
1

/k1 −mf
PL

]
= 2mf (kµ1 + kµ2 )Dk , (A.1)

tr
[

1
/k2 −mf

γµ
1

/k1 −mf
γνPL

]
= 2

[
kµ1 k

ν
2 + kµ2 k

ν
1 + (m2

f − k2 · k1)gµν − iεµνρλk1ρk2λ
]
Dk ,

(A.2)

tr
[

1
/k2 −mf

γµ
1

/k1 −mf
σρλPL

]
= 2imf

[
(kρ1 − k

ρ
2)gλµ − λ↔ ρ

]
+ 2mf ε

λµρν(k1 − k2)νDk ,

(A.3)

where
Dk ≡

1
k2

2 −m2
f

1
k2

1 −m2
f

. (A.4)

If PL in the above traces is replaced by PR, the results are similar except that εµνρλ and
ελµρν flip their signs.

Next, we plug the traces into the loop integral and integrate out k, assuming the mass
hierarchy:

mφ � mχ � mf . (A.5)

Taking the case of eq. (A.1) with G(t)
X in eq. (3.7) for example, we have:∫

d4k

(2π)4 tr
[

1
/k2 −mf

γµ
1

/k1 −mf
PL

]
1

k2 −m2
φ

≈ − i

16π2 (p1 + p2)µ mf

m2
φ

. (A.6)

The loop integral is computed using Package-X [63] and expanded in q2, mf , and mχ.
Only the leading order term is taken. Note that the integral is free from UV divergences
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because for k → ∞ the integral behaves like
∫
k−5d4k where the trace accounts for k−3

according to eq. (A.1) and the remaining part accounts for k−2.
With the result in eq. (A.6) and 1/m2

φ = εLaGF , we see that Fµ introduced in eq. (3.1)
for a = S and P should be

Fµ = ΓaeQf
εLaGFmf

16π2 (p1 + p2)µ . (A.7)

Then for u2Fµu1, it can be decomposed into the form factors in eq. (3.2) using the following
identities:

u2(p1 + p2)µu1 = u2 [iσµνqν ]u1 + 2mχu2γ
µu1 , (A.8)

u2(p1 + p2)µiγ5u1 = u2
[
−σµνγ5qν

]
u1 , (A.9)

where q ≡ p1 − p2. Eq. (A.8) is the well-known Gordon identity (due to the definition of
q, our convention differs from that in ref. ([64] page 186) by a minus sign of q). Eq. (A.9)
is similar but with additional γ5. It can be derived as follows:

u2
[
iσµνγ5qν

]
u1 = −1

2u2[γµ, γν ]γ5qνu1

= −1
2u2

[
γµ/p1γ

5 − γµ/p2γ
5 − /p1γ

µγ5 + /p2γ
µγ5

]
u1

= 1
2u2

[
(2pµ2 − /p2γ

µ)γ5 + (2pµ1 − γµ/p1)γ5
]
u1

= (p1 + p2)µu2γ
5u1, (A.10)

where in the second row the first and last terms cancel out because /p1γ
5u1 = −mχγ

5u1
and u2/p2 = u2mχ, and in the third row the /p2γ

µ and γµ/p1 terms cancel out for the same
reason.

According to eqs. (A.8) and (A.9), eq. (A.7) generates magnetic and electric dipoles
for a = S and P , respectively. The values are already listed in table 2. For other cases, the
calculations are similar: we plug eq. (A.2) or (A.3) into the loop integral to obtain Fµ and
use eq. (A.8) or (A.9) to extract the dipole form factors. In general, when the resulting Fµ

contains /p1 and /p2, after applying the Dirac algebra and on-shell conditions (/p1u1 = mχu1
and u2/p2 = u2mχ), they can be converted to linear combinations of (p1+p2)µ and (p1−p2)µ.
Terms containing the latter cancel out or can be neglected due to the Ward identity. In
Package-X [63], the dipole form factors can be extracted using dedicated projectors, and
we have verified that this approach leads to the same results.

As for the UV complete example introduced in section 3.4, there are two diagrams
contributing to the magnetic dipole: one with the photon coupled to the charge fermion
f and the other with photon coupled to the charged scalar φ. We refer to the former and
the latter as diagrams (i) and (ii), respectively. Their amplitudes read

iM(i) = i

∫
d4k

(2π)4u2PR
1

/k2 −mf
ieQfγ

µ 1
/k1 −mf

PLu1εµ
gRg

∗
R

k2 −m2
φ

,

iM(ii) = i

∫
d4k

(2π)4u2PR
1

/k −mf
PLu1εµieQφ(k1 + k2)µ 1

k2
1 −m2

φ

1
k2

2 −m2
φ

gRg
∗
R , (A.11)
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where Qφ is the electric charge of φ. After integrating out the loop momentum, we find

M(i) = e|gR|2Qf
32π2 u2γ

µu1εµ

[
1
2ε + 1

4 + log
(
µ

mφ

)]

+ e|gR|2Qf
32π2m2

φ

u2γ
µu1εµ

[1
2m

2
χ −

1
2m

2
f

]

+ e|gR|2Qf
32π2m2

φ

u2iσ
µνqνu1εµ

[
−1

3mχ

]
+
[
u2γ

µγ5u1 terms
]
, (A.12)

M(ii) = e|gR|2Qφ
32π2 u2γ

µu1εµ

[
1
2ε + 1

4 + log
(
µ

mφ

)]

+ e|gR|2Qφ
32π2m2

φ

u2γ
µu1εµ

[1
2m

2
χ −

1
2m

2
f

]

+ e|gR|2Qφ
32π2m2

φ

u2iσ
µνqνu1εµ

[
+1

6mχ

]
+
[
u2γ

µγ5u1 terms
]
. (A.13)

Here u2γ
µγ5u1 terms are not important because they cancel out in the final result, as we

have verified explicitly in the calculation.
As is manifest, the UV divergences, as well as all finite u2γ

µu1 contributions of
eqs. (A.12) and (A.13) cancel out when Qφ + Qf = 0, which is required by the charge
conservation of eq. (3.15).

After all the cancellations, only the magnetic dipole terms exist. Comparing the last
row of eq. (A.12) to eq. (3.19), we see that M(i) reproduces the dipole obtained in the
simplified approach. When the full theory is taken into account, the additional contribution
due to M(ii) is roughly half the size of the previous one, assuming mf � mχ. Taking
Qφ = −Qf and summing the two diagrams together, we obtain the result in eq. (3.22).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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