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We show that when an external magnetic field parallel to the boundary is applied, the Weyl anomaly
gives rises to a new anomalous current in the vicinity of the boundary. The induced current is a
magnetization current in origin: the movement of the virtual charges near the boundary give rise to a
nonuniform magnetization of the vacuum and hence a magnetization current. Unlike other previously
studied anomalous current phenomena such as the chiral magnetic effect or the chiral vortical effect, this
induced current does not rely on the presence of a material system and can occur in vacuum. Similar to
the Casimir effect, our discovered phenomenon arises from the effect of the boundary on the quantum
fluctuations of the vacuum. However this induced current is purely quantum mechanical and has no
classical limit. We briefly comment on how this induced current may be observed experimentally.
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Introduction.—The quantum transportation of charges
induced by a quantum anomaly induced current is an
interesting phenomenon. Much has been discussed in the
literature [1]. A number of such effects are known. The
famous one is the chiral magnetic effect (CME) [2–6],
which refers to the generation of currents parallel to an
external magnetic field B. The chiral vortical effect (CVE)
[7–10] refers to the generation of a current due to rotational
motion in the charged fluid. The induced currents take the
forms

JV ¼ σðBÞVBþ σðVÞVω; JA ¼ σðBÞABþ σðVÞAω; ð1Þ

where σðBÞV ¼ ðeμA=2π2Þ, σðBÞA ¼ ðeμV=2π2Þ are the chi-
ral magnetic conductivities, σðVÞV ¼ ðμVμA=π2Þ, σðVÞA ¼
ðμ2V þ μ2A=2π

2Þ þ ðT2=6Þ are the chiral vortical conductiv-
ities, μA, μV are the chemical potentials, and T is the
temperature of the medium. The chemical potential depen-
dent induced current arises as a result of an imbalance in the
left and right moving modes due to the axial anomaly, while
the temperature dependent part comes from the gravita-
tional anomaly [11]. More recently, it has also been pointed
out that an anomalous current also occurs in a conformally
flat gravitational spacetime due to the Weyl anomaly
[12,13]. It should be noted that these anomalous currents
occur only in a material system where the chemical

potentials are nonvanishing, or in a curved spacetime.
Since the axial anomaly is an intrinsic property of quantum
field theory (QFT), which is present even in a flat spacetime
and in a vacuum, it is natural to ask whether the phenome-
non of anomalous current may also occur in a flat spacetime
due to the quantum fluctuation of the vacuum.
The Casimir effect is one of the most well-known

manifestations of the quantum fluctuation of an electro-
magnetic vacuum in the presence of a boundary [14–16].
Recently the Casimir effect has been analyzed in full
generality for an arbitrary shape of boundary and for an
arbitrary spacetime metric, and new universal relations
between the Casimir coefficients and the boundary central
charge in a boundary conformal field theory have been
discovered [17]. The presence of a boundary has also many
other interesting physical consequences, e.g., renormaliza-
tion group flows and critical phenomena [18], or the
topological insulator [19], etc.
In this Letter, we show that for a general class of

boundary quantum field theory (BQFT) with Uð1Þ gauge
symmetry, the quantum Weyl anomaly of the theory
induces a new kind of induced current near the boundary.
Consider a general BQFT defined on a four-dimensional
spacetime manifold M with coordinates xμ, and has a
boundary ∂M with coordinates ya. The Weyl anomaly can
be defined as the difference between the trace of renor-
malized stress tensor and the renormalized trace of stress
tensor [20,21]. We find it useful to introduce the following
integrated Weyl anomaly

A ¼
Z
M

ffiffiffi
g

p ½gμνhTμνi − hgμνTμνi�: ð2Þ
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A is equal to the variation of the effective action with
respect to constantly rescaling the metric [22]. For sim-
plicity, we focus on QFT, which are covariant, gauge
invariant, unitary, and renormalizable, e.g., QED. By
“renormalizable,” we mean, in the sense of perturbation
theory, that all the coupling constants are of non-negative
mass dimension. We also assume that the Weyl anomaly
depends on only the positive powers of the coupling
constants (including the mass m), so that it has a well-
defined limit when we turn off the coupling constants. For
this class of QFT, A takes the following form [20,23]:

