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Neutron stars can be destroyed by black holes at their center accreting material and eventually by
swallowing the entire star. Here we note that the accretion model adopted in the literature, based on Bondi
accretion or variations thereof, is inadequate for small black holes—black holes whose Schwarzschild
radius is comparable to, or smaller than, the neutron’s de Broglie wavelength. In this case, quantum
mechanical aspects of the accretion process cannot be neglected, and give rise to a completely different
accretion rate. We show that for the case of black holes seeded by the collapse of bosonic dark matter, this is
the case for electroweak-scale dark matter particles. In the case of fermionic dark matter, typically the black
holes that would form at the center of a neutron star are more massive, unless the dark matter particle mass
is very large, larger than about 1010 GeV. We calculate the lifetime of neutron stars harboring a “small”
black hole, and find that black holes lighter than ∼1011 kg quickly evaporate, leaving no trace. More
massive black holes destroy neutron stars via quantum accretion on timescales much shorter than the age of
observed neutron stars. We find that the range where seed black holes inside neutron stars are massive
enough that they do not quickly evaporate away, but not so massive that a fluid accretion picture is
warranted is limited to between ∼1011 and 1012 kg, but our results are key to accurately determine the
actual critical black hole mass corresponding to the onset of neutron star destruction.
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I. INTRODUCTION

The very existence of long-lived neutron stars (NS)
imposes significant constraints on dark matter: as was
recognized long ago [1,2], dark matter can be captured and
accumulated in NS (if pair annihilation is sufficiently slow
or absent, see e.g., [3]), thermalize, and collapse into a
“small” black hole that could eventually swallow and
destroy the NS [4–10]. If dark matter consists of primordial
black holes (PBH) [11], NS may capture PBHs, potentially
leading to the disruption of the NS [12]—the capture rate is
however too small to set any meaningful constraints on
PBH as dark matter [13].
Thus far, the treatment of NS material accretion onto a

BH at the core of a NS has followed the assumption that
accretion proceeds through a spherical Bondi-Hoyle

process, possibly including caveats from the NS rotation
[14] or from Pauli blocking [15] (see also Refs. [16,17] for
numerical studies of the full general relativistic problem of
black hole evolution, but also assuming Bondi accretion).
The Bondi-Hoyle accretion picture presupposes spherically
symmetric, steady state accretion of a nonself-gravitating
gas [18], which is treated as a fluid with a polytropic
equation of state. Here we critically note that this treatment
breaks down when the individual particle quantum size—
its de Broglie wavelength—exceeds the size of the black
hole, i.e. its Schwarzschild radius. In that case, wavelike
effects become important, and the absorption cross section
is given by the expression in the classic work by Unruh,
Ref. [19]. A key assumption in the Bondi picture—the
absence of outflows—breaks down when particles effec-
tively scatter off, and are not always absorbed by, the hole.
Let us estimate the range of black hole masses when

Unruh’s treatment is necessary. For simplicity, we treat the
NS as consisting of a neutron population modeled as a
degenerate Fermi gas with density nn ≃ 0.3 fm−3, leading
to a Fermi momentum

pF ¼ ℏð3π2nnÞ1=3 ≃ 0.4 GeV;

and a corresponding Fermi velocity
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vF ¼ pF=EF ≃ 0.4c:

The NS temperature TNS ≃Oð108Þ K ≃ 10 keV is much
lower than the Fermi energy, and relativistic corrections due
to degeneracy-pressure induced velocity are at the level of
∼10%. Thus, we model the energy distribution as fðEÞ ∝
E1=2 from the density of state for a nonrelativistic 3D free
electron gas, and the velocity distribution, correspondingly,
as fFðvÞ ∝ v2, and limited to v ≤ vF, thus

fFðvÞ ¼
3v2

v3F
; v ≤ vF; fFðvÞ ¼ 0; v > vF:

The average velocity of these Fermi-degenerate neutrons is
hviF ¼ R

vfFðvÞ=
R
fFðvÞ ≃ 0.3c, which we will use as a

typical velocity below.
The key assumption of the Unruh treatment of “quan-

tum” accretion onto a Schwarzschild black hole [19] is that
the Schwarzschild radius of the hole RSchw ¼ 2GMBH be
smaller than the de Broglie wavelength of the particles
being absorbed, and that said particle be described as a free
plane wave asymptotically far away from the hole. In the
context of a neutron star, we have neutrons with at most vF
velocity and pDB ≲ pF. Wavelike effects therefore become
non-negligible for MBH below a critical value

MBH < MUnruh ≡ πM2
P

pF
¼ 2.1 × 1012 kg: ð1Þ

Because these neutrons are being absorbed, they are being
removed from the Fermi sea, so Pauli blocking does not
inhibit their removal from the thermal bath of the neu-
tron star.
Note that there is some evidence that NS cores might

consist of quark matter [20]; if that is the case, the Fermi
momentum of the constituent quarks will be of the same
order (up to a factor ofOð31=3Þ) as that of neutrons, and the
corresponding de Broglie wavelength also comparable (in
fact, slightly smaller).
We note that current limits to PBH masses from

evaporation [21] constrain the PBH masses, for 100% of
the DM in PBH, to be larger than 1014 kg; the PBH mass
falls in the range where Unruh’s treatment is necessary only
if fPBH ≲ 10−5 [21,22], in which case capture is very
unlikely; however, one should treat this issue with care
when discussing possible disruption of NS by accreting
PBH (see e.g., [12], and the ensuing debate in e.g., [13]).

II. ABSORPTION RATES

The Bondi-Hoyle absorption cross section generalizes
the classical Hoyle-Lyttleton result [23] for the accretion of

fluidlike flux of particles of density ρ by a star of mass M
moving at a steady asymptotic speed v,

�
dM
dt

�
HL

¼ πζ2HLvρ ¼ 4πG2M2ρ

v3
; ð2Þ

where ζHL is the Hoyle-Lyttleton radius, corresponding
to the maximal impact parameter yielding capture.
Augmenting the Hoyle-Lyttleton treatment with fluid
effects, but maintaining the assumption that the accreted
particles be massless and pointlike, and indicating with cs
the sound speed of the fluid being accreted, gives the
classic Bondi-Hoyle result [18,24],

�
dM
dt

�
BH

¼ 4πλsðγÞG2M2ρ

ðc2s þ v2Þ3=2 : ð3Þ

Given an equation of state P ¼ Kργ the appropriate
accretion constant λsðγÞ can be calculated using a poly-
tropic equation of state [25]; it is equal to λsð5=3Þ ¼ 0.25 in
the case of degenerate matter. The sound speed cs is
sensitive to the equation of state, but is in the range c2s ≃
0.2–0.4 for the densest parts of the star [26].
In the limit where the particles being accreted are neither

massless (rather, they have mass m) nor pointlike and
possess a quantum wavelength (de Broglie wavelength)
larger than the Schwarzschild radius of the accreting mass
M, the absorption cross section was computed in Ref. [19].
It reads, for the case of a Dirac particle with velocity v,�

dM
dt

�
U
¼ σUðM;m; vÞρv; ð4Þ

with

σUðM;m; vÞ ¼ 2πG2M2

v
ξ

1 − e−ξ

and ξ defined as

ξ ¼ 2πGMm
1þ v2

v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ π
1þ v2

v2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p RSchw

λDB

with RSchw ¼ 2GM the Schwarzschild radius (in natural
units) and λDB ¼ 1=ðmvÞ. Reference [19] assumes
RS=λDB ≪ 1. Note that ξ → ∞ as v → 0 and v → 1.
The mass accretion rate for neutron absorption via the

Unruh absorption cross section as a function of the BH
mass is�

dM
dt

�
U
ðMÞ ¼ mnnn

Z
1

0

dvfFðvÞvσUðM;mn; vÞ; ð5Þ
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where mn is the neutron mass. Dark matter accretion is
generally negligible in the growth of the black hole [8]
(however, it can be important in the Earth or the Sun [27], in
white dwarfs [28], and even in the case of NS, in some
corners of parameter space [9]. Numerically, we find

