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We consider renormalizable couplings of neutral ¢, singly ¢*, and doubly charged ¢** scalar bosons to
leptons and the Z gauge boson and calculate the one-loop contributions to the anomalous weak magnetic
dipole moment (AWMDM) ¥ and the weak electric dipole moment (WEDM) dY of a charged lepton in a
model-independent way. The analytic expressions are presented in terms of both parametric integrals and
Passarino-Veltman scalar functions. Among the new contributions, there are those arising from the vertices
of the type ¢p*WFZ and Z¢h;; (i # j), along with contributions from doubly charged scalar bosons. Both
a¥ and dY are evaluated in several scenarios, first in a model-independent way and then within some
popular models, such as two-Higgs doublet models (THDMs), multiple-Higgs doublet models and Higgs
triplet models. As far as aYV is concerned, its real part reaches values as high as 1071°-10~° for masses of
the new scalar bosons in the 200 GeV range, whereas the imaginary part is 1 or 2 orders of magnitude
below. On the other hand, the most promising scenario for a nonvanishing WEDM is offered by a CP-
violating THDM 1in a scenario where the heavy neutral scalar bosons are a mixture of CP eigenstates. It is
found that the real part of d) is of the order of 1072* ecm and its imaginary part can reach the 1072 ecm
level for masses of the new scalar bosons of the order of a few hundred of GeVs. Both the tau AWMDM and

WEDM decrease dramatically as the scalar boson masses increase.
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I. INTRODUCTION

After the 2012 discovery of the Higgs boson by the ATLAS
and CMS collaborations at the CERN LHC [1,2], the precise
determination of this particle’s properties has become one of
the most expedited tasks for the experimentalist and so is the
search for new physics effects, which may help us to shed light
on the yet-unanswered questions of the standard model (SM).
The mechanism of spontaneous symmetry breaking (SSB) is
achieved in the SM by one complex SU(2), scalar doublet,
thereby leaving as a remnant only one physical Higgs boson.
However, there is no compelling reason to expect that this
minimal Higgs sector is the one realized in nature. The most
simple SM extensions are obtained when one or more scalar
multiplets are added to the usual SM Higgs doublet, thereby
increasing the spectrum of physical scalar bosons. Therefore,
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models with an extended scalar sector stand out among the
most popular and simple SM extensions. A key issue to
construct this class of models is to satisfy the p = 1 relation,
along with other theoretical and experimental constraints. It is
well known that Higgs multiplet models containing N
multiplets with isospin 7'; and hypercharge Y;, whose neutral
components develop vacuum expectation values (VEVs) v;,
modify the tree-level p parameter value as follows [3],

2
SV ei(Ti(T; + 1) = %) 02
p = NY?vz
Sy

where ¢; = 1/2 (1) for real (complex) multiplets. Therefore,
only those models with an extended scalar sector satisfying
the p = 1 relationship without invoking intricate assumptions
are phenomenologically interesting.

Particularly interesting among the models with an
extended scalar sector that obey the p = 1 relation at the
tree level are Higgs singlet models, two-Higgs doublet
models (THDMs), multiple-Higgs doublet models
(MHDMs), and Higgs triplet models (HTMs). Apart from
their simplicity, this class of models has several motivations:

; (1)
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new sources of CP violation, the presence of a dark matter
candidate, the possibility of accomplishing the seesaw
mechanism, the appearance of doubly charged scalar bosons,
new tree-level scalar-to-gauge boson couplings, etc. In
addition, although these models are interesting on their
own, they can be required by other more sophisticated
SM extensions, such as the minimal supersymmetric stan-
dard model (MSSM), whose scalar sector is a THDM.

New physics effects can be searched for indirectly
through virtual corrections from new particles predicted
by SM extensions. Along this line, the study of the static
electromagnetic properties of fermions provides a unique
opportunity to search for this class of effects. The theoretical
study of both the anomalous magnetic dipole moment
(AMDM) and the electric dipole moment (EDM) of
fermions has long received considerable attention, which
has been boosted in recent years due to the significant
progress in the experimental area. After the study of the
electromagnetic properties of a fermion, there has also been
great interest in its static weak properties, which are
associated with its interaction with the Z gauge boson.
The analogues of the AMDM and the EDM are the
anomalous weak magnetic dipole moment (AWMDM)
ay and the weak electric dipole moment (WEDM) d},
respectively, which are defined at the Z pole via the dipole
terms of the Zff vertex function

iei(p)Y; (q*)u(p') = iei(p)(F2(q*)ic"q,
+ F3(q%)0"ysq,)u(p'). (2)

where g = p—p’ is the Z transfer momentum. The
AWMDM s defined as a} = —2mF,(m3) and the
WEDM is given by d}/ = —eF3(m7). In the SM, a} arises
at the one-loop level and d}v is induced up to the three-loop
level [4]. Only the AWMDM and WEDM of heavy fermions
are worth studying as those of lighter fermions would be
beyond the reach of experimental detection. For instance, in
the SM a¥ = —(2.10 + 0.61i) x 107 [5] and d¥ < 8 x
1073* ecm [6]. Although the sensitivity reached at the LEP
was beyond such a precision level, potentially large con-
tributions from SM extensions can be at the reach of future
experiments. The current bounds on the static weak proper-
ties of the tau lepton, which were obtained through the study
of 77z~ production at the LEP by the ALEPH collaboration
[7], which used a data sample collected from 1990 to 1995
corresponding to an integrated luminosity of 155 pb~!, are
shown in Table 1. These bounds are well beyond the
sensitivity required to test the SM predictions and it is thus
worth studying the new physics contributions as they could
be large enough to be at the reach of detection in the future.

The AWMDM and WEDM of a fermion have been
studied in the context of THDMs [8—10], supersymmetric
theories [11,12], unparticles [13], leptoquarks [14], and the
simplest little Higgs model [15]. In this work we are
interested in analyzing the new contributions arising from

TABLE 1. Experimental upper bounds on the static weak
properties of the tau lepton [7].

Real part Imaginary part
aV 1.1x1073 2.7 %1073
d¥ (ecm) 0.5 x 107" 1.1 x 1077

models with an extended scalar sector. We thus calculate
the one-loop contributions induced by neutral, singly and
doubly charged scalar bosons. Our calculation and numeri-
cal analysis will be performed in a model-independent
fashion; thereafter the possible implications of some
specific models with an extended scalar sector are ana-
lyzed. Our results are also useful to compute the contri-
butions arising from the scalar sector of models with an
extended gauge sector, which also require additional Higgs
multiplets, such as the MSSM, little Higgs models, left-
right symmetric models [16], 331 models [17,18], etc.

The rest of this work is organized as follows. A model-
independent calculation of the contribution of new scalar
particles to the static weak dipole moments of a charged
lepton is presented in Sec. II, whereas the numerical
analysis of the contributions to the AWMDM and
WEDM of the tau lepton in models with extra scalar
multiplets is presented in Sec. III. The conclusions and
outlook are presented in Sec. IV. Finally, the necessary
Feynman rules and some lengthy formulas for the loop
integrals are presented in the appendixes.

II. NEW SCALAR CONTRIBUTIONS TO THE
AWMDM AND WEDM OF CHARGED LEPTONS

We are interested in the contributions to the AWMDM
and WEDM of charged leptons from new neutral, charged
and doubly charged scalar particles, which can arise in
several models with an extended scalar sector. Our calcu-
lation is somewhat general: instead of working out the
calculation within a specific model, we consider the
scenario of a theory with several nondegenerate neutral,
singly and doubly charged scalar bosons with the most
general renormalizable couplings to the leptons and the Z
gauge boson that can induce the AWMDM and WEDM at
the one-loop level. Once the model-independent calculation
is presented, we perform the numerical analysis and
consider the implications of some extension models.

A. Contributions from new neutral and singly
charged scalar bosons

We first consider lepton number conserving interactions
mediated by scalar bosons. For the couplings of a lepton-
antilepton pair with a neutral or singly charged scalar
particle (denoted ¢; or ¢; from now on) we consider the
following renormalizable interaction,

L= igl?l(‘gilm + Pilm}/S)l/ﬂmqﬁi + H~C-9 (3)
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where ¢, is a charged lepton and 7,, is a lepton whose
charge depends on that of the scalar boson: if ¢; is a neutral
(charged) scalar boson, 7, is a charged (neutral) lepton.
Also, note that we introduce a factor of g for each coupling;
we thus expect that the S;;,, and P;;,, couplings are of the
order of O(1) or smaller. Note also that we are considering
the most general case where the neutral scalar bosons are a
mixture of CP-even and CP-odd states, which can arise for
instance in THDMs with CP violation.