A ¼
Z
M

ffiffiffi
g

p ½b1FμνFμν þOðR2Þ� þ
Z
∂M

ffiffiffi
h

p
OðRkÞ: ð3Þ

Here OðR2Þ denotes terms constructed out of the bulk
curvature tensor, including terms with positive powers
of coupling constants; e.g., R2, RμνRμν; RμναβRμναβ,
□R;m2R;m4; � � �, and OðRkÞ denote the boundary Weyl
anomaly [28,29] that is constructed out of the boundary
curvature tensor and the exterior curvature of the boundary.
b1 is the bulk central charge which govern the gauge
field contribution to the Weyl anomaly [Eq. (3)]. For
the normalization of the gauge field kinetic term
S ¼ −1=ð4e2Þ R F2, b1 is related to the beta function as
b1 ¼ −½βðeÞ�=ð2e3Þ [30]. Below we show that for general
BQFT, as specified above, the expectation value of the
induced current at a distance x, which is very close to the
boundary [31], is given by

hJi ¼ e2c
ℏ

4b1n × B
x

; x ∼ 0; ð4Þ

where n is the inner normal to the boundary. The current
[Eq. (4)] is a magnetization current J ¼ ∇ ×M, and it
corresponds to a quantum magnetization

hMi ¼ e2c
ℏ

4b1 log xB ð5Þ

of the vacuum. It is remarkable that the anomalous current
[Eq. (4)] and the vacuum magnetization [Eq. (5)] take place
even in a flat spacetime and at zero temperature. This is a
pure quantum effect since it is inversely proportional the
Planck constant and has no classical limit ℏ → 0. The
induced current is measured by a quantum Hall conduct-
ance σH ¼ e2=ℏ, which governs the quantum Hall effect. In
fact the current [Eq. (4)] is in resemblance to the quantum
Hall effect except that the current now is parallel to the
boundary instead of perpendicular to the boundary as in the
case of the standard Hall effect. One may therefore refer
to Eq. (4) as an anomalous quantum Hall effect [32].
Physical Picture.—To understand the physical origin

of the current [Eq. (4)] and the magnetization [Eq. (5)],
let us consider for simplicity the set-up of a BQFT in a flat

spacetime with a flat boundary, see Fig. 1. Consider a point
P at the distance x from the boundary. We are interested in
the amount of charges passing through P due to the vacuum
process of a virtual particle creation and annihilation.
Suppose that there is a magnetic field normal to (pointing
out of) the figure, the charged particles will move along
circles due to the Lorentz force. If there is no boundary, the
virtual particle pairs created by quantum fluctuations at O0
would annihilate at P after moving along the dotted circle.
This give rises to a transport of charges to the right. This is
however precisely canceled by the movement of charges
due to the quantum fluctuation at the point O00. Summing
over all possible locations of the source points, it is clear
that there is no net transport of charges induced at P. The
situation is different when there is a boundary. In this case,
those contributions from source points at x < 0 are missing.
This leads to a net amount of charges moving in the
−y direction. In addition, vacuum pairs created at source
point O000 could now reach P due to the (virtual) reflection
of the boundary. What exactly happens, perfect reflection
or partial absorption, will depend on the boundary con-
dition. But in any case there will be a net separation of
charges and this contributes a transport of charges to the
þy direction. The current [Eq. (4)] can also be understood
as a result of the magnetic response of the vacuum to the
presence of a boundary. As we noted already, quantum
fluctuation of the vacuum leads to temporary creation of
virtual pair of charged particles, which are then guided to
move in circles in the presence of a magnetic field. As a
result, tiny current loops are formed with the positively and
negatively charged virtual particles contributing in the same
way to the magnetic dipole moment. Summing up all these
contribution results in a total magnetization M of the
vacuum. When there is no boundary, M is just an infinite
constant that can be subtracted away by renormalization,
and the renormalized vacuum magnetization hMi ¼ 0 has
no physical effect. When there is a boundary, it is clear that
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FIG. 1. Induced current from a virtual pair creation in the
presence of a boundary.
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the renormalized hMi is zero distance from the boundary,
but this becomes nontrivial near the boundary. This is very
much like the Casimir effect. The magnetization [Eq. (5)]
of the vacuum is a new effect and occurs only because of
the presence of the boundary. Let us now turn to the
rigorous QFT derivation.
Rigorous derivation.—We start with a proper analysis

