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1 Introduction and summary

Duality is one of the fundamental issues in the non-perturbative understanding of string
theory and gauge theory. When there is suitable amount of supersymmetries, we can
compute the instanton partition functions explicitly using localization techniques [1–7].
One of the astonishing properties of supersymmetric gauge theories is the existence of rich
geometric and algebraic structures behind them [4, 8, 9]. Nekrasov proposed the BPS/CFT
correspondence claiming that there is a duality between correlation functions of BPS
observables in supersymmetric gauge theories and correlation functions of conformal field
theories [10–15]. Various studies have been done to justify this belief. One of the famous
correspondence that belongs to this correspondence is the AGT correspondence [16–19]
(see [20] for a review). It is a 2d/4d duality relating Nekrasov partition functions of 4d
N = 2 theories coming from a certain 6d N = (2, 0) theory compactified on a Riemann
surface and conformal blocks of 2d CFTs (e.g. Virasoro, WN algebra). Moreover, we
also have a 5d lift up of this correspondence relating Nekrasov partition functions of 5d
N = 1 gauge theories and symmetries of quantum algebras (e.g. q-Virasoro, q-WN ) [21–25].
Understanding how far the BPS/CFT or AGT correspondence is true is an important task
that must be done because new chiral algebras (or quantum algebras) might show the
existence of new supersymmetric gauge theories, and vice versa.
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An interesting extension in the gauge theory side is the supergroup gauge theory [26–29].
Supergroup gauge theory is a theory in which both boson and fermion degrees of freedom
appear as local gauge symmetries. Therefore, it breaks the spin-statistics theorem and is
inevitably non-unitary, and thus, it has been overlooked as a theory whose physical meaning
is not well understood. However, recent studies have shown that even if these theories are
non-unitary, they can be analyzed by using methods similar to those used when discussing
physical theories. In type IIA theory, these gauge theories are constructed using ghost
(negative) D-branes1 [27, 29]. For example, the 4d N = 2 U(N+ |N−) theory has a Hanany-
Witten construction [30] realized by N+ positive D4-branes and N− negative D4-branes
surrounded by two parallel NS5-branes (see (2.50)) [29, 30]. Seiberg-Witten curves were also
determined in the same paper [29]. Taking T-duality, we obtain brane webs in the type IIB
picture, which give 5d N = 1 theories of supergroup gauge theories [31]. Exact formulas for
instanton partition functions of these theories were derived from supersymmetric localization
in [32]. A generalization of the refined topological vertex [33–36] reproducing instanton
partition functions called anti-refined topological vertex (anti-vertex) was as well proposed
in [31]. Besides, relations with defects [37, 38] and integrable systems [39] were also discussed
previously. All of these previous studies imply the existence of an underlying algebraic
structure in the belief of BPS/CFT correspondence.

The goal of this paper is to determine the algebraic structure of the supergroup gauge
theories. In particular, we are interested in the 5d AGT correspondence of these theories.
We focus on quiver gauge theories with superunitary gauge groups U(N+ |N−) (we still call
them A-type for convenience) and A, D-type quiver structures.2 These theories are realized
using brane webs of (p, q)-branes, positive D5, and negative D5-branes [31, 40, 41]. To show
the correspondence, we use the representation theory of the quantum toroidal gl1 [42–46] to
construct algebraic quantities called the intertwiners. Assigning the intertwiners to trivalent
vertices of the brane web, we show that composition of them gives the partition functions
of the gauge theory. We call this procedure the intertwiner formalism (see section 4 for
details). It was first introduced by Awata, Feigin, and Shiraishi [47] and various extensions
were studied in subsequent studies [48–62].

In the original story of AGT correspondence, the 4d N = 2 theories come from 6d
theories associated with ADE type non-super Lie-algebras (see [20] and the references
therein). Theories appearing there do not have structures of superalgebras, and thus, the
supergroup gauge theories do not belong to the theories previously studied in the literature.
The existence of the AGT correspondence of the theories we study in this paper implies that
there is a broader 2d/4d (5d/q-algebra) correspondence, or more generally the BPS/CFT
correspondence, where new non-unitary theories play important roles.

The main results of this paper are the following.

• We introduce a new intertwiner which we call the negative intertwiner to represent
negative D5-branes (section 4).

1We call ordinary D-branes as positive D-branses and ghost D-branes as negative D-branes in this paper.
2Mostly, we only discuss on theories with non-superalgebra quiver structure. For quivers with superalgebra

structure (superquiver theories), see section 8.
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• We show that compositions of the ordinary intertwiners and the negative intertwiners
give the Nekrasov factors of supergroup gauge theories. We also explicitly derive the
total partition functions of A and D-type quiver gauge theories (section 4 and 5).

• We derive the supergroup analogue of the Gaiotto state, qq-character and discuss the
relation with the quiver W-algebra (section 6).

• We show that the negative intertwiner is related with the anti-vertex. We also complete
the procedure to assign framing factors (section 7).

• We give conjectures regarding superquiver theories where negative NS5-branes are
expected to appear (section 8).

To be concrete, quantum toroidal gl1 has two classes of representations: vertex operator
representations and crystal representations. They are determined by the values of the
two central charges of the algebra, which we call level (`1, `2). In the 5-brane web, we
associate a Fock space to each of the 5-brane. For the NS5-branes, we assign vertex
operator representations with level (1, n), (n ∈ Z), while for the D-branes we assign crystal
representations with level (0,±1). Level (0,+1) (resp. (0,−1)) is assigned to positive (resp.
negative) D5-branes. Here, we introduced a new crystal representation with level (0,−1)
to represent the negative D5-brane. We then derive two type of intertwiners (positive and
negative) Φ± : (0,±1)⊗ (1, n)→ (1, n± 1) and their duals associated with trivalent vertices
of the brane web, representing junctions of NS5-branes and positive, negative D5-branes.
Compositions of these interwiners give the partition functions of supergroup gauge theories.
We show this explicitly for pure supergroup gauge theories, A and D-type quiver gauge
theories. In the process, we also generalize the brane webs of D-type quiver in 5d so that
they include negative D-branes. The positive intertwiner is just the intertwiner studied
in [47], while the physical interpretation of the negative intertwiner is new in the literature.

Using the interwiners, we derive supergroup analogues of the Gaiotto state and char-
acterize it by the action of the Drinfeld currents. We also reproduce the qq-characters
in [32] using the interwiners. Relation with the quiver W-algebra is discussed too. We will
see that all these quantities are derived by a simple modification of the quantities of the
non-supergroup case.

After getting used with the interwiner formalism, we then discuss the relation with the
refined topological vertex and anti-vertex. We show that the newly introduced negative
intertwiner becomes the anti-vertex after taking nontrivial matrix elements. Using the
correspondence with the intertwiners, we give a complete procedure how to assign framing
factors, which was not explicitly discussed in [31]. The procedure we give is compatible
with the gluing rules of the intertwiners. Discussions in the unrefined limit will be also
given. Namely, we will see that the positive and negative interwiners will be related with
each other in the unrefined limit, which was a property discussed previously in [31].

S-duality of supergroup gauge theories with non-superalgebra quiver structure implies
the existence of non-supergroup gauge theories with superalgebra quiver structure. For 3d
supersymmetric gauge theories, a gauge theory with superquiver structure was discussed
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in [54, 63–65]. However, for 5d gauge theories, to the author’s knowledge, there is no
known construction of supersymmetric supergroup superquiver gauge theories. Using the
correspondence with the representations of the algebra, we give a discussion on how
superquiver gauge theories should appear in our formalism if they exist and give some
conjectures we hope to come back in near future.

The paper is organized as follows. We review the explicit formulas, properties of the
instanton partition functions, and D-brane constructions of A-type supergroup with A and
D-type quiver gauge theories in section 2. We summarize the representations of quantum
toroidal gl1 in section 3. Intertwiners and their relations with the Nekrasov factors are
discussed in section 4. In section 5, we use the positive and negative intertwiners to derive
partition functions of pure super Yang-Mills, A-type quiver, and D-type quiver gauge
theories. Relations with Gaiotto state, qq-character, and quiver W-algebra are discussed
in section 6. The correspondences between the intertwiners and the refined-topological
vertices are in section 7. Finally, we briefly give a discussion on the S-dual of supergroup
gauge theories with A-type quiver structure in section 8.

2 Supergroup gauge theory

In this section, we review the supergroup gauge theory and the instanton partition functions
of supergroup quiver gauge theories following [32]. We give the Lagrangian and show its
properties in section 2.1. We then give the explicit formulas for the partition functions we
use in section 2.2. We also show the properties of the partition functions and the D-brane
construction in section 2.3 and section 2.4.

2.1 Lagrangian

Let us first review what a supergroup gauge theory is. Let G be a Lie supergroup. In
this paper we only discuss when G = U(N+ |N−). Since we are considering elements of
supergroups, the vector spaces appearing are supervector spaces or Z2-graded vector spaces
(e.g. CN+ |N−):

V = V+ ⊕ V−, (2.1)

where V is a general supervector space and V+, V− are vector spaces of the elements with
even (bosonic, positive) and odd (fermionic, negative) parities, respectively. Namely, an
element x ∈ Vσ is called even (resp. odd) when σ = + (resp. σ = −). We will also identify
σ = ± with σ = ±1 in later calculations.

We then introduce a dynamical gauge field Aµ taking values in the Lie algebra of G.
The gauge transformation of it is Aµ → gAµg

−1 + g∂µg
−1, g ∈ G and the gauge invariant

Lagrangian is written as

SYM = − 1
g2

YM

∫
d4x Str(F ∧ ∗F ), (2.2)

where Str is the supertrace. The supertrace over the graded vector space CN+ |N− is
defined as StrCN+ |N− = TrCN+ − TrCN− . Using this supertrace formula, the Lagrangian of
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supergroup gauge theory with G = U(N+ |N−) can be rewritten as

SYM = − 1
g2

YM

∫
d4x TrCN+ (F ∧ ∗F )+ −

(
− 1
g2

YM

)∫
d4x TrCN− (F ∧ ∗F )− , (2.3)

where the superscript of (F ∧ ∗F )± denotes the positive/negative contribution. Obviously,
this theory is not unitary because the second term has a wrong sign in front of it, and the
energy spectrum is not bounded from below.

We further can introduce a topological term so-called the θ-term

Sθ = − iθ

8π2

∫
d4x StrF ∧ F, (2.4)

and consider non-perturbative configurations called instantons like the ordinary group gauge
theory. Anti-self-dual (ASD)/self-dual (SD) YM configurations ∗F = ∓F minimize the YM
action for ordinary group gauge theory:

SYM[A] = − 1
2g2

YM

∫
d4xTr(F ± ∗F ) ∧ ∗(F ± ∗F )± 1

g2
YM

∫
d4xTr(F ∧ F ) ≥ 8π2|k|

g2
YM

,

(2.5)

where the minimized Lagrangian is described by the topological number

k = 1
8π2

∫
d4x Tr(F ∧ F ). (2.6)

However, for the supergroup gauge theory, the ASD/SD configuration does not minimize the
Lagrangian but rather gives a saddle point. This comes from the minus sign in front of the
second term in (2.3). Similar to the ordinary gauge theory case, the ASD/SD configuration
is characterized by a topological number

k = 1
8π2

∫
d4x Str(F ∧ F ) = k+ − k−, (2.7)

where k± are interpreted as the positive and negative instanton numbers.3
We can explicitly compute the partition function with suitable amounts of supersym-

metries under Ω background using the supersymmetric localization [1, 2, 32] (see [66] for a
nice review). The partition function is schematically evaluated as

Z =
∫

[DA] e−Stot =
∑
k

qk
∫

[DA(k)
inst]

∫
[DδA] e−Sfluc[δA] = Zpert

∑
k∈Z

qkZk,

Zk =
∑

k+−k−=k
k±≥0

Zk+ | k− , q = e2πiτ ,
(2.8)

where we denoted the complexified gauge constant as τ = θ
2π + 4πi

g2
YM

. The detailed form of
this partition function is derived in the next section.

3See table 3.1 of [66] for the classification of instanton/anti-instanton, positive/negative instanton. The
positive and negative instantons obey the ASD YM equation with k+ > 0 and k− > 0, respectively.
The positive anti-instanton and negative anti-instanton obey the SD YM equation with k+ < 0 and
k− < 0, respectively.
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2.2 Instanton partition function from equivariant index formula

We use the equivariant index formalism to evaluate the instanton partition function of 5d
N = 1 supersymmetric gauge theories with gauge groups U(N+ |N−) following [32]. We
consider generic quiver gauge theories. Let Γ = (Γ0,Γ1) be a quiver, where Γ0 = {i} and
Γ1 = {e : i→ j} are the set of nodes and edges, respectively. For each node, a supergroup
U(Ni,+|Ni,−) is assigned. We denote the instanton and framing bundles over the instanton
moduli space at the fixed point as K = (Ki)i∈Γ0 and N = (Ni)i∈Γ0 . Since we are considering
supergroups, the corresponding supercharacters are given by supertraces

schNi = chN+
i − chN−i , schKi = chK+

i − chK−i , (2.9)

where each is defined as

chNσ
i =

Ni,σ∑
α=1

v
(σ)
i,α , chKσ

i =
∑

x∈λ(σ)
i

χ(σ)
x , σ = ±, (2.10)

where

χ(+)
x = v(+)

i,αq
i−1
1 qj−1

2 , (α, i, j) ∈ λ(+)

i,α, α = 1, . . . , Ni,+,

χ(−)
x = v(−)

i,αq
−i
1 q−j2 , (α, i, j) ∈ λ(−)

i,α, α = 1, . . . , Ni,−,
(2.11)

and λ(±)
i,α are Young diagrams (see appendix A). The universal sheaf character is obtained as

schYi = schNi − ch ∧Q schKi, (2.12)

where

ch ∧Q = (1− q1)(1− q2). (2.13)

The dual of a bundle X is denoted as X∨ and the character of it is obtained by taking the
inverse as

chX =
∑
X

x, chX∨ =
∑
X

x−1. (2.14)

Using these supercharacters, partition functions are obtained by applying the
Dolbeault index,

I[X] =
∏
x∈X

(
1− x−1

)
. (2.15)

Note that the q parameters are related to the Ω background parameters ε1,2 as

q1 = eε1 , q2 = eε2 . (2.16)

For later use, we also introduce another parameter q3 obeying the condition

q3 = eε3 , q1q2q3 = 1. (2.17)
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Vector multiplet. We first consider the vector multiplet contribution. The character
formula is written as

schVi = schY∨i schYi

ch ∧Q = schVinst
i + schVpert

i ,

schVinst
i = −schN∨i schKi − q3 schK∨i schNi + ch ∧Q∨schK∨i schKi,

schVpert
i = schN∨i schNi

ch ∧Q ,

(2.18)

where we decomposed the character into the perturbative part4 and the instanton part.
The perturbative part is the part not depending on the supercharacter schKi. We further
can decompose the supercharacter using (2.9)

schVinst
i =

∑
σ,σ′=±

σσ′chVinst
i,σσ′ , schVpert

i =
∑

σ,σ′=±
σσ′chVpert

i,σσ′ ,

chVinst
i,σσ′ = −chNσ∨

i chKσ′
i − q3 chKσ∨

i chNσ′
i + ch ∧Q∨chKσ∨

i chKσ′
i ,

chVpert
i,σσ′ = chNσ∨

i chNσ′
i

ch ∧Q .

(2.19)

The instanton partition function is obtained by taking the index which eventually gives

Zvec,inst
i =

∏
σ,σ′=±

Zvec,inst
i,σσ′ , Zvec,inst

i,σσ′ = I [σσ′Vinst
i,σσ′ ] = Nσσ′(~v(σ)

i , ~λ
(σ)
i |~v

(σ′)
i , ~λ

(σ′)
i )−σσ′ .

(2.20)

We defined here a generalized Nekrasov factor

Nσσ′

(
~v

(σ)
1 ,~λ

(σ)
1 |~v

(σ′)
2 ,~λ

(σ′)
2

)
=
N2,σ′∏
α=1

∏
x∈~λσ1

(
1− χ

(σ)
x

q3v
(σ′)
2,α

)N1,σ∏
β=1

∏
x∈~λσ′2

(
1−

v
(σ)
1,β

χ
(σ′)
x

) ∏
x∈~λ(σ)

1

y∈~λ(σ′)
2

S

(
χ

(σ)
x

χ
(σ′)
y

)
,

(2.21)

where

S(z) = (1− q1z)(1− q2z)
(1− z)(1− q−1

3 z)
. (2.22)

Note that the coordinates of the box χ(σ)
x are defined as in (2.11). Explicitly, the total

instanton partition function is written as

Zvec,inst
i =

N+−

(
~v(+)

i ,
~λ(+)

i |~v
(−)

i ,
~λ(−)

i

)
N−+

(
~v(−)

i ,
~λ(−)

i |~v
(+)

i ,
~λ(+)

i

)
N++

(
~v(+)

i ,
~λ(+)

i |~v
(+)

i ,
~λ(+)

i

)
N−−

(
~v(−)

i ,
~λ(−)

i |~v
(−)

i ,
~λ(−)

i

) . (2.23)

An observation is that Nekrasov factors with the same parities in the subindex (e.g.
N++, N−−) are in the denominator while Nekrasov factors with different parities (e.g.
N+−, N−+) are in the numerator. Thus, this contribution can be understood as a quiver

4We note that the perturbative part we denote as Xpert for a bundle X in this section is the one-loop
contribution and does not include the classical contribution.

– 7 –



J
H
E
P
1
2
(
2
0
2
2
)
1
5
7

Ni,+|Ni,− Ni,+ Ni,−
=

N++ N−−

N−+

N+−

Figure 1. Quiver gauge theory interpretation of supergroup gauge theory.

gauge theory with two gauge nodes U(Ni,+)×U(Ni,−), where off-diagonal contributions
play the role of bifundamental matters connecting the two gauge nodes (see figure 1) [29].

The perturbative part is read

Zvec,pert
i =

∏
σ,σ′=±

Zvec,pert
i,σσ′ ,

Zvec,pert
i,σσ′ =

Ni,σ∏
α=1

Ni,σ′∏
β=1

∞∏
k,k′=1

1−
v

(σ)
i,α

v
(σ′)
i,β

qk1q
k′
2

σσ′ =
Ni,σ∏
α=1

Ni,σ′∏
β=1
G

q1q2
v

(σ)
i,α

v
(σ′)
i,β

σσ′ , (2.24)

where

G(z) = G(z; q1, q2) = exp
(
−
∞∑
n=1

zn

n(1− qn1 )(1− qn2 )

)
(2.25)

and we assumed |v(σ)
i,α /v

(σ′)
i,β | < 1. For the diagonal term σ = σ′, this diverge and we have to

remove the contribution when α = β. When some of the Coulomb branch parameters are
|v(σ)
i,α /v

(σ′)
i,β | > 1, we do analytic continuation as

G

q1q2
v

(σ)
i,α

v
(σ′)
i,β

→ G
v(σ′)

i,β

v
(σ)
i,α

 . (2.26)

See appendix B for details.

Bifundamental hypermultiplet. Let us next discuss the contribution from the bifun-
damental hypermultiplet. The strategy is exactly the same and the character formula is
written as

schHe:i→j = −chMe
schY∨i schYj

ch ∧Q = schHinst
e:i→j + schHpert

e:i→j ,

schHinst
e:i→j = chMe

(
schN∨i schKj + q3 schK∨i schNj − ch ∧Q∨schK∨i schKj

)
,

schHpert
e:i→j = −chMe

schN∨i schNj

ch ∧Q ,

(2.27)

where

chMe = µe, e ∈ Γ1 (2.28)
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is the bifundamental mass. Expanding the supercharacters and taking the index gives

Zbf,inst
e:i→j =

∏
σ,σ′=±

Zbf,inst
e:i→j,σσ′ , Zbf,inst

e:i→j,σσ′ = I
[
σσ′Hbf,inst

e,σσ′

]
=Nσσ′

(
~v

(σ)
i ,~λ

(σ)
i |µe:i→j~v

(σ′)
j ,~λ

(σ′)
j

)σσ′
.

(2.29)

Similarly, the perturbative contribution is given

Zbf,pert
e:i→j =

∏
σ,σ′=±

Zbf,pert
e:i→j,σσ′ ,

Zbf,pert
e:i→j,σσ′ =

Ni,σ∏
α=1

Nj,σ′∏
β=1

∞∏
k,k′=1

1− µ−1
e

v
(σ)
i,α

v
(σ′)
j,β

qk1q
k′
2

−σσ′ =
Ni,σ∏
α=1

Nj,σ′∏
β=1
G

q1q2
µe

v
(σ)
i,α

v
(σ′)
j,β

−σσ′ .
(2.30)

Similar to the vector multiplet contribution, we do analytic continuation depending on the
ratio of the Coulomb branch parameters.

Fundamental, antifundamental hypermultiplets. The contributions of the funda-
mental and antifundamental hypermultiplets come from the following character formulas.
For the fundamental hypermultiplets, we have

schHf
i = −schY∨i schMi

ch ∧Q = schHf,inst
i + schHf,pert

i ,

schHf,inst
i = q3 schK∨i schMi, schHf,pert

i = −schN∨i schMi

ch ∧Q ,

(2.31)

and for the antifundamental hypermultiplets, we have

schHaf
i = −sch M̃∨

i schYi

ch ∧Q = schHaf,inst
i + schHaf,pert

i ,

schHaf,inst
i = sch M̃∨

i schKi, schHaf,pert
i = −sch M̃∨

i schNi

ch ∧Q ,

(2.32)

where

schMi =
N f
i,+∑

f=1
µ+

i,f −
N f
i,−∑

f=1
µ−i,f , sch M̃i =

Naf
i,+∑

f=1
µ̃+

i,f −
Naf
i,−∑

f=1
µ̃−i,f . (2.33)

Comparing with the bifundamental matters, the difference is that the bifundamental mass
is set to be µe = 1 and one of the schYi in the numerator is converted to schMi or sch M̃i,
which are independent of the instanton contribution. Namely, after freezing the gauge
degrees of freedom of either the source or target gauge node, we obtain the fundamental
and antifundamental contribution.
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Taking the index, the instanton partition function coming from the fundamental/anti-
fundamental multiplet will be

Z inst
f,i =

∏
σ,σ′=±

Z inst
f,i,σσ′ , Z inst

af,i =
∏

σ,σ′=±
Z inst

af,i,σσ′ ,

Z inst
f,i,σσ′ = I[σσ′q3 chKσ∨

i chMσ′
i ] = Nσσ′(~v(σ)

i , ~λ
(σ)
i | ~µ

σ′
i ,
~∅)σσ′ =

N f
i,σ′∏
f=1

∏
x∈~λσi

(
1− χ

(σ)
x

q3µσ
′
i,f

)σσ′
,

Z inst
af,i,σσ′ = I[σσ′ch M̃∨,σ

i chKσ′
i ] = Nσσ′(~̃µσi ,~∅ |~v

(σ′)
i , ~λ

(σ′)
i )σσ′ =

Naf
i,σ∏

f̃=1

∏
x∈~λσ′i

(
1−

µ̃σ
i,f̃

χ
(σ′)
x

)σσ′
.

(2.34)

The perturbative contributions are read as

Zpert
f,i =

∏
σ,σ′=±

Zpert
f,i,σσ′ , Zpert

af,i =
∏

σ,σ′=±
Zpert

af,i,σσ′ ,

Zpert
f,i,σσ′ =

Ni,σ∏
α=1

Nf

i,σ′∏
f=1

∞∏
k,k′=1

1−
v

(σ)
i,α

µσ
′
i,f

qk1q
k′
2

−σσ′ =
Ni,σ∏
α=1

Nf

i,σ′∏
f=1
G

q1q2
v

(σ)
i,α

µσ
′
i,f

−σσ′ ,
Zaf,i,σσ′ =

Ni,σ∏
α=1

Naf
i,σ′∏
f=1

∞∏
k,k′=1

1−
µ̃σ
′
i,f

v
(σ)
i,α

qk1q
k′
2

−σσ′ =
Ni,σ∏
α=1

Naf
i,σ′∏
f=1
G

q1q2
µ̃σ
′
i,f

v
(σ)
i,α

−σσ′ .
(2.35)

Similar to other perturbative contributions, analytic continuation will be done if needed.

Topological term. The topological term is a term counting the number of instantons. As
mentioned in (2.7), the topological contribution is characterized by the difference between
the positive and negative instanton numbers. When the gauge groups are U(N+ |N−), the
instantons are characterized by Young diagrams (the bundle Ki), and thus, the topological
term has the following form:

Zi,top =
N∏
i=1

q
|~λ(+)

i |−|~λ
(−)

i |
i , |~λ(±)

i | =
Ni,±∑
α=1
|λ(±)

i,α|, (2.36)

where the positive (negative) instanton numbers are identified as k±i = |~λ(±)

i |.

Chern-Simons term. For 5d gauge theory, we further can add a Chern-Simons term
to the Lagrangian as the ordinary group gauge theory [4, 67, 68]. It is labeled by the
integer called the Chern-Simons level assigned to each node (κσi )i∈Γ0,σ=±. The instanton
contribution is written as

ZCS
i =

∏
σ=±
ZCS
i,σ , ZCS

i,σ =
∏

x∈~λ(σ)
i

(
χ(σ)
x

)σκσi
. (2.37)

In the original paper [32], the authors introduced two integers for each node, giving
independent Chern-Simons levels for the positive and negative contributions. However, it
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seems that when we consider the intertwiner formalism, the Chern-Simons level appearing
will be5

κ+
i = κ−i := κi, ∀i ∈ Γ0. (2.38)

We will always impose this condition throughout this paper.