As for the interactions of Z gauge boson with two
nondegenerate neutral or charged scalar bosons ¢; and ¢;,
it 1s written as follows,

L= igngz¢i¢jzﬂ¢jau¢j’ (4)

whereas the couplings of the type ZV¢;, with V being a
neutral (charged) gauge boson and ¢; a neutral (charged)
scalar boson, can be written as

L =ig9yvzZ'V,$; +H.c., (5)

where V stands for a SM gauge boson or another one
predicted by a SM extension. Such coupling can be for
instance the ¢;ZZ and the ¢p*ZWT ones. The latter can
arise in HTMs at the tree level, whereas in THDMs it arises
up to the one-loop level. We also need the interaction
between a lepton-antilepton pair with a neutral or charged
gauge boson V, which we write as

L=igliy,(gy" = gy"ys)V*¢,y + He. (6)

Particular expressions for the coupling constants S;;,,,, Pjjn»
97¢.4,» €LC., are known once a specific model is considered.
Since we are mainly interested in the contributions arising
from models with an extended scalar sector only, we do not
consider the contributions of hypothetical gauge bosons or
fermions predicted in SM extensions with an extended
gauge sector.

The Feynman rules for the above-described couplings
are presented in Appendix A. We have used the unitary
gauge for our calculation. At the one-loop level, the
AWMDM and WEDM of a charged lepton are induced
via the Feynman diagrams depicted in Fig. 1, where ¢, and
¢; represent neutral or charged scalar bosons, and V is a
gauge boson. Evidently once the electric charge of the
scalar bosons is fixed, the charges of the internal lepton £,
and the gauge boson V also become fixed by charge
conservation in each vertex. For instance, if ¢; and ¢;
are neutral scalar bosons, 7, is a charged lepton e, u, 7.
Thus, for the contributions of new neutral scalar bosons we
need the vertices ¢;7,,¢ 1, );ZZ, Z;;, and Z¢,,,,. On the
other hand, when ¢; and ¢; are charged scalar bosons, the
internal lepton is a neutrino ,, = v,,,. Therefore, this class
of contributions requires the vertices ¢;7,,¢;, ¢7W*Z,
Zg; ¢y, and Zi,v,,.

/7 N\ /7 N\
s N O bir N O
/ \ / \
/ \ / \
L AV L AV
E[ él
\ ‘ /
V N 9 ¢i 1 v
\ /
\ /
AV L
é’l lm [1 fl Zl?l [l
(I1a) (ITIb)
FIG. 1. Generic Feynman diagrams for the type-I, type-II, and

type-1II contributions of new neutral and charged scalar bosons to
the AWMDM and WEDM of a charged lepton. Here #; stands for a
charged lepton, whereas 7, is a lepton whose charge depends on
that of the ¢; and ¢; scalar bosons (type-I and type-II diagrams) and
that of the V gauge boson and the ¢; scalar boson (type-III diagram).

In order to solve the one-loop integrals we have used
both the Feynman parameter technique and the Passarino-
Veltman reduction scheme [19], which allows us to cross-
check the results numerically. After some algebra we have
obtained the following results.

1. Anomalous weak magnetic dipole moment

The contributions to the AWMDM can be written as
follows,

_ a,/X| " " dih;
al'-! = 4L3_Z16N,»J-Re[S,-lmSﬂng¢i¢']AT J
SW i jm !
+ Silm - Pilm B (7)
Sjlm - lem

X —

aV=1l =

Xi il
g216<g€mm||sﬂm||2A?;l"’"

a
4nsy
+g§mm X1 e[SilmP?lm}A;/)I’.:lm)

=),

Xm =
+ <
Silm <~ Pilm
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and
I = Y LR, A
Xy = —+/%om
= Sim = Pim |, )
gy = gy

where x, =m2/m}, N, =(1-6;) (1) for neutral
(charged) scalar bosons. It is understood that these sums
run over all the possible combinations of internal particles
predicted by a particular theory. The last term is obtained
from the first term after the corresponding replacements are
done. As far as the A?BC functions are concerned, they
depend on the masses of the particles circulating into each
triangular loop and that of the external lepton (the super-
script letters stand for the distinct particles circulating into
the loop), but such a dependence has not been written out
explicitly to avoid cumbersome equations. The correspond-
ing expressions are presented in Appendix B in terms of
both parametric integrals and Passarino-Veltman scalar
functions. At this point, it is worth mentioning some
important aspects of our calculation. First, we have verified
that the contributions to both the AWMDM and WEDM
from the diagrams of Fig. 1 are free of ultraviolet
divergences. In addition, we have checked that the expres-
sions (7) and (8) reduce to those reported in [20] for the
AMDM of a lepton in the limit of m, — 0 and after
replacing the Z couplings with the photon ones.

2. Weak electric dipole moment

As for the contributions to the WEDM, they are given as

wer ea me;p;
di =~ = mi 4N Im[lemSJlng¢ ¢/]D1 ]
Jam
Xon = =/ Xm
1 Sim = Pim | (19)
Pilm - Silm
_ ¢l
A = sty S S Py DY (1)
and
3 ea 9p.vz * i
AV = 22 (S5 1Dy

3
4”szZ im,V Xv

VX = =/ Xm
- Silm - Pilm s (12)
gle N g‘\;lm
where again the D#BC functions are also presented in
Appendix B in terms of both parametric integrals and
Passarino-Veltman scalar functions.

B. Contribution from doubly charged scalar bosons

In addition to the above results, we also need to consider
the AL = 2 lepton number violating contributions, which
can be mediated by a doubly charged scalar boson. This
class of interactions can be written as

LAL=2 = g1 (S, + Py’ )omd' + Hee,,  (13)

where C is the charge conjugation matrix. Doubly charged
scalar bosons can contribute to the AWMDM and WEDM
of charged leptons via the Feynman diagrams shown in
Fig. 2, where the fermion-flow arrows either clash or
emerge from lepton number violating vertices as opposed
to lepton number conserving vertices, where the fermion
flow follows the same direction. Since we are considering
models with an extended scalar sector only, there is no
contribution similar to the type-III one of Fig. 1, which
requires a doubly charged gauge boson. Some models with
extended gauge sector, for instance SU(3); x U(1)y mod-
els, predict such a particle.

Because of the presence of the charge conjugation matrix
and transposed spinors, the Feynman rules for doubly
charged scalar bosons must be worked out carefully
[20,21]. The corresponding Feynman rules and the relevant
details for the calculation are presented in Appendix A. After
some algebra we have found that the results arising from the
Feynman diagrams of Fig. 1 [i.e., Egs. (7)—(12)] hold true for
the contributions of a doubly charged scalar bosons except
that a factor of 2 for each lepton number violating vertex must
be inserted when the leptons are identical (I = m),

al™" = (1+6,)%a"", (14)
af =1 = 14 5y, Pal =, (15)
;ZM EZN
¢z,”'/ \\ o5 ®77 N o7
/ \ \
/ \ / \
Vi A Vi A
Zl ém kl el Zm yl

f] (/);77 él

FIG. 2. Generic Feynman diagrams for the type-I' and type-II'
contributions of doubly charged scalar bosons to the AWMDM and
WEDM of charged leptons. Here #; and ¢, are both charged
leptons.
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where it is understood that one must replace the appropriate
couplings and masses involved in each contribution. Similar
expressions hold for the contributions to the WEDM arising
from lepton number violating vertices. This situation was
also noted in the calculation of the AMDM of a lepton [20]. It
is worth noting that (9) and (11) would be also valid for a
type-1ll-like contribution arising from a doubly charged
scalar and a doubly charged gauge boson, provided that
the factor of 2 for vertices with identical leptons is considered
and the respective couplings are used.

We now analyze the behavior of the contributions to the
AWMDM and WEDM of the tau lepton arising from each
type of contribution.

III. NUMERICAL ANALYSIS

A. Model-independent analysis of the AWMDM
of the tau lepton

The possible scenarios with new neutral, singly charged,
and doubly charged scalar bosons that can induce an
AWMDM are summarized in Table II, where we show the
corresponding type of Feynman diagram from which such
contributions arise and the specific models in which such a
scenario is attained. We consider that the neutral scalar
bosons are either pure or a mixture of CP eigenstates: ¢! and
g;ﬁ? denote neutral CP-even and CP-odd scalar bosons,
respectively, whereas c,?)? stands for a mixture of CP
eigenstates. The latter can arise for instance in MHDMs
with explicit or spontaneous CP violation in the scalar sector.

