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Abstract We analyze the claimed tension between redshift
space distorsions measurements of f (z)σ8(z) and the pre-
dictions of standard ΛCDM (Planck 2015 and 2018) cos-
mology. We consider a dataset consisting of 17 data points
extending up to redshift z = 1.52 and corrected for the
Alcock-Paczynski effect. Thus, calculating the evolution of
the growth factor in a wCDM cosmology, we find that the
tension for the best fit parameters w, Ωm and σ8 with respect
to the Planck 2018 ΛCDM parameters is below 2σ in all the
marginalized confidence regions.

1 Introduction

Large-scale galaxy surveys are becoming one of the most
powerful tools to test the currently accepted ΛCDM model
based on General Relativity. The possibility of mapping the
distribution of matter in large volumes at different redshifts
allows to measure the growth rate of structures as a function
of time and (length) scale which is a well-defined prediction
of any cosmological model.

The ability of such surveys to construct 3D maps depends
crucially on the precise determination of galaxy redshifts
from which radial distances to the survey objects can be
inferred. The actual conversion depends, in turn, on two
important effects. On one hand, peculiar velocities intro-
duce distorsions in the redshift distribution, the so called
redshift space distorsions (RSD), generating an anisotropic
galaxy power spectrum. On the other, although at low redshift
the Hubble law provides a straightforward relation between
redshift and distances, at higher redshifts this conversion
depends on the chosen fiducial cosmology. This fact lays
behind the Alcock–Paczynski (AP) effect. In recent times
these effects have allowed to measure the linear growth rate
of structures, defined as f = d ln δm/d ln a with δm the lin-
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ear matter density contrast with relatively good precision in
a wide range of redshifts. More precisely, RSD provide a
measurement of the quantity f (z)σ8(z), where σ8(z) is the
normalization of the linear matter power spectrum at red-
shift z on scales of 8h−1Mpc. In particular, measurements
which can reach 10% precision have been obtained at z < 1
by different surveys such as 2dF [1], 6dFGRS [2], WiggleZ
[3] and recently by SDSS-III BOSS [4] and VIPERS [5]. At
higher redshifts two measurements have also been obtained
recently by FMOS [6] and from the BOSS quasar sample [7]
although with relatively lower precision.

Confrontation of f (z)σ8(z) measurements with standard
ΛCDM cosmology predictions has lead in recent years to
claims of inconsistency or tension at different statistical sig-
nificance levels. Thus in [8] a lower growth rate than expected
from Planck ΛCDM cosmology was identified for the first
time. Later on [9,10] a tension at the 2σ level was claimed
between the Planck data and the CFHTLenS determination
of σ8. A similar tension was found by the KiDS+VIKING
tomographic shear analysis [11]. More recently [12] a 3σ ten-
sion with respect to the best fit parameters of Planck 2015 was
also identified in a set of 18 data points from RSD measure-
ments of f (z)σ8(z). The tension could even increase up to 5σ

if an extended dataset is used [13]. The extended dataset has
far more data at low redshifts where the model discrimination
is easier [14], however in this extended case possible corre-
lations within data points have not been taken into account.1

The possibility that more recent datapoints with larger error-
bars compared to earlier datapoints could introduce a bias
towards the expected standard Planck/ΛCDM cosmology is
also discussed in [13].

In this paper, we follow a complementary approach, rather
than using the extended dataset for which correlations are
unknown, we will revisit the analysis of the tension from
the most conservative point of view, i.e. using only inde-
pendent datapoints or points whose correlations are known.

1 See however [15] for a more recent analysis.
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Thus we consider the Gold dataset of [12] and introduce
two changes in the analysis. Firstly, we include the most
recent measurements from BOSS-Q [7] and on the other, we
draw attention on the possible correlation between SDSS-
LRG and BOSS-LOWZ points. Notice that the former are
obtained from the SDSS data release DR7 with practically the
same footprint as the later, obtained from DR10 and DR11,
but with less galaxies. In this sense, we explore the conse-
quences of removing the two SDSS-LRG points from the
analysis. In this sense, our dataset is very similar to that con-
sider by Planck collaboration [16]. On the other hand, we
will take the best fit parameters of Planck 2018 (CMB alone)
given in [16] rather than Planck 2015 used in [12]. We con-
sider the same type of wCDM cosmologies with three free
parameters (w,Ωm, σ8) but obtain the confidence regions
from the marginalized (rather than maximized) likelihoods.
This enlarges the confidence regions so that the tension is
found to be reduced below the 2σ level for all the parameters
combinations.