�
dM
dt

�
U
ðMÞ ≃

(
10−38ðMkgÞ3 kg

sec M ≳ 1010 kg

10−28ðMkgÞ2 kg
sec M ≲ 1010 kg

; ð6Þ

which reveals that the Unruh and Bondi-Hoyle rates scale
similarly at low black hole mass but not at large black
hole mass. The transition between these regimes is at
M ≃ 1010 kg.
Let us now discuss the range of validity of, respectively,

the quantum absorption Unruh picture and the Bondi-
Hoyle picture. The Unruh picture assumes that
(i) RSchw ¼ 2GMBH < λdB ¼ 1=p and that (ii) the infalling
particle is freely falling. On the other hand, the Bondi-
Hoyle picture assumes that the mean-free path of neutrons,
λmfp ≡ 1=ðnnσnnÞ, is smaller than the Bondi radius,
RBondi ≡ RSchw=c2s . Note that the assumption that infalling
particles are freely falling is effectively the reverse of this
latter condition, i.e. particles are effectively “blind” to each
other during infall if λmfp > RBondi.
We therefore have three ranges for the black hole masses

corresponding to three different accretion pictures:
(1) RSchw > λmfpc2s corresponds to the Bondi-Hoyle

fluid-like accretion regime;
(2) RSchw < λmfpc2s and RSchw < λdB corresponds to the

Unruh picture;
(3) if RSchw < λmfpc2s but RSchw ≳ λdB we are in an

intermediate regime where the Bondi picture fails,
but where the absorption cross section as approxi-
mated by the Unruh result is also inapplicable. In
this case, the correct picture is that of freely falling
particles being classically absorbed by the hole; the
correct cross section is therefore the classical ab-
sorption cross section [29]

σCðM;vÞ

¼πG2M2

v2

� ð8ð1−v2ÞÞ3
4ð1−4v2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8v2

p
Þð3−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8v2

p
Þ2
�
:

ð7Þ

We now estimate the masses corresponding to the three
regimes listed above. First, since we are concerned with the
very central region of the neutron star, we shall assume a
relatively large sound speed, c2s ¼ 0.3. Second, we use an
effective nucleon mass of m�

N ¼ 750 MeV to account for
the effects of nuclear forces in this high-density environ-
ment [30–32]. Lastly we assume σnn ¼ 10 mb, which is
a representative value at the momentum k ¼ pF for
the effective range parameters ann ¼ −18.5 fm and

rnn ¼ 2.75 fm [33,34]. With these values, we obtain
λmfpc2s ≃ 1 fm, and λdB ≃ ðm�

NhviFÞ−1 ≃ 0.88 fm.1 The cor-
responding mass ranges are thus:
(1) the black hole is in the Bondi-Hoyle regime if

RSchw > λmfpc2s , which is satisfied if M > MBondi≡
6.7 × 1011 kg;

(2) since λmfpc2s > λdB, the black hole is in the Unruh
regime if M < MUnruh ≡ 5.9 × 1011 kg; and

(3) the black hole is in the classical regime in the narrow
range of masses for which MUnruh < M < MBondi.

III. NEUTRON STAR LIFETIME

In addition to accretion, the black hole mass changes
because of Hawking evaporation, at a rate given by [38]�

dM
dt

�
H
ðMÞ ≃ −5 × 1016fðMÞ

�
kg
M

�
2 kg
s
; ð8Þ

where fðMÞ is a function of the degrees of freedom
kinematically available for evaporation: only those particles
for which the Hawking temperature TH ≳m, wherem is the
particle that the black hole evaporates into, can be produced
by the black hole. For M ∼ 109 kg, TH ∼ 10 GeV and
fðMÞ ≃ 15, while for M ∼ 1013 kg, TH ∼ 1 MeV and
fðMÞ ≃ 2. We use the full form for fðMÞ as given
in [22,38].
The black hole mass as a function of time is given in

general by

MðtÞ ¼
Z

t

t0

dt

��
dM
dt

�
acc

þ
�
dM
dt

�
H

�
; ð9Þ

where ðdM=dtÞacc connotes the appropriate accretion rate.
Clearly, because of the different signs of the rates in Eq. (9),
there is a critical rate below which the black hole mass
inexorably falls (see Fig. 1). We find that black hole
evaporation dominates over matter accretion for hole
masses less than