As far as neutral scalar bosons are concerned, we note
that while a CP-even scalar boson can contribute to the
AWMDM through type-II and type-III Feynman diagrams,
a CP-odd scalar boson can only contribute via the type-II
diagram. On the other hand, a pair of nondegenerate ¢ and
&5? scalar bosons can induce the AWMDM via the three
contributions. As for singly charged scalar bosons, they can
contribute via both type-I and type-II contributions,
whereas type-III contribution is present only in HTMs,

TABLE II.

where the ¢pTWTFZ vertex is induced at the tree level.
Finally, doubly charged scalar bosons can induce the
AWMDM via the type-I' and type-II' diagrams, though
type-Ill-like contributions can also be present in models
with a doubly charged gauge boson.

We now proceed to present a numerical analysis of the
behavior of the scalar boson contributions to the AWMDM of
the tau lepton. Our aim is to examine several scenarios for the
contributions of neutral, singly charged, and doubly charged
scalar bosons. We first present a model-independent analysis
and afterwards we concentrate on some realistic models.

1. Neutral scalar bosons

To assess the potential contributions of new neutral
scalar bosons to the AWMDM of the tau lepton we consider
the minimal scenarios for the each type of contribution to
be nonvanishing and estimate the corresponding order of
magnitude. The minimal scenarios are as follows:

(i) Type-I contribution requires at least two nondegen-

erate neutral scalars c}l and g?ﬁz that are a mixture of
CP eigenstates.

(i) Type-II contribution requires either a single neutral
CP-even scalar ¢! or a single neutral CP-odd
scalar (}5?

(iii) Type-III contribution can arise via a single CP-even
neutral scalar boson ¢.

Although there could be lepton flavor violating scalar
couplings, they are expected to be more suppressed than
lepton flavor conserving couplings and we neglect such
contributions for simplicity. Therefore, for the internal lepton
we take £, = 7, whereas V is taken as the Z gauge boson
since we are considering that there are no new particles other
than extra scalar bosons. For the three minimal scenarios
described above we show in Fig. 3 the corresponding
contributions to the AWMDM of the tau lepton. For the
numerical evaluation we have used the Mathematica numeri-
cal routines to evaluate the parametric integrals and a
cross-check was done by evaluating the results given in

Contributions to the AWMDM of a charged lepton induced at the one-loop level by the Feynman diagrams of Figs. 1 and 2

arising from new scalar bosons predicted by MHDMs and HTMs. Here qbg ; (g?)? ;) stand for neutral CP-even (CP-odd) scalar bosons and
A?, ; for a mixture of CP eigenstates. Note that although the vertex Z(f)?(/}? is not forbidden by CP invariance, the type-I contribution to

the AWMDM vanishes.

Scalar boson(s) Involved couplings Type of Feynman diagram Model
¢ /., P27 II-11T MHDMs, HTMs
P »¢/¢, I MHDMs, HTMs
¢7 and ¢; DL Z29] i # ), 91,22 I MHDMs
* DTl Wy ZhEDT I-II MHDMs, HTMs
3 G Ve ZWE BT | HTMs
¢ and ¢ 7l s ZOEDT I-1I MHDMs, HTMs
P T ZhFEPTT, r-Ir HTMs
¢+t and (,bjﬂ o707, Z¢iﬂ¢j¥¢, r-1r HTMs
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FIG. 3. Absolute values of the contributions from new

neutral scalar bosons to the AWMDM of the tau lepton induced
by the three types of Feynman diagrams of Fig. 1. Both the real
and imaginary parts of type-II contributions are shown. We
consider the followmg scenarios: two nondegenerate scalar
bosons (]51 and (]52 with Mo = Mgy, and Mo = 200 GeV [we
take S;;; > P;;, (IS) and Pm > S, (IP), for i = 1, 2], a single
CP-even scalar boson (,250 (Re[IIS], Im[IIS], and III), and a single
CP-odd scalar boson (;5(1) (Re[IIP] and Im[IIP]). In these scenarios
each kind of contribution is nearly proportional to the following
product of coupling constants: Cig = gz, ¢2Re[S1”SZTT], Cp =
92,0, Re[P}:Paz)s Cuis = IS1M1%, Crp = 1Py 1%, and Cyy =

g¢]ZZRe[S11r]'

terms of Passarino-Veltman scalar functions with the help of
the LoopTools routines [22,23]. In the case of the type-I
contribution we consider two scenarios: (a) dominant scalar
couplings S;;; > P;,, and (b) dominant pseudoscalar cou-
plings P, > S;,., for i = 1, 2. The type-II contribution is
the only one that develops an imaginary part and we show
both its real and imaginary parts. Each contribution is nearly
proportional to a product of coupling constants denoted by
C;, as indicated in the caption of the figure.

We observe in the plots of Fig. 3 that the tau AWMDM is
highly sensitive to an increase in the scalar boson mass and
can get suppressed by about 1 order of magnitude when
my, increases from 200 to 1000 GeV. As far as the real part
of a¥ is concerned, in the case of type-I contribution, a pair
of scalar bosons with scalar couplings larger (smaller) than
their pseudoscalar couplings gives a positive (negative)
contribution to the AWMDM, but in the case of type-II
contribution the CP-even (CP-odd) scalar boson gives a
positive (negative) contribution, which means that there
could be cancellations between both contributions. As far
as the type-III contribution is concerned, it is always
positive and seems to be slightly larger than type-I and
type-1I contributions. However the values shown in the
plots of Fig. 3 could get an additional suppression when the
appropriate values for the coupling constants, predicted by
a specific model, are inserted. We can thus obtain a rough
estimate of the tau AWMDM in a particular model by
multiplying the values shown in the plots by the corre-
sponding coupling constants. For instance, if we take either
”Srr” ~ mr/(sz) or ”PTT” ~ mr/(sz)’ type'l and

type-II contributions would be suppressed by around 4
orders of magnitude with respect to the values shown in the
plot, whereas type-III contribution would be suppressed by
2 orders of magnitude. This is due to the fact that type-III
contribution involves only one power of the S,, or P,
couplings, whereas both type-I and type-II contributions
involve a quadratic power of these couplings, though
type-1II contribution can have additional suppression due
to the g4z coupling. In models with several neutral scalar
bosons there could be some enhancement provided that the
coupling constants are independent and that there is no
cancellation between the distinct contributions. However,
sum rules between the coupling constants can prevent that
all the scalar couplings can be simultaneously large. Also,
the presence of scalar bosons that are a mixture of CP
eigenstates could not be very relevant for the AWMDM as
their contribution gives no considerable enhancement,
though the most distinctive signature of this scenario would
be the appearance of a WEDM. Finally, the imaginary parts
of the type-II contributions to a) from a CP-even and CP-
odd scalar bosons are about the same size but of opposite
sign and are 1 order of magnitude smaller than the real part.

2. Singly charged scalar bosons

We now turn to focus on the possible contributions from
new singly charged scalar bosons, which can arise from the
three type of Feynman diagrams of Fig. 1 no matter if there
is a lone charged scalar boson. Again we only consider the
following minimal scenarios:

(i) Type-I contribution is nonvanishing for a single
charged scalar boson, but we consider the scenarios
with both a single charged scalar ¢F and two
nondegenerate charged scalars ¢ and ¢3.

(i1) Type-1I and type-III contributions require a single
charged scalar boson ¢7.

The internal lepton £, is now a neutrino v,, and V is the
charged W boson. We consider massless neutrinos so there
would not be lepton-flavor mixing. In Fig. 4 we show the
three types of contributions to the AWMDM of the tau lepton
in the scenarios described above. For the charged scalar
couplings we assume left-handed couplings, namely,
Py, = —=Siw,, i = 1, 2. Again, the corresponding contri-
butions to the tau AWMDM are nearly proportional to a
product of coupling constants, as indicated in the figure. As
for the real parts of a¥, we observe that type-I and type-II
contributions are now of similar size and opposite sign, so
they can cancel each other out. Thus type-III contribution is
expected to be the dominant one among all the contributions
of a singly charged scalar, which is worth noting as the
¢TW*Z vertex is a peculiarity of HTMs. Note also that type-
II contribution is the only one that can develop an imaginary
part, which is less than 1 order of magnitude smaller than the
real part for my = 200 GeV, but gets considerably sup-
pressed for larger m . Once again, a more careful analysis
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FIG. 4. Absolute values of the contributions from charged
scalar bosons to the AWMDM of the tau lepton induced by the
three types of Feynman diagrams of Fig. 1. Both the real and
imaginary parts of type-II contributions are shown. We consider
the following scenarios: two degenerate charged scalar bosons
¢i and ¢5 with mye =my: =my (la), two nondegenerate
charged scalar bosons ¢; and ¢, with m,: =200 GeV (Ib), and
a single charged scalar boson (Re[ll], Im[II], and III). We take
Py, = =S, for i =1, 2. In these scenarios each kind of
contribution is nearly proportional to the following product of
coupling constants: Cy = gz, = IS0 1% Ci=1IS4, |I?, and Cry =

gﬁzthRe [S‘rv,]'

with appropriate values of the coupling constants is required
in a specific model since these contributions can be consid-
erably suppressed as the coupling constants are expected to
be much smaller than the unity.