2 Growth of structures and f (z)σ8(z)

Let us consider a flat Robertson-Walker background whose
metric in conformal time reads

ds2 = a2(η)
[
−dη2 + δi j dx

i dx j
]

(1)

The evolution of matter density perturbations δm =
δρm/ρm in a general cosmological model with non-clustering
dark energy and standard conservation of matter is given for
sub-Hubble scales by

δ′′
m + Hδ′

m − 3

2
H2Ωm(a)δm = 0 (2)

where prime denotes derivative with respect to conformal
time, H = a′/a and Ωm(a) = ρm/(ρm +ρDE ). In this work
we will limit ourselves to wCDM cosmologies so that at late
times

H2 = H2
0 a

2(Ωma
−3 + (1 − Ωm)a−3(1+w)) (3)

and

Ωm(a) = Ωm

Ωm + (1 − Ωm) a−3w
(4)

The growth rate is defined as

f = d ln δm

d ln a
(5)

which can be approximated by f � Ω
γ
m(a) with γ � 0.55

forwCDM models. Even though this fitting function provides
accurate description for cosmologies close to ΛCDM, since
we are interested in exploring a wide range of parameter
space, in this work we will obtain f just by numerically

solving (2) with initial conditions δm(ai ) = 1 and δ′(ai ) =
1/ai with ai well inside the matter dominated era.

The matter power spectrum corresponding to the matter
density contrast in Fourier space δk(z) with 1 + z = 1/a is
given by P(k, z) = V |δk(z)|2 with V the volume. Thus the
variance of the matter fluctuations on a scale R is given by

σ 2
R(z) = 1

2π2

∫
P(k′, z)W 2

R(k′)2dk′ (6)

with the window function defined as:

WR(k) = 3

k3R3 [sin(kR) − kR cos(kR)] (7)

Thus σ8(z) corresponds to σR(z) at the scale R = 8h−1 Mpc.
From the matter power spectrum it is possible to define

the galaxy power spectrum as Pg(k, z) = b2(z)P(k, z) with
b(z) the bias factor.

From the observational point of view, galaxy surveys are
able to determine the galaxy power spectrum in redshift
space, which is given by

Pr,obs(kr , μr ; z)
= H(z)d2

Ar (z)

Hr (z)d2
A(z)

D2(z)b2(z)
[
1 + β(z)μ2

]2
P(k, z = 0)

(8)

where H(z) = (1 + z)H(z),

dA(z) = 1

1 + z

∫ 1

1
1+z

1

a1/2

da

H0

√
Ωm + (1 − Ωm) a−3w

(9)

is the angular diameter distance, D(z) = δm(z)/δm(0) is
the growth factor, β(z) = f (z)/b(z) and μ is the cosine of
the angle between k̂ and the observation direction. Finally,
the index r denotes that the corresponding quantity is evalu-
ated on the fiducial cosmology. Notice that the first factor in
(8) corresponds to the AP effect, whereas the (1 + βμ2)2

factor is generated by the RSD. As we see RSD induce
an angular dependence on the power spectrum which con-
tains a monopole, quadrupole and hexadecapole contribu-
tions. From the measurements of monopole and quadropole
it is possible to obtain the f (z)σ8(z) function that for sim-
plicity in the following we will denote f σ8(z). The measured
value depends on the fiducial cosmology, so that in order to
translate from the fiducial cosmology used by the survey to
other cosmology it is needed to rescale by a factor [12]

ratio(z) = H(z)dA(z)

Hr (z)dA,r (z)
(10)

The fiducial cosmology correction could affect not only f σ8

but also the power spectrum or even introduce additional
multipoles in the galaxy power spectrum in redshift space.
In principle, all these effects could be properly taken into
account but, as shown in [13], in practice an approximated
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Table 1 Planck 2015 [17] and 2018 [16] (TT,TE,EE+lowE) best fit
ΛCDM parameters

Planck 2015 Planck 2018

Ωm 0.3156 ± 0.0091 0.3166 ± 0.0084

w −1 −1

σ8 0.831 ± 0.013 0.8120 ± 0.0073

approach is employed which relies on the introduction of cor-
rection factors. In our case, and in order to check the results
of [12] and [13], we have chosen the same correction factors
used in those references. The same factors were used in [8].
In any case, different approaches can change the significance
of the tension.

3 Testing Planck cosmology

In order to confront the predictions of standard ΛCDM model
with f σ8(z) measurements, we will obtain theoretical pre-
dictions for a general wCDM model with three free param-
eters (Ωm, w, σ8) with σ8 = σ8(z = 0). Our benchmark
models will correspond to the Planck 2015 and Planck 2018
(TT,TE,EE+lowE) best fit parameters in Table 1.