Convention. For later convenience, we introduce a generalized notation. In the original
reference [32], the authors gathered the Chern roots with even and odd parities. The order
of these roots is related to the order of D-branes, so we will not specify the order of the
roots but rather use the following notation. Consider a supergroup quiver gauge theory
whose gauge nodes are U(Ni,+ |Ni,−) with the condition Ni,+ +Ni,− = Ni. There are Ni

Coulomb branch parameters which we denote viα (α = 1, . . . , Ni). Each of the elements
belongs to either N+

i or N−i depending on their parities. We denote the parity for viα as
σiα = ±. We further introduce Ni-tuples of Young diagrams λiα (α = 1, . . . , Ni) which label
the fix points of the U(1)2 torus actions:

~vi = (vi1, vi2, . . . , viNi), ~λi = (λi1, λi2, . . . , λiNi), ~σi = (σi1, σi2, . . . , σiNi). (2.39)

Then, the basic supercharacters are written as

schNi =
Ni∑
α=1

σiαviα, schKi =
Ni∑
α=1

σiα
∑
x∈λiα

χ(σiα)
x . (2.40)

For fundamental and antifundamental contributions, we introduce the mass parameters and
their parities as

~µ
(f)
i =

(
µ

(f)
i1 , µ

(f)
i2 , . . . , µ

(f)
iN f
i

)
, ~σ

(f)
i =

(
σ

(f)
i1 , σ

(f)
i2 , . . . , σ

(f)
iN f
i

)
,

~̃µ
(af)
i =

(
µ̃

(af)
i1 , µ̃

(af)
i2 , . . . , µ̃

(af)
iNaf
i

)
, ~̃σ

(af)
i =

(
σ̃

(af)
i1 , σ̃

(af)
i2 , . . . , σ̃

(af)
iNaf
i

)
,

(2.41)

and then, the supercharacters are written as

schMi =
N f
i∑

f=1
σ

(f)
if µ

(f)
if , sch M̃i =

Naf
i∑

f=1
σ̃

(af)
if µ̃

(af)
if . (2.42)

Using these conventions, the instanton partition functions of the topological term, Chern-
Simons term, bifundamental, vector, and (anti)fundamental contributions are rewritten as

Ztop.
(
~λi, ~σi

)
= q

Ni∑
a=1

σia|λi,a|

i , ZCS
(
κi, ~λi, ~σi

)
=

Ni∏
j=1

∏
x∈λij

(
χ

(σij)
x

)σijκi
,

Zbfd.
(
~vi, ~λi, ~σi |~vj , ~λj , ~σj |µe:i→j

)
=

Ni∏
a=1

Nj∏
b=1

Nσiaσjb (via, λia |µe:i→jvjb, λjb)σiaσjb ,

5This phenomenon itself is nothing special in the context of ABJM theory and supermatrix models [69–71],
and it actually comes from the gauge invariance of the Chern-Simons term with supergroup. We thank Taro
Kimura for pointing this out.
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Zvec.
(
~vi, ~λi, ~σi

)
= Zbfd.

(
~vi, ~λi, ~σi |~vi, ~λi, ~σi | 1

)−1
=

Ni∏
a,b=1

Nσiaσib (via, λia | vib, λib)−σiaσib ,

Zf
(
~vi, ~λi, ~σi | ~µ(f)

i , ~σ
(f)
i

)
= Zbfd.

(
~vi, ~λi, ~σi | ~µ(f)

i ,
~∅, ~σ(f)

i | 1
)
,

Zaf

(
~vi, ~λi, ~σi | ~̃µ

(af)
i , ~̃σ

(af)
i

)
= Zbfd.

(
~̃µ

(af)
i ,~∅, ~̃σ

(af)
i |~vi, ~λi, ~σi | 1

)
, (2.43)

where

Nσσ′(v1, λ | v2, ν) =
∏
x∈λ

(
1− χ

(σ)
x

q3v2

)∏
x∈ν

(
1− v1

χ
(σ′)
x

) ∏
x∈λ
y∈ν

S

(
χ

(σ)
x

χ
(σ′)
y

)
. (2.44)

The generalized Nekrasov factor of (2.21) is just a composition of this Nekrasov factor (2.44).
Equivalent expressions of these Nekrasov factors are in appendix C.

Using this notation, the total instanton partition function is written as

Zinst. [Γ] =
∑
{~λi}

∏
i∈Γ0

Ztop.
(
~λi, ~σi

)
ZCS

(
κi, ~λi, ~σi

)
Zvec.

(
~vi, ~λi, ~σi

)

×
∏
i∈Γ0

Zf
(
~vi, ~λi, ~σi | ~µ(f)

i , ~σ
(f)
i

)
Zaf

(
~vi, ~λi, ~σi | ~̃µ

(af)
i , ~̃σ

(af)
i

)
×

∏
e:i→j∈Γ1

Zbfd.
(
~vi, ~λi, ~σi |~vj , ~λj , ~σj |µe:i→j

)
.

(2.45)

2.3 Properties of the instanton partition functions

In this section, we briefly study two properties of the instanton partition function in (2.45)
which we will use in other sections.

Bifundamental mass. We can set the bifundamental mass to be µe:i→j = γ−1 by using
the symmetry of the Nekrasov partition functions. The partition function is invariant
under the following transformation as long as we impose the condition (2.38) on the Chern
Simons levels:

~vi → αi~vi, ~µi,f → αi~µi,f, ~µi,af → αi~µi,af,

µe:i→j →
αi
αj
µe:i→j , qi → α−κii qi.

(2.46)

This is a generalized version of the symmetry used in [47–49, 58] to study the relation
with quantum algebras. If we want to set the Chern-Simons levels to be independent with
each other κ+

i 6= κ−i , to manifest the symmetry (2.46), we need to modify the topological
term as q(+)

i
|~λ(+)

i |q(−)

i
−|~λ(−)

i |. Then the symmetry transformation of the topological term above is
changed to

q(+)

i → α
−κ+

i
i q(+)

i , q(−)

i → α
−κ−i
i q(−)

i . (2.47)

However, since the instanton number is (2.7), it is natural to use the first scenario (2.46)
instead of introducing two different instanton counting parameters q(±)

i . Actually, only the
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first scenario seems to appear in the intertwiner formalism we will discuss later. Therefore,
we will use only one instanton counting parameter and one Chern-Simons level for each
gauge node from now on. Using the symmetry (2.46), we can tune the bifundamental mass
to be γ−1. We always set the bifundamental mass to be this value from now on.

Recursive relation of the Nekrasov factor. From the explicit formula of the Nekrasov
factor (2.44), we obviously have the following recursive relations

Nσσ′(v1, λ1 + x | v2, λ2)
Nσσ′(v1, λ1 | v2, λ2) =

(
−χ

(σ)
x

q3v2

)
Y(σ′)
λ2

(
q−1

3 χ(σ)
x

)
,

Nσσ′(v1, λ1 | v2, λ2 + x)
Nσσ′(v1, λ1 | v2, λ2) = Y(σ)

λ1

(
χ(σ′)
x

)
,

(2.48)

where

Y(σ)
λ (z) = (1− v/z)

∏
x∈λ

S
(
χ(σ)
x /z

)
. (2.49)

These are the Y functions introduced in [32] (see also [72–74]). They are related to the
qq characters and the deformed Seiberg-Witten curve [10, 72–74]. They will appear as a
fundamental element in our construction, too.

2.4 D-brane construction of supergroup gauge theories

We briefly review D-brane constructions of A-type supergroup gauge theories with A-quiver
and D-quiver structures [26–30].

4d N = 2 SU(N+ |N−) Yang-Mills theory is realized on the world-volume of positive
(ordinary) D4+ branes and negative (ghost) D4− branes suspended between NS5-branes in
type IIA theory as

NS5 NS5

N+ D4+

N− D4−

(2.50)

where we illustrated the D4+ branes in solid horizontal lines, the D4− branes in dashed
horizontal lines, and the NS5 branes in solid vertical lines [29, 30]. Note also that generally
we can order the D-branes in any order but the order above was chosen for simplicity.
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Ar quiver gauge theory The difference with the ordinary group gauge theory is that
negative branes are also included in the setup. Similarly to the ordinary group case, we can
construct linear quiver supergroup gauge theories by including these negative branes as

4 | 3 4 | 3 4 | 3 4 | 3

(2.51)

where for simplicity, we assigned the same supergroup U(4 | 3) to all the gauge nodes. The
numbers inside the nodes are the ranks of the positive parts and negative parts of the gauge
groups. We can also consider the 5d lift-up of this theory by taking T-duality. After this
process, we obtain a (p, q) web diagram which is dual to the topological string theory on
non-compact toric Calabi-Yau manifold [40, 41, 75–79]. For the supergroup case, a web
diagram was proposed in [31]. For example, for the pure SYM, we have

Type IIB Type IIA

T dual

(2.52)

In [31], the authors introduced a trivalent vertex drawn in dashed lines to incorporate the
negative D-branes in the (p, q) brane web. In this paper, we will only draw the horizontal
lines, which correspond to D5-branes, in dashed lines. The (p, q) branes with q 6= 1 will
be always drawn in solid lines. Moreover, to simplify diagrams, instead of using the type
IIB picture, we will always use the type IIA diagram to draw figures. The slope of the
(p, q)-brane corresponds to the charge of the brane, and we will simply assign the value of
it next to the vertical segment if needed. We often make use of the type IIA figure, but
note that it always means the type IIB figure because we are considering five-dimensional
gauge theories.

Dr quiver gauge theory. We can also consider 4d D-type quiver supergroup gauge
theories by introducing the ON0 plane [29, 80, 81]. The brane configuration is then given

– 14 –



J
H
E
P
1
2
(
2
0
2
2
)
1
5
7

as the following:

ON0

4 | 2 4 | 2 4 | 2

2 | 1

2 | 1

(2.53)

where we draw the ON0 plane in a blue solid line.
Taking T-duality of the above system, we can consider 5-brane webs realizing five-

dimensional gauge theories. A microscopic description of the ON0 plane as a combination
of an NS5-brane and an ON− plane was proposed in [82]:

ON0

NS5

NS5 ON−

(2.54)

Using this description, the authors managed to realize D-type quiver gauge theories using
5-brane webs. In this paper, we follow the description in [83] and simply draw this web
diagram as

(2.55)

where we draw the (p, q)-brane straight and assigned a vertex to the junction of the
branes connected to the ON− plane.

We expect that a similar story of [82] holds also for supergroup gauge theories and that
the difference is only the existence of negative D-branes. Namely, dashed horizontal lines
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will be also included in the web diagram. Thus, in our notation, brane webs for general
D-type quiver supergroup gauge theories are drawn as

(2.56)

and the quiver structure is read as

3 | 3
2 | 1

1 | 3 3 | 1

2 | 2

0 | 4
(2.57)

3 Quantum toroidal gl1

Quantum toroidal gl1 [42–46] is a quantum algebra whose generators are described in
Drinfeld currents

x±(z) =
∑
m∈Z

x±mz
−m, ψ±(z) =

∑
r≥0

ψ±±rz
∓r, γ̂, ψ+

0 /ψ
−
0 , (3.1)

where γ̂ and ψ+
0 /ψ

−
0 are central elements. We denote this algebra E for simplicity. There

are two independent deformation parameters q1, q2, q3 with the condition q1q2q3 = 1. These
q-parameters are identified with the parameters introduced in the previous section.

The defining relations are

[
ψ±(z), ψ±(w)

]
= 0, ψ+(z)ψ−(w) = g(γ̂z/w)

g(γ̂−1z/w)ψ
−(w)ψ+(z),

ψ±(z)x+(w) = g
(
γ̂±

1
2 z/w

)
x+(w)ψ±(z), ψ±(z)x−(w) = g

(
γ̂∓

1
2 z/w

)−1
x−(w)ψ±(z),

x±(z)x±(w) = g(z/w)±1x±(w)x±(z),

[x+(z), x−(w)] = (1− q1)(1− q2)
(1− q−1

3 )

(
δ
(
γ̂w/z

)
ψ+

(
γ̂

1
2w
)
− δ

(
γ̂−1w/z

)
ψ−

(
γ̂−

1
2w
))
,

Sym
z1,z2,z3

z2
z3

[
x±(z1),

[
x±(z2), x±(z3)

]]
= 0

(3.2)
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where the structure function is

g(z) = (1− q1z)(1− q2z)(1− q3z)
(1− q−1

1 z)(1− q−1
2 z)(1− q−1

3 z)
. (3.3)

We note this function satisfy

g(z−1) = g(z)−1. (3.4)

We additionally impose the condition ψ+
0 ψ
−
0 = 1.

Hopf algebra structure. A Hopf algebra H is a bialgebra equipped with a unit 1H , a
counit ε, a product m, a coproduct ∆ and an antipode satisfying some properties [42]. In
this paper, we only need the coproduct formula, which is given

∆
(
x+ (z)

)
= x+ (z)⊗ 1 + ψ−

(
γ̂

1/2
(1) z

)
⊗ x+

(
γ̂(1)z

)
,

∆
(
x− (z)

)
= x−

(
γ̂(2)z

)
⊗ ψ+

(
γ̂

1/2
(2) z

)
+ 1⊗ x− (z) ,

∆
(
ψ+ (z)

)
= ψ+

(
γ̂

1/2
(2) z

)
⊗ ψ+

(
γ̂
−1/2
(1) z

)
,

∆
(
ψ− (z)

)
= ψ−

(
γ̂
−1/2
(2) z

)
⊗ ψ−

(
γ̂

1/2
(1) z

)
,

∆ (γ̂) = γ̂ ⊗ γ̂,

(3.5)

where γ̂(1) = γ̂ ⊗ 1 and γ̂(2) = 1⊗ γ̂.

Miki automorphism [42]. Quantum toroidal gl1 has an automorphism called Miki-
automorphism S (see also [42, 84, 85]). The explicit action on the currents is complicated
but the action of S2 can be written explicitly as

S2 ·x± (z) =−x∓
(
z−1

)
, S2 ·ψ± (z) =ψ∓

(
z−1

)
, S2 ·

(
C,ψ−0

)
=
(
C−1,(ψ−0 )−1

)
.

(3.6)

Remark. To consider representations of this algebra, we need to specify the values of the
central elements γ̂, ψ−0 /ψ+

0 . In this note, we only use representations with central charges(
γ̂, ψ−0 /ψ

+
0

)
7→
(
γ`1 , γ2`2

)
, (`1, `2) ∈ Z2 (3.7)

where γ := q
1/2
3 . We call this a level (`1, `2) representation. Later, we will frequently use

the following function

S
(
z
)

:= (1− q1z)(1− q2z)
(1− z)(1− q−1

3 z)
(3.8)

satisfying

S(q3z) = S
(
z−1

)
. (3.9)

This is the function that already appeared in the definition of the Nekrasov factor (2.21)
and (2.44). Using this, the structure function is rewritten as

g(z) = S(z)
S(q3z) . (3.10)
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3.1 Crystal representations

When we set the central charge to be γ̂ = 1, the Cartan operators ψ±(z) commute with
each other. Then, we can construct representations using simultaneous eigenstates of these
Cartan operators. The eigenstates have a crystal like interpretation and actually they are
related to BPS crystals [86–94], so we call them crystal representations.6 The basis of the
representations we consider is labeled by Young diagrams (see appendix A for the notations).
We use the double ket convention like |λ〉〉 for these representations.

3.1.1 Level (0, 1) representation

Ket representation. We use the notation similar to the one used in [58]. The level (0, 1)
representation is described as

x+(z) |v, λ〉〉 =
∑

x∈A(λ)
δ
(
z/χ(+)

x

)
Res
z=χ(+)

x

1
zY (+)

λ (z) |v, λ+ x〉〉,

x−(z) |v, λ〉〉 = γ−1 ∑
x∈R(λ)

δ
(
z/χ(+)

x

)
Res
z=χ(+)

x

z−1Y (+)

λ

(
zq−1

3

)
|v, λ− x〉〉,

ψ±(z) |v, λ〉〉 =
[
Ψ(+)

λ (z)
]
± |v, λ〉〉,

(3.11)

where Y (+)

λ (z) is (2.49), χ(+)

x = vqi−1
1 qj−1

2 , and

Ψ(+)

λ (z) = γ−1
Y (+)

λ

(
q−1

3 z
)

Y (+)

λ (z) . (3.12)

The symbol [f(z)]± means formal expansion in z∓1 and A(λ), R(λ) are the set of addable
boxes and removable boxes (see appendix A for the notation). The operator x+(z) adds a
box to the Young diagram while the operator x−(z) removes a box from the Young diagram.

We claim that this representation physically corresponds to adding and removing
positive instantons. Each box has an interpretation of an instanton, so we can interpret the
operators as operators adding or removing instantons. We say that the operators x+(z)
(resp.x−(z)) increase (resp. decrease) the total topological number (2.7) by ∆k = ±1. For
the box adding (removing) process to be related with the adding (removing) process of
instantons, we need k = |λ|, and thus, we conclude this representation corresponds to the
positive instanton.

Note also that the spectral parameter v is related with the Chern roots of the framing
bundle N.

Bra representation. We define the dual (bra) representation by

〈〈v, µ|
(
g(z) |v, λ〉〉

)
=
(
〈〈v, µ| g(z)

)
|v, λ〉〉. (3.13)

6In the literature, these representations are called “vertical representations” because the vertical subalgebra
of the quantum toroidal gl1 is commutative in this representation. In this paper, we instead call them
“crystal representations” so that we do not get confused with the vertical and horizontal direction of the
brane web.
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We choose a normalization

〈〈µ|λ〉〉 = a(+)

λ
−1δλ,µ, a(+)

λ = (vγ)−|λ|∏x∈λ χ
(+)

x

N++(v, λ|v, λ) ,

1 =
∑
λ

a(+)

λ |v, λ〉〉〈〈v, λ| .
(3.14)

This was chosen so that the dual action act as

(
x+(z)

)† = −x−(z),
(
x−(z)

)
)† = −x+(z),

(
ψ±(z)

)† = ψ±(z). (3.15)

The explicit form is

〈〈v, λ|ψ±(z) =
[
Ψ(+)

λ (z)
]
± 〈〈v, λ| ,

〈〈v, λ|x+(z) = −γ−1 ∑
x∈R(λ)

〈〈v, λ− x| δ
(
z/χ(+)

x

)
Res
z=χ(+)

x

z−1Y (+)

λ

(
q−1

3 z
)
,

〈〈v, λ|x−(z) = −
∑

x∈A(λ)
〈〈v, λ+ x| δ

(
z/χ(+)

x

)
Res
z=χ(+)

x

1
zY (+)

λ (z) .

(3.16)

3.1.2 Level (0,−1) representation

Ket representation. Let us introduce a different representation with level (0,−1). See
appendix D for a direct derivation of this representation. The representation is written as

x+(z) |v, λ〉〉 = γ
∑

x∈R(λ)
δ (z/χ(−)

x ) Res
z=χ(−)

x

z−1Y (−)

λ (z) |v, λ− x〉〉,

x−(z) |v, λ〉〉 =
∑

x∈A(λ)
δ (z/χ(−)

x ) Res
z=χ(−)

x

z−1Y (−)

λ

(
q−1

3 z
)−1
|v, λ+ x〉〉,

ψ±(z) |v, λ〉〉 =
[
Ψ(−)

λ (z)
]
± |v, λ〉〉,

(3.17)

where the coordinate is χ(−)

x = vq−i1 q−j2 , the function Y (−)

λ (z) is (2.49), and

Ψ(−)

λ (z) = γ
Y (−)

λ (z)
Y (−)

λ (q−1
3 z)

. (3.18)

Obviously, since

Y (−)

λ (z)→
{

1, z →∞
z−1, z → 0

, Ψ(−)

λ (z)→
{
γ = ψ+

0 , z →∞
γ−1 = ψ−0 , z → 0

, (3.19)

we have ψ−0 /ψ+
0 = γ−2, which gives the level (0,−1).

Compared to the level (0, 1) representation, the operator x+(z) removes a box, while
the operator x−(z) adds a box to the Young diagram. Following the discussion in the level
(0, 1) representation, we say that x±(z) changes the total instanton number by ∆k = ±1.
Because x+(z) (resp.x−(z)) removes (resp. adds) boxes from the Young diagram, we need
k = −|λ|. Thus, we should interpret this as a negative instanton contribution.
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Bra representation. We can define the bra representation similarly to the (0, 1) repre-
sentation as(

x+ (z)
)†

= −x− (z) ,
(
x− (z)

)† = −x+ (z) ,
(
ψ±(z)

)† = ψ±(z) (3.20)

and obtain

〈〈v, λ|x+ (z) = −
∑

x∈A(λ)
δ (z/χ(−)

x ) Res
z=χ(−)

x
z−1Y (−)

λ

(
q−1

3 z
)−1
〈〈v, λ+ x| ,

〈〈v, λ|x− (z) = −γ
∑

x∈R(λ)
δ (z/χ(−)

x ) Res
z=χ(−)

x

z−1Y (−)

λ (z) 〈〈v, λ− x| ,

〈〈v, λ|ψ± (z) = 〈〈v, λ|
[
Ψ(−)

λ (z)
]
± .

(3.21)

The norm of the vectors comes from the identity (3.13):

〈〈v, µ | v, λ〉〉 = (a(−)

λ )−1δλ,µ, a(−)

λ = (q3γv)−|λ|∏x∈λ χ
(−)

x

N−−(v, λ | v, λ) ,

1 =
∑
λ

a(−)

λ |v, λ〉〉〈〈v, λ| .
(3.22)

Remark. The level (0,−1) representation actually can be derived from the level (0, 1)
representation after using the Miki automorphism in equation (3.6). For example, for the
Cartan action,

ρ(0,1)
v ◦ S2 (ψ± (z)

)
|v, λ,+〉〉 = ρ(0,1)

v

(
ψ∓

(
z−1

))
|v, λ,+〉〉 =

[
Ψ(+)

λ (z−1; v)
]
±
|v, λ,+〉〉,

(3.23)

where we explicitly wrote the dependence of the spectral parameter v and the repre-
sentation ρ

(0,1)
v . The plus sign in |v, λ,+〉〉 represents that it is the bases of the (0,+1)

representation. Then,

Ψ(+)

λ

(
z−1;v

)
= γ−1Y

(+)

λ

(
q−1
3 z−1;v

)
Y (+)

λ (z−1;v) = γ

(
1− v−1q−1

3
z

)
(
1− v−1

z

) ∏
(i,j)∈λ

S
(
q−1
3 v−1q−i1 q−j2 /z

)
S
(
v−1q−i1 q−j2 /z

) = Ψ(−)

λ

(
z;q−1

3 v−1
)
.

(3.24)

For the actions of the Drinfeld currents x±(z), we have

ρ(0,1)
v ◦ S2(x+(z)) |v, λ,+〉〉

= −ρ(0,1)
v

(
x−
(
z−1

))
|v, λ,+〉〉

= −γ−1 ∑
x∈R(λ)

δ
(
zχ(+)

x,v

)
Res
z=χ(+)

x,v

z−1Y (+)

λ

(
q−1

3 z; v
)
|v, λ− x,+〉〉

= −vzγ
∑

x∈R(λ)
δ

(
z/χ(−)

x,q−1
3 v−1

)
Res

z=χ(−)

x,q−1
3 v−1

z−1Y (−)

λ

(
z; q−1

3 v−1
)
|v, λ− x,+〉〉,
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ρ(0,1)
v ◦ S2 (x− (z)

)
|v, λ,+〉〉

= −ρ(0,1)
v

(
x+
(
z−1

))
|v, λ,+〉〉

= −
∑

x∈A(λ)
δ
(
zχ(+)

x,v

)
Res
z=χ(+)

x,v

z−1Yλ (z; v)−1 |v, λ+ x,+〉〉

= − (vz)−1 ∑
x∈A(λ)

δ

(
z/χ(−)

x,q−1
3 v−1

)
Res

z=χ(−)

x,q−1
3 v−1

z−1Y (−)

λ

(
q−1

3 z; q−1
3 v−1

)−1
|v, λ+ x,+〉〉

(3.25)

where we denote the spectral parameter dependence of the box content as χ(±)

x,v and used

Y (+)

(
z−1; v

)
= (−vz)Y (−)

λ

(
q−1

3 z; q−1
3 v−1

)
, χ(+)

x,v = 1/χ(−)

x,q−1
3 v−1 (3.26)

Obviously, since the rescaling

x±(z)→ (−vz)±1x±(z), ψ±(z)→ ψ±(z) (3.27)

will not change the algebraic relations, multiplication of the factors (−vz)±1 is an iso-
morphism. Thus, the level (0,−1) representation we use is obtained by applying the
automorphism S2 and changing the spectral parameters to7 q−1

3 v−1. Namely, in our
notation, we have

ρ(0,1)
v ◦ S2 ' ρ(0,−1)

q−1
3 v−1 ,

|v, λ,+〉〉 ↔ |q−1
3 v−1, λ,−〉〉,

ρ(0,1)
v ◦ S2(g(z))↔ ρ

(0,−1)
q−1
3 v−1(g(z)), g(z) ∈ E .

(3.28)

3.2 Vertex operator representations

One of the well-known classes of representations of the quantum toroidal gl1 is the vertex
operator8 representation. The Drinfeld currents act as vertex operators in this representation.
This representation has a nontrivial central charge γ̂ 6= 1. These representations are related
with deformed W-algebras [42, 86, 95–102].