3. Doubly charged scalar bosons

Doubly charged scalar bosons can give contributions to
the tau lepton AWMDM from type-I’ and type-II' Feynman
diagrams of Fig. 2. For our analysis we consider the same
scenarios as those analyzed in the case of the singly charged
scalar boson, except for now absent type-IlI-like contribu-
tion. The internal lepton is now a charged one and for
simplicity we assume negligibly lepton flavor violating
couplings and take #,, = 7, in which case there is an extra
factor of 4 due to the presence of two vertices with identical
leptons. We also consider that the doubly charged scalar
boson couplings are left handed, namely, P, = -5,
i =1, 2. Indeed, doubly charged scalar couplings to
charged leptons are left handed (right handed) if they arise
from triplets (doublets). We have analyzed the behavior of
the AWMDM of the tau lepton induced by doubly charged
scalar bosons in scenarios I and II of Fig. 4. For similar
masses, the doubly and singly charged scalar contributions
only differ by the factor of 4 due to identical leptons. The
fact that the internal lepton is now the tau lepton instead of a
massless neutrino does not alter significantly these results.
Therefore, the results shown in the curves labeled by Ia, Ib,
Re[lI], and Im[II] in Fig. 4 are valid for a doubly charged
scalar provided that an extra factor of 4 is considered.
Also the coupling constants C; should be replaced by

Ci—Cr = gz¢fﬂ/;§ci||5'n||2 and  Cy — Cy = |IS|1*.
Again, since type-I' and type-II' contributions are of
opposite sign, there can be large cancellations between
them. If there is no type-Ill-like contribution, doubly
charged scalar bosons may induce a more suppressed
contribution to the tau AWMDM than neutral and singly
charged gauge bosons.

B. AWMDM of the tau lepton in models with an
extended scalar sector

We now turn to present an assessment of the new
contributions to the tau AWMDM from some popular
models with an extended scalar sector. We only present
an overview of each model as they have been largely
studied in the literature. For a review of this class of models
see [24] and references therein.

1. Singlet models

They are the simplest extensions of the SM since in
addition to the SM doublet there is only one extra real or
complex singlet S. Although these models predict new
neutral scalars that may play the role of a dark matter
candidate and provide a connection with a hypothetical
hidden sector (the Higgs portal), their phenomenology is
not as interesting as that of models with higher-dimensional
multiplets. For instance there are no tree-level flavor
change and new sources of CP violation. The interactions
of the new physical scalars with the SM particles occur via
mixing with the Higgs doublet since the singlet does not
couple to the SM fields. Therefore, the new scalar bosons
would have suppressed SM-like couplings to the Z gauge
boson and the leptons. Furthermore, since at least one of the
two new neutral scalar bosons would be a dark matter
candidate, the tau AWMDM would receive only new
type-1I and type-IIl contributions from one of the new
scalar bosons at most, whereas type-I contribution would
be absent as it only arises when there is CP violation. We
thus conclude that the new contributions to the tau
AWMDM from singlet models are not expected to be
relevant and we refrain from presenting a more detailed
analysis here.

2. CP-conserving THDMs

One of the main attractive aspects of THDMs is that they
are required by supersymmetric theories, but also can have
other interesting features, such as a possible dark matter
candidate, flavor change at the tree level, new sources of
CP violation, cosmological implications, etc. After SSB,
the physical Higgs spectrum of CP-conserving THDMs is
composed by two CP-even neutral scalar bosons & and H,
one CP-odd neutral scalar boson A, and a pair of charged
scalar bosons H*. To forbid tree-level flavor changing
neutral currents a Z, symmetry is invoked giving rise to
four THDMs with natural flavor conservation according to
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TABLE III. Nonvanishing coupling constants of the new Higgs
scalar bosons in the four CP-conserving THDMs with natural
flavor conservation: THDM of type I (THDM-I), THDM of type
I (THDM-II), lepton-specific THDM, and flipped THDM. For
the notation of the coupling constants we refer the reader to
Fig. 11. The lepton coupling constants must be multiplied by
m./(2my ). Notice also that the couplings of the flipped THDM
(Iepton-specitic THDM) are the same as those of THDM-I
(THDM-II).

Coupling THDM-I THDM-II
Stu oy cos
Py, —icotf itan
SH’%D, % - %
PH"?I/T _SH"?Z/, _SH’%D,
Juzz cos(-a—ﬂ) cos(-a—ﬂ)

Cy Cw
s L224) alag)

the Z, charge assignments: THDM-I, THDM-II, lepton-
specific THDM, and flipped THDM [25]. On the other
hand, the so-called THDM-III is obtained by allowing
flavor change in the Yukawa Lagrangian and constraining
the respective couplings via experimental data. We do not
expect a considerable enhancement of the tau AWMDM if
flavor violation is allowed, so we only consider flavor
conserving models.

THDM-I (a-B=r/2)

CP-conserving THDMs would give new type-II con-
tributions to the tau AWMDM arising from the neutral
scalar bosons A and H. The latter would also give a type-III
contribution via the HZZ vertex, though the g;,,, and gy,
couplings cannot be simultaneously large as they obey the
sum rule g3, + G377, = Q%SMzz- As for the charged scalar

boson H*, it would only give type-I and type-II contribu-
tions since the Ht*W~Z vertex is absent at the tree level.
The nonvanishing contributions have already been studied
in the context of THDM-II, prior to the SM Higgs
discovery, [8] and more recently in THDM-III [10]. We
calculate the results in both THDM-I and THDM-II
considering the most up-to-date bounds on the parameter
space. The corresponding Feynman rules have been pre-
sented very often in the literature and are summarized in
[25]. In Table IIT we show the couplings of the scalar
bosons necessary for our calculation. From now on we
consider that 4 is the SM Higgs boson and its couplings
have little deviation from the SM ones.

Constraints on the masses of the new scalar bosons and
the parameters tan f§ and «a arise from experimental data. If
h is assumed to be the SM Higgs boson, LHC data require
p — a = r/2 (the alignment limit) and small values of tan .
In this scenario, the HZZ vertex would be negligibly small
and so would be the corresponding type-III contribution. In
Fig. 5 we show the behavior of the real and imaginary parts
of the partial and total contributions of model I to the tau
AWMDM as functions of the scalar boson masses and two

200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
-10 tanB=1 tanB=10 -12
10 § B § B 10
‘0 ’Q
NN, ARE S
</ a < > ; N . S i ~ -13
£ 10 \~ N N S - 10
‘D ~ ~N .
& \ ~ ~ -~ ;\ - \ s ~ -~ ; ~ ..
\.\ “‘h..~-._ \.\ §~~5..5--_
10712 . S= o Te~. S= a0 20
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"~ t o~ Al
. . — o - I‘F(I)
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b S
10°14 \"i \'5‘ 10-16
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FIG. 5.

Absolute values of the real (upper plots) and imaginary (lower plots) parts of the partial and total contributions from the

THDM-I to the AWMDM of the tau lepton as functions of the scalar boson masses considering my = m4 = m, and the indicated values
of the model parameters. The contributions of the flipped THDM are identical.
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THDM-II (a=B=71/2)
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FIG. 6. The same as in Fig. 5 but for THDM-II. These contributions are identical to those of the lepton-specific THDM.

values of tanff, whereas in Fig. 6 we present the corre-
sponding plots for the contributions of THDM-IIL. It turns
out that such contributions are identical to those of the
flipped THDM and the lepton-specific THDM, respec-
tively. We observe that in THDM-I (THDM-II) all the
contribution are proportional to cot (tan ) in the f — a =
7/2 limit, thus the total contributions are identical in both
models for tan f = 1, but when this parameter increases its
value, a¥¥ decreases (increases) in THDM-I (THDM-II).
The main contributions arise from the charged scalar boson
via the type-II diagram, whereas the contributions of the
neutral scalar bosons, both of type II, are slightly smaller
and of opposite sign. Because of the cancellation between
the distinct contributions, the total sum of the real part of
al is of the order of 107! or below for tan = 1 and
masses of the scalar bosons above the 200 GeV level. On
the other hand, when tan # = 10, Re(a)) is of the order of
10~'2 in THDM-I but of the order of 10~® in THDM-II.
These values get considerably suppressed as the scalar
boson masses increase. As far as the imaginary part of @) is
concerned, both the H and A contributions cancel each
other out, so the total contribution is due to the charged
scalar boson and is of the order of 107! for my: =
200 GeV, but decreases dramatically as my: increases.
This contribution is the same in both THDM-I and THDM-
IT for tanf = 1, but decreases (increases) by 2 orders of
magnitude when tanf =10 in THDM-1 (THDM-ID).
Although we have focused on two values of tanf, we
can conclude that the contributions of CP-conserving
THDMs to the tau AWMDM are much smaller than the

pure SM prediction and are even below the contributions of
other SM extensions.