Mcrit ≃ 1.6 × 1011 kg; ð10Þ

for smaller masses, the black hole evaporates rather
quickly. For instance, for an initial mass of 1011 kg, thus
barely below Mcrit, the hole evaporates in 4 × 1013 sec,
which is only a thousandth the age of observed nearby NS

1We note that it is plausible that our estimate of the range of
applicability of the fluid behavior might actually be overly
conservative: a criterion based on neutron relaxation times
[35], involving neutrons further from the Fermi surface, might
effectively yield a larger mean free path [36], implying, as a
result, an even broader range of validity for the effects under
discussion here. Additional effects associated with superfluid
behavior in the neutron star core [37] might additionally affect
our conclusions.
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such as PSR J0437-4715 and PSR J2124-3358, both on the
order of 1010 years [39]. We note that most pulsars are
younger than those mentioned above, with spin-down ages
closer to 106–107 years [39]; however, since here we are
interested in the steady accretion of dark matter on the
neutron star, subsequently triggering the formation of a
black hole, longer-lived systems are those of interest to us.
We find that a good approximate fit for small masses is

τevapðMÞ ≃ 8 × 109 sec

�
M

1010 kg

�
3

; ðM < McritÞ:

Note that unlike the case of evaporation of a black
hole inside the Earth or the Sun [27], evaporation inside
a NS is not expected to yield any observable signature:
comparing the rest-mass energy of the largest hole
that would evaporate quicker than accrete, M ∼Mcrit≃
8 × 1034 ergs, with the lower limit to the specific heat of
a NS, cNS ≳ 2 × 1036 ergs=K [40] makes it clear that the
deposited heat would never yield a detectable temperature
change to the NS. Nevertheless, it is possible that this
sudden deposition of energy in the NS core will have a
transient effect such as a glitch. We also estimate that the
neutrino mean free path inside a NS is too short for
neutrinos to escape

λν ≃
1

nnσnν
≃

1

nnG2
FE

2
ν
≃ 2 × 10−8 cm

�
GeV
E

�
2

so that the predicted flux would be too small to be
detectable above the atmospheric neutrino background
(e.g., [27], Fig. 6).

For initial black hole masses larger than Mcrit, we can
determine the neutron star lifetime via

τðM0Þ ¼
Z

MNS

M0

dM
ðdMdt Þacc þ ðdMdt ÞH

; ð11Þ

where M0 is the initial BH mass and MNS ≃ 1.5 M⊙ is the
neutron star mass. The resulting NS lifetime τðMÞ, using
the full numerical solution, is

τðMÞ
Myr

≃

(
0.6ðMUnruh

M Þ2; Mcrit < M < MUnruh

100ðMUnruh
M Þ; M > MUnruh:

ð12Þ

Because Mcrit given in Eq. (10) is of order 1011 kg, the
neutron star destruction rate is shorter than τNS if the black
hole mass is sufficiently large to avoid evaporating.

IV. BLACK HOLES FROM DARK MATTER
COLLAPSE IN NEUTRON STARS

The mass of the black hole formed from dark matter
collapse is the maximum between the largest mass sup-
ported by quantum pressure and the largest self gravitating
mass, [27]

Msg¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3T3

πG3
Nm

3ρ

s
≃134 kg

�
T

105 K

�
3=2

�
GeV
m

�
3=2

: ð13Þ

The critical particle number N that leads to exceeding
quantum pressure support against gravitational collapse
depends on the spin of the dark matter.
In the case of fermions, the onset of the gravitational

collapse occurs when the potential energy of the dark
matter exceeds the Fermi energy, and therefore Pauli
blocking cannot prevent the collapse anymore:

GNmaxm2
f

r
¼ EF ¼

�
3π2N
V

�
1=3

¼
�
9π

4

�
1=3 N1=3

max

r
: ð14Þ

The radius of the self-gravitating sphere drops out of this
expression, and thus the BH mass is