3.2.1 Level (1, n) representation

The level (`1, `2) = (1, n), n ∈ Z representations are obtained as

x+(z) 7→ uγnz−nη(z), x−(z) 7→ u−1γ−nznξ(z), ψ±(z) 7→ γ∓nϕ±(z), γ̂ 7→ γ,

(3.29)

7This representation was used in [84] to study S-duality. The representation is the same but the
physical interpretation looks different. In this paper, we relate this representation with negative instan-
tons/ghost branes.

8In the literature, these representations are called “horizontal representations”. We instead call them
“vertex operator representations”.
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where

η (z) = exp
(
−
∞∑
n=1

zn

n
qn1 (1− qn2 ) a−n

)
exp

(
−
∞∑
n=1

z−n

n

(
1− q−n1

)
an

)
,

ξ (z) = exp
( ∞∑
n=1

zn

n
qn1 (1− qn2 ) γna−n

)
exp

( ∞∑
n=1

z−n

n

(
1− q−n1

)
γnan

)
,

ϕ+ (z) = exp
(∑
n>0

z−n

n
γ−

n
2
(
1− q−n1

)
(qn3 − 1) an

)
,

ϕ− (z) = exp
(∑
n>0

zn

n
qn1 γ

−n2 (1− qn2 ) (qn3 − 1) a−n
)
,

[an, am] = nδn+m,0.

(3.30)

The contraction formulas of this operators are in appendix E.1. The Fock space of this
representation is denoted using the normal braket notation such as |0〉 , 〈0|, not the double
braket notation used in the crystal representation. In later sections, we use the boson-
fermion correspondence to form the basis of the Fock space by Young diagrams {|λ〉} (see
appendix G).

3.2.2 Level (−1, n) representation

These representations are obtained by using (3.6). In the vertex operator representation,
we can introduce a spectral parameter into the coefficients of the vertex operators, so we
can remove the negative sign in front of x∓(z). Then the representation for level (−1, 0) is

x+ (z)→ uξ
(
z−1

)
, x− (z)→ u−1η

(
z−1

)
, ψ± (z)→ ϕ∓

(
z−1

)
, γ̂ → γ−1. (3.31)

Namely, in our notation, we have ρ(−1,0)
u ' ρ(1,0)

−u−1 ◦ S2.
We can also construct level (−1, n) representations as

x+ (z)→uγ−nznξ
(
z−1) , x− (z)→u−1γnz−nη

(
z−1) , ψ± (z)→ γ∓nϕ∓

(
z−1) , γ̂→ γ−1.

(3.32)

We will not use this representation in this paper, but we expect this representation is related
with superquiver theories (see section 8).

4 Intertwiner formalism

In this section, we study the algebraic objects of quantum toroidal gl1 called the intertwiners.
Intertwiner is a homomorphism relating two representations. Ever since the discovery of
Awata, Feigin, and Shiraishi [47], various studies of 3d/4d/5d/6d AGT correspondence have
been done by studying intertwiners of various quantum algebras. The basic strategy is
always the same:

1. Pick two vertex operator representations H1, H2 and a crystal representation V with
suitable levels and spectral parameters.
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2. Study the intertwiner Φ : V ⊗H1 → H2 and the dual intertwiner Φ∗ : H2 → H1 ⊗ V .
They obey a property called the intertwiner property. Sometimes, the property is
also called the AFS property, which comes from the names of the authors of [47].
Intertwiners obeying these properties exist only when suitable levels and spectral
parameters are chosen. If they exist, they are unique after choosing the normalizations.
S-duality gives other types of intertwiners (e.g. H1⊗H2 → V ) as in [84], but we focus
on these types of intertwiners.

3. By studying the composition of these intertwiners, we obtain analogues of Nekrasov
partition functions. Generally, they are purely algebraic quantities but sometimes we
can relate them with physical quantities.

4. To study the correspondence with physics, we relate each of the representations with
branes. The intertwiners are drawn as trivalent vertices and they are interpreted as
junctions of branes (see (4.1)). Composition of these trivalent vertices leads to general
brane webs.

H1

V

H2

Φ

H2

H1

V

Φ∗

(4.1)

5. The nontrivial matrix elements of the intertwiners give analogues of refined topologi-
cal vertices.

In section 4.1, we construct intertwiners with representations H1,2 = (1, n), where
n ∈ Z and V = (0,±1). We call the intertwiners with V = (0, 1) positive intertwiners,
and call those with V = (0,−1) negative interwiners. The negative intertwiners are the
new intertwiners we introduce. Contractions and the gluing rules of these intertwiners are
given in section 4.2. We will see they give Nekrasov factors of the supergroup gauge theory
in (2.44). We also give the correspondence with brane junctions in section 4.3. The positive
interwiners are the well known AFS intertwiners of [47] and are related to junctions of (p, q)
branes, where the D5-branes are positive branes. The negative intertwiners will be related
to (p, q) brane webs with negative D5-branes.

4.1 Positive and negative intertwiners

Intertwiners. The positive intertwiner Φ(n)
+ [u, v] and the negative intertwiner Φ(n)

− [u, v]
are maps

Φ(n)
± [u, v] : (0,±1)v ⊗ (1, n)u → (1, n± 1)u′ ,

Φ(n)
± [u, v] =

∑
λ

a(±)

λ 〈〈v, λ| ⊗ Φ(n)
±,λ[u, v], Φ(n)

±,λ[u, v] = Φ(n)
± [u, v] |v, λ〉〉, (4.2)
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that obey the following conditions

ρ
(1,n+1)
u′ (g (z)) Φ(n)

+ [u, v] = Φ(n)
+ [u, v]

(
ρ(0,1)
v ⊗ ρ(1,n)

u

)
∆ (g (z)) ,

ρ
(1,n−1)
u′ (g (z)) Φ(n)

− [u, v] = Φ(n)
− [u, v]

(
ρ(0,−1)
v ⊗ ρ(1,n)

u

)
∆(g(z)),

(4.3)

where g(z) ∈ E . We expanded the interwiners in the diagonal basis9 |v, λ〉〉 of (0,±1)v
in (4.2). Conditions (4.3) are the intertwiner relations (AFS properties, AFS relations, etc.).
See appendix F for the diagrammatic interpretation of them.

Solutions of (4.3) exist only when u′ = −uv±1, and the answers are

Φ(n)
±,λ[u, v] = tn,±(λ, u, v) : Φ±,∅[v]

∏
x∈λ

η(χ(±)

x )±1 :,

Φ±,∅[v] =: Φ∅[v]±1 :, tn,±(λ, u, v) = (−u±1v)|λ|γ
1∓1

2 |λ|
∏
x∈λ

(
γ

χ(±)

x

)±(n±1)
,

(4.4)

where

Φ∅[v] = exp
(
−
∞∑
n=1

vn

n

a−n

1− q−n1

)
exp

( ∞∑
n=1

v−n

n

an

1− q−n2

)
. (4.5)

Let us briefly discuss how to solve the relations for the negative interwiner only. Insert-
ing (4.2) and using (3.21), the expansion of (4.3) is

u′
(
γ

z

)n−1
η(z)Φ(n)

−,λ[u, v] = γ
∑

x∈R(λ)
δ

(
z

χ(−)

x

)
Res
z=χ(−)

x

z−1Y (−)

λ (z)Φ(n)
−,λ−x[u, v]

+ u

(
γ

z

)n [
Ψ(−)

λ (z)
]
−Φ(n)
−,λ[u, v]η(z),

u′−1
(
z

γ

)n−1
ξ(z)Φ(n)

−,λ[u, v] = γ−n
∑

x∈A(λ)
δ

(
γz

χ(−)

x

)
Res
z=χ(−)

x

z−1Y (−)

λ (q−1
3 z)−1Φ(n)

−,λ+xϕ
+(γ1/2z)

+ u−1
(
z

γ

)n
Φ(n)
−,λ[u, v]ξ(z),

γϕ+ (z) Φ(n)
−,λ [u, v] =

[
Ψ(−)

λ

(
γ1/2z

)]
+

Φ(n)
−,λ [u, v]ϕ+ (z) ,

γ−1ϕ− (z) Φ(n)
−,λ [u, v] =

[
Ψ(−)

λ

(
γ−1/2z

)]
−

Φ(n)
−,λ [u, v]ϕ−(z).

(4.6)

The relations with the Cartan part ϕ±(z) determine the operator part of the intertwiners.
The zero-mode part tn,−(λ, u, v) and the condition u′ = −uv−1 are derived from the relations
with x±(z) after inserting the operator part.

We illustrate these intertwiners as in figure 2. Instead of using this pictorial interpre-
tation, we use a rather simplified version of it, where the vertical lines are not bent as
in figure 3. We draw the lines associated with representations (1, n), (0, 1) in solid lines

9Actually, we should write 〈〈v, λ,±| , |v, λ,±〉〉 to distinguish level (0,±1) representations, but we omit
the signs ± for simplicity. Readers should be careful when doing explicit calculations.
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(1, n)u

(0, 1)v

(1, n+ 1)−uv

Φ(n)
+ [u, v]

(1, n+ 1)−uv

(1, n)u

(0, 1)v

Φ(n)∗
+ [u, v]

(1, n)u

(0,−1)v

(1, n− 1)−uv−1

Φ(n)
− [u, v]

(1, n− 1)−uv−1

(1, n)u

(0,−1)v

Φ(n)∗
− [u, v]

Figure 2. Φ(n)
± [u, v] and Φ(n)∗

± [u, v]. The dashed line represents the representation with negative
level (0,−1)v. The arrows represent the order of the operator. For example, the intertwiner Φ(n)

+ [u, v]
is a map (0, 1)v ⊗ (1, n)u → (1, n+ 1)−uv and thus the arrow is as the figure.

(0, σ)v

(1, n)u

(1, n+ σ)−uvσ

Φ(n)
σ [u, v]

(0, σ)v

(1, n+ σ)−uvσ

(1, n)u

Φ(n)∗
σ [u, v]

Figure 3. Simplified picture of intertwiners. We draw the vertical lines representing NS5-branes as
straight lines. The bending of the NS5-branes are represented by the levels written beside them.
Note that we have two types of intertwiners and dual intertwiners: the positive one (σ = 1) and the
negative one (σ = −1).

and representations with (0,−1) in dashed lines. Sometimes, in the simplified diagram,
we simply draw the horizontal lines in solid lines and just assign the level (0, σ), σ = ±1
to distinguish whether the level is positive or negative. The arrows represent how the
intertwiner maps modules to modules.

Dual intertwiners. Similar to the intertwiners, we define the dual positive and negative
interwiners as maps

Φ(n)∗
± [u, v] : (1, n± 1)u′ → (1, n)u ⊗ (0,±1)v,

Φ(n)∗
± [u, v] =

∑
λ

a
((±))
λ Φ(n)∗

±,λ [u, v]⊗ |v, λ〉〉, Φ(n)∗
±,λ [u, v] = 〈〈v, λ|Φ(n)∗

± [u, v]
(4.7)

obeying the conditions(
ρ(1,n)
u ⊗ ρ(0,1)

v

)
∆ (g (z)) Φ(n)∗

+ [u, v] = Φ(n)∗
+ [u, v] ρ(1,n+1)

u′ (g (z)) ,(
ρ(1,n)
u ⊗ ρ(0,−1)

v

)
∆ (g (z)) Φ(n)∗

− [u, v] = Φ(n)∗
− [u, v] ρ(1,n−1)

u′ (g (z)) ,
(4.8)

where g(z) ∈ E . The solutions of these relations exist only when u′ = −uv±1, and they are

Φ(n)∗
±,λ [u, v] = t∗n,±(λ, u, v) : Φ∗±,∅[v]

∏
x∈λ

ξ(χ(±)

x )±1 :,

Φ∗±,∅[v] =: Φ∗[v]±1 :, t∗n,±(λ, u, v) = u∓|λ|γ−
1±1

2 |λ|
∏
x∈λ

(
χ(±)

x

γ

)±n
,

(4.9)

where

Φ∗∅[v] = exp
( ∞∑
n=1

vn

n

γn

1− q−n1
a−n

)
exp

(
−
∞∑
n=1

v−n

n

γn

1− q−n2
an

)
. (4.10)
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By expanding the relations (4.8), we obtain

u′
(γ
z

)n−1
Φ(n)∗
−,λ [u,v]η(z) =u

(γ
z

)n
η(z)Φ(n)∗

−,λ [u,v]

−γn
∑

x∈A(λ)
δ

(
γz

χ(−)

x

)
Res
z=χ(−)

x

z−1Y (−)

λ (q−1
3 z)−1ϕ−(γ1/2z)Φ(n)∗

−,λ+x[u,v],

u′−1
(
z

γ

)n−1
Φ(n)∗
−,λ [u,v]ξ(z) =u−1

(
z

γ

)n
[Ψ(−)

λ (z)]+ ξ(z)Φ(n)∗
−,λ [u,v]

−γ
∑

x∈R(λ)
δ

(
z

χ(−)

x

)
Res
z=χ(−)

x

z−1Y (−)

λ (z)Φ(n)∗
−,λ−x[u,v],

γΦ(n)∗
−,λ [u,v]ϕ+ (z) =

[
Ψ(−)

λ

(
γ−1/2z

)]
+
ϕ+ (z)Φ(n)∗

−,λ [u,v] ,

γ−1Φ(n)∗
−,λ [u,v]ϕ− (z) =

[
Ψ(−)

λ

(
γ1/2z

)]
−
ϕ− (z)Φ(n)∗

−,λ [u,v].
(4.11)

Similar to the previous intertwiner case, the Cartan part determines the vertex operator
part and the other relations determine u′ = −uv−1 and the zero-mode part. We illustrate
this operator as figure 2 and figure 3.

4.2 Contractions

We have two ways to glue the (dual) intertwiners. Gluing horizontal lines give contrac-
tions in crystal representations, while gluing vertical lines gives contractions in vertex
operator representations.

Contractions in vertex operator representations. The contraction formulas in the
vertex operator representations are summarized as

• gluing of Φ(n2)
σ′,µ [u2, v2]Φ(n1)

σ,λ [u1, v1] with the conditions n1 + σ = n2, u2 = −u1v
σ
1 :

(0, σ)v1 |v1, λ〉〉

(0, σ′)v2

(1, n1)u1

(1, n1 + σ)−u1vσ1

Φ(n1)
σ [u1, v1]

(1, n2)u2

(1, n2 + σ′)−u2vσ
′

2

|v2, µ〉〉Φ(n2)
σ′ [u2, v2]

=
Φ(n1)
σ [u1, v1] |v1, λ〉〉

Φ(n2)
σ′ [u2, v2] |v2, µ〉〉

= Φ(n2)
σ′,µ [u2, v2]Φ(n1)

σ,λ [u1, v1]

(4.12)
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• gluing of Φ(n2)∗
σ′,µ [u2, v2]Φ(n1)∗

σ,λ [u1, v1] with the conditions n1 = n2 + σ′, u1 = −u2v
σ′
2 :

(0, σ)v1〈〈v1, λ|

(0, σ′)v2

(1, n1 + σ)−u1vσ1

(1, n1)u1

Φ(n1)∗
σ [u1, v1]

(1, n2 + σ′)−u2vσ
′

2

(1, n2)u2

〈〈v2, µ| Φ(n2)∗
σ′ [u2, v2]

=
〈〈v1, λ| Φ(n1)∗

σ [u1, v1]
〈〈v2, µ| Φ(n2)∗

σ′ [u2, v2] = Φ(n2)∗
σ′,µ [u2, v2]Φ(n1)∗

σ,λ [u1, v1]

(4.13)

• gluing of Φ(n2)∗
σ′,µ [u2, v2]Φ(n1)

σ,λ [u1, v1] with the conditions n1+σ = n2+σ′, u1v
σ
1 = u2v

σ′
2 :

(0,σ)v1 |v1,λ〉〉

(0,σ′)v2

(1,n1)u1

(1,n1+σ)−u1vσ1

Φ(n1)
σ [u1,v1]

(1,n2+σ′)−u2vσ
′

2

(1,n2)u2

〈〈v2,µ| Φ(n2)∗
σ′ [u2,v2]

=
Φ(n1)
σ [u1,v1] |v1,λ〉〉

〈〈v2,µ| Φ(n2)∗
σ′ [u2,v2] = Φ(n2)∗

σ′,µ [u2,v2]Φ(n1)
σ,λ [u1,v1]

(4.14)

• gluing of Φ(n2)
σ′,µ [u2, v2]Φ(n1)

σ,λ [u1, v1] with the conditions n1 = n2, u1 = u2:

(0,σ)v1〈〈v1,λ|

(0,σ′)v2

(1,n1+σ)−u1vσ1

(1,n1)u1

Φ(n1)∗
σ [u1,v1]

(1,n2)u2

(1,n2+σ′)−u2vσ
′

2

|v2,µ〉〉Φ(n2)
σ′ [u2,v2]

=
〈〈v1,λ| Φ(n1)∗

σ [u1,v1]
Φ(n2)
σ′ [u2,v2] |v2,µ〉〉

= Φ(n2)
σ′,µ[u2,v2]Φ(n1)∗

σ,λ [u1,v1]

(4.15)

where

Φ(n2)
σ′,µ[u2,v2]Φ(n1)

σ,λ [u1,v1] =
(
G(q−1

3 v1/v2)
)σσ′

Nσσ′(v1,λ |v2,µ)−σσ
′
: Φ(n2)

σ′,µ[u2,v2]Φ(n1)
σ,λ [u1,v1] :,

Φ(n2)∗
σ′,µ [u2,v2]Φ(n1)∗

σ,λ [u1,v1] =
(
G(v1/v2)

)σσ′
Nσσ′(q3v1,λ |v2,µ)−σσ

′
: Φ(n2)∗

σ′,µ [u2,v2]Φ(n1)∗
σ,λ [u1,v1] :,

Φ(n2)∗
σ′,µ [u2,v2]Φ(n1)

σ,λ [u1,v1] =
(
G(γ−1v1/v2)

)−σσ′
Nσσ′(γv1,λ |v2,µ)σσ

′
: Φ(n2)∗

σ′,µ [u2,v2]Φ(n1)
σ,λ [u1,v1] :,

Φ(n2)
σ′,µ[u2,v2]Φ(n1)∗

σ,λ [u1,v1] =
(
G(γ−1v1/v2)

)−σσ′
Nσσ′(γv1,λ |v2,µ)σσ

′
: Φ(n2)

σ′,µ[u2,v2]Φ(n1)∗
σ,λ [u1,v1] :,

(4.16)
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for σ, σ′ = ±. We used the two-dimensional convention representing the vertex operator
representations in the vertical direction and the crystal representations in the horizon-
tal direction. Taking contractions in the vertical direction indeed gives the Nekrasov
factors of (2.44).

Contractions in crystal representations. Let us consider contractions in the crystal
representations which are drawn horizontally:

Φ(n1)
σ [u1, v] (0, σ)v

(1, n1)u1 (1, n2)u2

Φ(n2−σ)∗
σ [u2v

−σ, v]

(1, n1 + σ)−u1vσ (1, n2 − σ)−u2v−σ

∑
λ a

(σ)
λ |v, λ〉〉〈〈v, λ| = Φ(n1)

σ [u1, v] · Φ(n2−σ)∗
σ [u2v

−σ, v] (4.17)

where the product · means contraction in the crystal representation. Inserting 1 =∑
λ a

(σ)
λ |v, λ〉〉〈〈v, λ|, we have

Φ(n1)
σ [u1, v] · Φ(n2−σ)∗

σ [u2v
−σ, v] =

∑
λ

a
(σ)
λ Φ(n2−σ)∗

σ,λ [u2v
−σ, v]⊗ Φ(n1)

σ,λ [u1, v], (4.18)

where in the second line, the order of the tensor products is opposite compared with the
figure. Choosing this order is convenient because the intertwiners act as the following in
this order:

F (1,n2)(u2)⊗F (1,n1)(u1) Φ∗⊗1−−−→ F (1,n2)(u2)⊗F (0,σ)(v)⊗F (1,n1)(u1)
1⊗Φ−−−→ F (1,n2−σ)(−u2v

−σ)⊗F (1,n1+σ)(−u1v
σ).

(4.19)

Generalized AFS intertwiner. For later use, we further introduce a generalized inter-
twiner as

Φ(n)
~σ [u,~v] : (0, ~σ)~v ⊗ (1, n)u → (1, n′)u′ ,

Φ(n∗)∗
~σ [u∗, ~v] : (1, n∗)u∗ → (1, n∗′)u∗′ ⊗ (0, ~σ)~v,

Φ(n)
~σ [u,~v] = Φ(nN )

σN
[uN , vN ] · · ·Φ(n2)

σ2 [u2, v2]Φ(n1)
σ1 [u1, v1],

Φ(n∗)∗
~σ [u∗, ~v] = Φ(n∗N )∗

σN [u∗N , vN ] · · ·Φ(n∗2)∗
σ2 [u∗2, v2]Φ(n∗1)∗

σ1 [u∗1, v1],

(4.20)

where

(0, ~σ)~v = (0, σN )vN ⊗ (0, σN−1)vN−1 ⊗ · · · ⊗ (0, σ1)v1 ,

n′ = n+
N∑
i=1

σi, u′ = u
N∏
i=1

(−vi)σi ,

n∗′ = n∗ −
N∑
i=1

σi, u∗′ = u∗
N∏
i=1

(−vi)−σi
(4.21)
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and the spectral parameters obey the condition (5.4). We depict these generalized inter-
twiners using thick arrows as

(0, σ1)v1

(0, σ2)v2...
(0, σN−1)vN−1

(0, σN )vN

→
(0, ~σ)~v

,

(0, σ1)v1

(0, σ2)v2 ...
(0, σN−1)vN−1

(0, σN )vN

→
(0, ~σ)~v (4.22)

The order of the crystal representation was chosen so that the actions of the generators
are compatible with the coproduct formula. In this order the maps Φ(n)

~σ [u,~v],Φ(n∗)∗
~σ [u∗, ~v]

read as

Φ(n)
~σ [u,~v] :

N⊗
i=1

(0,σN−i+1)vN−i+1⊗(1,n1)u1

Φ(n1)
σ1−−−→

N−1⊗
i=1

(0,σN−i+1)vN−i+1⊗(1,n2)u2

Φ(n2)
σ2−−−→

N−2⊗
i=1

(0,σN−i+1)vN−i+1⊗(1,n3)u3

Φ(n3)
σ3−−−→·· ·

Φ(nN )
σN−−−−→ (1,n′)u′ ,

Φ(n∗)∗
~σ [u∗,~v] : (1,n∗)u∗

Φ
(n∗1)∗
σ1−−−−→ (1,n∗1)u∗1⊗(0,σ1)v1

Φ
(n∗2)∗
σ2−−−−→ (1,n∗2)u∗2⊗(0,σ2)v2⊗(0,σ1)v1

Φ
(n∗3)∗
σ3−−−−→ (1,n∗3)u∗3⊗(0,σ3)v3⊗(0,σ2)v2⊗(0,σ1)v1→·· ·→ (1,n∗′)u∗′⊗(0,~σ)~v.

(4.23)

We have the following contraction formulas

Φ(n)
~σ,~λ

[u,~v] =
∏
i<j

G
(
q−1

3 vi
vj

)σiσj
Nσiσj (vi, λi | vj , λj)−σiσj : Φ(n)

~σ,~λ
[u,~v] :,

Φ(n∗)∗
~σ,~λ

[u∗, ~v] =
∏
i<j

G
(
vi
vj

)σiσj
Nσiσj (q3vi, λi | vj , λj)−σiσj : Φ(n∗)∗

~σ,~λ
[u∗, ~v] :

(4.24)

and actually these operators are the supergroup generalization of the generalized AFS
intertwiners introduced in [58] up to perturbative factors.

4.3 Dictionary of the correspondence

In [47], the authors proposed a correspondence between the level (q, p) representation and
the (p, q) 5-branes. We would like to extend the dictionary of this correspondence to the
supergroup gauge theory case. The difference with the non-supergroup case is the existence
of the negative D-branes in the system.

Looking at the contraction formulas of the (dual) intertwiners in (4.16), we observe that
the contractions of Φσ2,λ2Φσ1,λ1 and Φ∗σ2,λ2

Φ∗σ1,λ1
give the vector multiplet contributions

coming from two D-branes with parities σ1 and σ2 (see section 2.2 and equation (2.43)).
Contractions of intertwiners and dual intertwiners give the contributions of bifundamental
multiplets with bifundamental masses γ−1 (see (2.43)). Therefore, we propose the following
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(1, n)u
(0, 1)v

(1, n+ 1)−uv
Φ(n)

+ [u, v]

(1, n)u
(0,−1)v

(1, n− 1)−uv−1

Φ(n)
− [u, v]

D4+

NS5

D4−

NS5

(n, 1)

D5+

(1, 0)

(n+ 1, 1)

(n, 1)

D5−
(−1, 0)

(n− 1, 1)

Figure 4. Correspondences of the positive and negative intertwiners with brane junctions of type IIA
and type IIB theory. Dual intertwiners have similar physical interpretation.

correspondence (see figure 4):

level of representation Type IIA Type IIB
(0, 1) positive D4-brane (D4+) positive D5-brane (D5+)

(0,−1) negative D4-brane (D4−) negative D5-brane (D5−)
(1, 0) ordinary NS5-brane ordinary NS5-brane
(1, n) (n, 1) 5-brane

(4.25)

To be accurate, the correspondence with type IIA theory should be understood as a
correspondence after taking the degenerate limit and considering representations of affine
Yangian gl1 or the Drinfeld double10 of it studied in [61].