3. CP-violating THDMs

The most general THDM allows for CP violation in the
Higgs sector, which can arise explicitly (via complex
couplings) or spontaneously (via complex VEVs). We
consider the latter scenario and follow the approach of
the authors of Refs. [26,27], where a THDM respecting the
Z, symmetry ®, - —®, and u;z - —u;p is considered (as
in THDM-II). The most general renormalizable Higgs
potential that violates softly the Z, symmetry is given by

V(®),®D;) = Vi (@1, D;) + Vst (@1, D,),  (16)
where the Z, symmetric term is
Vm (@1, ®y) = —3D| @) — 13050, + 4, (O], )?
+ A (D)D)% + 43(P] D) ) (P} D)
FAJO®J + 3 (15(] )2 + He),
(17)
whereas the softly violating term is given by
Veori(@1. @) = =, @] @, + Hec. (18)

After SSB @, and ®, acquire the VEVs ®; = (v,)/v/2 and
@) = (v,e%)/\/2 aslong as |u?,/ (2450, v,)| < 1. The three
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neutral physical states /;, which are now a mixture of C P-even
and CP-odd eigenstates, are obtained from the gauge
cigenstates as follows: h; = R;;¢p;, with hl =(hy,hy,hs3),

¢ = VI(Re(¢)) Re(d3), (syIm(¢}) - cylm(¢))), and R =

R;R, R, being a rotation matrix that can be parametrized as

& —51C2 S182

R =] 5163 cieac3 —95283  —C18263 — €283 | (19)

$183  C1Cp83 + 8503  —C1883 + €03

where §; = sina; and ¢; = cos «;, with @; being the Euler
angles (i = 1, 2, 3). The CP-conserving THDM-II is obtained
in the limit of @, = a3 = 0, after which one must redefine
a; = n/2 — a to get the conventional nomenclature.

In the Yukawa sector, after SSB the £,£,h; couplings
acquire the form of Eq. (3). As far as the scalar-to-gauge-
bosons interactions are concerned, there are not only /;ZZ
couplings but also Zh;h; ones (i, j=1, 2, 3, i # ),
whereas the charged gauge couplings are the same as those
of the CP-conserving THDM-II. The Feynman rules for
this model are presented in [26]. In Table IV we show a
summary of the coupling constants required for the
evaluation of the tau AWMDM.

In the most general scenario, the tau AWMDM receives
contributions from the three neutral scalars via the three
types of Feynman diagrams of Fig. 1, whereas the charged
scalar boson would contribute through type-I and type-II
diagrams. However, it must be noted that the following sum
rule is obeyed by the couplings of the scalar bosons to the Z
gauge boson [26]: C?+ CJZ + C,Zj =1 (i+#j), which
means that even though there are additional contributions,
some of them would be negligible since not all the coupling
constants can increase simultaneously. The properties
of the 125 GeV Higgs boson discovered at the LHC seem
to fit very well with those of the SM Higgs boson; we

TABLE IV. Nonvanishing coupling constants of the scalar
bosons in CP-violating THDM-II [26]. For the notation of the
coupling constants we refer the reader to Fig. 11. The lepton
coupling constants must be multiplied by m,/(2my ). The C; and
C;; constants are C; = szR;, + ¢4R;; and Cjj = wiRj3 — w;R;3,
with w; = s3R;; — cpRp. Note that the couplings of charged
scalars remain unchanged.

Vertex Coupling constant
S Ry
hite cos ff
P —itan fR;3
S tan
H 1w, _\/5
PH’?L/f _SH’?L/f
C:
9n,zz J
C..
9Zhin; ﬁ
1 2
9zH" H- 5o (1= 2s)

TABLE V. The same as in Table IV but in the scenario with
a, =0 and cos(a — ) =0. We set a; = 7/2 — a. The lepton
coupling constants must be multiplied by m,/(2my,).

Vertex Coupling constant

CoSaACoOS Q3 __
Shyer _Tﬂ} = tan f} cos a3
th” cosa silnt(?n ﬂ S
Shyee —cosp 1= tan ffsin a3
P2 —itan ffcos az

_ sin(a—p)

9zhyhy 2cw

thus consider that #; is the lightest scalar boson and its
properties are nearly identical to the 125 GeV SM Higgs
boson, namely, C; = 1. This scenario corresponds to
a, = 0; therefore h; becomes a pure CP-even state and
the coupling constants become in this limit C; ~ Cy3~
sin(a — ) = 1, whereas all of C,, C3, C},, and C3 become
proportional to cos(a —ff) =0. The resulting coupling
constants are shown in Table V, where we have neglected
all terms proportional to cos(a — /). In this case there would
only be a new type-I contribution arising from the scalar
bosons /1, and A5, which also would contribute through the
type-II diagrams but not the type-III one. In addition, there
are also contributions of the charged scalar boson, which are
the same as in the CP-conserving THDM-II as the charged
scalar couplings remain unchanged. In Fig. 7 we show the
partial and total contributions to the tau AWMDM for
tanf = 1 and two values of sin 3. We observe that the real
part of @) is now dominated by the type-I contribution but it
is of the same order of magnitude than the contribution of
the CP-conserving THDM-II. On the other hand, the
imaginary part of a!¥ is dominated by the contributions
of the charged scalar boson since the contributions from the
neutral scalar bosons cancel each other out. Thus the
imaginary part of a is very similar to that of the CP-
conserving model. We thus conclude that the contributions
of the CP-violating THDM give no relevant enhancement to
the tau AWMDM as compared to the CP-conserving model.
However, the most interesting implication of this scenario is
the appearance of a WEDM as discussed below.

4. Multiple Higgs doublet models

Since the p = 1 relation remains valid at the tree level after
the addition of an arbitrary number of Higgs doublets,
models with more than two Higgs doublets have also been
the focus of considerable attention in the literature, though
they are plagued with a large number of free parameters [28].
Apart from their rich phenomenology, MHDMs are particu-
larly appealing as they allow for a plethora of discrete and
Abelian symmetries in the scalar and flavor sectors [29-31],
which can be useful to reduce the number of free parameters.
An N-Higgs doublet model predicts N — 1 pairs of new
charged scalar bosons and 2N — 1 neutral scalar bosons,
including the SM Higgs boson. If CP conservation is
assumed in the scalar sector, the neutral scalar bosons are
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CPTHDM-II (tanB=1, a,=0, a-B=11/2)
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FIG. 7. Absolute values of the real (upper plots) and imaginary (lower plots) parts of the partial and total contributions from the CP-
violating THDM-II to the AWMDM of the tau lepton as functions of the scalar boson masses considering m;, = 200 GeV, m;,, = my

and the indicated values of the model parameters.

CP eigenstates, but this is not true when CP violation is
allowed. Thus, in principle, there would be more extra
contributions to the tau AWMDM. However, a phenomeno-
logically viable MHDM requires that one of the neutral scalar
bosons has couplings to the SM particles almost identical to
those of the SM Higgs boson. Therefore, it is often assumed
that all the neutral Higgs bosons other than the SM-like one
are heavy and with suppressed couplings to the SM particles
(the decoupling limit). As far as the charged scalar bosons are
concerned, their couplings to lepton pairs cannot be simul-
taneously large due to the corresponding sum rules. It has
been pointed out that the more interesting scenario is that in
which all the extra charged scalar bosons but only one
decouple from the fermions [28]. Therefore, itis not expected
that the extra contributions of a MHDM significantly
enhance the tau AWMDM as compared to the contribution
of a THDM: the extra neutral and charged scalar bosons
would be very heavy and with suppressed couplings to the tau
lepton and the Z gauge boson.

5. The Georgi-Machacek model

Although Higgs triplet models can give dangerous con-
tributions to the p parameter, this can be alleviated if either a
custodial SU(2) symmetry is imposed [32,33] or the Higgs
triplets VEVs are of the order of a few GeVs [34]. We refer to
the former realization as the Georgi-Machacek model
(GMM) and to the latter as the Schechter-Valle Higgs triplet
model (SVHTM). The most interesting features of these

models are the following: naturally light Majorana masses for
the neutrinos via the so-called type-II seesaw mechanism,
enhanced Higgs-to-gauge boson couplings, doubly charged
scalar bosons, and tree-level induced H*W ¥ Z coupling [35].
The last two features are an interesting signature of these
models, which can offer a rich phenomenology and provide a
clear signal at particle colliders. For instance, doubly charged
scalars can enhance significantly the two-photon decay of a
neutral Higgs boson.