Mf
BH ¼ Nf

maxmf ≃ 9 × 1030 kg

�
GeV
m

�
2

: ð15Þ

This expression holds for self-gravitating, noninteracting
fermions. Corrections due to self-interactions are important
for the case of neutrons, and the maximum neutron star
mass is not precisely known for this reason [25].
In the case of bosons, the energy for a single particle is

E ∼ −
GNm2

b

R
þ 1

2mbR2
−

λN
32πm2

bR
3
; ð16Þ

FIG. 1. Accretion and evaporation rates. We show the accre-
tion and evaporation rates, in units of kg/sec, for the evaporation
rate (Eq. (8), blue line); the Unruh quantum accretion process
(orange dotted line); and the Bondi-Hoyle accretion rate [Eq. (3),
green dot-dashed line (lying below the Unruh accretion line at
large masses)]. The black hole evaporates faster than it grows if
M < Mcrit; it accretes mass according to the Unruh rate for M <
MUnruh and according to the Bondi-Hoyle rate for M > MBondi.
See text for details.
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where the second term stems from the particle kinetic
energy due to the uncertainty principle and the final term is
due to the particle self-interactions. As we discuss in more
detail in the Appendix, the maximum number of bosons
that are stable against gravitational collapse are

Nb
max ¼

�
MPl

mb

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17

20

�
1 −

3λM2
Pl

34πm2
b

�s
: ð17Þ

The black hole mass that is obtained if the number of
particles exceeds this value is

Mb
max≃2.5×1014 kg

GeV
mb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4×1036λ

�
GeV
mb

�
2

s
: ð18Þ

Clearly, the sign and the magnitude of λ matter very much
for the mass of the black hole. If λ is positive, correspond-
ing to an attractive self-interaction, only extremely small
values of this coupling are possible in a stable system. Here,
we will focus on a few representative cases: λ ¼ 0, which is
possible if ϕ is exactly protected by a large symmetry
group; λ ¼ −ðm=fÞ2, which is the first term in the
expansion of some nonanalytic potentials motivated by
quantum gravity [41], where f is a “decay constant”
corresponding to massive modes for which we take f ¼
1010 GeV and 1012 GeV; and constant values λ ¼ −10−2
and λ ¼ −0.12ð1=16π2Þ2 ≃ − × 10−7, which is of the
correct size for a loop-induced self coupling arising from
integrating out a perturbatively coupled scalar [10]. Other
realistic models with small repulsive couplings were
obtained in [42,43].
Finally, we note that accumulated bosonic dark matter

can form a Bose-Einstein condensate (BEC) [8]. This can
trigger black hole formation from the condensate subcom-
ponent of the dark matter rather than the entire thermal
population. The fraction of dark matter particles in the BEC
if the star is below the critical temperature is formally
NBEC=Nb ¼ ΘðTcrit − TcÞ½1 − ðTc=TcritÞ3=2�, where Tc is
the core temperature of the star. We emphasize here that the
dependence on temperature is dominated by the step
function: if the temperature in the core of the star is below
Tcrit, the majority of the particles are in the BEC, unless the
temperature is extremely close to the phase transition.
Thus, we approximate the mass of the BEC as zero if
Tc > Tcrit and as mXNb if Tc < Tcrit. The critical temper-
ature of a noninteracting bosonic system in a square-well
potential is2 Tcrit ¼ 2π

m ½ 3Nb

4πζð3=2Þr3th
�2=3. The radius inside of

which the thermalized DM particles are distributed scales
like rth ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc=mX

p
and the total number of particles scales

like Nb ∝ ρXσXNt½maxðGeV; mXÞ�−1, where ρX is the DM
in the vicinity of the NS, σXN is the nucleon-X scattering
cross section, and t is the age of the star [8]. For
convenience, we define a scaling function gBEC ¼

ρX
GeV=cm3

σXN
10−45 cm2

t
10 Gyr ecap which accounts for the age of

the neutron star, the conditions of the DM in its vicinity,
and the efficiency of capture ecap, which can be small when
mDM becomes too large [8,9,27]. Combining all of these
ingredients and plugging in numbers from [8], we find that
the mass of the BEC is