From the above correspondences, the intertwiners are understood as junctions of the
positive (negative) D-branes and NS5-branes (see figure 4). Explicit examples supporting
this proposal are given in the section 5.

Negative D-branes have opposite charges compared with the positive D-branes [27].
Thus, it is natural to assign the representation (0, 1) to the positive D-brane and represen-
tation (0,−1) to the negative D-brane. When n D5-branes intersect with a NS5-brane, they
will form a bound state (n+ 1, 1) 5-brane. We expect a similar story holds when negative
D5-branes intersect with a NS5-brane, but this time since the negative brane has a negative
charge, the bound state will be (n − 1, 1) 5-brane (see figure 5). This conservation law
indeed satisfies how the positive and negative intertwiners act on the modules (see figure 4).

10Using the algebra introduced in [61], we can do the intertwiner formalism of 4d gauge theories. One
central charge c, which corresponds to the level `1 in (3.7), appears in this algebra. The vertex operator
representation has c = 1, while the crystal representations have c = 0. The other level `2 in (3.7) does
not appear in this case. This means the level (1, 0) and (1, n) representations in the degenerate limit are
essentially the same and thus should be understood as the same ordinary NS5-brane.
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NS5

D5+

(1, 1)

(0, 1)

(1, 0)

+

(n, 1)

(−1, 0)

(n− 1, 1)

NS5

D5−

(−1, 1)

(0, 1)

(−1, 0)

Figure 5. Junctions of NS5-brane and positive and negative D5-branes. The charge assigned to
negative D5-branes is (−1, 0) which correspond to level (0,−1) representation. When NS5-brane
intersect with a negative D5-brane, they will form a bound state with charge (−1, 1). When general
(n, 1) 5-brane intersect with a negative D5-brane, we will obtain a (n− 1, 1) 5-brane.

In this paper, we will not give the specific correspondences for general (p, q) 5-branes
with representations. Moreover, usually, the charges of the (p, q) 5-branes determine how
the brane is bent when they intersect with other branes. A different discussion must be
done to determine the angle and how to draw the five-brane webs when negative branes are
included. In this paper, we do not specify how the branes are bent nor how the brane web
should be drawn to include the information of the charges. We simply assign charges to the
branes to do calculations.

5 Examples

We apply the intertwiner formalism introduced in the previous section and derive partition
functions of supergroup gauge theories of A and D-type quiver. Using the formalism
introduced in [83], we can generalize the computations to other quiver structures. We leave
this generalization for future work. In particular, we consider three examples: pure super
Yang-Mills (section 5.1), Ar-quiver (section 5.2), and Dr-quiver (section 5.3).

5.1 Pure U(N |σ1, σ2, · · · , σN) gauge theory

Using the intertwiner formalism in deriving partition functions of pure supergroup gauge
theories, we need to consider stacks of D5-branes surrounded by NS5-branes with signatures
σ1, · · · , σN , where σi = +,− and N is the total number of D5-branes. Here, we will not
determine the signatures because generally we do not have to. However, the ordering of the
signatures depend when we use the intertwiner (or topological vertex formalism), so we write
it down explicitly. For convenience, we call this theory a U(N |σ1, σ2, · · · , σN ) = U(N |~σ)
supergroup gauge theory, where ~σ = (σ1, σ2, · · · , σN ). If we do not care of the order of the
branes, then this is just a U(N+ |N−) theory:

U(N |σ1, σ, · · · , σN ) = U(N+ |N−),
N+ = |{i |σi = +1}|, N− = |{i |σi = −1}|,
N+ +N− = N.

(5.1)
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Using the intertwiner formalism, the partition function is derived as

ZN, (σ1,··· ,σN ) = ...

(0, σ1)v1

(0, σ2)v2

(0, σ3)v3

(0, σi)vi

(0, σN )vN

(1, n)u (1, n∗)u∗

...

(1, ni)ui
(1, n∗i )u∗

i

=

0̂ 0̂

Φ(n1)
σ1 [u1, v1] · Φ(n∗1)∗

σ1 [u∗1, v1]
Φ(n2)
σ2 [u2, v2] · Φ(n∗2)∗

σ2 [u∗2, v2]
...

...
Φ(nN )
σN [uN , vN ] · Φ(n∗N )∗

σN [u∗N , vN ]
0̂ 0̂

=
∑

λ1···λN

N∏
i=1

a
(σi)
λi
〈0|
←−
N∏
i=1

Φ(ni)
σi,λi

[ui, vi] |0〉 〈0|
←−
N∏
i=1

Φ(n∗i )∗
σi,λi

[u∗i , vi] |0〉 ,

(5.2)
where the product is an ordered product

←−
N∏
i=1
fi(z) .= fN (z)fN−1(z) · · · f2(z)f1(z). (5.3)

Note also that from the conservation law, the spectral parameters obey the conditions

ni = n+
i−1∑
l=1

σl, ui = u
i−1∏
l=1

(
−vσll

)
,

n∗i = n∗ −
i∑
l=1

σl, u∗i = u∗
i∏
l=1

(
−v−σll

) (5.4)

for i = 1, · · · , N . Note that using the generalized AFS intertwiners in (4.20), the partition
function is written in a simpler way

〈0| ⊗ 〈0| TU(N |~σ) |0〉 ⊗ |0〉 , TU(N |~σ) := Φ(n)
~σ [u,~v] · Φ(n∗)∗

~σ [u∗, ~v], (5.5)

where the product · is understood as contractions in all the crystal representations. We
note this operator itself depends on the sequence of the parities ~σ.

Computing the contractions and using the properties of the Nekrasov factors in ap-
pendix C.2, the partition function decouples into the perturbative part and instanton
part as

ZN,(σ1,··· ,σN ) = Zpert
N,(σ1,··· ,σN )Z

inst
N,(σ1,··· ,σN ), (5.6)

Zpert
N,(σ1,··· ,σN ) =

∏
i<j

G
(
q−1

3
vi
vj

)σiσj
G
(
vi
vj

)σiσj
, (5.7)

Z inst
N,(σ1,··· ,σN ) =

∑
λ1,··· ,λN

N∏
l=1

(
a

(σl)
λl

tnl,σl(λl, ul, vl)t∗n∗l ,σl(σl, u
∗
l , vl)

)

×
∏
i<j

∏
x∈λi

(
− vj

χ
(σi)
x

)σiσj ∏
x∈λj

−χ(σj)
x

q3vi

σiσj ∏
i 6=j

Nσiσj (vi, λi | vj , λj)−σiσj
 .

(5.8)
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Using

N∏
l=1

a
(σl)
λl

=
N∏
l=1

(q
1−σl

2
3 γvl)−|λl|

∏
x∈λl

χ(σl)
x

 N∏
l=1

1
Nσlσl(vl, λl | vl, λl)

(5.9)

and computing the zero-modes part in front of the Nekrasov factors, we eventually have

Z inst
N,(σ1,...,σN ) =

∑
λ1,··· ,λN

Ztop.
(
~λ, ~σ

)
ZCS

(
κ,~λ, ~σ

)
Zvec.

(
~v,~λ, ~σ

)
, (5.10)

where

q = − u

u∗
γn−n

∗
N∏
i=1

(−vi)σi , κ = n∗ − n−
N∑
i=1

σi. (5.11)

This matches with the well known formula for gauge theory with ordinary groups when
σi = +1 for all i. Note that the spectral parameters are assumed |vi/vj | < 1, i < j.

Obviously, the partition function is invariant under the ordering since the topological
term and the Chern-Simons term is invariant under simultaneous permutation of the
Coulomb vev parameters and the parities of the D5-brane. Namely, let ω ∈ SN be an element
of the permutation group and then the partition function obeys the following symmetry:

ZN,(σ1,...,σN ) = ZN,(ω·σ1,...,ω·σN ), ω · σi = σω(i) (5.12)

under redefinition of the Coulomb vev parameters

vi → ω · vi = vω(i). (5.13)

Actually, this property is strongly related to the underlying Lie superalgebra structure.
For example, let us consider the U(3 | 2) case. For this case, we have 3 positive D-branes
and 2 negative D-branes. Similarly to the ordinary group gauge theory, we can permute
the order of the 3 positive D-branes and the 2 negative D-branes without changing the
partition function. Under this permutation, the brane web does not change and it is a
trivial symmetry. However, there are 10 different looking brane webs for the U(3 | 2) theory:

(5.14)
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where is the bosonic root and is the fermionic root of the superalgebra. When the
adjacent branes have the same parities, we assign the bosonic root . When the parities
are different, we assign the fermionic root . Equation (5.12) means that even though
there are different D-brane realizations related to the underlying superalgebra structure,
the instanton partition function is equivalent. This fact was shown by direct computation
for U(2 | 1) in [31]. Our result is a straightforward generalization to general configurations.

5.2 Linear quiver gauge theory

Let us show next an example of linear quiver gauge theory U(N |σ1, · · · , σN )⊗M with
Nf = 2N , which was the example studied in [31]:

......
......

......

· · ·
· · ·
· · ·
· · ·
· · ·

...... ...

N

M + 1

(5.15)

The basic element is the following chain geometry
(1, ni)ui

(0, σ1)vi−1,1

(0, σ2)vi−1,2

(0, σj)vi−1,j

(0, σ1)vi,1

(0, σj)vi,j
(0, σj+1)vi−1,j+1

(1, nij)uij
(1, n′ij)u′ij
(1, ni,j+1)ui,j+1

(0, σN )vi−1,N

(0, σN )viN

......

......
...

(5.16)

The conservation law for the spectral parameters are

ni1 := ni, ui1 := ui,

nij = n′ij + σj , ni,j+1 = n′ij + σj ,

uij = −u′ijv
σj
i−1,j , ui,j+1 = −u′ijv

σj
ij ,

(5.17)

for i = 1, . . . ,M + 1, and j = 1, . . . , N . The solution is

nij = ni, n′ij = ni − σj ,

uij = ui

j−1∏
l=1

(
vil
vi−1,l

)σl
, u′i,j = −uiv

−σj
i−1,j

j−1∏
l=1

(
vil
vi−1,l

)σl
.

(5.18)

– 34 –



J
H
E
P
1
2
(
2
0
2
2
)
1
5
7

The matrix element of this chain geometry is

T (ui |~vi−1, ~λi−1 |~vi, ~λi) :=

0̂
〈〈λi−1,1| Φ(n′i1)∗

σ1 [u′i1, vi−1,1]
Φ(n′i,1)
σ1 [u′i1, vi1] |λi1〉〉

〈〈λi−1,2| Φ(n′i2)∗
σ2 [u′i2, vi−1,2]
Φ(n′i2)
σ2 [u′i2, vi2] |λi2〉〉

...
〈〈λi−1,N | Φ(n′iN )∗

σN [u′iN , vi−1,N ]
Φ(n′iN )
σN [u′iN , viN ] |λiN 〉〉

0̂

= 〈0|
←−
N∏
l=1

(
Φ(n′il)
σl, λil

[u′il, vil]Φ
(n′il)∗
σl,λi−1,l

[u′il, vi−1,l]
)
|0〉 ,

(5.19)

where ~vi = (vi1, . . . , viN ) and ~λi = (λi1, . . . , λiN ). We also impose the condition ~λ0 =
~λM+1 = ~∅. Computing the contractions, we have

T
(
ui |~vi−1, ~λi−1 |~vi, ~λi

)
=

N∏
l=1

tn′
il
,σl(λil, u

′
il, vil)t∗n′

il
,σl

(λi−1,l, u
′
il, vi−1,l)

×
∏
k>j

G
(
vi−1,j
vi−1,k

)σjσk
G
(
q−1

3
vij
vik

)σjσk∏
k≥j
G
(
γ−1 vi−1,j

vik

)−σjσk ∏
k>j

G
(
γ−1 vij

vi−1,k

)−σjσk
×
∏
k>j

Nσjσk(q3vi−1,j , λi−1,j | vi−1,k, λi−1,k)−σjσkNσjσk(vij , λij | vik, λik)−σjσk

×
∏
k≥j

Nσjσk(γvi−1,j , λi−1,j | vik, λik)σjσk
∏
k>j

Nσjσk(γvij , λij | vi−1,k, λi−1,k)σjσk .

(5.20)

The red terms give half of the contribution of the vector multiplets of the D5-branes
attached to both sides of the NS5-brane, while the blue terms give the full bifundamental
contribution. Note that to compare with the localization formula, we need use the property
of the Nekrasov factor in (C.41).

After using the formula in (C.41) and dealing with the zero-modes properly, the total
partition function will be

Z
[
U (N |σ1, · · · , σN )⊗M

]
=

∑
~λ1,~λ2··· ,~λM

M∏
i=1

N∏
j=1

a
(σj)
λij

M+1∏
i=1
T
(
ui |~vi−1, ~λi−1 |~vi, ~λi

)
= ZpertZinst,

(5.21)
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where
Zpert =∏
k>j

G
(
v0j

v0k

)σjσk ∏
k>j

G
(
q−1

3
vM+1,j

vM+1,k

)σjσk M∏
i=1

∏
k>j

G
(
vi,j
vi,k

)σjσk
G
(
q−1

3
vij
vik

)σjσk
×
∏
k≥j
G
(
γ−1 v0,j

v1k

)−σjσk ∏
k>j

G
(
γ−1 v1j

v0k

)−σjσk ∏
k≥j
G
(
γ−1 vM,j

vM+1,k

)−σjσk ∏
k>j

G
(
γ−1 vM+1,j

vM,k

)−σjσk

×
M∏
i=2

∏
k≥j
G
(
γ−1 vi−1,j

vik

)−σjσk ∏
k>j

G
(
γ−1 vij

vi−1,k

)−σjσk
.

(5.22)
The red part is the part independent of the Coulomb vev of the D5-branes, so we can ignore
it. The blue part is the perturbative part of the vector multiplets. The green part is the
contribution from the fundamental and antifundamental hypermultiplet. The magenta part
is the contribution from the bifundamental part.

The instanton part is

Zinst. =
∑

~λ1,...,~λM

M∏
i=1
Ztop.

(
~λi, ~σ

)
ZCS

(
κi, ~λi, ~σ

)
Zvec.

(
~vi, ~λi, ~σ

)

×Zaf
(
~v1, ~λ1, ~σ |~v0, ~σ

)(M∏
i=1
Zbfd.

(
~vi−1, ~λi−1, ~σ | γ−1

))
Zf
(
~vM , ~λM , ~σ |~vM+1, ~σ

)
,

(5.23)

where the topological term and the Chern-Simons level are

κi = ni+1 − ni, qi = − ui
ui+1

N∏
l=1

(
vil
vi−1,l

)σl
γni−ni+1−

∑N

k=1 σk . (5.24)

Therefore, we managed to derive the partition function of (5.15). As mentioned in equa-
tion (2.38), we only get one Chern-Simons level for each node.

General linear quiver gauge theory. To derive general linear quiver gauge theories,
instead of using the postive and negative intertwiner one by one, it is easier to use the
generalized AFS intertwiner in (4.20):

(1, n1)u1 (1, n2)u2 (1, n3)u3 (1, nr)ur (1, nr+1)ur+1

(0, ~σ1)~v1

(0, ~σ2)~v2

· · · (0, ~σr)~vr

r + 1

(5.25)
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0̂ 0̂ 0̂ 0̂
Φ(n1)
~σ1

[u1, ~v1] · Φ(n2)∗
~σ1

[u2, ~v1]

Φ(n′2)
~σ2

[u′2, ~v2] . . .
. . .

. . . Φ(nr)∗
~σr−1

[ur, ~vr−1]
Φ(n′r)
~σr

[u′r, ~vr] · Φ(nr+1)∗
~σr

[ur+1, ~vr]
0̂ 0̂ 0̂ 0̂

(5.26)

where

~vi = (vi1, vi2, . . . , viNi), ~σi = (σi1, σi2, . . . , σiNi), ~λi = (λ1, λ2, . . . , λNi), (5.27)

for i = 1, . . . , r. This gives a supergroup gauge theory ∏r
i=1 U(Ni |~σi ) with linear quiver

structure. Actually this quiver is a part of the D-type quiver we will discuss in section 5.3,
so see it for the details of the calculation.

Generally, we can assign matter hypermultiplets to each node of the quiver. We can do
the similar process done in the first example by attaching infinite D5-branes to introduce
hypermultiplets to the gauge nodes at both ends of the linear quiver. However, to introduce
hypermultiplets for each node not only the both ends, this is not enough. Recently, shifted
quantum algebras were utilized to introduce these matter hypermultiplets [103, 104]. A
similar analysis can be done using the formalism we introduced in this paper.

5.3 D-type quiver gauge theory

There are two ways to study D-quiver gauge theories using the intertwiner formalism:
either [59] or [83]. Inspired by the brane web in (2.56) and (2.57), we introduce a new
vertex operator11 representing the brane junction with the vertex , which is a supergroup
generalization of [83].

5.3.1 D1 quiver

To study D-type quiver supergroup gauge theories, we can introduce the following
vertex operator

Φ̄(n)∗
σ [u, v] : (1, n)u → (1, n+ σ)−u(γv)σ ⊗ (0, σ)v ,

Φ̄(n)∗
σ [u, v] =

∑
λ

a
(σ)
λ Φ̄(n)∗

σ,λ [u, v]⊗ |v, λ〉〉,

Φ̄(n)∗
σ,λ [u, v] = t̄n,σ (λ, u, v) : Φ∗∅

[
q−1

3 v
]−σ ∏

x∈λ
ξ
(
q−1

3 χ(σ)
x

)−σ
:,

t̄n,σ (λ, u, v) =
(
−uσvγ

1+σ
2
)|λ|∏

x∈λ

(
χ(σ)
x

)−σn−1
, (5.28)

11We note that even for the non-supergroup case, the algebraic property of this vertex operator is still not
so clear. We expect by assigning the orientifold plane a module on which quantum toroidal gl1 acts we can
study the algebraic properties of these vertex operators. However, it is beyond the scope of this paper, so
we will just introduce a vertex operator reproducing the partition functions.
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which is the supergroup version of the boundary intertwiner introduced in [83]. We illustrate
this vertex operator as the following diagram

(0, σ)v

(1, n)u

(1, n+ σ)−u(γv)σ

Φ̄(n)∗
σ [u, v]

(5.29)

Obviously, the central charges are not conserved because of the existence of the orientifold,
which is the similar situation to the vertex operator introduced in [83]. We denote the
generalized vertex as

Φ̄(n)∗
~σ [u,~v] = Φ̄(nN )

σN
[uN , vN ] · · · Φ̄(n2)

σ2 [u2, v2]Φ̄(n1)
σ1 [u1, v1],

ui = u
i−1∏
l=1

(−γvl)σl , ni = n+
i−1∑
l=1

σl.
(5.30)

Note that since the vertex operator part of the intertwiner only differs from the dual
intertwiner by simultaneous shifts of the spectral parameter ~v → q−1

3 ~v, the contraction
formulas of Φ̄∗Φ̄∗ are exactly the same as that of the dual intertwiners.

Let us consider the simplest case, when there is only one gauge node, which is just the
pure SYM:

Z[D1] =

...

...
=

0̂ 0̂
Φ(n)
~σ [u,~v] · Φ̄(n∗)∗

~σ [u∗, ~v]
0̂ 0̂

=
∑

λ1,...,λN

N∏
i=1

a
(σi)
λi

tni,σi(λi, ui, vi)t̄n∗i ,σi(λi, u
∗
i , vi)

×
∏
i<j

Nσiσj (vi, λi | vj , λj)−σiσjNσiσj (q3vi, λi | vj , λj)−σiσj

= Zpert.[D1]Zinst.[D1],

Zinst.[D1] =
∑

λ1,...,λN

Ztop.(~λ, ~σ)ZCS(κ,~λ, ~σ)Zvec.(~v,~λ, ~σ),

(5.31)

where the topological term and the Chern-Simons level are

q = −uu∗
N∏
i=1

(−vi)σiγn+1, κ = −n− n∗ −
N∑
i=1

σi. (5.32)

– 38 –



J
H
E
P
1
2
(
2
0
2
2
)
1
5
7

5.3.2 Dr (r > 1) quiver

Next, we consider a D-type quiver gauge theory with gauge group ∏r
i=1 U(Ni |σi1, . . . , σiNi):

(1, n1)u1 (1, n2)u2 (1, n3)u3 (1, nr−1)ur−1 (1, nr)ur
(0, ~σ1)~v1

(0, ~σ2)~v2 · · ·
(0, ~σr−2)~vr−2

(0, ~σr)~vr

(0, ~σr−1)~vr−1

(5.33)

where we used the generalized intertwiners in (4.20) and (5.28). For each stack of D5-branes,
we assign the Coulomb vev parameters, signatures of branes, and Young diagrams as

~vi = (vi1, vi2, . . . , viNi), ~σi = (σi1, σi2, . . . , σiNi), ~λi = (λi1, λi2, . . . , λiNi),
(5.34)

for i = 1, . . . , r. The partition function is written as

Z[Dr] =

0̂ 0̂ 0̂ 0̂
Φ(n1)
~σ1

[u1, ~v1] · Φ(n2)∗
~σ1

[u2, ~v1]

Φ(n′2)
~σ2

[u′2, ~v2] . . .
. . .

Φ(nr−1)
~σr

[ur−1, ~vr] · Φ̄(nr)∗
~σr

[ur, ~vr]
. . . Φ(n′r−1)∗

~σr−1
[u′r−1, ~vr−2]

Φ(n′′r−1)
~σr−1

[u′′r−1, ~vr−1] · Φ(n′r)∗
~σr

[u′r, ~vr−1]

0̂ 0̂ 0̂ 0̂

=
∑

~λ1,...,~λr−1

r∏
i=1

Ni∏
j=1

a
(σij)
λij

0̂
Φ(n1)
~σ1,~λ1

[u1, ~v1]

0̂

r−2∏
i=2

0̂
Φ(ni)∗
~σi−1,~λi−1

[ui, ~vi−1]

Φ(n′i)
~σi,~λi

[u′i, ~vi]

0̂

×

0̂
Φ(nr−1)
~σr,~λr

[ur−1, ~vr]

Φ(n′r−1)∗
~σr−1,~λr−2

[u′r−1, ~vr−2]

Φ(n′′r−1)
~σr−1,~λr−1

[u′′r−1, ~vr−1]

0̂

0̂
Φ̄(nr)∗
~σr,~λr

[ur, ~vr]
Φ(n′r)∗
~σr,~λr−1

[u′r, ~vr−1]

0̂

,

(5.35)
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where the spectral parameters obey the following conservation laws

n′i = ni −
Ni−1∑
j=1

σi−1,j , u′i = ui

Ni−1∏
j=1

(−vi−1,j)−σi−1,j , i ≤ r − 2,

n′r−1 = nr−1 +
Nr∑
j=1

σrj , n′′r−1 = nr−1 +
Nr∑
j=1

σrj −
Nr−2∑
j=1

σr−2,j ,

u′r−1 = ur−1

Nr∏
j=1

(−vrj)σrj , u′′r−1 = ur−1

Nr∏
j=1

(−vrj)σrj
Nr−2∏
j=1

(−vr−2,j)−σr−2,j ,

n′r = nr +
Nr∑
j=1

σrj , u′r = ur

Nr∏
j=1

(−γvrj)σrj .

(5.36)

The local A-quiver part for i ≤ r − 2 gives

〈0|Φ(n′i)
~σi,~λi

[u′i, ~vi]Φ
(ni)∗
~σi−1,~λi−1

[ui, ~vi−1] |0〉

〈0|Φn′i
~σi,~λi

[u′i, ~vi] |0〉 〈0|Φ
(ni)∗
~σi−1,~λi−1

[ui, ~vi−1] |0〉
∼ Zbfd.(~vi−1, ~σi−1, ~λi−1 |~vi, ~λi, ~σi | γ−1),

(5.37)

a
(~σi)
~λi
〈0|Φ(n′i)

~σi,~λi
[u′i, ~vi] |0〉 〈0|Φ

(ni+1)∗
~σi,~λi

[ui+1, ~vi] |0〉 ∼ Ztop.(~λi, ~σi)ZCS(κi, ~λi, ~σi)Zvec.(~vi, ~λi, ~σi),
(5.38)

where ∼ means we extracted the instanton contribution and omit the perturbative part
for simplicity.

The nontrivial part is the contribution coming from the last two vacuum expecta-
tion values:

〈0|Φ(n′′r−1)
~σr−1,~λr−1

[
u′′r−1, ~vr−1

]
Φ(n′r−1)∗
~σr−1,~λr−2

[
u′r−1, ~vr−2

]
Φ(nr−1)
~σr,~λr

[ur−1, ~vr] |0〉

〈0|Φ(n′′r−1)
~σr−1,~λr−1

|0〉 〈0|Φ(n′r−1)∗
~σr−1,~λr−2

|0〉 〈0|Φ(nr−1)
~σr,~λr

|0〉

∼ Zbfd.
(
~vr, ~λr, ~σr |~vr−2, ~λr−2, ~σr−2 | γ−1

)
Zbfd.

(
~vr−2, ~λr−2, ~σr−2 |~vr−1, ~λr−1, ~σr−1 | γ−1

)
×Zbfd.

(
~vr, ~λr, ~σr |~vr−1, ~λr−1, ~σr−1 | 1

)−1
,

(5.39)

and

〈0|Φ(n′r)∗
~σr,~λr−1

[u′r, ~vr−1] Φ̄(nr)∗
~σr,~λr

[ur, ~vr] |0〉

〈0|Φ(n′r)∗
~σr,~λr−1

|0〉 〈0| Φ̄(nr)∗
~σr,~λr

|0〉
∼ Zbfd.