We first discuss the scenario posed by the GMM, which
predicts a more rich physical spectrum. This model contains
the usual SM doublet ¢, one real triplet = = (&, &0, )T
with ¥ = 0 and one complex triplet X = (y*+, y*, ¥°)7 with
Y = 2. They are arranged in a bidoublet

(V23 +
(55 @
and a bitriplet
){0* é=+ }(++
AXEX)= | & x| @
P AR

where ® and X transform under the custodial symmetry as
® - U, U}, and A - U, AU}, with U = e iaT"),
Here T* = t* stands for the SU(2) generators in the triplet
representation. To achieve SSB, the neutral components of
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TABLE VI. Coupling constants for vertices inducing the tau
AWMDM in the GMM [36]. Here 8y and a are mixing angles:
sinfy = \/52115/11 and o is the mixing angle of the 47 and H
scalar bosons. For the notation of the coupling constants we refer
the reader to Fig. 11. The lepton couplings must be multiplied by
m,/(2my). Although the ZHh, ZHYH, and ZH}H? couplings
also arise, as explained in the text they do not contribute to the tau
AWMDM at the one-loop level.

Vertex Coupling constant
sina
SHTT cos Oy
P itan Oy
_ tan 0,
SH;w, \/EH
PH;‘?U, _SH;‘TL/r
1 2
9zH? H o (1= 2sy)
9IHzz ﬁ (3cyse —2V6spcy)

the doublet and the triplets acquire VEVs v, v, and v,. It
turns out that p = 1 at the tree level since v, and v, are
aligned due to the custodial symmetry. After SSB, nine
physical scalar bosons emerge: apart from the SM-like Higgs
boson 7, there are one scalar singlet H, one scalar triplet H;
(HY, H5), and one scalar fiveplet Hs (HY, H*, HS). While
H and H? are CP even, HY is CP odd. A peculiarity of this
model is that the triplet and fiveplet masses are degenerate.
Also, since there is no doublet field in the custodial fiveplet,

the Hs states are fermiophobic and their couplings to a
fermion antifermion pair can only arise via radiative correc-
tions. The Feynman rules for the GMM are presented in [36].
In Table VI we show the coupling constants necessary to
evaluate the tau AWMDM.

In spite of the wide spectrum of physical scalar bosons of
the GMM, there is only a handful of new contributions to
aY': the H scalar boson would give contributions of type II
and type III, Hg would only induce a type-II contribution,
and Hf would contribute via the type-I and type-II
diagrams. It is worth noting that since the fiveplet is
fermiophobic, there is no type-III contribution from either
the singly charged scalar HZ (via the H¥ WF Z coupling) or
the doubly charged scalar H*. Therefore, the contribution
of the GMM would be similar to that of a THDM. We
consider two sets of values for the sina and sinfy
parameters still consistent with the constraints on the
parameter space of the GMM [37,38] and plot the behavior
of the partial and total contributions to the tau AWMDM as
functions of the scalar boson masses. The results are shown
in Fig. 8, where it is observed that the real part of the
type-III contribution arising from the H scalar boson is the
dominant one, whereas the real parts of the remaining
contributions are considerably suppressed. As for the a¥¥
imaginary part, for sina = sinfy = 0.1 the contributions
from the H and HY scalar bosons are nearly identical but of
opposite signs; therefore they cancel out and the bulk of the

GMM
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FIG. 8. Absolute values of the real (upper plots) and imaginary (lower plots) parts of the partial and total contributions from the GMM

to the AWMDM of the tau lepton as functions of the scalar boson masses considering my = m HO = My and the indicated values of the

model parameters.
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imaginary part of @ is due to the type-II contribution from
the charged scalar boson Hi. On the other hand, when
sina = —0.3 and sinfy = 0.1 the dominant contribution
arises from the H scalar boson, whereas the remaining
contributions are negligible. In general, the real part of the
tau AWMDM can reach the level of 107 — 107!° for masses
of the new scalar bosons of the order of 200 GeV, whereas the
imaginary part is of the order of 107!2 — 10713, We observe
that the behavior of a! is highly sensitive to the values of
sin  and sin @y. It is worth noting that in this model there is
no sum rule for the g;,,, and gy, couplings; thus, the type-
I contribution from the H scalar boson can be relevant for
the total contribution. We can conclude that although there is
a slight enhancement of a!¥ as compared to the contribution
of THDMs, the GMM still gives contributions smaller than
those arising from other SM extensions.

6. The Schechter-Valle Higgs triplet model

This is another comprehensively studied realization of
HTMs [34]. Its main motivation is to generate small
neutrino masses via the seesaw mechanism. In such a
model only one complex triplet A with ¥ = 1 is introduced
along with the SM doublet ®. The triplet is arranged as

A_s+ 5+t

V2
A= ( ) (22)
(] 1
& =58

The neutrino masses are generated via the following
Yukawa Lagrangian,

[:y = —YDULlTClazAL] =+ H.C., (23)

with LT = (1], el,) and Y, being a symmetric complex
matrix.

The Higgs doublet and the neutral component of A acquire
VEVs vy and v, with /0] + v3 = v =246 GeV. To
satisfy the p =1 constraint the triplet VEV must fulfill
1 eV <wv, <8 GeV. After SSB, seven physical scalar
bosons are left as the remnant: two CP-even scalar bosons
H, and H,, one CP-odd scalar boson A, a pair of charged
scalar bosons H*, and a pair of doubly charged scalar bosons
H**. Other than the doubly charged scalar H** = §**, the
mass eigenstates are mixtures of the doublet ¢ and the triplet
A. The mixing is proportional to v ; thus H,, A, and H* are
mainly composed of the triplet fields, whereas H; is
predominantly composed of the doublet field and can be
identified with the SM Higgs boson. All the extra scalar
bosons are nearly mass degenerate. From (23), the following
neutrino mass matrix is obtained,

M, = \/E/UAYD = \/EV;MNSMSiagV;MNS’ (24)

TABLE VII. Coupling constants for the vertices inducing the
tau AWMDM in the SVHTM [39]. T', and I', , are given in (25)
and (26). For the notation of the coupling constants we refer the
reader to Figs. 11 and 12. The Sy, and P4, couplings must be
multiplied by mz/(2my). We used the approximation vy = v.

Vertex Coupling constant
Sty —siné,

Py, —i sin a
SH’?,UI- érz
PH’?;IJ/ _SH’?;L//

- L1ij
Su=—¢.¢, sy
PH”/,fj _SH”fif/
JHw-7 —syty(sinf, —/2(2 +$) cos @, [Tﬁ)
gHZZZ sin 60 — 4 cos 90 %
9zH* H~ ﬁ(l - 2s3y)
9zH++H i (1-2s)

with Vpyns being the Pontecorvo-Maki-Nakagawa-Sakata
mixing matrix.

A more detailed description of this model and the
corresponding Feynman rules are presented in Ref. [39].
The coupling constants necessary for the evaluation of a!¥
are shown in Table VIL. In particular, the couplings of the
charged and doubly charged scalar bosons to leptons are

Mlcliiag‘]wL
I, =cosd, — —EMNS (25)
Ua
and
M
r,.. = L. 26
++ \/E’UA ( )

Apart from the H; contribution to @), which corre-
sponds to the SM, the new contributions to the tau
AWMDM arise from the neutral scalar bosons H, and A
as well as the singly and doubly charged scalar bosons H*
and H**. Contrary to the case of the GMM, the charged
scalar boson does yield a type-III contribution via the
HEX*WFZ vertex. Therefore, in addition to the THDM-like
contributions, there are the following additional contribu-
tions to the tau AWMDM: a type-III contribution from the
singly charged scalar boson and type-I' and type-II' con-
tributions from the doubly charged scalar bosons. However,
all these contributions are highly dependent on the value of
vp and can be considerably suppressed. Let us first
examine the contributions arising from the charged and
doubly charged scalar bosons. Since the neutrino mass
matrix elements are typically of the order of 1072 —
1073 eV [40], for v, of the order of 10~ GeV, the matrix

elements T/ and I'/, would be of the order of 1076 — 10~7
and even smaller for larger values of v,, which means that
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type-I and type-II contributions arising from the charged and
doubly charged scalar bosons would be negligibly small,
below the 1013 level. As far as type-II contributions from the
neutral scalar boson are concerned, current constraints from
unitarity, the oblique T parameter, and the diphoton strength
signal [41] favor the regime where the mixing angles are
small and can be approximated as sin 6y = sina = 2v, /v,
and sinf, = V2va/vg, so the contributions to the tau
AWMDM from the neutral scalar bosons are proportional
to (va/vy)?* and so are expected to be very suppressed: for v,
around 1 GeV wv,/vy =8 x 1073; thus the H, and A
contributions would be of the order of 10715, A similar
result is true for type-III contributions arising from the scalar
bosons H, and H* since all of the H,ZZ and H*W¥Z
coupling constants are proportional to v,/vy; thus the
respective contribution to a)¥ would be proportional to
(va/v9)*. In conclusion, the extra contributions from the
SVHTM to the tau AWMDM would be much smaller than
those of THDMs and the GMM.