On the other hand, our data points will correspond to mea-
surements of SDSS [18–20]; 6dFGS [21]; IRAS [22,23];
2MASS [22,24]; 2dFGRS [25], GAMA [26], BOSS [27],
WiggleZ [28], Vipers [5], FastSound [6] and BOSS Q [7].
In Table 2 we show the 17 independent data points with the
corresponding fiducial cosmology parameters correspond-
ing to the so called Gold-2017 compilation of [12] which
contains 18 robust and independent measurements based on
galaxy or SNIa observations together with an additional inde-
pendent BOSS quasar point. As mentioned before, we have
removed the two SDSS-LRG-200 points since they are based
on almost the same galaxy selection as the BOSS-LOWZ
point from two heavily overlapping footprints with BOSS-
LOWZ including fainter galaxies. On the data provided by
these surveys we will apply the fiducial cosmology correction
given by (10).

Apart from the errors quoted in Table 2, the three points
corresponding to WiggleZ are correlated. Thus the non-
diagonal covariance matrix for the data points 11, 12, 13 is
given by:

C11,12,13
i j = 10−3

⎛
⎝

6.4000 2.570 0.000
2.570 3.969 2.540
0.000 2.540 5.184

⎞
⎠ (11)

Table 2 Data points from [7,12]

Index Dataset z f σ8(z) Ωm

1 6dFGS+SnIa 0.02 0.428 ± 0.0465 0.3

2 SnIa+IRAS 0.02 0.398 ± 0.065 0.3

3 2MASS 0.02 0.314 ± 0.048 0.266

4 SDSS-veloc 0.10 0.370 ± 0.130 0.3

5 SDSS-MGS 0.15 0.490 ± 0.145 0.31

6 2dFGRS 0.17 0.510 ± 0.060 0.3

7 GAMA 0.18 0.360 ± 0.090 0.27

8 GAMA 0.38 0.440 ± 0.060 0.27

9 BOSS-LOWZ 0.32 0.384 ± 0.095 0.274

10 SDSS-CMASS 0.59 0.488 ± 0.060 0.307115

11 WiggleZ 0.44 0.413 ± 0.080 0.27

12 WiggleZ 0.60 0.390 ± 0.063 0.27

13 WiggleZ 0.73 0.437 ± 0.072 0.27

14 Vipers PDR-2 0.60 0.550 ± 0.120 0.3

15 Vipers PDR-2 0.86 0.400 ± 0.110 0.3

16 FastSound 1.40 0.482 ± 0.116 0.270

17 BOSS-Q 1.52 0.426 ± 0.077 0.31

and the total covariance matrix would be

Ci j =
⎛
⎝

σ 2
1 0 0 ...

0 C11,12,13
i j 0 ...

0 0 ... σ 2
N

⎞
⎠ (12)

The corresponding χ2 is defined as

χ2(Ωm, w, σ8) = V iC−1
i j V j (13)

with V i = f σ8,i − ratio(zi ) f σ8(zi ;Ωm, w, σ8). Here f σ8,i

corresponds to each of the data points in Table 2 and
f σ8(zi ;Ωm, w, σ8) is the theoretical value for a given set
of parameters values. In order to obtain the two-dimensional
confidence regions for the different pairs of parameters, we
will construct the marginalized likelihoods integrating the
remaining parameter with a flat prior,2 i.e.

L(w, σ8) = N
∫

ΔΩm

e− 1
2 χ2(Ωm ,w,σ8) dΩm (14)

In particular for Ωm ∈ [0.05; 0.9], w ∈ [−2.5; 0.5] and
σ8 ∈ [0.1; 4.0]. We have checked that the confidence regions
remain practically unchanged if we enlarge these intervals.
Notice that this is one of the main differences with respect to
[12] in which the remaining parameter was fixed to the Planck
cosmology value. This procedure implies the introduction of
a strong prior in the likelihood (14) from CMB data. However,
if we want to determine the confidence regions obtained from
f σ8 data alone, no CMB information should be included in

2 The Mathematica code used for the numerical analysis presented in
this work is available upon request from the authors.
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Fig. 1 Blue line corresponds towCDM best fit, purple line corresponds
to Planck 2015 and grey line to Planck 2018

Table 3 Values of χ2 for the models plotted in Fig. 1. χ2
LRG refers

to the dataset in [12] whereas χ2
N refers to the data set in this work in

Table 2. The best fit parameters for wCDM with LRG data points are
σ8 = 1.57, ΩM = 0.1 and w = −0.27. The tension between Planck
cosmologies and wCDM for three fitted parameters is also shown in
parenthesis

Model χ2
LRG χ2

N

wCDM 16.51 10.09

Planck 2015 21.58 (1.38σ ) 16.22 (1.62σ )

Planck 2018 18.32 (0.51σ ) 14.31 (1.18σ )

the corresponding likelihoods which is the approach consid-
ered in this work.