(
~vr, ~λr, ~σr |~vr−1, ~λr−1, ~σr−1 | 1

)
. (5.40)

The bifundamental contribution between U(Nr−1 |~σr−1) and U(Nr |~σr) cancels out with
each other and using the result of the D1 quiver case, the total partition function is

Z [Dr] = Zpert. [Dr]Zinst. [Dr] ,
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Zinst. [Dr] =
∑

~λ1,...,~λr

r∏
i=1
Ztop.

(
~λi, ~σi

)
ZCS

(
κi, ~λi, ~σi

)
Zvec.

(
~vi, ~λi, ~σi

)

×
r−1∏
i=1
Zbfd.

(
~vi−1, ~λi−1, ~σi−1 |~vi, ~λi, ~σi | γ−1

)
×Zbfd.

(
~vr, ~λr, ~σr |~vr−2, ~λr−2, ~σr−2 | γ−1

)
, (5.41)

where the topological term and Chern-simons level are identified as

qi =



− u′i
ui+1

γn
′
i−ni+1

Ni∏
l=1

(−vil)σil , 1 ≤ i ≤ r − 3

−
u′r−2
u′r−1

γn
′
r−2−n

′
r−1

Nr−2∏
l=1

(−vr−2,l)σr−2,l , i = r − 2,

−
u′′r−1
u′r

γn
′′
r−1−n

′
r

Nr−1∏
l=1

(−vr−1,l)σr−1,l , i = r − 1,

−ur−1urγ
nr+1

Nr∏
l=1

(−vrl)σrl i = r,

(5.42)

κi =



ni+1 − n′i −
Ni∑
l=1

σil, 1 ≤ i ≤ r − 3,

n′r−1 − n′r−2 −
Nr−2∑
l=1

σr−2,l, i = r − 2,

n′r − n′′r−1 −
Nr−1∑
l=1

σr−1,l, i = r − 1,

−nr−1 − nr −
Nr∑
l=1

σrl i = r.

(5.43)

6 Gaiotto state, qq-character, and quiver W-algebra

Using the intertwiners introduced in section 4, we study the Gaiotto state in section 6.1,
the qq-characters in section 6.2, and the relation with quiver W-algebra in section 6.3.

6.1 Gaiotto state

We define the Gaiotto state as

|G,~v, ~σ〉〉 = 〈0|Φ
(n∗)∗
~σ [u∗, ~v] |0〉

〈0|Φ(n∗)∗
~σ,~∅

[u∗, ~v] |0〉
=

∑
λ1,...,λN

N∏
i=1

a
(σi)
λi

〈0|Φ(n∗)∗
~σ,~λ

[u∗, ~v] |0〉

〈0|Φ(n∗)∗
~σ,~∅

[u∗, ~v] |0〉
|~v,~λ, ~σ〉〉

=
∑

λ1,...,λN

N∏
i=1

a
(σi)
λi

N∏
i=1

t∗n∗i ,σi
(λi, u∗i , vi)

∏
k<l

Nσkσl(q3vk, σk | vl, σl)−σkσl |~v,~λ, ~σ〉〉

(6.1)
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where we used the generalized AFS intertwiner convention in (4.20) and

|~v,~λ, ~σ〉〉 = |vN , λN , σN 〉〉 ⊗ · · · |v2, λ2, σ2〉〉 ⊗ |v1, λ1, σ1〉〉. (6.2)

We normalized the Gaiotto state so that it is expanded as |G,~v, ~σ〉〉 = |~∅〉〉+ · · · by dividing
with the empty partition contribution that gives the perturbative part. We note that the
explicit form of this Gaiotto state itself depends on the ordering of the parities ~σ.

Using the intertwiner relations in (4.3) (see also appendix F) recursively, one can
determine the actions of the generators on the Gaiotto state as

x+ (z) |G,~v, ~σ〉〉 = − u∗∏N
j=1 (−vj)σj

(
γ

z

)n∗−∑N

j=1 σj (
Y+

(
q−1

3 z
)
− Y−

(
q−1

3 z
))
|G,~v, ~σ〉〉,

x− (z) |G,~v, ~σ〉〉 = −
∏N
j=1

(
−vjγ−1)σj
u∗

(
z

γ

)n∗−∑N

j=1 σj (
Y+ (z)−1 − Y− (z)−1

)
|G,~v, ~σ〉〉,

ψ± (z) |G,~v, ~σ〉〉 = γ
−
∑N

j=1 σj
Y±

(
q−1

3 z
)

Y± (z) |G,~v, ~σ〉〉,

(6.3)

where the operators Y±(z) are defined as operators acting diagonally on the crystal repre-
sentation basis as

Y±(z) |~v,~λ, ~σ〉〉 =
[
Y(~σ)
~λ

(z)
]
±
|~v,~λ, ~σ〉〉, Y(~σ)

~λ
(z) :=

N∏
i=1

(
Y(σi)
λi

(z)
)σi

. (6.4)

Note that although the Gaiotto state depends on the ordering of the parities, the actions of
the Drinfeld currents will not depend on them. This comes from the fact that the coproduct
formula (3.5) is non-symmetric in the two tensor products and after combining with the
Gaiotto states, they will eventually cancel the dependence of the ordering of the parities.

We similarly define the dual Gaiotto state as

〈〈G,~v, ~σ| = 〈0|Φ
(n)
~σ [u,~v] |0〉

〈0|Φ(n)
~σ,~∅

[u,~v] |0〉
=

∑
λ1,...,λN

N∏
i=1

a
(σi)
λi

〈0|Φ(n)
~σ,~λ

[u,~v] |0〉

〈0|Φ(n)
~σ,~∅

[u,~v] |0〉
〈〈~v,~λ, ~σ| . (6.5)

Then, the action of the generators on this dual Gaiotto state is written as

〈〈G,~v, ~σ|x+(z) = u
N∏
j=1

(−vj)σj
(
γ

z

)n+
N∑
j=1

σj

〈〈G,~v, ~σ|
(
Y+(z)−1 − Y−(z)−1

)
,

〈〈G,~v, ~σ|x− (z) = u−1
N∏
j=1

(−γvj)−σj
(
z

γ

)n+
N∑
j=1

σj

〈〈G,~v, ~σ|
(
Y+

(
q−1

3 z
)
− Y−

(
q−1

3 z
))
,

〈〈G,~v, ~σ|ψ± (z) = γ
−
∑N

j=1 σj 〈〈G,~v, ~σ|
Y±

(
q−1

3 z
)

Y± (z) , (6.6)

where the actions of the Drinfeld currents are rewritten as diagonal operators on the Gaiotto
state. Moreover, using (5.5), (6.1), and (6.5), the instanton part of the partition function is
rewritten as

Z inst
N,(σ1,...,σN ) = 〈〈G,~v, ~σ |G,~v, ~σ〉〉. (6.7)
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These are generalizations of the non-supergroup case of the Gaiotto state [19] (see also [58,
105–107]). The difference is that the diagonal operators of the non-supergroup case are
modified in a way that when factors coming from the positive branes such as Y (+)

λ (z) appears,
factors coming from the negative branes will appear as Y (−)

λ (z)−1. Namely, the negative
branes’ factors always appear in the inverse power of the positive branes’ factors. This is a
universal property12 of the supergroup gauge theory and we will see it again in section 6.2.
Thus, any quantity written as Y~λ(z) in the non-supergroup case is simply modified to
Y(~σ)
~λ

(z) in general supergoup theories.

6.2 qq-character

Let us derive the fundamental qq-character of A1-quiver with supergroup U(N |~σ) as an
application of the intertwiner formalism. The fundamental operator in deriving the partition
function is (5.5) (see section 5.1). This operator satisfies the following property(

ρ
(1,n∗′)
u∗′ ⊗ ρ(1,n′)

u′

)
∆(g(z)) TU(N |~σ) = TU(N |~σ)

(
ρ

(1,n∗)
u∗ ⊗ ρ(1,n)

u

)
∆(g(z)), (6.8)

where g(z) ∈ E and the spectral parameters obey the conservation laws (4.21). The identity
above can be proved easily using the intertwiner properties in (4.3) and (4.8). Let us
consider only when g(z) = x+(z) and N = 1. Extensions to general N > 1 is obtained
easily. Using the figure description in the appendix F, the left hand side is transformed into
the right hand side as follows:

1 x+(z)

+

x+(γz) ψ−(γ1/2z)

=

1

x+(z)

−

1

x+(γz)

ψ−(γ1/2z)

+
x+(γz)

ψ−(γ1/2z)

+

x+(γz)

ψ−(γz)

ψ−(γ1/2z)

=

1

x+(z)

+

x+(γz) ψ−(γ1/2z)

(6.9)

Thus, the operator TU(N |~σ) is interpreted as a screening operator similar to the non-
supergroup case.

12Actually, this property is already obvious in the crystal representations in section 3.1. All the factors
appearing in the level (0,−1) representation are obtained from level (0, 1) representation by modifying
Y (+)

λ (z)→ Y (−)

λ (z)−1.
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Inserting the operator ∆(x±(z)) and taking the expectation value in the vertex operator
representation, we can derive the qq-characters. In the non-supergroup theory, the qq-
character turns out to be a polynomial, but for the supergroup case, it will be a rational
function13 [32]. The authors in [58, 107] studied this property using the condition (6.8) and
claimed that the Chern-Simons level will be restricted so that the external branes do not
intersect with each other as in [75]. We expect that a similar story holds for the supergroup
case and that the properties of the qq-characters give a restriction to the possible brane
webs. We leave a detailed analysis of the qq-character for future work. In this paper, we
simply apply the derivation of [58] and only derive the algebraic quantity for the simplest
case and give few observations.

We define the fundamental qq-character of the A1-quiver as

χ+(z) := νzn
∗′+
∑N

i=1 σi

u∗′qn
∗′

3

〈∆(x+(γ−1z))TU(N |~σ)〉
〈TU(N |~σ)〉

, ν = −
N∏
l=1

(−q3vl)−σl . (6.10)

Using the formulas in section 6.1 and appendix E.2, the qq-character is determined as

χ+(z) =
〈
νz
∑N

i=1 σiY(~σ)
~λ

(
q−1

3 z
)

+ q
zκ

Y(~σ)
~λ

(z)

〉
inst.

, (6.11)

where the expectation value 〈O~λ(z)〉inst. is

〈O~λ (z)〉inst. := 1
Z inst
N,(σ1,...,σN )

∑
λ1,...,λN

O~λ (z)Ztop.
(
~λ, ~σ

)
ZCS

(
κ,~λ, ~σ

)
Zvec.

(
~v,~λ, ~σ

)
.

(6.12)

Up to few factors, this is indeed the same qq-character derived in [32]. Note that the
qq-character does not depend on the ordering of the parities. As mentioned in section 6.1,
the main difference with the non-supergroup case is the existence of negative branes and the
corresponding operator Y (−)

λ (z). The Y function of N -stack of D-branes will transform from
Y~λ(z) to Y(~σ)

~λ
(z), where parities of the D-branes are introduced as additional degrees of

freedom. Higher qq-characters and qq-characters associated with Ar-quiver can be derived
using the results in [58] and doing this manipulation.

6.3 Quiver W-algebra

We briefly study the relation with Kimura-Pestun’s quiver W-algebra. Obviously, from the
brane web of the linear quiver gauge theory in section 5.1 and 5.2 or equation (5.25), we
can interpret the brane system as a map from tensor products of vertex operators to tensor

13This property is related to the Seiberg-Witten curve [26]. For the pure SU(N) gauge theory, the
Seiberg-Witten curve is z + 1/z + det(x − Φ) = 0, where Φ is the scalar matrix of the Coulomb branch
parameters, while for the supergroup SU(N+ |N−) it is z + 1/z + sdet(x− Φ) = 0. If we diagonalize it as

Φ = (a1, . . . , aN+ | b1, . . . , bN−), we have z + 1/z +
∏N+

i=1
(x−ai)∏N−

j=1
(x−bj)

= 0. The super-determinant part is related

to why the qq-character is a rational function.
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products of vertex operators. The vertex operators appearing are all of the same type,14 so
the arising deformed W-algebra should be the deformed WN algebra (+ Heisenberg). If this
is so, the partition function itself should be rewritten in products of the screening currents
of the W-algebra as in [108]. Let us see this for the simplest pure super Yang-Mills case.
Generalizations to other quivers are straightforward.

For the pure SYM case, the system acts on tensor products of two vertex operator
representations. Thus, it should be related with the q-Virasoro algebra. There are two
screening currents for the q-Virasoro algebra:

S1 (z) = exp
(
−
∞∑
n=1

zn

n
qn1

(
γna

(1)
−n − a

(2)
−n

))
exp

(
−
∞∑
n=1

z−n

n

1− q−n1
1− q−n2

(
γna(1)

n − a(2)
n

))
,

S2 (z) = exp
( ∞∑
n=1

zn

n

1− qn2
1− q−n1

(
γna

(1)
−n − a

(2)
−n

))
exp

(
−
∞∑
n=1

z−n

n

(
γna(1)

n − a(2)
n

))
,

(6.13)

where we omit the zero modes and a
(1)
n = an ⊗ 1, a(2)

n = 1 ⊗ an. The screening currents
obey the condition

ξ(z)⊗ η(z) =: S1(z)−1S1(q2z) :=: S2(z)−1S2(q1z) : . (6.14)

Using this, they are rewritten as

S1 (z) =:
∞∏
i=1

ξ
(
q−i2 z

)
⊗ η

(
q−i2 z

)
:, S2 (z) =:

∞∏
i=1

ξ
(
q−i1 z

)
⊗ η

(
q−i1 z

)
: . (6.15)

Then, the intertwiners are rewritten by the above screening currents as15

Φ∗+,λ ⊗ Φ+,λ ':
∏
x∈λ∞

S1(χ(+)

x )
S1(q2χ(+)

x )
∏
x∈λ

S1(q2χ
(+)

x )
S1(χ(+)

x ) :=:
∏
x∈X+

λ

S1(x) : (6.16)

':
∏
x∈λ∞

S2(χ(+)

x )
S2(q1χ(+)

x )
∏
x∈λ

S2(q1χ
(+)

x )
S2(χ(+)

x ) :=:
∏
x∈X̌+

λ

S2(x) :, (6.17)

14From triality, we have three types of vertex operator representations usually denoted Fi (i = 1, 2, 3).
Since we are using only F3 dressed with some zero mode factors, the arising W-algebra is F3⊗F3⊗ · · ·⊗F3,
which is just the deformedWN algebra (with an additional Heisenberg algebra). As mentioned in section 3.2.2,
we also have a different vertex operator representations. Including these representations should give new
quiver W-algebras [108].

15Another way to convert the intertwiners to products of screening currents is to use the equivariant index
formula in appendix C.1. By direct computation, we have

Φ∗σ,λ ⊗ Φσ,λ ∼ exp

(
∞∑
n=1

1
n

γna
(1)
−n − a

(2)
−n

1− q−n1
σchYσ

[n]

)
exp

(
−
∞∑
n=1

1
n

γna
(1)
n − a(2)

n

1− q−n2
σchYσ

[−n]

)
,

where

chYσ
[n] = vn − (1− qn1 )(1− qn2 )

∑
x∈λ

(χ(σ)
x )n.

Inserting the relation of the Y bundles and X bundles in (C.8), we have

Φ∗σ,λ ⊗ Φσ,λ ':
∏
x∈Xσ

λ

S1

(
q
σ−1

2
1 x

)
:=:

∏
x∈X̌σ

λ

S2

(
q
σ−1

2
2 x

)
: .
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Φ∗−,λ ⊗ Φ−,λ ':
∏
x∈λ∞

S1(q2χ
(−)

x )
S1(χ(−)

x )
∏
x∈λ

S1(χ(−)

x )
S1(q2χ(−)

x ) :=:
∏

x∈X−
λ

S1(q−1
1 x) : (6.18)

':
∏
x∈λ∞

S2(q1χ
(−)

x )
S2(χ(−)

x )
∏
x∈λ

S2(χ(−)

x )
S2(q1χ(−)

x ) :=:
∏

x∈X̌−
λ

S2(q−1
2 x) :, (6.19)

where we used

Φ+,∅ [v] =:
∞∏

i,j=1
η
(
vqi−1

1 qj−1
2

)−1
:, Φ∗+,∅ [v] =:

∞∏
i,j=1

ξ
(
vqi−1

1 qj−1
2

)−1
:,

Φ−,∅ [v] =:
∞∏

i,j=1
η
(
vq−i1 q−j2

)+1
:, Φ∗−,∅ [v] =:

∞∏
i,j=1

ξ
(
vq−i1 q−j2

)+1
:,

(6.20)

and λ∞ = {(i, j) | i, j = 1, 2, . . .}. The symbol ' means we omitted the zero mode part.
See (C.5) for the definition of the x-variables.

The operator TU(N |~σ) is now rewritten for example as

TU(N |~σ) =
∑
~λ

N∏
i=1

a
(σi)
λi

tni,σi (λi, ui, vi) t∗n∗i ,σi (λi, u∗i , vi)

× :
∏

xN∈X
σN
λN

S1

(
q
σN−1

2
1 xN

)
: · · · :

∏
x2∈X

σ2
λ2

S1

(
q
σ2−1

2
1 x2

)
::

∏
x1∈X

σ1
λ1

S1

(
q
σ1−1

2
1 x1

)
: .

(6.21)

One can also use the other three ways in (6.17) and (6.19) to rewrite the intertwiners
to screening currents.16 Adding extra zero modes to the screening currents and dealing
with the extra factors in front of the products of screening currents, one can obtain the
supergroup analogue of the Z-state defined in [108]:

|ZU(N |~σ)〉 = TU(N |~σ) |0〉 ⊗ |0〉 ,
ZN,(σ1,...,σN ) = 〈0 |ZU(N |~σ)〉 = 〈0| ⊗ 〈0| TU(N |~σ) |0〉 ⊗ |0〉 .

(6.22)

7 Comparison with refined topological vertex and anti-vertex

As discussed in detail in section 5, using the positive and negative intertwiners, we can
compute the Nekrasov partition function of supergroup gauge theories. For the non-
supergroup case, another traditional way to compute Nekrasov partition functions is to use
the (refined) topological vertex [33–36, 109]. Since both the intertwiners and the refined
topological vertex reproduce the same instanton partition function, it is natural to expect
they are related to each other. In the seminal work [47], the identification of the refined
topological vertex of [33, 35] and the positive intertwiner were shown.

Actually, an analogue of the refined topological vertex for the supergroup case called anti-
refined topological vertex (shortly anti-vertex) was introduced in [31]. A similar identification

16See also [37, 38], where a similar formula using two types of screening currents to reproduce partition
functions of supergroup gauge theories was discussed.
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for this anti-vertex and negative intertwiner should hold because they reproduce the same
partition function.

We review the anti-vertex and give the complete rule for the framing factors in section 7.1.
We then show that the matrix elements of the interwiners correspond to the topological
vertices under the identification (q1, q2) = (q, t−1) in section 7.2. We will see that the
positive and negative intertwiners are related with each other in the unrefined limit in
section 7.3, which reproduces the result in [31]. Finally, in section 7.4, we confirm that the
gluing rules for the anti-vertex we propose in section 7.1 match with the gluing rules of
the interwiners.

7.1 Refined topological vertex and anti-vertex

We briefly review the (anti) refined topological vertex in this section (see for example
section 4 of [110]). We use the Iqbal-Kozcaz-Vafa (IKV) [33] and Kimura-Sugimoto form [31],
which use the Schur functions, instead of the Awata-Kanno form [34, 35] using Macdonald
polynomials. We note that both forms are known to be essentially equivalent [35, 47].

The definition of the refined topological vertex is

Cλµν (t,q) =
(
q

t

) ||µ||2+||ν||2
2

t
κ(µ)

2 t
||ν||2

2 Z̃ν (t,q)
∑
η

(
q

t

) |η|+|λ|−|µ|
2

sλT/η

(
t−ρq−ν

)
sµ/η

(
t−ν

T
q−ρ

)

= q
||µ||2+||ν||2

2 t−
||µT||2

2 Z̃ν (t,q)
∑
η

(
q

t

) |η|+|λ|−|µ|
2

sλT/η

(
t−ρq−ν

)
sµ/η

(
t−ν

T
q−ρ

)
(7.1)

where

ρ =
(
−1

2 ,−
3
2 ,−

5
2 , · · ·

)
, Z̃ν (t, q) =

∏
(i,j)∈ν

(
1− tlν(i,j)+1qaν(i,j)

)−1
, (7.2)

and sλ/η(x), x = (x1, x2, . . .) is the skew Schur function. See appendix A and G for the
notations. The anti refined topological vertex [31] is similarly defined as

C̄λµν(t, q) = t−
1
2 ||µ

T||2q
1
2 (||µ||2−||ν||2)Z̃ν(t−1, q−1)

∑
η

(
q

t

) 1
2 (|η|+|λ|−|µ|)

sλT/η(tρqν)sµ/η(qρtν
T).

(7.3)

We depict these vertices as

q, µ

t, λ

νCλµν(t, q) =

q, µ

t, λ

νC̄λµν(t, q) = (7.4)

where partitions λ, µ, ν are assigned to all of the legs, while parameters q, t are assigned
to two of the three legs. The labels of the vertices are ordered in a clockwise direction.
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The leg marked with two red strips has no parameter associated with it and is called the
preferred direction. In this paper, we will fix the preferred direction to be in the horizontal
direction. For the anti-vertex, we use dashed lines only for the preferred direction.17 The
arrows are drawn outgoing from the vertex and if the arrow is incoming towards the vertex,
the associated partition gets transposed. We also denote these vertices as

C
(σ)
µνλ(t, q) =

Cµνλ(t, q) σ = +

C̄µνλ(t, q) σ = −
, (7.5)

where σ determines whether the vertex is the normal vertex or the anti-vertex.
Let us explain how to assign the topological vertices given a brane web. Unfortunately,

the gluing rules were not explicitly given in [31] when the framing factors play a role. It
seems that the framing factors do not directly come from the charges of the brane web (see
the remark at the end of this subsection). We propose the following procedures to compute
partition functions using the anti-vertex. In section 7.2 and 7.4, we will see that these rules
are compatible with the interwiner formalism.

1. We start from a brane web satisfying the following conditions.

• Each vertex of the diagram is a trivalent vertex with three edges connected to it.
• One of the three edges is always parallel to a fixed direction which we call the

preferred direction.
• Edges non-parallel to the preferred direction are drawn in solid lines.
• Edges parallel to the preferred direction are assigned two red strips for conve-

nience.
• Edges parallel to the preferred direction are drawn in either solid lines or

dashed lines.

In this paper, we choose the preferred direction to be the horizontal direction. For the
non-supergroup case, the brane web comes from dual toric diagrams [40, 41, 75, 76].
For the supergoup case, whether we have a similar story is non-trivial for the moment,
so we just say that the brane web is a general diagram satisfying the above conditions.

2. We further assign parameters q, t to each end of the edges of the non-preferred direction
as the following:

t t

q q

t t

q q t

q

q

t

t

q

q

t

etc.

(7.6)
17In the original paper [31], the authors draw all the legs in dashed lines. Since this vertex will be related

to the negative intertwiner, we follow the drawings of the intertwiner and draw only the preferred direction
in dashed line.
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positive directionnegative direction

v = (1, 0)

v = (−1, 0) v = (1, 0)

v = (−1, 0)

preferred direction

Figure 6. Positive and negative direction of the preferred direction. When the edge parallel to the
preferred direction is a solid line and points at the positive direction, we assign vector v = (1, 0),
when it is a solid line and points at the negative direction, we assign vector v = (−1, 0). Oppositely,
when the preferred edge is a dashed line and points at the positive direction, we assign vector
v = (−1, 0), when it is a dashed line and points at the negative direction, we assign vector v = (1, 0).

Namely, an edge with parameter q (resp. t) glues with an edge with parameter t
(resp. q). It is exactly the same as the non-supergroup case and does not depend
whether the preferred direction is in dashed lines or not.

We can switch the roles of q and t, and the result does not change. After determining
the parameter of one of the edges of the brane web, all the other parameters will be
determined automatically following the above rule. For convenience, we choose an
ordering such that the parameter t is always above compared to q.

3. We assign each edge a Young diagram. For edges extending semi-infinitely, an empty
partition is assigned. We also make the edges oriented and assign an arrow pointing
to one of the two vertices. The arrows of the three edges surrounding a vertex is
chosen to be either incoming or all outgoing from the vertex.

4. We choose a positive direction of the preferred direction. The opposite direction is
called the negative direction. In our situation that the preferred direction is in the
horizontal direction, we can choose left or right to be the positive direction. We choose
the direction pointing right to be the positive direction.

We then, assign two-dimensional integer valued vectors vi ∈ Z2 (i = 1, 2, 3) to each of
the edges obeying the following conditions:
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• The assigned vectors obey the conservation law:

3∑
i=1

vi = 0. (7.7)

• For the edges in the preferred direction, either (1, 0) or (−1, 0) is assigned. If an
edge with solid line points at the positive direction of the preferred direction,
we assign (1, 0), if it points at the negative direction we assign (−1, 0). For the
edges with dashed lines, we oppositely assign (−1, 0) for the positive direction
and (1, 0) for the negative direction (see figure 6).

5. To each edge, we further associate an integer η. The integer η depends on how four
edges are connected to the edge. There are five patterns in our setup and they are
drawn in figure 7. For the non-supergroup case, this integer η is derived from the
vectors assigned to the four edges. For general supergroup case, we do not have such
understanding, so we just assign the integer η following figure 7 (see the remark at
the end of this section).