7. Models with exotic scalar sectors

The Georgi-Machacek idea of invoking a SU(2) custo-
dial symmetry to preserve the p = 1 relation at the tree level
can be generalized to higher-dimensional multiplets, which
is achieved by replacing the Higgs bitriplet by a larger
representation under the SU(2); x SU(2), symmetry [42].
These models, dubbed generalized Georgi-Machacek mod-
els, have a spectrum of physical scalar bosons composed by
the singlet H, the triplet H;, plus higher fermiophobic
multiplets (a fiveplet, a septet, etc.) Therefore, the new
contributions to the tau AWMDM would be similar to those
of the GMM.

Other models with an exotic scalar sector can be con-
structed by adding extra higher-dimensional multiplets that
respect the relation p = 1 at the tree level. Among such a
class of multiplets, the lowest dimensional is a septet with
T =3 and Y = 4. A model of this class has been investigated
quite recently [43] and it has been dubbed the doublet-septet
model. However, the septet does not couple directly to the
SM fermions and its interactions only arise through the
mixing with the SM doublet. Fifteen physical scalar bosons
emerge after SSB, but the relevant ones for the tau AWMDM
are two neutral C P-even scalars i and H, one neutral CP-odd
scalar A, and two pairs of charged scalars Hi and Hj.
Among the remaining physical fields there are a fermiopho-
bic doubly charged scalar and higher-charged scalars.
Therefore, apart from the THDM-like contributions, this
model only gives a new contribution arising from the extra
charged scalar. Thus, we do not expect a substantial incre-
ment to the tau AWMDM from the doublet-septet model.

C. WEDM of the tau lepton

We now turn to analyze the contributions of new scalar
bosons to the tau WEDM, which requires a CP-violating
phase. Following the same line of discussion as in the

AWMDM case, we only focus on those models with an
extended scalar sector; therefore we do not consider addi-
tional gauge bosons or fermions. However, there are fewer
scenarios for a nonvanishing WEDM than for an
AWMDM. For instance, neutral scalar bosons can only
induce the tau WEDM at the one-loop level as long as they
are a mixture of CP eigenstates. As for a charged scalar
boson, type-II contribution vanishes for massless neutrinos,
whereas type-1 contribution is nonvanishing only for two
nondegenerate charged scalar bosons and massive neutri-
nos. We do not consider the case of doubly charged scalar
bosons since, as we have seen above, their couplings to
charged leptons are too small to give a relevant contribution
to the tau AWMDM, let alone to the WEDM. Another
conclusion drawn from our study of the AWMDM is that
MHDMs are not expected to give a considerable enhance-
ment to the weak properties of the tau lepton as compared
to the contribution of a THDM. Therefore, the most
promising scenario for a nonvanishing WEDM of the
tau lepton is that posed by a CP-violating THDM, so
we refrain from analyzing other scenarios. We thus con-
sider the scenario with two nondegenerate neutral scalar
bosons that are a mixture of CP eigenstates (?)1 and c}ﬁz. The
behavior of the tau WEDM as a function of the scalar boson
masses is shown in Fig. 9 for some scenarios of interest.
Again these contributions could have a strong suppression
once the appropriate coupling constants are introduced: for
coupling constants of the order of 1072, the values shown in
the plots would decrease by about 4 orders of magnitude. In
addition, stemming from the sum rules obeyed by the
coupling constants, some of these contributions would be

~ ~
10-10 ~ - -
[ —
_______
g 10720 |
2
&)
L ~ Relll]
z. 10 s
] ~~ . — =[]
~=—
~ —_——
10722 .
——
1078 b e e e
200 400 600 800 1000 1200 1400
my, [GeV]

FIG. 9. Absolute values of the contributions from new neutral
scalar bosons to the WEDM of the tau lepton induced by the three
types of Feynman diagrams of Fig. 1. Both the real and imaginary
parts of type-Il contributions are shown. We consider the
following scenarios: two nondegenerate scalar bosons (2)? and
#3 with m 3 = my, and mgo = 200 GeV (I) as well as a single

scalar boson (}5(1) (Re[II], Im[II], and III). For type-I contribution
we take for simplicity Sy,.P5,, = S,..P},,, whereas for type-III
contribution we use S;,, > Pi,,. In these scenarios, each kind of
contribution is proportional to the following product of coupling
constants: Cy = gz, 4, Im[S,. P3|, Cy =Im[S,.. P} ], and Cpy =

9, zzIm[S)].
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FIG. 10. Absolute values of the real and imaginary parts of the partial contributions from the CP-violating THDM-II to the WEDM of
the tau lepton as functions of the scalar boson masses considering m,,, = 200 GeV and m;,, = my for type-I contribution as well as

I’I’Lh3

additionally suppressed as the accompanying coupling
constant could be very small.

Let us now consider the CP-violating THDM discussed
above [26] and assume the scenario with a, = 0, in which
h; is pure CP even and it thus is identified with the SM
Higgs boson, whereas h, and h; are mixtures of CP
eigenstates and they would give the three types of con-
tributions to the tau WEDM, though type-III contribution
vanishes when a — ff = 7/2. We assume massless neutri-
nos so the contribution of the charged scalar boson
vanishes. The corresponding coupling constants are shown
in Table IV, where in addition to a, = 0, we set @ — f§ =
/2 and use a; = /2 —a. We plot the partial contribu-
tions to d¥¥ from the two neutral scalar bosons %, and /5 in
Fig. 10 as functions of the scalar boson masses and for two
values of a3. We can observe that the dominant contribution
to dY arises from the Feynman diagram of type I, whereas
diagrams of type II give a negligible contribution, which
however give the only nonvanishing contribution to the
imaginary part of d%. In this scenario, the real part of the
WEDM of the tau lepton is of the order of 1072* ecm for
small sin @3 and decreases by almost 1 order of magnitude
for a large sin a3, whereas the imaginary part is of the order
of 1072° for relatively light masses of the scalar bosons, but
decreases quickly as my, increases.

IV. CONCLUSIONS AND OUTLOOK

We have performed an analysis of the new one-loop
contributions to the tau AWMDM aY and WEDM dY in
models with an extended scalar sector, for which we have
obtained analytic expressions both in terms of parametric
integrals and Passarino-Veltman scalar functions. We first
presented a model-independent analysis of the potential
contributions of new neutral, singly charged, and doubly
charged scalar bosons in several scenarios of interest.
Afterwards, we focused on the particular contributions
of some specific models.

= my,, = my, for type-II contribution. We use the indicated values of the model parameters.

As far as the contributions to the tau AWMDM arising
from new neutral scalar bosons ¢° are concerned, in the most
general scenario there can be three types of such contribu-
tions (see Figs. 1 and 2) involving the following Z gauge
boson couplings: Z¢) ! (i # j) (type ), Z£¢ (type 1), and
ZZ¢° (typeIlI). As for type-I contribution, it can only arise in
multiple-Higgs doublet models with CP violation. For scalar
bosons masses around 200 GeV, such a contribution is
expected to be of the order of 1071 as it is suppressed by
two powers of the Yukawa coupling ¢£¢. This rough
estimate is obtained by assuming that the strength of the
@C¢ coupling is at most of the same order of magnitude as
that of the SM Higgs boson. On the other hand, type-II and
type-1III contributions can arise in multiple-Higgs doublet
models and Higgs triplet models even if there is no CP
violation. Type-II contribution, which is also suppressed by
two powers of the ¢p£Z coupling, can reach values of the
order of 10~'" — 1071, butitis the only one that can give rise
to an imaginary part. On the other hand, type-III contribution
may be the largest one as it is suppressed by only one power
of the ¢p£¢ coupling, though an extra suppression can arise
from the ZZ¢" coupling, which can be due to the sum rules
obeyed in a specific model. Along this line, it is worth noting
that although there can be several partial contributions arising
in a particular model, they could cancel each other out instead
of adding up. As for the contributions of a singly charged
scalar boson ¢, they are induced by the vertices Z¢; ¢
(type 1), Zwv (type II), and ZW*¢T (type III). Type-I and
type-I1I contributions, which arise in multiple-Higgs doublet
models and Higgs triplet models, can reach values of the
order of 107" — 10710 for a charged Higgs scalar boson with
a mass of the order of 200 GeV. Again, type-III contribution
may be the largest one, though it can only arise in Higgs
triplet models. Finally, a doubly charged scalar boson can
contribute only via the vertices Z¢p=*¢pT T (type I') and Z£7#
(type-II' contribution). These contributions can be of the
same order of magnitude as the analogue contributions of
singly charged scalar bosons, though there is an additional
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factor of 4 due to the presence of two vertices with identical
leptons. We also found that CP-violating effects do not
significantly alter these predictions; however, they are a
necessary ingredient for the presence of a WEDM.