4 Results

In Fig. 1, the data points quoted in Table 2 together with
the corresponding wCDM best fit curve are represented. The
best fit corresponds to the parameters Ωm = 0.145, σ8 =
1.18 and w = −0.46. For the sake of comparison we also
show the f σ8(z) curves corresponding to the Planck 2015
and Planck 2018 (in Table 1) cosmologies. The χ2 values for
the different models can be found in Table 3 together with the
corresponding tension level obtained from the χ2 difference
for a three-parameter distribution. As we can see, for both
models the tension of Planck cosmology with respect to the
best fit wCDM cosmology is below 2σ .

We see that Planck 2018 provides a better fit than the
Planck 2015 cosmology, mainly thanks to the reduction in
the σ8 parameter, but still both are well above the best fit to
wCDM.

In order to obtain the corresponding confidence regions we
will compare two procedures. On one hand, we will follow
the approach in [12] in which the likelihood is maximized,
i.e. in the two-dimensional confidence regions the remain-
ing parameter is fixed to the corresponding Planck value in
Table 1. In the second procedure, the remaining parameter is
marginalized as mentioned in the previous section. In Figs.
2, 3 and 4 we show the different two-dimensional confidence

Fig. 2 w vs. Ωm 1σ , 2σ and 3σ confidence regions. Left: maximized contours with σ8 = 0.812. The Planck 2018 point lays at 1.56σ . Right:
marginalized contours. The blue point corresponds to Planck 2015 and lays at 1.71σ ; and the grey point corresponds to Planck 2018 and lays also
at 1.71σ
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Fig. 3 w vs. σ8 1σ , 2σ and 3σ confidence regions. Left: maximized contours with Ωm = 0.3166. The Planck 2018 point lays at 1.19σ . Right:
marginalized contours. The blue point corresponds to Planck 2015 and lays at 0.26σ and the grey point corresponds to Planck 2018 and lays at
0.33σ

Fig. 4 σ8 vs. Ωm 1σ , 2σ and 3σ confidence regions. Left: maximized contours with w = −1. The Planck 2018 point lays at 1.68σ . Right:
marginalized contours. The blue point corresponds to Planck 2015 and lays at 1.44σ . The grey point corresponds to Planck 2018 and lays at 1.23σ

contours. As we can see, Planck 2018 ΛCDM shows tensions
of 1.56σ , 1.19σ and 1.68σ in the maximized contours which
is around 1σ below the tension found in [12] with Planck
2015 parameters, partially thanks to the reduced σ8 value of
Planck 2018 as mentioned before and the exclusion of the two
SDSS-LRG points. On the other hand, the marginalized con-
tours are as expected enlarged as compared to the maximized

ones. Notice also that although the form of the (σ8, w) and
(Ωm, σ8) contours are similar in both cases, the marginal-
ization procedure changes the shape of the (Ωm, w) regions
and the tensions with respect to Planck 2018 are 1.71σ for
(Ωm, w), 0.33σ for (σ8, w) and in the (Ωm, σ8) plane we get
1.23σ . In Table 4 the different tension levels are summarized
for the two Planck cosmologies, comparing maximized and
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Table 4 Tension levels for the Planck 2015 and Planck 2018 ΛCDM
cosmologies in the different two-dimensional maximized and marginal-
ized regions for the datasets in Table 2 (N ) and in [12] (LRG)

MaxLRG MargLRG MaxN MargN

σ8-w P15 2.70σ 0.29σ 1.76σ 0.26σ

P18 2.04σ 0.30σ 1.19σ 0.33σ

Ωm -w P15 2.86σ 1.57σ 2.08σ 1.71σ

P18 2.22σ 1.58σ 1.56σ 1.71σ

Ωm -σ8 P15 2.87σ 1.50σ 2.14σ 1.44σ

P18 2.25σ 1.28σ 1.68σ 1.23σ

marginalized contours and with the dataset in this work and
that in [12].

5 Conclusions

We have revisited the tension of ΛCDM Planck cosmology
with RSD growth data. We have considered the Gold data
set of [12] together with one additional BOSS-Q point and
removing the two SDSS-LRG points thus obtaining a total
of 17 independent data points.

Confronting these data with the growth rate obtained
from a wCDM cosmology with three independent param-
eters (w,Ωm, σ8), we find that unlike previous claims, the
tension with Planck 2018 cosmology is below the 2σ level
in all the two-dimensional marginalized confidence regions.
This reduction, which is around 1.5σ as compared to [12], is
due to three different factors, namely, the use of Planck 2018
parameters, the fact that marginalized confidence regions
have been considered and the exclusion of the possibly cor-
related SDSS-LRG points. Notice that for the ΛCDM model
(i.e. fixing w = −1), the tension is found to be at 1.68σ level.

Future galaxy surveys such as J-PAS [29], DESI [30] or
Euclid [31] with increased effective volumes will be able to
reduce the error bars in the determination of f σ8(z) in almost
an order of magnitude and will help to confirm or exclude
the tension analyzed in this work.
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