of the structure of the renormalized current Jμ near the
boundary. In general, for a BQFT, the renormalized current
is generally singular near the boundary and the expectation
value takes the asymptotic form near x ∼ 0:

hJμi ¼
1

x3
Jð3Þμ þ 1

x2
Jð2Þμ þ 1

x
Jð1Þμ þ log xJð0Þ þ � � � ; ð6Þ

where � � � denotes terms regular at x ¼ 0, and JðnÞμ depends
only the background geometry, the background vector
field strength, and the type of fields under consideration.
Hereafter we will drop the symbol hi for the expectation
value. A similar expansion has been considered for the
renormalized stress tensor [33]. We consider current that is
conserved (DμJμ ¼ 0) up to possibly an anomaly term.
Since this term is finite, it is irrelevant to the divergent part
of a renormalized current [Eq. (6)]. As a result, we obtain
the gauge invariant solution

Jð3Þμ ¼ 0; Jð2Þμ ¼ 0;

Jð1Þμ ¼ α1Fμνnν þ α2Dμkþ α3Dνkνμ þ α4⋆Fμνnν ð7Þ

where Fμν, ⋆Fμν, nμ, Dm, kμν, and hμν are, respectively, the
background field strength, Hodge dual of field strength, the
normal vector, the induced covariant derivative, the extrin-
sic curvature, and the induced metric of the boundary. Here
the coefficients αi are arbitrary and the expression [Eq. (7)]
gives the most general form of boundary behavior of the
current that is consistent with the conservation law and
gauge invariance. We will now show that these current
coefficients are indeed completely fixed by the central
charges of the theory.
To establish this result, let us follow an observation of

Ref. [17] that allows one to relate the variation of A with
the asymptotic form of the stress tensor near the boundary.
For the present case of a current, we have the relation

ðδAÞ∂Mϵ
¼

�Z
M

ffiffiffi
g

p
JμδAμ

�
log1ϵ

; ð8Þ

where a regulator x ≥ ϵ to the boundary is introduced for
the integral on the right hand side (RHS) of Eq. (8). The
relation [Eq. (8)] identifies the boundary contribution of the
variation of the integrated anomaly A under an arbitrary
variation of the gauge field δAμ with the UV logarithmic
divergent part of the integral involving the expectation
value Jμ of the renormalized Uð1Þ current. The power of

the relation [Eq. (8)] lies in the fact that the left hand side of
Eq. (8) is a total variation and imposes constraints on the
RHS of Eq. (8) that are powerful enough to fix completely
the asymptotic behavior of the current in terms of the
Weyl anomaly of the theory. We refer the readers to the
Supplemental Material [34] for the derivation of this key
relation [Eq. (8)].
Now let us use (8) to fix the current coefficients. To

proceed, let us consider the metric written in the Gauss
normal coordinates ds2¼dx2þðhab−2xkabþ���Þdyadyb,
where x ∈ ½0;þ∞Þ, and nμ ¼ ð1; 0; 0; 0Þ is the inward
pointing normal vector. We also choose a gauge Ax ¼ 0
and expand the gauge field about the boundary: Ab ¼
ab þ xAð1Þ

b þ � � �. Taking the variation of the Weyl anomaly
[Eq. (3)] with respect to the gauge field, we have
ðδAÞ∂M ¼ 4b1

R
∂M

ffiffiffi
h

p
Fb

nδab. Next, when we substitute
Eq. (6) and Eq. (7) into the RHS of Eq. (8), integrate over x,
and select the logarithmic divergent term, we obtain
ðRM ffiffiffi

g
p

JμδAμÞlog1=ϵ¼
R
∂M

ffiffiffi
h

p ðα1Fb
nþα2Dbkþα3Djkjbþ

α4⋆Fb
nÞδab. As a result, we obtain, for a unitary QFT

without the parity odd anomaly term [23], α1 ¼ 4b1;
α2 ¼ α3 ¼ α4 ¼ 0, and our main result for the expectation
value of the current near the boundary is as follows:

Jb ¼
4b1Fbn

x
; x ∼ 0; ð9Þ

We emphasis that the current [Eq. (4)] does not involve
any on-shell charged particle as we were considering the
vacuum state and there is no Schwinger effect for the
magnetic field. Instead the induced current should be
identified with a magnetization current as a result of the
magnetization [Eq. (5)] of the vacuum. This can be derived
directly without first referring to the current [Eq. (4)]
by using the magnetic coupling S ¼ R

M
ffiffiffi
g

p
M · B and the

relation

ðδAÞ∂Mϵ
¼

�Z
M

ffiffiffi
g

p
M · δB

�
log1ϵ

: ð10Þ

By considering a variation δBz ¼ δðx − ϵÞδfðy; zÞ that is
localized on the boundary ∂M, one obtains Eq. (5).
The universal laws [Eqs. (4) and (5)] hold for general

BQFTs, which are covariant, gauge invariant, unitary, and
renormalizable, or, equivalently, for BQFTs whose Weyl
anomaly is given by Eq. (3). Several comments are in order.
(1) Since Eqs. (4) and (5) depend on only the bulk central
charge instead of boundary central charge, it is independent
of the choices of boundary conditions. Thus the current is
more universal than the renormalized stress tensor near
the boundary, which depends on boundary conditions
[17,33,38,39]. (2) The magnitude of the induced current
is much larger than that of the stress tensor. To see this,
let us recover the units in the formula. We have

PHYSICAL REVIEW LETTERS 121, 251602 (2018)

251602-3



Jb ¼ ðe2c=ℏÞð4b1Fbn=xÞ; Tab ¼ ℏcðd1hab=x4Þ, where e is
the charge, c is the speed of light, ℏ is the Planck constant,
b1, d1 are dimensionless constants, and hab is the boundary
metric. We have rescaled Fμν → eFμν so that the field
strength is related to electric field and magnetic field in
the usual manner: Ei ¼ cFi0; Bi ¼ 1

2
ϵijkFjk. (3) Our result

shows that the constant magnetic field parallel to the
boundary can induce a current [Eq. (4)]. As we illustrated
above, the boundary is crucial in realizing a separation of
charges that result in the induced anomalous current and in
the nonuniform magnetization for the vacuum. (4) We
emphasize that our current is not due to the on-shell
movement of charges, but to the transport of virtual charges
as a result of nonuniform vacuum magnetization. As such
our current does not obey Ohm’s law and is not dissipative.
It does not require an energy source to support it. (5) The
result [Eq. (4)] is for a single boundary. For a real system
with finite extent, e.g., a rectangular slab with two parallel
boundaries, we will have the current of the same form
near each boundary component of the system. The total
current is zero and satisfies the Bloch theorem [40]. (6) The
relation [Eq. (9)] also implies an induced charge density
ρ ¼ ðe2=ℏÞð4b1E=xÞ near the boundary. Here E ¼ Eex.
(7) Our results [Eqs. (4) and (5)] were derived for the
vacuum. In a material system, one needs to take into
account of the presence of charge carriers and nonvanishing
conductivity of the media. The direct field theory analysis
seems rather complicated. However due to the close relation
with the Weyl anomaly, we expect that these results will
continue to hold. In Ref. [41] we use a holographic model to
study the effect of conductivity, and we find that the current
and the magnetization are not modified in the leading order
of closeness to the boundary.
Story of free QFT.—Our general result [Eq. (9)] is

verified by a free BQFT. For simplicity, let us consider
complex scalar field with the action I ¼ −

R
M

ffiffiffi
g

p
½ðDμϕÞ�Dμϕþ Eϕ�ϕ�, where Dμ ¼ ∂μ þ iAμ are gauge
invariant covariant derivatives and E is a function that
includes only the coupling constants with a non-negative
mass dimension. In general, there are two kinds of
boundary conditions for the scalar [42]: Dirichlet BC
(ϕj∂M ¼ 0) and the Robin BC [(Dn þ ψÞϕj∂M ¼ 0].
Here the function ψ defines a renormalizable theory. For
a free complex scalar field theory, the expectation value
of the current near the boundary has been derived in
Ref. [42] using heat kernel expansion. The result is Jb ¼
−ðFbn=24π2xÞ for both Dirichlet BC and Robin BC. The
Weyl anomaly for the complex scalar theory can be derived
as the heat-kernel coefficient a4 [43,44]. In this way, we
get the Weyl anomaly [Eq. (3)] with the central charge
b1 ¼ −1=96π2. It is clear that the obtained current indeed
satisfies our derived universal law [Eq. (9)]. From this
simple example, we have learned two important facts. First,
the near-boundary current is indeed independent of the
choices of boundary conditions. Second, the universal law