We introduce two framing factors as in [33, 109]:

fµ(t, q) = (−1)|µ|t
||µT||2

2 q−
||µ||2

2 ,

f̃µ(t, q) = (−1)µ
(
t

q

) |µ|
2
t
||µT||2

2 q−
||µ||2

2 =
(
t

q

) |µ|
2
fµ(t, q).

(7.8)

Note that these factors have the properties

fµT(t, q) = fµ(q, t)−1, f̃µT(t, q) = f̃µ(q, t)−1. (7.9)

Using these, we associate a framing factor fηλ , f̃
η
λ to an edge v with a partition λ

and an integer η (see for example figure 12 of [110] for how to determine the framing
factors of non-supergroup cases). Explicitly, the five patterns in figure 7 only appear
in our paper. Additionally, we assign a Kähler moduli (−Q)|λ| to each edge.

6. For each vertex, when there is no dashed line connecting to it, we assign Cλµν(t, q).
When there is a dashed line, we assign C̄λµν(t, q). They are assigned following the
rules in (7.4).

7. The final partition function is obtained by doing the above process for each vertex of
the brane web. The result for gluings of two trivalent vertices looks like

∑
λ

(−Q)|λ|fηλC
(σ)
µ1ν1λ

(q, t)C(σ)
µ2ν2λT(t, q) (7.10)

for example.
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t t

q q

(−M − σ,−1)

(M, 1)(−N − σ,−1)

(N, 1)

λ

(σ, 0)

fλ(q, t)
M−N

η = M −N

t

q

q

t

µ(N + σ, 1)

f̃µ(q, t)

η = 1

(−σ, 0)

(σ′, 0)

(−N,−1)

(−N − σ − σ′,−1)

t

q

q

t

ν (N + σ′, 1)

f̃ν(q, t)
−1

η = −1

(σ, 0)

(−σ′, 0)

(−N − σ − σ′,−1)

(−N,−1)

t

q

t

q

(−N − σ′,−1)

(σ′, 0)

(−N − σ,−1)

(σ, 0)

ν(N, 1)

1

η = 0

t

q

t

q

(−N − σ + σ′,−1)

(−σ′, 0)

(−N,−1)

(−σ, 0)

µ (N + σ, 1)

1

η = 0

Figure 7. The five patterns of framing factors that appear in this paper. The integer η associated
with the green edge is written in green. The framing factor for each pattern is written in blue. The
parity σ, σ = ±1 depends on whether the edges in the preferred direction are in dashed lines or not.
When σ = +1, they are positive D-branes and when σ = −1, they are negative D-branes.

Remark. In the context of refined topological vertex (for the non-supergoup case), the
framing factors and the integers η of an edge are related with the vectors assigned to the
four legs connected to the edge. To be concrete, the integer η assigned for an edge with
vector v is

v
v1

v2 v3

v4
η = v1 ∧ v3 = v2 ∧ v4 (7.11)

where the antisymmetric operation is defined as v ∧ w = v1w2 − w1v2. However, when
negative D-branes enter the setup, as one can see in figure 7, this antisymmetric operation
is only true for the case when the preferred direction is glued:

η = (M, 1) ∧ (N, 1) = (−M − σ,−1) ∧ (−N − σ,−1) = M −N, (7.12)

For other cases, they do not match with the conventional way:

η = (−σ, 0) ∧ (−N − σ − σ′,−1) = σ 6= (−N,−1) ∧ (σ′, 0) = σ′,

η = (−N − σ − σ′,−1) ∧ (−σ′, 0) = −σ′ 6= (σ, 0) ∧ (−N,−1) = −σ,
η = (σ, 0) ∧ (σ′, 0) = 0 6= (−N − σ,−1) ∧ (−N − σ′,−1) = σ − σ′,
η = (−σ, 0) ∧ (−σ′, 0) = 0 6= (−N,−1) ∧ (−N − σ + σ′,−1) = σ − σ′.

(7.13)
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and the equality only holds when σ = σ′. One solution for this mismatch may be to redefine
the anti-vertex and framing factors so that the conventional way holds for the supergroup
case. In this paper, we do not search this direction. Even there is a mismatch, we still can
do calculations using the above rules. Moreover, as long as we use the intertwiner formalism,
we do not even have to think of framing factors because they are already incorporated in
the intertwiners.

7.2 Correspondence between intertwiners and refined topological vertices

The correspondence in (4.25) implies that the matrix elements of the intertwiners should
correspond with refined topological vertices. It was shown in [47] that the matrix elements
of the positive (dual) intertwiner in Schur basis corresponds to the IKV refined topological
vertex. Thus, it is natural for the negative interwiner introduced in this paper to correspond
with the anti-refined topological vertex recently introduced by Kimura and Sugimoto [31].
Let us show this correspondence.

After using q1 = q, q2 = t−1, the operator part of the negative intertwiner is written as

: Φ−,∅[v]
∏
x∈λ

η(χ(−)

x )−1 : = exp

 ∞∑
n=1

vn

n
a−n

 1
1− q−n +

∑
x∈λ

(
t

q

)n
q−nx qn(1− t−n)




× exp

 ∞∑
n=1

v−n

n
an

− 1
1− tn +

∑
x∈λ

(
q

t

)n
qnx(1− q−n)



(7.14)

where we shortly wrote qx = qi−1t−j+1, x = (i, j) ∈ λ. Using the following identities

− 1
1− tn +

∑
x∈λ

(
q

t

)n
qnx
(
1− q−n

)
=
∞∑
j=1

t−njqnλ
T
j ,

1
1− q−n +

∑
x∈λ

(
t

q

)n
qn
(
1− t−n

)
q−nx =

∞∑
i=1

q−n(i−1)tnλi ,

(7.15)

the operator part is rewritten as

: Φ−,∅[v]
∏
x∈λ

η(χ(−)

x )−1 : = V−(vqρ+ 1
2 tλ)V+(v−1tρ−

1
2 qλ

T), (7.16)

where we used the vertex operators in (G.5) (see appendix G). Taking the matrix elements
in the Fock basis (G.4) and using the free field realization of the Schur functions in (G.10),
we have

〈µ| : Φ−,∅ [v]
∏
x∈λ

η (χ(−)

x )−1 : |ν〉= 〈µ|V−
(
vqρ+ 1

2 tλ
)
V+

(
v−1tρ−

1
2 qλ

T
)
|ν〉

=
(
qt−

1
2 v
)|µ|(

q
1
2 v
)−|ν|∑

η

(
t

q

) 1
2 (|η|+|µ|−|ν|)

sµ/η
(
qρtλ

)
sν/η

(
tρqλ

T
)

(7.17)
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where we used the property of the Schur functions in (G.14). The zero mode part is
rewritten as

tn,−(λ, u, v) = (u−1γ)|λ|(−v)n|λ|fλ(q, t)−n+1 (7.18)

using the framing factor. Then, we obtain the correspondence

〈µ|Φ(n)
−,λ [u, v] |ν〉

=
(
u−1γ

)|λ|
(−v)n|λ|

(
qt−

1
2 v
)|µ| (

−q
1
2 v
)−|ν| fν (q, t)

fλ (q, t)n−1 t
1
2 ||λ||

2
Z̃λ
(
q−1, t−1

)−1
C̄µTνλ(q, t).

(7.19)

We can do a similar computation for the dual negative intertwiner. The operator part
is written as

: Φ∗−,∅ [v]
∏
x∈λ

ξ (χ(−)

x )−1 : = Ṽ−
(
−γvqρ+ 1

2 tλ
)
Ṽ+
(
−v−1γqλ

T
tρ−

1
2
)
, (7.20)

where the operators are defined in (G.5). After taking the matrix element with the Fock
basis, using (G.11), and then rewriting the zero-mode part, we eventually have

〈ν|Φ(n)∗
−,λ [u, v] |µ〉

= u|λ| (−v)−n|λ|
(
−qt−

1
2 v
)−|µ| (

q
1
2 v
)|ν| fλ (q, t)n

fν (q, t) q
1
2 ||λ

T||2Z̃λT

(
t−1, q−1

)−1
C̄µνTλT(t, q).

(7.21)

Rewriting the positive intertwiners in our notation, we can write the correspondence in
a unified way:

〈µ|Φ(n)
σ,λ [u,v] |ν〉

=
(
uσγ

1−σ
2

(−v)nσ

)|λ|(
qt−

1
2 v
)|µ|(

−q
1
2 v
)−|ν| fν (q, t)

fλ (q, t)n+σ t
−σ2 ||λ||

2
Z̃−1
λ (qσ, tσ)C(σ)

µTνλ (q, t) ,

〈ν|Φ(n)∗
σ,λ [u,v] |µ〉

=
(

(−v)nσ

uσγ
1+σ

2

)|λ|(
−qt−

1
2 v
)−|µ|(

q
1
2 v
)|ν| fλ (q, t)n

fν (q, t) q
−σ2 ||λ

T||2Z̃−1
λT (tσ, qσ)C(σ)

µνTλT(t,q).

(7.22)

Therefore, the interwiners are essentially equivalent to the IKV refined topological vertex
and the Kimura-Sugimoto anti-vertex.
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Using diagrams, we have the following identifications

|v, λ〉〉

µ̂

ν̂

Φ(n)
σ [u, v] ⇐⇒

t, ν

q, µ

λ
(σ, 0)

(n, 1)

(n+ σ, 1)

C
(σ)
µTνλ(q, t)

〈〈v, λ|

µ̂

ν̂

Φ(n)∗
σ [u, v] ⇐⇒

q, ν

(n, 1)

t, µ
λ

(σ, 0)

(n+ σ, 1)

C
(σ)
µνTλT(t, q)

(7.23)

The procedure to obtain the refined topological vertices from the intertwiner is as follows:

1. We first reverse all the arrows of the interwiners.

2. Each edge of the intertwiner is assigned a module with levels such as (0, σ), (1, n), (1, n+
σ). The vectors associated with the edges are obtained by switching the components
of these levels such as (σ, 0), (n, 1), (n+ σ, 1), respectively. This corresponds to (4.25).

3. Following the pictorial description in (7.4), we obtain the refined topological vertices.
Note that when the arrows are going into the vertex, we use the transpose of the
attached Young diagram.

7.3 Unrefined limit

Actually the positive and negative intertwiners are directly related with each other in the
unrefined limit. A similar discussion for the topological vertices was done in [31]. Let us
see what will happen for the intertwiner case.

We set q1 = q, q2 = q−1, q3 = 1 in the unrefined limit. We introduce two
vertex operators

Υ [v] = exp
(
−
∞∑
n=1

vn

n

a−n
1− q−n

)
exp

( ∞∑
n=1

v−n

n

an
1− qn

)
,

φ (z) = exp
( ∞∑
n=1

zn

n
(1− qn) a−n

)
exp

(
−
∞∑
n=1

z−n

n

(
1− q−n

)
an

)
.

(7.24)

In the unrefined limit, the vertex operators η(z), ξ(z),Φ∅[v],Φ∗∅[v] will transform as
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|v, λ〉〉

(1, n+ 1)−uv

(1, n)u

Φ(n)
+ [u, v]

∣∣∣
unref

(0, 1)v = 〈〈v, λT|

(1, n)u

(1, n+ 1)−uv

Φ(n+1)∗
− [−uv, v]

∣∣∣
unref

(0,−1)v

|v, λ〉〉

(1, n)u

(1, n+ 1)−uv

Φ(n+1)
− [−uv, v]

∣∣∣
unref

(0,−1)v = 〈〈v, λT|

(1, n+ 1)−uv

(1, n)u

Φ(n)∗
+ [u, v]

∣∣∣
unref

(0, 1)v

Figure 8. Identities of intertwiners in the unrefined limit. Negative branes on one side of the
NS5-brane are identical to positive branes on the other side of the NS5-brane in the unrefined limit.

η(z) −→ φ(z), ξ(z) −→: φ(z)−1 :, Φ∅[v] −→ Υ[v], Φ∗∅[v] −→: Υ[v]−1 :, q3 → 1.
(7.25)

The box contents of the Young diagrams χ(±)

x have a nice property in the unrefined limit.
For x = (i, j) ∈ λ,

χ(+)

x −→ χ̃(+)

x := vq−cλ(x) = vqi−j , χ(−)

x −→ χ̃(−)

x := vqcλ(x) = vqj−i, (7.26)

where we used cλ(i, j) = j − i (see appendix A). Using the property cλT(x) = −cλ(x),
we have ∏

x∈λT

f(χ̃(+)

x ) =
∏
x∈λ

f(χ̃(−)

x ) (7.27)

for any function f(z). In the unrefined limit, the vertex operator part of the intertwiners
transform as

: Φ±,∅[v]
∏
x∈λ

η(χ(±)

x )±1 : −→: Υ[v]±1 ∏
x∈λ

φ(χ̃(±)

x )±1 :,

: Φ∗±,∅[v]
∏
x∈λ

ξ(χ(±)

x )±1 : −→: Υ[v]∓1 ∏
x∈λ

φ(χ̃(±)

x )∓1 : .
(7.28)

The zero modes part transform as

tn,σ(λ, u, v) −→ (−uσv)|λ|
∏
x∈λ

(
χ̃(σ)
x

)(−1−nσ)
,

t∗n,σ(λ, u, v) −→ u−σ|λ|
∏
x∈λ

(χ̃σx)σn .
(7.29)
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Using the above limits and properties, the intertwiners obey the following identities in the
unrefined limit (see figure 8):

Φ(n)
+,λ[u, v]

∣∣∣
unref

= Φ(n+1)∗
−,λT [−uv, v]

∣∣∣
unref

,

Φ(n)∗
+,λT[u, v]

∣∣∣
unref

= Φ(n+1)
−,λ [−uv, v]

∣∣∣
unref

.
(7.30)

To convert to the topological vertices, we take the matrix elements in the Fock representa-
tion as

〈µT| Φ(n)
+,λ[u, v]

∣∣∣
unref
|ν〉 = 〈µT| Φ(n+1)∗

−,λT [−uv, v]
∣∣∣
unref
|ν〉 ,

〈νT| Φ(n)∗
+,λT[u, v]

∣∣∣
unref
|µ〉 = 〈νT| Φ(n+1)

−,λ [−uv, v]
∣∣∣
unref
|µ〉 . (7.31)

Eventually, we have the relation

Cµνλ(q, q) = fµf
−1
ν f−1

λ C̄νµλ(q, q), fµ := fµ(q, q) (7.32)

which matches with the result in [31].
The identities in (7.30) mean that in the unrefined limit, negative branes extending on

the right (resp. left) side of the NS5-brane can be pulled to the left (resp. right) side of the
NS5-brane and converted to the positive branes.

7.4 Gluings of intertwiners and topological vertices

We managed to show that the matrix elements of the intertwiners correspond with the
topological vertices in the previous section. Let us check if the gluing rules are compatible
with the ones proposed in section 7.1.

There are five ways to glue the intertwiners as shown in section 4.2. Taking the
matrix element with the Fock basis in the vertex operator representation (see section 3.2.1
and appendix G) and using the correspondence with topological vertices explained in the
previous subsection, we can translate the gluing rules of the intertwiners to the gluing rules
of the topological vertices. The results are summarized as follows:

• Gluing of D5-branes (situation (4.16)):

ν̂1 µ̂2

Φ(N)
σ [u1,v] · Φ(M)∗

σ [u2,v]
µ̂1 ν̂2

=
∑
λ

a
(σ)
λ

ν̂1 µ̂2

Φ(N)
σ,λ [u1,v] Φ(M)∗

σ,λ [u2,v]
µ̂1 ν̂2

(7.33)

= (−1)|µ2|+|ν1|
(
qt−

1
2 v
)|µ1|−|µ2|(

q
1
2 v
)|ν2|−|ν1| fν1(q, t)

fν2(q, t)

×
∑
λ

(
(−v)M−N u1

u2

)σ|λ|
fλ(q, t)M−NC(σ)

µT
1ν1λ

(q, t)C(σ)
µ2νT

2λ
T(t,q)
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• Gluing of NS5-branes (situation (4.12)):

ν̂1

Φ(N)
σ [u,v1] |λ1〉〉

Φ(N+σ)
σ′ [−uvσ1 ,v2] |λ2〉〉

ν̂2

=
∑
µ

ν̂1

Φ(N)
σ,λ1

[u,v1]
µ̂

µ̂

Φ(N+σ)
σ′,λ2

[−uvσ1 ,v2]
ν̂2

(7.34)

=
(
uσγ

1−σ
2

(−v1)Nσ

)|λ1|
(
−u

σ′vσσ
′

1 γ
1−σ′

2

(−v2)(N+σ)σ′

)|λ2|(
−q

1
2 v1

)−|ν1|(
qt
−

1
2 v2

)|ν2|

× fν1 (q, t)
fλ1 (q, t)N+σfλ2 (q, t)N+σ+σ′

t−
σ||λ1||2

2 −σ
′||λ2||2

2

Z̃λ1 (qσ , tσ)Z̃λ2 (qσ′ , tσ′ )

×
∑
µ

(
−v1

v2

)|µ|( q
t

) |µ|
2 fµ(q, t)C(σ)

µTν1λ1
(q, t)C(σ′)

νT
2µλ2

(q, t)

• Gluing of NS5-branes (situation (4.13)):

µ̂1

〈〈λ1| Φ(N+σ′)∗
σ [−uvσ′2 ,v1]

〈〈λ2| Φ(N)∗
σ′ [u,v2]
µ̂2

=
∑
ν

µ̂1

Φ(N+σ′)∗
σ,λ1

[−uvσ′2 ,v1]
ν̂

ν̂

Φ(N)∗
σ′,λ2

[u,v2]
µ̂2

(7.35)

=
(
− (−v1)(N+σ′)σ

uσvσσ
′

2 γ
1+σ

2

)|λ1|(
− (−v2)Nσ′

uσ′γ
1+σ′

2

)|λ2|(
−qt−

1
2 v1

)−|µ1|(
q

1
2 v2

)|µ2|

× fλ1 (q, t)N+σ′fλ2 (q, t)N

fµ2 (q, t)
q−

σ||λT
1||

2

2 −
σ′||λT

2||
2

2

Z̃λT
1
(tσ , qσ)Z̃λT

2
(tσ′ , qσ′ )

×
∑
ν

(
−v1

v2

)|ν|( t
q

) |ν|
2 fν(q, t)−1C

(σ)
µ1νTλT

1
(t,q)C(σ′)

νµT
2λ

T
2
(t,q)

• Gluing of NS5-branes (situation (4.14)):

ν̂1

Φ(N)
σ [u,v1] |λ1〉〉

〈〈λ2| Φ(N+σ−σ′)∗
σ′ [uvσ1 v−σ

′

2 ,v2]
ν̂2

=
∑
µ

ν̂1

Φ(N)
σ,λ1

[u,v1]
µ̂

µ̂

Φ(N+σ−σ′)∗
σ′,λ2

[uvσ1 v−σ
′

2 ,v2]
ν̂2

(7.36)

=
(
uσγ

1−σ
2

(−v1)Nσ

)|λ1|
(
− (−v2)(N+σ)σ′

uσ′vσσ
′

1 γ
1+σ′

2

)|λ2|(
−q

1
2 v1

)−|ν1|(
q

1
2 v2

)|ν2|

× fν1 (q, t)fλ2 (q, t)N+σ−σ′

fν2 (q, t)fλ1 (q, t)N+σ
t−

σ||λ1||2
2 q−

σ′||λT
2||

2

2

Z̃λ1 (qσ , tσ)Z̃λT
2
(tσ′ , qσ′ )

×
∑
µ

(
−v1

v2

)|µ|
C

(σ)
µTν1λ1

(q, t)C(σ′)
µνT

2λ
T
2
(t,q)
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• Gluing of NS5-branes (situation (4.15)):

µ̂1

〈〈λ1| Φ(N)∗
σ [u,v1]

Φ(N)
σ′ [u,v2] |λ2〉〉
µ̂2

=
∑
ν

µ̂1

Φ(N)∗
σ,λ1

[u,v1]
ν̂

ν̂

Φ(N)
σ′,λ2

[u,v2]
µ̂2

(7.37)

=
(

(−v1)Nσ

uσγ
1+σ

2

)|λ1|
(
uσ
′
γ

1−σ′
2

(−v2)Nσ′

)|λ2|(
−qt−

1
2 v1

)−|µ1|(
qt
−

1
2 v2

)−|µ2|

× fλ1 (q, t)N

fλ2 (q, t)N+σ′
q−

σ||λT
1||

2

2 t−
σ′||λ2||2

2

Z̃λT
1
(tσ , qσ)Z̃λ2 (qσ′ , tσ′ )

×
∑
ν

(
−v1

v2

)|ν|
C

(σ)
µ1νTλT

1
(t,q)C(σ′)

µT
2νλ2

(q, t)

All of the formulas indeed match with the gluing rules of the topological vertices in
figure 7, and thus, we conclude that the procedure we propose in section 7.1 is correct.

8 Superquiver theory

In this section, we discuss how superquiver theories should appear in our formalism if
they exist. This section is rather a sketch of how to construct these type of theories. A
detailed analysis is left for future work. A different construction of superquiver theories for
three-dimensional supersymmetric gauge theories and their relations with Bethe/Gauge
correspondence and supergroup gauge theories were studied in [37, 54, 63–65]. Studying
the relation with these papers is also left to be done.

Up to the previous section, we managed to derive the correspondence between the
negative intertwiners and negative branes of the supergroup gauge theory. The essential
point of the negative intertwiner was that it intertwines modules (0,−1)v ⊗ (1, n)u and
(1, n− 1)u′ . The new part was that representations with negative levels of central charges
appear. From the S-dual view point, one would like to consider other intertwiners

(0, 1)v ⊗ (−1, n)u → (−1, n+ 1)u′ , (8.1)
(0,−1)v ⊗ (−1, n)u → (−1, n− 1)u′ , (8.2)

where vertex operator representations with negative central charges appear. We can
illustrate these intertwiners and the dual of them as

(0, 1)v

(−1, n)u

(−1, n+ 1)u′

(0,−1)v

(−1, n)u

(−1, n− 1)u′

(0, 1)v

(−1, n+ 1)u′

(−1, n)u

(0,−1)v

(−1, n− 1)u′

(−1, n)u

(8.3)
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Combination of these intertwiners with the positive and negative intertwiners leads to the
following brane web:

(8.4)

The dashed horizontal lines correspond to the representations like (0,−1)v while the dashed
vertical lines correspond to the representations like (−1, n)u.The module with level (−1, 0)
should correspond to negative NS5-branes and level (−1, n) should correspond to a bound
state of negative NS5-brane and D5-branes with charge (0, n).

Looking at the diagram vertically, we obtain a supergroup structure for each stack of
D4 (D5)-branes. On the other hand, looking at the brane web horizontally, we obtain a
superquiver structure. This diagram strongly implies that the gauge theory we obtain here
is a supersymmetric supergroup superquiver gauge theory. Let us list down few conjectures
for linear quiver gauge theories.

Conjecture 1. The partition function of the pure supergroup gauge theory does not depend
on the signatures of the NS5-branes surrounding the stack of D4 (or D5)-branes:

(8.5)

Moreover, the partition function does not depend on the order of the D-branes as the pure
SYM case explained in sections 5.1 and 5.2.

Conjecture 2. The S-duality relates supergroup superquiver gauge theories by rotating the
brane web diagram by 90 degrees:

S dual !

(8.6)
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In particular, there is a duality between supergroup ordinary gauge theory and ordinary
group superquiver gauge theory:

(8.7)

Conjecture 3. When the rank of the supergroups of the gauge nodes are all the same, then
the partition function of the superquiver theory does not depend on the order of the NS5-
branes. Namely, after fixing the signatures of the NS5-branes, the partition function does
not depend on the order of it. In particular, they are related to the underlying superalgebra
structure of the quiver.

Conjecture 3 comes from conjecture 1 and conjecture 2. Since the rank of the su-
pergroups are all the same, we can use conjecture 1 and reorder the D-branes so that
each stack have the same ordering of parities. We then take the S-duality and obtain a
superquiver theory with the same ranks of supergroups for each stack of D-branes. Using
conjecture 2, the brane web is a 90 degrees rotated version of the original one and the
NS5-branes are transformed into D-branes now. We can then use again conjecture 1 and
reorder the D-branes. Finally, we use again conjecture 2 and take the S-duality and rotate
back the brane web. During the process, the partition function will not change and we
obtain conjecture 3.

9 Conclusion and discussions

We introduced new intertwiners which we call negative intertwiners to reproduce partition
functions of supergroup gauge theories and show the 5d AGT correspondence of supergroup
gauge theories. Negative intertwiners are obtained by using crystal representations with
negative levels of central charges. The new crystal representation is directly related to
the character of the negative part of the instanton bundle K−. Composition of these
intertwiners give the fundamental Nekrasov factors appearing in the partition function of A-
type supergroup gauge theories. We also reproduced the partition functions of A and D-type
quiver gauge theories using the intertwiner formalism. The negative intertwiners also give
the supergroup analogues of the Gaiotto state, qq-character, and quiver W-algebra. After
taking nontrivial matrix elements of the negative intertwiners, we managed to reproduce
the anti-refined topological vertex introduced by Kimura and Sugimoto [31]. Using the
correspondence, we gave rules including the framing factor which were not discussed in
detail in [31] to compute the partition functions, given a brane web. Finally, we discussed
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how superquiver gauge theories should appear in our formalism, which is still a conjecture
to be confirmed in future.