Mb
BEC ≃ 2 × 1016 min

�
m

GeV
; 1

�
gBEC kg

if max

�
m

GeV
; 1

�
<

�
13

T6

�
3
�

nN
0.3 fm−3

�
3=2

gBEC; ð19Þ

where we have defined T6 ¼ T=106 K. Because we are
primarily interested in this work with the behavior of the
black hole, rather than the constraints on the dark matter
parameter space, we will set gBEC ¼ 1, since this will be
true after a sufficiently long time regardless of the
environment.
Since neutron star temperatures fall to around 106 K

after approximately a Myr and stay stable at that order of
magnitude for roughly a Gyr [46], Eq. (19) indicates that a
reasonable expectation is that BEC formation will be
important for bosonic dark matter masses of order a
TeV. However, the entire thermal distribution of captured
particles may exceed Mb

max given in Eq. (18) before
condensation is triggered. Thus, the black hole mass that
we expect from accumulation of bosonic particles is

Mb
BH ¼ minðMb

BEC;M
b
maxÞ: ð20Þ

This is a function of time through the dependence of
Eq. (19) on gBEC, which we are setting to 1 for illustrative
purposes.
Figure 2 shows the mass of the BH as a function of the

dark matter mass. The fermion line, given by Eq. (15), is
appropriate given the minimal assumptions that the dark
matter is able to self-gravitate and is not strongly self-
interacting. The boson lines are more sensitive to the model
parameters. We attempt to demonstrate the sensitivity of the
final black hole mass on the self-interaction coupling and
the presence of a BEC. When bosonic dark matter has a
constant repulsive self-interaction, which we illustrate with
λ ¼ −10−7, the black hole mass at large mDM is similar to
the fermion case, though smaller by a factor

ffiffiffiffiffiffi
−λ

p
. At lower

masses, even this case diverges from the fermion line by
virtue of BEC formation, however. The value of mDM at
which BEC formation becomes important depends on the
core temperature of the NS. For illustration purposes, we

2The presence of self interactions and the harmonic (rather
than square-well) nature of the potential after onset of self-
gravitation can in fact increase the critical temperature and thus
make the condensation of the ground state moderately more
favorable [44,45], but these changes are at or below the order of
magnitude level, and we omit them here for simplicity.
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assume Tc ¼ 10ð5Þ½1� × 106 K as representative values,
with divergences due to the BEC phase transition
from roughly 2 TeV, to 20 TeV, to no divergence,
respectively. The other noticeable feature in the red line
occurs at mDM ¼ 1 GeV, because the efficiency of capture
of lower-mass dark matter particles falls due to Pauli
blocking. Finally, we show lines λ ¼ 0 (blue), λ ¼
−ðmDM=1015 GeVÞ2 (green), and λ ¼ þðmDM=mPlÞ2
(orange), where we define the reduced Planck constant
mPl ¼ MPl=

ffiffiffiffiffiffi
8π

p
. These are motivated by axion models;

they are parallel. We note that there are no self-gravitating

solutions at all for λ > þ40πm2
DM=3M

2
Pl. The dotted lines

extending above each solid bosonic line show the black
hole mass if BEC formation is neglected.

V. SUMMARY AND CONCLUSIONS

When the quantum size of neutrons exceeds the
Schwarzschild radius of a black hole at the center of a
neutron star, accretion cannot be described with the Bondi-
Hoyle picture; rather, it should be described by an appro-
priate cross section that accounts for both the space-time
geometry of the black hole, and the quantum nature of the
particles being accreted.
Here, we corrected the predictions for neutron star

destruction by black holes formed by nonannihilating dark
matter accumulating at the neutron star interior using the
correct capture cross section for light black holes. While the
key results in the existing literature are not quantitatively
dramatically affected, we find a significant change in the
minimal critical seed black hole mass necessary to prevent
black hole evaporation and to trigger the disruption of
neutron stars, and in the resulting predicted neutron star
lifetime.
Future work will tackle the complex problem of fermion

accretion onto Schwarzschild black holes (or onto spinning
black holes more generally) at finite temperature as well as
possibly applying the density matrix formalism to treat
quantum accretion properly. Finally, we also mention that
for certain dissipative dark matter models, dark matter
accretion can also play a role in determining the black hole
growth rate. [47].
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