[Eq. (9)] works for not just BCFT, but also for more general
QFT. The only constraints we impose on the functions E, ψ
are that they define a renormalizable theory. In particular,
the theory need not be conformal invariant.
Finite total current.—Similar to the case of a stress

tensor [17,38,45], there are boundary contributions to the
current that make the total current finite. To see this,
consider the gauge variation of the finite part of the
effective action. Due to gauge invariance, we obtain the
conservation laws DμJμ ¼ 0 in the bulk and Daja ¼ −Jn
on the boundary. From the bulk current conservation and
Eq. (9), we get Jn ¼ 4b1DbFb

n ln xþOð1Þ. Substituting Jn
into the boundary conservation law, we obtain the boundary
current jb ¼ 4b1Fbn ln ϵ. As a result, we have

Jb ¼
4b1Fbn

x
þ δðx; ∂MÞ4b1Fbn ln ϵþOð1Þ; ð11Þ

where we have shifted the boundary from x ¼ 0 to a
position x ¼ ϵ. It is remarkable that the boundary current
obtained from the conservation law automatically yields the
total current [Eq. (11)], which represents a finite flow of
charge through any interval in the normal direction.
On experimental observation.—Our current [Eq. (4)] can

be observed by measuring the magnetic response of the
vacuum to the external field in the presence of boundary.
We have shown that the renormalized current and the
quantum magnetization are independent of the choices of
well-defined boundary conditions (BC). By “well-defined
BC,” we mean that no current can flow out of the boundary.
The insensitivity of BCs would decrease the difficulty in
experiments. In reality, since modes with sufficiently high
frequencies would penetrate the boundary, this corresponds
to an effective length cutoff and our formula [Eq. (9)] will
work well only for x > ϵ with the cutoff naturally being
the lattice length alattice of the material in consideration.
Consider, for simplicity, a constant magnetic field B
and constant temperature T for the material. On the other
hand, the formula [Eq. (9)] applies only to the region
close enough to the boundary such that x < xmax ¼
min ðℏc=ðkTÞ;ℏ=ðcmeffÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðeBÞp Þ, where meff is the

effective mass of the charged particle. Taking T¼300K,
meff ¼ me to be the mass of electron and B ¼ 0.01 T,
we have xmax ∼min ð10−5 m; 10−13 m; 10−6 mÞ, which
shows that the large mass of charged particle is the main
obstruction to experimental observation of the phenomena.
Thus one must try to decrease the effective mass in
materials in order to satisfy ϵ < xmax. Fortunately, the
availability of charge carriers with zero effective mass in
graphene [46] and Dirac or Weyl semimetals [47] makes
these systems a more promising setup for the experimental
observation of this induced current phenomena.
Conclusions and discussions.—In this Letter, we show

that, for general BQFTs that are gauge invariant, unitary,
and renormalizable, the renormalized current takes the
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universal form [Eq. (9)] near the boundary. This covers
fundamental theories such as QED, as well as many typical
condensed matter systems of interests. The induced current
is independent of the boundary conditions and the states of
BQFT, and depends only on the beta function of the theory.
Since the current is proportional to the quantum Hall
conductance e2=ℏ, it is potentially large enough to be
measured experimentally. It is interesting to perform an
experiment to observe this effect. It is also interesting to
look for a suitable implication of this effect for other
physical systems such as astronomical objects or branes
in string theory. Our discussions can be easily generalized
to a system with a background non-Abelian gauge field
and with spacetime dimensions other than four (see
Supplemental Material [34]). We note however that only
in four dimensions is the near boundary value of the current
determined universally by the bulk central charge and is
independent of boundary conditions.
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