Let us list down possible directions for future work.

• Although we focused on the 5d AGT correspondence, it is possible to study
2d/3d [54, 103], 4d [61], and 6d generalizations [60, 111, 112] following previous
studies of the intertwiner formalism. Moreover, we can change the space time
which the theory is defined on or introduce defects to the system by changing the
base quantum toroidal algebra to other quantum toroidal algebras such as quantum
toroidal gln [62, 87], glm |n [113, 114], D(2, 1;α) [94, 115], and toroidal quiver BPS
algebras [88, 90, 91, 93, 94].

• Understanding the six-dimensional origin of the 4d/2d AGT correspondence for
supergroup gauge theories is also interesting [16]. The existence of the supergroup
analogue of the Gaiotto state explained in section 6.1 supports this expectation (of
course we need to take the degenerate limit for the 4d/2d correspondence). Usually,
in the story of AGT correspondence, we start from a certain 6d N = (2, 0) SCFT,
compactify it on a punctured Riemann surface, and then we obtain 4d N = 2 gauge
theories which are dubbed as class S theories [18, 19] (see [20] for a nice review).
The six-dimensional theories are believed to have ADE classifications, but then the
theories arising will not have supergroups as gauge groups. Thus, we expect there
should be six-dimensional theories associated with superalgebras (they may be non-
unitary or non-physical) that lead to this correspondence. M-theoretically, negative
M5-branes and M2-branes should also appear in the story, just as how negative
D-branes appeared in constructions of supergroup gauge theories [27, 29, 31, 32].
Studying supergroup analogues of the Seiberg-Witten curves appearing in the class
S constructions should help the analysis (see [29]). All these studies should lead us
to new non-unitary theories, including non-Lagrangian theories and broader 2d/4d
(5d/q-algebra) correspondences, or generally, BPS/CFT correspondences.

• Not only the gauge theoretic aspects as mentioned in the previous paragraph, but
also the 2d CFT/quantum algebra side must be studied. One of the reason we
used the intertwiner formalism is because we do not have to determine explicitly
the corresponding CFT or q-deformed algebra. The algebraic structure appears as
tensor products of Fock representations, and as long as the spectral parameters are
independent with each other, we do not have to take care of singular states and extra
truncations, and so the analysis becomes simple.

In the context of quantum toroidal algebras, tensor product representations of Fock
representations give deformed W-algebras. If we denote the Fock spaces with central
charges (γ̂, ψ−0 ) = (qσ/2i , 1) (i = 1, 2, 3, σ = ±1) as F (σ)

i , tensor products of them
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should lead to new deformed W-algebras.18 The known algebras are

Deformed W-algebra Representation References
q-Virasoro ⊕ q-Heisenberg F (+)

3 ⊗F
(+)

3 [95]

q-WN ⊕ q −Heisenberg F (+)

3 ⊗ · · · ⊗ F
(+)

3︸ ︷︷ ︸
N

[96–99]

q-YL,M,N F (+)

1
⊗L ⊗F (+)

2
⊗M ⊗F (+)

3
⊗N [86, 100–102, 116]

where YL,M,N in the last row is the q-deformed version of the corner vertex operator
algebra19 originally introduced in [117]. Physically, it was introduced as a CFT
obtained at the junction of D3-D5-NS5 branes:

NS5

D5

(1, 1)

N×D3

M×D3

L×D3

The D3-branes appearing here are positive D3-branes, but generally, we could in-
sert negative D3-branes. This should lead to a larger class of algebras Y~L, ~M, ~N ,
where the subindices are changed to two-dimensional vectors ~L = (L+, L−), ~M =
(M+,M−), ~N = (N+, N−). The integers L±,M±, N± are numbers of the positive
and negative D3-branes for each stack of D3-branes. In the q-deformed language,
these algebras are understood as tensor products of both positive and negative Fock
representations:

F (+)

1
⊗L+ ⊗F (−)

1
⊗L− ⊗F (+)

2
⊗M+ ⊗F (−)

2
⊗M− ⊗F (+)

3
⊗N+ ⊗F (−)

3
⊗N− . (9.1)

Moreover, since negative branes of one side of the 5-branes can be converted to positive
branes of the other side of the 5-branes, we expect there are dualities among these
algebras. It is also interesting to glue these algebras and obtain an analogue of the web
of W-algebras [118, 119]. These algebra should be dual to the supergroup analogue of
the spiked instantons [10–15, 120, 121].

• The negative level crystal representations have a straightforward generalizations to
general BPS crystals associated with toric Calabi-Yau threefolds [88, 90, 91, 93, 94,

18We only consider the vertex operator representations for simplicity. There are three types of Fock
representations because quantum toroidal gl1 has triality. Generally, we can place Fock spaces on quiver nodes
and obtain quiver W-algebras [108], but we focus on deformed W-algebras associated with linear quivers.

19Note that due to the existence of the R-matrix, we can reorder the Fock spaces into any orders.
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120, 121]. We call these crystals negative crystals and the crystal representation
studied in [88, 90, 91, 93, 94] as positive crystals for convenience. Studying the
physical aspects of these positive/negative crystals is also important. For general
toroidal quiver BPS algebras, we have Drinfeld currents x±i (z), ψ±i (z) for each node i
of the quiver. Currents x+

i (z) add atoms to the crystal and x−i (z) removes atoms from
the crystal. To construct negative crystal representations, we need to change the roles
of the currents x±i (z). Namely, the current x+

i (z) removes an atom from the crystal,
while x−i (z) adds an atom to the crystal. These negative BPS crystals are expected to
correspond to BPS states coming from negative D-branes. As long as we consider these
negative crystal representations independently, they are isomorphic to the positive
crystal representations, but once we consider tensor product representations mixing
both of them, we would get new representations. Understanding what will happen
when the spectral parameters are tuned is also important.

• Completing the discussion in section 8 is also one future work we hope to come
back. The intertwiners in (8.3) seem to not obey the intertwiner relations using the
coproduct in (3.5). One of the reason is that the vertex operators with negative level
of central charges in section 3.2.2 is obtained by transforming the variables as z → z−1

and thus, when studying contractions of these vertex operators, the radial ordering
will change.

Studying the relation with [84] might help. Actually, the negative intertwiner studied
here is exactly the same intertwiner studied there but the physical motivation is
different. The author there studied it for S-duality, while we studied it for supergroup
gauge theories.

Acknowledgments

We thank Taro Kimura, Yutaka Matsuo, Tomas Procházka, Yuji Sugimoto, Masahito
Yamazaki, and Rui-Dong Zhu for discussions and comments on the draft of this paper. The
author also thanks the Yukawa Institute for Theoretical Physics at Kyoto University, where
a part of this work was presented during the YITP workshop YITP-W-22-09 on “Strings
and Fields 2022” [122]. The author is supported by JSPS KAKENHI Grant-in-Aid for
JSPS fellows Grant No. JP22J20944, JSR Fellowship, and FoPM (WINGS Program), the
University of Tokyo.

A Notation and formulas of Young diagrams

A.1 Young diagrams and formulas

See chapter 1 of [123] for a good reference for formulas of Young diagrams.
The Young diagram (partition) is a sequence of decreasing non-negative integers

λ = {λi ∈ Z≥0 |λ1 ≥ λ2 ≥ · · · }. (A.1)
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i

j

a′λ(i, j)
i, j

l′λ(i, j)
aλ(i, j)

lλ(i, j)

Figure 9. Arm and leg (co)length of a box (i, j) in a Young diagram.

We denote the transpose of λ as λT. The size and norm are defined as

|λ| =
`(λ)∑
i=1

λi, ||λ||2 =
`(λ)∑
i=1

λ2
i , (A.2)

where `(λ) is the length of the Young diagram. Note that

|λT| = |λ|. (A.3)

We also define the following quantities (arm length, leg length, arm co-length, leg co-length,
and content (cλ(i, j))) for (i, j) ∈ λ (see figure 9),

aλ(i, j) = λi − j, lλ(i, j) = λT
j − i, (A.4)

a′λ(i, j) = j − 1, l′λ(i, j) = i− 1, (A.5)
cλ(i, j) = j − i. (A.6)

The hook length is defined as

hλ(i, j) = λi − j + λT
j − i+ 1 = aλ(i, j) + lλ(i, j) + 1. (A.7)

In the context of topological vertex, we frequently use the following quantities

n(λ) =
`(λ)∑
i=1

(i− 1)λi, κ(λ) = 2
∑
x∈λ

c(x) = 2
∑

(i,j)∈λ
(j − i), (A.8)

a′λ(x)− l′λ(x) = cλ(x). (A.9)

They satisfy the following properties.

κ(λ) =
∑
i

λi(λi + 1− 2i) = 2(n(λT)− n(λ)) = ||λ||2 − ||λT||2, (A.10)

n(λ) = 1
2

λ1∑
j=1

λT
j(λT

j − 1) =
∑
x∈λ

l′λ(x) =
∑
x∈λ

lλ(x), (A.11)
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q−1
1

q−1
2

q1

q2

· · ·A(λ)

· · ·R(λ)

vq3

i

j

vq−i
1 q−j

2

v

i

j

vqi−1
1 qj−1

2

Figure 10. Box contents of two types of Young diagrams. Depending on the parity of the
representation (i.e. level (0,±1)), there are two types of box contents χ(±)

x , x ∈ λ, where χ(+)

x =
vqi−1

1 qj−1
2 and χ(−)

x = vq−i1 q−j2 . The arm direction is defined in the horizontal direction, while the leg
direction is defined in the vertical direction for both parities of Young diagrams. The sets A(λ) and
R(λ) are sets of addable boxes and removable boxes of the Young diagram, respectively.

n(λT) = 1
2

`(λ)∑
i=1

λi(λi − 1) =
∑
x∈λ

a′λ(x) =
∑
x∈λ

aλ(x), (A.12)

∑
x∈λ

hλ(x) = n (λ) + n (λT) + |λ| = 1
2
(
||λ||2 + ||λT||2

)
. (A.13)

A.2 Box contents of the Young diagram

In the main text, we used two types of box contents of the Young diagram, depending on
the parity of the representation. For representations with (0, σ) (σ = ±1), the box contents
χ

(σ)
x are given as

χ(σ)
x =

vq
i−1
1 qj−1

2 , σ = +,
vq−i1 q−j2 , σ = −,

(A.14)

where x = (i, j) ∈ λ. We illustrate the arm direction in the horizontal direction (with the
coordinate q2), and the leg direction in the vertical direction (with the coordinate q1). They
are illustrated as in figure 10. We also denote the sets of addable and removable boxes of
the Young diagram as A(λ) and R(λ), respectively.

B Special functions

We denote the q-analog of the double gamma function as

G(z) = G(z; q1, q2) = exp
(
−
∞∑
n=1

zn

n

1
(1− qn1 )(1− qn2 )

)
, |z| < 1. (B.1)

– 65 –



J
H
E
P
1
2
(
2
0
2
2
)
1
5
7

We can rewrite this using infinite products

G (z) =



∞∏
k,k′=0

(
1− zqk1qk

′
2

)
(|z|, |q1|, |q2| < 1)

∞∏
k,k′=0

(
1− zq−1

1 q−k1 qk
′

2

)−1
(|z| < 1, |q1| > 1, |q2| < 1)

∞∏
k,k′=0

(
1− zq−k−1

1 q−k
′−1

2

)
(|z| < 1, |q1|, |q2| > 1) .

(B.2)

For the region |z| > 1, we need to analytic continuate using the following formula

G(z−1) = G(q1q2z)Γ(z−1; q1, q2)−1, (B.3)

where Γ(z; q1, q2) is the elliptic gamma function

Γ(z; p, q) =
∞∏

m,n=0

1− pn+1qm+1z−1

1− pnqmz . (B.4)

Using this property, for example, the perturbative part of the vector multiplet part is
converted as

n∏
i,j=1
G(vi/vj)→

∏
i<j

G(q1q2vi/vj)G(vi/vj), |vi/vj | < 1 for i < j. (B.5)

Namely, we regularize the perturbative part by omitting the contact term comming from
G(1) and use the elliptic gamma function to do the analytic continuation. We also omit
the elliptic gamma function from the partition function. We will finally see that this form
reproduces the partition function obtained from the intertwiner formalism.

C Formulas for Nekrasov factors

C.1 Equivalent expressions of Nekrasov factors

In this section, we consider equivalent expressions of the Nekrasov factors appearing in
supergroup gauge theories. For the ordinary group gauge theories, similar formulas have
been derived in the past literature [1, 3, 6, 35]. For the supergroup case, see [32, 66].

There are four types of Nekrasov factors which were defined as

Nσσ′(v1, λ | v2, ν) = I
[
chNσ∨

1 chKσ′
2 + q3chKσ∨

1 chNσ′
2 − ch ∧Q∨chKσ∨

1 chKσ′
2

]
(C.1)

=
∏
x∈λ

(
1− χ

(σ)
x

q3v2

)∏
x∈ν

(
1− v1

χ
(σ′)
x

) ∏
x∈λ
y∈ν

S

(
χ

(σ)
x

χ
(σ′)
y

)
(C.2)

=
∏
x∈λ

(
1−Qq

(σ)
x

q3

)∏
x∈ν

(
1−Q 1

q
(σ′)
x

) ∏
x∈λ
y∈ν

S

(
Q
q

(σ)
x

q
(σ′)
y

)
, (C.3)
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where we used

χ(σ)
x = v1q

(σ)
x , χ(σ′)

x = v2q
(σ′)
x , Q = v1/v2. (C.4)

Obviously, they depend only on the ratio Q, and so we also denote the Nekrasov fac-
tors as Nσσ′

λν (Q; q1, q2). The q-coordinates q(σ)
x are the coordinates omitting the spectral

parameter. Using the equivariant index, we can further derive different appearing but
equivalent expressions.

For each gauge node, we can introduce the so-called x-variables [32, 66, 108]:

X σi =
{
xσi,k = v

(σ)
i q

σ(k−1)
1 q

σλσi,k
2

∣∣∣∣k= 1, . . . ,∞
}
, X̊ σi =

{
xσi,k = v

(σ)
i q

σ(k−1)
1

∣∣∣k= 1, . . . ,∞
}
,

X̌ σi =
{
x̌σi,k = v

(σ)
i q

σ(k−1)
2 q

σλT,σ
i,k

1 |k= 1, . . . ,∞
}
,

˚̌X σi =
{
xσi,k = v

(σ)
i q

σ(k−1)
2

∣∣∣k= 1, . . . ,∞
}
.

(C.5)

For simplicity, we only consider when the rank is one for each node and only consider
two nodes. When we do not need to consider bifundamental contributions, we omit the
subindex i denoting the node of the quiver. We introduce bundles Xi,XT

i and set the
supercharacter as

schXi =
∑
σ=±

σ chXi,σ, chXi,σ =
∑
x∈Xσi

x, (C.6)

schXT
i =

∑
σ=±

σ chXT
i,σ, chXT

i,σ =
∑
x∈X̌σi

x. (C.7)

Claim 1. We have the following relation

ch Yσ := ch Nσ − ch ∧Q ch Kσ

= (1− qσ1 ) ch Xσ

= (1− qσ2 ) ch XT
σ.

(C.8)

Generalizing this, it is obvious to see

Y (+)

λ (z) = (1− v/z)
∏
x∈λ

S (χ(+)

x /z)

=
∏
x∈A(λ)(1− χ(+)

x /z)∏
x∈R(λ)(1− q−1

3 χ(+)

x /z)

=
∏
x∈X+

1− x/z
1− q1x/z

=
∏
x∈X̌+

1− x/z
1− q2x/z

, (C.9)

Y (−)

λ (z) = (1− v/z)
∏
x∈λ

S(χ(−)

x /z)

=
∏
x∈A(λ)(1− q−1

3 χ(−)

x /z)∏
x∈R(λ)(1− χ(−)

x /z)

=
∏

x∈X−

1− x/z
1− q−1

1 x/z
=

∏
x∈X̌−

1− x/z
1− q−1

2 x/z
. (C.10)
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Proof. Using

(1− q1)(1− q2)
∑
∈λ
χ(+) =

P

q1

q2

= , (C.11)

(1− q1)(1− q2)
∑
∈λ
χ(−) =

P q1

q2

= , (C.12)

we have

chYσ = v − (1− q1)(1− q2)
∑
∈λ
χ

(σ) =


∑
∈A(λ)

χ(+) − q1q2
∑
∈R(λ)

χ(+), σ = +

∑
∈A(λ)

q1q2χ
(−) −

∑
∈R(λ)

χ(−), σ = −
. (C.13)

The boxes in the Young diagram are drawn with three colors: yellow, red, and blue. Red and
yellow boxes are understood as terms with positive signs while blue boxes are understood
as terms with negative signs. For example, for a box ∈ λ, we have

(1− q1)(1− q2)χ(+) = χ(+) − q1χ
(+) − q2χ

(+) + q1q2χ
(+) (C.14)

and thus, we have a yellow box, two blue boxes next to it (in the q1, q2 directions), and a
red box in the diagonal direction (q1q2 direction). In the first equality of (C.11) and (C.12),
we took the sum with respect to the yellow box, which is a box in the Young diagram. After
taking the sum, terms with positive signs and negative signs cancel with each other and we
obtain the second equality.

Similarly, using

(1− q1)chX+ =
q1

q2

− = , (C.15)

(1− q−1
1 )chX− =

q1

q2

− = (C.16)
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we have

(1− qσ1 )chXσ =


∑
∈A(λ)

χ(+) − q1q2
∑
∈R(λ)

χ(+), σ = +

∑
∈A(λ)

q1q2χ
(−) −

∑
∈R(λ)

χ(−), σ = −
. (C.17)

For the transpose, we have

(1− q2)chXT
+ =

q1

q2

− = , (C.18)

(1− q−1
2 )chXT

− =
q1

q2

− = (C.19)

Claim 2. We have the following equivalent expressions of the Nekrasov factors.

Nσσ′
λν (Q; q1, q2) =

∏
x∈λ

(
1− χ

(σ)
x

q3v2

)∏
x∈ν

(
1− v1

χ
(σ′)
x

) ∏
x∈λ
y∈ν

S

(
χ

(σ)
x

χ
(σ′)
y

)
, (C.20)

Nσσ′
λν (Q; q1, q2) =

∞∏
i,j=1

1−Qqσi−
σ−1

2 −σ
′νT
j

1 q
−σ′j+σ′+1

2 +σλi
2

1−Qqσi−
σ−1

2
1 q

−σ′j+ 1+σ′
2

2


σσ′

=
∞∏

i,j=1

1−Qq−σ
′j+σ′+1

2 +σλT
i

1 q
σi−σ−1

2 −σ
′νj

2

1−Qq−σ
′j+σ′+1

2
1 q

σi−σ−1
2

2


σσ′

, (C.21)

Nσσ′
λν (Q; q1, q2) =

∏
(x,x′)∈Xσ

λ
×Xσ′ν


(
q2q

1+σ
2 −σ

′

1 x/x′; q2

)
∞(

q2q
1+σ

2
1 x/x′; q2

)
∞


σ

×
∏

(x,x′)∈X̊σ
λ
×X̊σ′ν


(
q2q

1+σ
2

1 x/x′; q2

)
∞(

q2q
1+σ

2 −σ′
1 x/x′; q2

)
∞


σ

=

=
∏

(x,x′)∈X̌σ
λ
×X̌σ′ν


(
q1q

1+σ
2 −σ

′

2 x/x′; q1

)
∞(

q1q
1+σ

2
2 x/x′; q1

)
∞


σ

×
∏

(x,x′)∈ ˚̌Xσ
λ
× ˚̌Xσ′ν


(
q1q

1+σ
2

2 x/x′; q1

)
∞(

q1q
1+σ

2 −σ′
2 x/x′; q1

)
∞


σ

, (C.22)
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where

X σλ =
{
v1q

σ(k−1)
1 qσλk2

}∞
k=1

, X σ′λ =
{
v2q

σ′(k−1)
1 qσ

′νk
2

}∞
k=1

,

X̌ σλ =
{
v1q

σ(k−1)
2 q

σλT
k

1

}∞
k=1

, X̌ σ′ν =
{
v2q

σ′(k−1)
2 q

σ′νT
k

1

}∞
k=1

,

X̊ σλ =
{
v1q

σ(k−1)
1

}∞
k=1

, X̊ σ′ν =
{
v2q

σ′(k−1)
1

}∞
k=1

,

˚̌X σλ =
{
v1q

σ(k−1)
2

}∞
k=1

,
˚̌X σ′ν =

{
v2q

σ′(k−1)
2

}∞
k=1

.

(C.23)

Proof. We can write the Nekrasov factors in two ways

Nσσ′(v1, λ | v2, ν) = I[chNσ∨
1 chKσ′

2 + q3chKσ∨
1 chNσ′

2 − ch ∧Q∨chKσ∨
1 chKσ′

2 ] (C.24)

= I
[
−chYσ∨

1 [λ]chYσ′
2 [ν]− chYσ∨

1 [∅]chYσ′
2 [∅]

ch ∧Q

]
, (C.25)

where we explicitly wrote the Young diagram dependence in the second equation. Namely,
the Nekrasov factor is obtained by excluding the Young diagram independent part. We can
rewrite the character chYσ[λ] as

chYσ[λ] = v(1− qσ1 )
∞∑
i=1

q
σ(i−1)
1 qσλi2 (C.26)

= v(1− qσ2 )
∞∑
j=1

q
σ(j−1)
2 q

σλT
j

1 . (C.27)

Then,

−chYσ∨
1 [λ]chYσ′

2 [ν]
ch ∧Q = −v2

v1

(1− q−σ1 )(1− qσ′2 )
(1− q1)(1− q2)

∞∑
i,j=1

q
−σ(i−1)+σ′νT

j

1 q
σ′(j−1)−σλi
2

= −v2
v1

(−q1)−
1+σ

2 (−q2)−
1−σ′

2

∞∑
i,j=1

q
−σ(i−1)+σ′νT

j

1 q
σ′(j−1)−σλi
2

= σσ′
v2
v1

∞∑
i,j=1

q
−σi+σ−1

2 +σ′νT
j

1 q
σ′j−σ

′+1
2 −σλi

2 ,

(C.28)

where we used

(1− q−σ1 )(1− qσ′2 )
(1− q1)(1− q2) = (−q1)−

1+σ
2 (−q2)−

1−σ′
2 , (−1)

σ′−σ
2 = σσ′. (C.29)

Here we used (C.26) for λ and (C.27) for ν. Using (C.26) and (C.27) oppositely, we have

−chYσ∨
1 [λ]chYσ′

2 [ν]
ch ∧Q = σσ′

v2
v1

∞∑
i,j=1

q
σ′j−σ

′+1
2 −σλT

i
1 q

−σi+σ−1
2 +σ′νj

2 . (C.30)

In fact, permuting q1 ↔ q2 and taking the transpose λi → λT
i , νj → νT

j of (C.28), we
obtain (C.30)
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Taking the index, the Nekrasov factors will be written as

Nσσ′(v1, λ | v2, ν) := Nσσ′
λν (Q; q1, q2) =

∞∏
i,j=1

1−Qqσi−
σ−1

2 −σ
′νT
j

1 q
−σ′j+σ′+1

2 +σλi
2

1−Qqσi−
σ−1

2
1 q

−σ′j+ 1+σ′
2

2


σσ′

(C.31)

=
∞∏

i,j=1

1−Qq−σ
′j+σ′+1

2 +σλT
i

1 q
σi−σ−1

2 −σ
′νj

2

1−Qq−σ
′j+σ′+1

2
1 q

σi−σ−1
2

2


σσ′

,

(C.32)

where Q = v1/v2. Explicitly we have

N++
λν (Q; q1, q2) =

∞∏
i,j=1

1−Qqi−ν
T
j

1 q−j+1+λi
2

1−Qqi1q
−j+1
2

=
∞∏

i,j=1

1−Qqi−νj2 q
−j+1+λT

i
1

1−Qqi2q
−j+1
1

,

N+−
λν (Q; q1, q2) =

∞∏
i,j=1

1−Qqi1q
j
2

1−Qqi+ν
T
j

1 qj+λi2

=
∞∏

i,j=1

1−Qqi2q
j
1

1−Qqi+νj2 q
j+λT

i
1

,

N−+
λν (Q; q1, q2) =

∞∏
i,j=1

1−Qq−i+1
1 q−j+1

2

1−Qq−i+1−νT
j

1 q−j+1−λi
2

=
∞∏

i,j=1

1−Qq−i+1
2 q−j+1

1

1−Qq−i+1−νj
2 q

−j+1−λT
i

1

,

N−−λν (Q; q1, q2) =
∞∏

i,j=1

1−Qq−i+1+νT
j

1 qj−λi1
1−Qq−i+1

1 qj2
=

∞∏
i,j=1

1−Qq−i+1+νj
2 q

j−λT
i

1
1−Qq−i+1

2 qj1
.

(C.33)

We can also obtain the expressions using the x-variables:

−chYσ∨
1 [λ]chYσ′

2 [ν]
ch ∧Q = −(1− q−σ1 )(1− qσ′1 )

(1− q1)(1− q2)
∑

(x,x′)∈Xσ
λ
×Xσ′ν

x′

x

= −σ(1− qσ′1 )q−
1+σ

2
1

∑
(x,x′)∈Xσ

λ
×Xσ′ν

∞∑
j=0

q−1−j
2

x′

x
.

(C.34)

Taking the index we obtain the above formula. Explicitly, they are written as

I
[
−chYσ∨

1 [λ]chYσ′
2 [ν]

ch ∧Q

]
=



∏
(x,x′)∈X+

λ
×X+

ν

(q2x/x
′; q2)∞

(q1q2x/x′; q2)∞
, σ = σ′ = +,

∏
(x,x′)∈X+

λ
×X−ν

(q1q2x/x
′; q2)∞

(q2
1q2x/x′; q2)∞

, σ = +, σ′ = −,

∏
(x,x′)∈X−

λ
×X+

ν

(q2x/x
′; q2)∞

(q−1
1 q2x/x′; q2)∞

, σ = −, σ′ = +,

∏
(x,x′)∈X−

λ
×X−ν

(q2x/x
′; q2)∞

(q1q2x/x′; q2)∞
, σ = σ′ = −.

(C.35)

For the transpose, we just need to change q1 ↔ q2, λ→ λT, ν → νT, and X σλ → X̌ σλ .
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Claim 3. For the diagonal Nekrasov factors N++
λν (Q; q1, q2), N−−λν (Q; q1, q2), we have an-

other description using the arm and leg length

N++
λν (Q; q1, q2) =

∏
∈λ

(
1−Qqlλ( )+1

1 q
−aν( )
2

) ∏
∈ν

(
1−Qq−lν( )

1 q
aλ( )+1
2

)
=
∏
∈ν

(
1−Qqlλ( )+1

1 q
−aν( )
2

) ∏
∈λ

(
1−Qq−lν( )

1 q
aλ( )+1
2

)
,

(C.36)

N−−λν (Q; q1, q2) = N++
νλ (Q; q1, q2). (C.37)

In particular, for λ = ν,Q = 1, we have

N++
λλ (1; q1, q2) = N−−λλ (1; q1, q2), (C.38)

which means the vector multiplet contributions of U(1 | 0) and U(0 | 1) gauge theories are
the same.

Proof. See for example [6, 66, 124] for the derivation of the first equation (C.36).
The second equation (C.37) comes from

N−−(v1, λ | v2, ν) =
∏
∈λ

(
1− χ(−)

q3v2

) ∏
∈ν

(
1− v1

χ(−)

) ∏
∈λ
∈ν

S

(
χ(−)

χ(−)

)

=
∏
∈λ

(
1− v1

v2q
(+)

) ∏
∈ν

(
1− v1q

(+)

q3v2

) ∏
∈λ
∈ν

S

(
v1q

(+)

v2q
(+)

)

= N++(v1, ν | v2, λ)

(C.39)

where we used

χ(−) = v1q
(−) = v1q3/q

(+), ∈ λ, χ(−) = v2q
(−) = v2q3/q

(+), ∈ ν. (C.40)

C.2 Symmetries of Nekrasov factors

Let us study the symmetries of the Nekrasov factors.

Claim 4. We have the following symmetries of the Nekrasov factors:

Nσσ′
λν (Q; q1, q2) = (−Q)|λ|+|ν|q−

1+σ
2 |λ|−

1−σ′
2 |ν|

3 q
σn(λ)−σ′n(ν)
1 q

σn(λT)−σ′n(νT)
2

×Nσ′σ
νλ (q3Q

−1; q1, q2),
(C.41)

Nσσ′
λν

(
Q; q−1

1 , q−1
2

)
= Nσ′σ

νλ (q3Q; q1, q2) (C.42)

Proof. Using (C.3), we have

Nσσ′
λν (Q; q1, q2) =

∏
x∈λ

(
−χ

(σ)
x

q3v2

)∏
x∈ν

(
− v1

χ
(σ′)
x

)
Nσ′σ
νλ (q3Q

−1; q1, q2). (C.43)
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Applying the identities

∏
x∈λ

(
−χ

(σ)
x

q3v2

)
= (−Q)|λ|q−

1+σ
2 |λ|

3 q
σn(λ)
1 q

σn(λT)
2 , (C.44)

∏
x∈ν

(
− v1

χ
(σ′)
x

)
= (−Q)|ν|q−

1−σ′
2

3 q
−σ′n(ν)
1 q

−σ′n(νT)
2 , (C.45)

∏
x∈λ

χ(σ)
x = v|λ|q

1−σ
2 |λ|

3 q
σn(λ)
1 q

σn(λT)
2 (C.46)

we obtain (C.41).
The second indentity (C.42) is obtained as

Nσσ′
λν

(
Q; q−1

1 , q−1
2

)
=
∏
x∈λ

(
1−Q q3

q
(σ)
x (q1, q2)

)∏
x∈ν

(
1−Qq(σ′)

x (q1, q2)
) ∏
x∈λ
y∈ν

S

(
Q
q

(σ′)
y (q1, q2)
q

(σ)
x (q1, q2)

; q−1
1 , q−1

2

)

=
∏
x∈λ

(
1−Q q3

q
(σ)
x (q1, q2)

)∏
x∈ν

(
1−Qq(σ′)

x (q1, q2)
) ∏
x∈λ
y∈ν

S

(
Qq3

q
(σ′)
y (q1, q2)
q

(σ)
x (q1, q2)

; q1, q2

)

= Nσ′σ
νλ (Qq3; q1, q2)

(C.47)

where we explicitly wrote the q1, q2 dependence of the q-coordinates and the scattering
function S(z) and used

q(σ)
x (q−1

1 , q−1
2 ) = 1/q(σ)

x (q1, q2), (C.48)
S(z; q−1

1 , q−1
2 ) = S(z−1; q1, q2) = S(q3z; q1, q2). (C.49)

C.3 Formulas for refined topological vertex

We summarize the formulas we used to derive the identification of intertwiners and topolog-
ical vertices. We set the deformation parameters as q1 = q, q2 = t−1.

Claim 5. By direct calculation, we have

(vγ)−|λ|
∏
x∈λ

χ(+)

x = q
1
2 ||λ

T||2t−
1
2 ||λ||

2
,

(q3vγ)−|λ|
∏
x∈λ

χ(−)

x = q
−|λ|
3 q−

1
2 ||λ

T||2t
1
2 ||λ||

2
, (C.50)

N++ (v, λ | v, λ) = (−γ)−|λ| q−
1
2 ||λ

T||2t−
1
2 ||λ||

2
Z̃−1
λ (q, t) Z̃−1

λT (t, q) ,

N−− (v, λ | v, λ) = (−γ)−|λ| q
1
2 ||λ

T||2t
1
2 ||λ||

2
Z̃−1
λT

(
t−1, q−1

)
Z̃−1
λ

(
q−1, t−1

)
= N++ (v, λ | v, λ) , (C.51)
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a(+)

λ = (−γ)|λ|q||λT||2Z̃λ(q, t)Z̃λT(t, q),

a(−)

λ = (−γ)−|λ|q−||λT||2Z̃λT(t−1, q−1)Z̃λ(q−1, t−1), (C.52)

where

Z̃λ (t, q) =
∏

(i,j)∈λ

(
1− tlλ(i,j)+1qaλ(i,j)

)−1
. (C.53)

D Derivation of level (0,−1) representation

We first give the following ansatz

x+(z) |v, λ〉〉 =
∑

x∈R(λ)
δ (z/χ(−)

x )R(−)

λ (x) |v, λ− x〉〉,

x−(z) |v, λ〉〉 =
∑

x∈A(λ)
δ (z/χ(−)

x )A(−)

λ (x) |v, λ+ x〉〉,

ψ±(z) |v, λ〉〉 =
[
Ψ(−)

λ (z)
]
± |v, λ〉〉.

(D.1)

Let us first derive the eigenvalue Ψ(−)

λ (z). Inserting these equations to the definition of the
algebra, we have the following recursion formula

Ψ(−)

λ (z)
Ψ(−)

λ−x(z) = g

(
χ(−)

x

z

)
= S(χ(−)

x /z)
S(q3χ(−)

x /z)
(D.2)

and obtain

Ψ(−)

λ (z) = Ψ(−)

∅ (z)
∏
x∈λ

g

(
χ(−)

x

z

)
. (D.3)

The vacuum charge function is defined so that the there is a pole in the origin of the Young
diagram with coordinate q3v and a zero in v, which terminate the growing of the crystal in
the third direction. This gives

Ψ(−)

λ (z) = γ
(1− v/z)∏x∈λ S(χ(−)

x /z)
(1− q3v/z)∏x∈λ S(q3χ(−)

x /z)
= γ

Y (−)

λ (z)
Y (−)

λ (q−1
3 z)

. (D.4)

The next thing we need to do is determine the coefficients A(−)

λ (x), R(−)

λ (x). Using the x±(z)
relation and the poles structure of Ψ(−)

λ (z), we have

A(−)

λ (x)R(−)

λ+x(x) = γ
(1− q1)(1− q2)

(1− q−1
3 )

Res
z=χ(−)

x
z−1Y (−)

λ (q−1
3 z)−1 Y (−)

λ (χ(−)

x ), x ∈ A(λ),

R(−)

λ (x)A(−)

λ−x(x) = −γ (1− q1)(1− q2)
(1− q−1

3 )
Res
z=χ(−)

x
z−1Y (−)

λ (z)Y (−)

λ (q−1
3 χ(−)

x )−1, x ∈ R(λ).
(D.5)

An answer for these relations is

A(−)

λ (x) = Res
z=χ(−)

x

z−1Y (−)

λ

(
q−1

3 z
)−1

, R(−)

λ (x) = γ Res
z=χ(−)

x

z−1Y (−)

λ (z). (D.6)

One can check this indeed satisfy the above relations.

– 74 –



J
H
E
P
1
2
(
2
0
2
2
)
1
5
7

E Contraction formulas

E.1 Vertex operator representations

The normal ordering formulas are

ϕ+(z)ϕ−(w) = g(γz/w)
g(γ−1z/w) : ϕ−(w)ϕ+(z) :, (E.1)

η(z)η(w) = (1− w/z)(1− q−1
3 w/z)

(1− q1w/z)(1− q2w/z) : η(z)η(w) := S(w/z)−1 : η(z)η(w) :, (E.2)

ξ(z)ξ(w) = (1− q3w/z)(1− w/z)
(1− q−1

1 w/z)(1− q−1
2 w/z)

: ξ(z)ξ(w) := S(q3w/z)−1 : ξ(z)ξ(w) :, (E.3)

η(z)ξ(w) = (1− q1γw/z)(1− q2γw/z)
(1− γw/z)(1− γ−1w/z) : η(z)ξ(w) := S(γw/z) : η(z)ξ(w) :, (E.4)

ξ(z)η(w) = (1− q1γw/z)(1− q2γw/z)
(1− γw/z)(1− γ−1w/z) : ξ(z)η(w) := S(γw/z) : ξ(z)η(w) : . (E.5)

η(z)ϕ+(w) =: η(z)ϕ+(w) :, (E.6)

ϕ+(z)η(w) = g
(
γ−1/2w/z

)−1 : ϕ+(z)η(w) := S(γ3/2w/z)
S(γ−1/2w/z)

: ϕ+(z)η(w) :, (E.7)

ϕ−(z)η(w) =: ϕ−(z)η(w) :, (E.8)

η(z)ϕ−(w) = g
(
γ−1/2w/z

)−1 : ϕ−(w)η(z) := S(γ3/2w/z)
S(γ−1/2w/z)

: η(z)ϕ−(w) :, (E.9)

ξ(z)ϕ+(w) =: ξ(z)ϕ+(w) :, (E.10)

ϕ+(z)ξ(w) = g
(
γ1/2w/z

)
: ϕ+(z)ξ(w) := S(γ1/2w/z)

S(γ5/2w/z)
: ϕ+(z)ξ(w) :, (E.11)

ϕ−(z)ξ(w) =: ϕ−(z)ξ(w) :, (E.12)

ξ(z)ϕ−(w) = g
(
γ

1
2w/z

)
: ξ(z)ϕ−(w) := S(γ1/2w/z)

S(γ5/2w/z)
: ξ(z)ϕ−(w) :, (E.13)

ϕ+(z) =: η(zγ1/2)ξ(zγ−1/2) :, (E.14)
ϕ−(z) =: η(zγ−1/2)ξ(zγ1/2) : ., (E.15)
γ5/2 = q3γ

1/2, (E.16)
γ2 = q3, (E.17)

γ3/2 = q3γ
−1/2. (E.18)

E.2 Contractions of intertwiners

The normal ordering formulas for the Drinfeld currents and the intertwiners are

η(z)Φσ,∅[v] = (1− v/z)−σ : η(z)Φσ,∅[v] :, (E.19)

Φσ,∅[v]η(z) =
(
1− q−1

3 z/v
)−σ

: Φσ,∅[v]η(z) :, (E.20)

ξ(z)Φσ,∅[v] =
(
1− γv/z

)σ : ξ(z)Φσ,∅[v] :, (E.21)

Φσ,∅[v]ξ(z) =
(
1− γ−1z/v

)σ : Φσ,∅[v]ξ(z) :, (E.22)
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ϕ−(z)Φσ,∅[v] =: ϕ−(z)Φσ,∅[v] :, (E.23)

Φσ,∅[v]ϕ−(z) =
(

1− γ−1/2z/v

1− γ−5/2z/v

)σ
: Φσ,∅[v]ϕ−(z) :, (E.24)

ϕ+(z)Φσ,∅[v] =
(

1− γ3/2v/z

1− γ−1/2v/z

)σ
: ϕ+(z)Φσ,∅[v] :, (E.25)

Φσ,∅[v]ϕ+(z) =: Φσ,∅[v]ϕ+(z) :, (E.26)

and

η(z)Φ∗σ,∅[v] =
(
1− γv/z

)σ : η(z)Φ∗σ,∅[v] :, (E.27)

Φ∗σ,∅[v]η(z) =
(
1− γ−1z/v

)σ : Φ∗σ,∅[v]η(z) :, (E.28)

ξ(z)Φ∗σ,∅[v] =
(
1− q3v/z

)−σ : Φ∗σ,∅[v]ξ(z) :, (E.29)

Φ∗σ,∅[v]ξ(z) =
(
1− z/v

)−σ : Φ∗σ,∅[v]ξ(z) :, (E.30)

ϕ−(z)Φ∗σ,∅[v] =: ϕ−(z)Φ∗σ,∅[v] :, (E.31)

Φ∗σ,∅[v]ϕ−(z) = 1− γ−3/2z/v

1− γ1/2z/v
: Φ∗σ,∅[v]ϕ−(z) :, (E.32)

ϕ+(z)Φ∗σ,∅[v] = 1− γ1/2v/z

1− γ5/2v/z
: ϕ+(z)Φ∗σ,∅[v] :, (E.33)

Φ∗σ,∅[v]ϕ+(z) =: Φ∗σ,∅[v]ϕ+(z) : . (E.34)

We also have the following contraction formulas

η(z)Φσ,λ[u, v] =
[
Y(σ)
λ (z)−σ

]
+

: η(z)Φσ,λ[u, v] :, (E.35)

Φσ,λ[u, v]η(z) =
[(
−vq3

z

1
Y(σ)
λ (q−1

3 z)

)σ]
−

: Φσ,λ[u, v]η(z) :, (E.36)

ξ(z)Φσ,λ[u, v] =
[
Y(σ)
λ (γ−1z)σ

]
+

: ξ(z)Φσ,λ[u, v] :, (E.37)

Φσ,λ[u, v]ξ(z) =
[(
−γ
−1z

v
Y(σ)
λ (γ−1z)

)σ]
−

: Φσ,λ[u, v]ξ(z) :, (E.38)

ϕ−(z)Φσ,λ[u, v] =: ϕ−(z)Φσ,λ[u, v] :, (E.39)

Φσ,λ[u, v]ϕ−(z) =

(γ2Y
(σ)
λ (γ−1/2z)
Y(σ)
λ (γ−5/2z)

)σ
−

: Φσ,λ[u, v]ϕ−(z) :

=
[
γσΨ(σ)

λ (γ−1/2z)
−σ
]
−

: Φσ,λ[u, v]ϕ−(z) :,

(E.40)

ϕ+(z)Φσ,λ[u, v] =

(Y(σ)
λ (γ−3/2z)
Y(σ)
λ (γ1/2z)

)σ
+

: ϕ+(z)Φσ,λ[u, v] :

=
[
γσΨ(σ)

λ (γ1/2z)σ
]

+
: ϕ+(z)Φσ,λ[u, v] :,

(E.41)

Φσ,λ[u, v]ϕ+(z) =: Φσ,λ[u, v]ϕ+(z) : (E.42)
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and

η(z)Φ(n)∗
σ,λ [u, v] =

[
Y(σ)
λ (γ−1z)σ

]
+

: η(z)Φ(n)∗
σ,λ [u, v] :, (E.43)

Φ(n)∗
σ,λ [u, v]η(z) =

[(
−γ
−1z

v
Y(σ)
λ (γ−1z)

)σ]
−

: Φ(n)∗
σ,λ [u, v]η(z) :, (E.44)

ξ(z)Φ(n)∗
σ,λ [u, v] =

[
Y(σ)
λ (q−1

3 z)−σ
]

+
: ξ(z)Φ(n)∗

σ,λ [u, v] :, (E.45)

Φ(n)∗
σ,λ [u, v]ξ(z) =

[(
−v
z

1
Y(σ)
λ (z)

)σ]
−

: Φ(n)∗
σ,λ [u, v]ξ(z) :, (E.46)

ϕ−(z)Φ(n)∗
σ,λ [u, v] =: ϕ−(z)Φ(n)∗

σ,λ [u, v] :, (E.47)

Φ(n)∗
σ,λ [u, v]ϕ−(z) =

(γ−2Y
(σ)
λ (γ−3/2z)
Y(σ)
λ (γ1/2z)

)σ
−

: Φ(n)∗
σ,λ [u, v]ϕ−(z) :

=
[
γ−σΨ(σ)

λ (γ1/2z)σ
]
−

: Φ(n)∗
σ,λ [u, v]ϕ−(z) :,

(E.48)

ϕ+(z)Φ(n)∗
σ,λ [u, v] =

(Y(σ)
λ (γ−1/2z)
Y(σ)
λ (γ−5/2z)

)σ
+

: ϕ+(z)Φ(n)∗
σ,λ [u, v] :

=
[
γ−σΨ(σ)

λ (γ−1/2z)
−σ
]

+
: ϕ+(z)Φ(n)∗

σ,λ [u, v] :,

(E.49)

Φ(n)∗
σ,λ [u, v]ϕ+(z) =: Φ(n)∗

σ,λ [u, v]ϕ+(z) : . (E.50)

The contraction of the intertwiners are

Φσ′,∅ [v2] Φσ,∅ [v1] =
(
G
(
q−1

3 v1/v2
))σσ′

: Φσ′,∅ [v2] Φσ,∅ [v1] :, (E.51)

Φ∗σ′,∅ [v2] Φ∗σ,∅ [v1] = (G (v1/v2))σσ
′

: Φ∗σ′,∅ [v2] Φ∗σ,∅ [v1] :, (E.52)

Φσ′,∅ [v2] Φ∗σ,∅ [v1] =
(
G
(
γ−1v1/v2

))−σσ′
: Φσ′,∅ [v2] Φ∗σ,∅ [v1] :, (E.53)

Φ∗σ′,∅ [v2] Φσ,∅ [v1] =
(
G
(
γ−1v1/v2

))−σσ′
: Φ∗σ′,∅ [v2] Φσ,∅[v1] : (E.54)

and

Φ(n2)
σ′,µ[u2,v2]Φ(n1)

σ,λ [u1,v1] =
(
G
(
q−1

3 v1/v2
))σσ′

Nσσ′(v1,λ |v2,µ)−σσ
′
: Φ(n2)

σ′,µ[u2,v2]Φ(n1)
σ,λ [u1,v1] :,

(E.55)

Φ(n2)∗
σ′,µ [u2,v2]Φ(n1)∗

σ,λ [u1,v1] = (G (v1/v2))σσ
′
Nσσ′(q3v1,λ |v2,µ)−σσ

′
: Φ(n2)∗

σ′,µ [u2,v2]Φ(n1)∗
σ,λ [u1,v1] :,

(E.56)

Φ(n2)∗
σ′,µ [u2,v2]Φ(n1)

σ,λ [u1,v1] =
(
G
(
γ−1v1/v2

))−σσ′
Nσσ′(γv1,λ |v2,µ)σσ

′
: Φ(n2)∗

σ′,µ [u2,v2]Φ(n1)
σ,λ [u1,v1] :,

(E.57)

Φ(n2)
σ′,µ[u2,v2]Φ(n1)∗

σ,λ [u1,v1] =
(
G
(
γ−1v1/v2

))−σσ′
Nσσ′(γv1,λ |v2,µ)σσ

′
: Φ(n2)

σ′,µ[u2,v2]Φ(n1)∗
σ,λ [u1,v1] :,

(E.58)

where σ, σ′ = ±.
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F Intertwiner property (AFS property)

We illustrate the AFS properties of the positive and negative intertwiners using diagrams.
For the intertwiner, we have the following three properties:

1. x+(z)

x+(z)

= x+(z) +

x+(z)

ψ−(z) (F.1)

2. x−(z)

x−(z)

=

ψ+(γ1/2z)

x−(γz) +

x−(z)

(F.2)

3. ψ±(z)

ψ±(z)

=

ψ±(z)

ψ±(γ±1/2z) (F.3)

For the dual intertwiner, we have

1. x−(z)

x+(z)

=

x+(z)

+

ψ−(γ1/2z)

x+(γz) (F.4)

2. x−(z)

x−(z)

=

x−(z)

ψ+(z) + x−(z) (F.5)
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3. ψ±(z)

ψ±(z)

=

ψ±(z)

ψ±(γ∓1/2z) (F.6)

Note that the graphical look of the intertwiner properties does not depend on the parities
of the crystal representations because their central charges are γ̂ = 1, which means they do
not change the variables inside the Drinfeld currents.

Using the ket and bra representations in section 3.1, we also have the following property
for g(z) ∈ E

g(z)
=

g(z)
(F.7)

where this is understood as Φσg(z) · Φ∗σ = Φσ · g(z)Φ∗σ. Namely, after inserting 1 =∑
λ a

(σ)
λ |v, λ〉〉〈〈v, λ|, we have this identity.
We also have similar properties for the gluings in the vertical direction such as

g(z)
=

g(z)
(F.8)

G Schur functions and free field realization

Boson-fermion correspondence. We use the following notations for free bosons
and fermions:

[an, Q̂] = δn,0, [am,an] =mδm+n,0, {ψr,ψ∗s}= δr+s,0, {ψr,ψs}= {ψ∗r ,ψ∗s}= 0,

φ(z) = Q̂+a0 logz−
∑
n 6=0

an
n
z−n, ψ(z) =

∑
r∈Z+1/2

ψr
zr+1/2 , ψ∗(z) =

∑
r∈Z+1/2

ψ∗r
zr+1/2 .

(G.1)

We also define the U(1) current J(z) as

J(z) = ∂φ(z) =
∑
n∈Z

an
zn+1 . (G.2)
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Then, the boson-fermion correspondence is

J(z) =: ψ∗(z)ψ(z) :, ψ(z) =: e−φ(z) :, ψ∗(z) =: eφ(z) : (G.3)

Using the above correspondence, we can construct the Fock basis of the free boson using
the fermion representation as

|λ〉 = (−1)
∑

i
(ni− 1

2 )ψ∗−m1 · · ·ψ
∗
−msψ−ns · · ·ψ−n1 |0〉 ,

〈λ| = (−1)
∑

i
(ni− 1

2 ) 〈0|ψ∗n1 · · ·ψ
∗
nsψms · · ·ψm1 ,

〈λ |µ〉 = δλ,µ, 1 =
∑
λ

|λ〉〈λ| .
(G.4)

where m1 > m2 > · · ·ms and n1 > n2 > · · · > ns are the Frobenius coordinates.

Free field realization of Schur functions. We introduce the following vertex operators

V±(x) = exp
( ∞∑
n=1

pn(x)
n

a±n

)
, Ṽ±(x) = exp

( ∞∑
n=1
−(−1)npn(x)

n
a±n

)
, (G.5)

where pn(x) = ∑∞
i=1 x

n
i for x = (x1, x2, x3, . . .). Note we are using the multivariable notation.

The contraction formulas are

V+(x)V−(y) =
∏
i,j

(1− xiyj)−1V−(y)V+(x), (G.6)

Ṽ+(x)Ṽ−(y) =
∏
i,j

(1− xiyj)−1Ṽ−(y)Ṽ+(x), (G.7)

V+(x)Ṽ−(y) =
∏
i,j

(1 + xiyj)Ṽ−(y)V+(x), (G.8)

Ṽ+(x)V−(y) =
∏
i,j

(1 + xiyj)V−(y)Ṽ+(x). (G.9)

Free field realizations of skew Schur functions are

sλ/µ(x) = 〈µ|V+(x) |λ〉 = 〈λ|V−(x) |µ〉 , (G.10)
sλT/µT(x) = 〈µ| Ṽ+(x) |λ〉 = 〈λ| Ṽ−(x) |µ〉 , (G.11)

where λT is the transpose of λ. We also have the following formulas∑
λ

sλ/µ(x)sλ/ν(y) =
∏
i,j

(1− xiyj)−1∑
η

sν/η(x)sµ/η(y), (G.12)

∑
λ

sλ/µT(x)sλT/ν(y) =
∏
i,j

(1 + xiyj)
∑
η

sνT/η(x)sµ/ηT(y), (G.13)

and

sλ/µ(αx) = α|λ|−|µ|sλ/µ(x), sα(qρ+β) = (−1)|α|sαT(q−ρ−βT). (G.14)

Note also that

|λT〉 = (−1)|λ| |λ〉 . (G.15)
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