To obtain a more realistic prediction for the tau
AWMDM, we considered some popular models with an
extended scalar, taking into account the most up-to-date
constraints on the corresponding parameter space in view of
the LHC data on the SM Higgs boson. We found that two-
Higgs doublet models can give the largest contributions to
aY arising from two neutral and one singly charged scalar
boson. While the real part of @)’ can reach values as high as
10719 — 107° for masses of the new scalar bosons in the
200 GeV range, its imaginary part is 1 or 2 orders of
magnitude below. Both contributions decrease quickly as
the scalar boson masses increase. Other models such as
multiple-Higgs doublet models, the Georgi-Machacek
model, and the Schechter-Valle Higgs triplet model can
give additional contributions, but they reduce to those of
two-Higgs doublet models in the allowed region of param-
eter space, which stems from the fact that in these models
the new scalar bosons typically have suppressed couplings
to the SM particles. In particular, doubly charged scalar
bosons have very suppressed coupling to the tau lepton in
Higgs triplet models. Also, although these models predict
the H*WTZ vertex at the tree level, its contribution to the
tau AWMDM is not relevant. Thus these contributions are
expected to be of similar order of magnitude or smaller than
those of two-Higgs doublet models.

Contrary to the AWMDM, the scenarios in which a
nonvanishing WEDM can arise are very restricted.
Although the tau WEDM can receive contributions from
all the Feynman diagrams that can induce an AWMDM, it is
necessary that the neutral scalar bosons are a mixture of CP
eigenstates. We thus considered the scenario with at least two
such scalar bosons (},- and performed a model-independent
analysis. In this scenario all the types of contributions can
arise, including the type-I contribution since there would be a
nonvanishing Z¢, ¢, vertex. By considering an extra sup-
pression factor of about 10~* due to the ¢,#Z coupling, we
conclude from our analysis that the WEMD of the tau lepton
can be in the range of 107> — 10723 ecm, with the largest
contribution arising from type-Ill Feynman diagrams.
However, as commented above, the size of the (fﬁiZZ
coupling could be very suppressed. When considering
specific extension models, we found that the most promising
scenario for a nonvanishing WEMD induced by new scalar
bosons is that posed by CP-violating two-Higgs doublet
models, which predict three neutral scalar bosons %; (i = 1,
2,3) that are a mixture of CP eigenstates. However, since one
of these scalar bosons must be identified with the SM Higgs
boson, current constraints strongly limit the couplings of the
two extra neutral scalar bosons. Even more, in this model
there are no contributions from the charged scalar boson.

Although other extensions such as Higgs triplet models can
also include new sources of CP violation, from our study of
the AWMDM we can conclude that the contributions of such
models are almost identical to those of a two-Higgs doublet
model since any additional contributions are very sup-
pressed. Assuming that /; coincides with the SM Higgs
boson, we found that the dominant contributions arise from
the neutral scalar bosons /1, and /5. The real part of d is of
the order of 1072* ecm, whereas its imaginary part can reach
the 10726 ecm level for masses of the new scalar bosons of
the order of a few hundred of GeV.

In summary, the contributions of models with an extended
scalar sector to the tau AWMDM and WEDM are smaller
than those predicted by other types of extension models.
Although interesting on their own, models with an extended
scalar sector could be the low-energy approximation of a
more fundamental theory still unknown with a strongly
interacting ultraviolet completion, which could give an
enhancement to the weak dipole moments of a charged
lepton. There are several models with extended gauge sector
that require a scalar sector with additional scalar multiplets.
Among the most popular ones are the MSSM, the left-right
SU(2)r x SU(2); x U(1)y symmetric model and its super-
symmetric version, SU(3), x U(1)y models, and little
Higgs models, to mention a few. These models can include
several new contributions to the tau AWMDM and WEDM
arising from the new gauge bosons and fermions predicted
by these theories. The results presented here can be useful to
assess the magnitude of the contribution of the scalar sector
of these models. In particular, the contribution to the WEDM
can be relevant if there are no additional sources of CP
violation from other sector of the model.
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APPENDIX A: FEYNMAN RULES

In this appendix we present the Feynman rules necessary
for the calculation of the static weak properties of a charged
lepton. In Fig. 11 we present the generic Feynman rules
necessary when lepton number conserving vertices are
involved. The fermion, scalar boson, and gauge boson
propagators are the usual ones and we refrain from
presenting them here.

When lepton number violating vertices mediated by
doubly charged scalar bosons are involved, we need the
Feynman rules shown in Fig. 12. To simplify the final
amplitude we need to exploit the properties of the charge
conjugation matrix such as C = —C~" and Cy,C™" =y].
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FIG. 11. Generic Feynman rules for the lepton number
conserving interactions necessary to calculate the weak properties
of a charged lepton. Here ¢; stands for a charged lepton and 7,
is either a charged or neutral lepton, whereas the charges
of the scalar bosons ¢;; and the gauge boson V are fixed
by charge conservation in each vertex. [, = Si.+

Py’ and T, = (gv™™ = g™y )r*.

APPENDIX B: ONE-LOOP FUNCTIONS

In this appendix we present our results for the A*5¢ and
DAB€ functions involved in the calculation of the AWMDM
and WEDM of a charged lepton presented in Sec. II. We
present analytic expressions in terms of both parametric
integrals and Passarino-Veltman scalar integrals.

1. Parametric integrals

The A#B€ and D€ functions can be cast in the form of a
one-dimensional parametric integral as follows,

1
ABC = / at®e (1),
0

where the letters in the superscript ABC denote the
dependence on the masses of the different particles circu-
lating into the loop (in fact A is the particle that couples to

(B1)

L
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FIG. 12. Generic Feynman rules for the lepton number violating
interactions mediated by a doubly charged scalar necessary
to calculate the weak properties of a charged lepton. Here
¢, and ¢, are both charged leptons. C is the charge conjugation
matrix, I, =S}, +P),. 7>, and T, = Cyol"gmyoc_l =
C(Sy, — Pl v°)C1. Ny, is a symmetry factor that is 2 for m =
[ and 1 otherwise. Note that the arrow below the fermion propagator
stands for the direction in which the Feynman line is read, which in
this case coincides with the fermion-flow direction.

both external lepton lines whereas both B and C couple to
the Z boson) and the subscript is used to denote distinct
functions. Although there is also dependence on the
external lepton mass, we omit such a dependence in order
to avoid cumbersome expressions; thus we use the short-
hand notation a?8¢(t) = a8 (t,x;, x4, xp, ...). Similar

expressions hold for DA5C and d#8¢(1).

a. Anomalous weak magnetic dipole moment

For the type-I Feynman diagram we have

ap"(1) = 1((1 = D)/ = VEDF" (1), (B2)
with the following auxiliary functions,
FABE(1) = fA5€(1) + A5 (1), (B3)
£156(0) = g avetan| et (B
and
EVBC(1) = [Ae((1 = 1)y + x4) = 2(1 = D)5 + ¥c)
~ (x5 = xc)* = (1 = 1P (BS)
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As long as the type-II Feynman diagram is concerned,
the corresponding a/'2€ functions are

(1) = (Ew + 1) (1 = P (1)

11,

(B6)
and
ali"™ (1) = t(t = 1) FPmm(p), (B7)

whereas the function associated with the type-III Feynman
diagrams, whose amplitudes have been added up, is

aiy (1) = £V (0 + 2117 (O F Y (1) + £5Y (1) GV (1),

(B8)
with the auxiliary functions given as
aB(r) = 2(r— D((1=38)g"8(¢) — 2(1 = 21)), (B9)
gAB (1) =log [1((t = 1)x; + x4) — (£ = 1)xg] (B10)
GYPC(r) = gA (1) = (1) (B11)
FPE(8) = 22(V/a /Xy + 83 = 5x4) + 5(xp + x¢) = 7)
+ t(4(xy —x;) — (dxc +T)xp
+2x% + (2xc — 5)x¢c +5)
+368(1 —4x;) — (1 — xp)* + xZ, (B12)
and
2B(1) =1(2(x4 —xp+2)=31) —x4 —xzp— 1.  (B13)

b. Weak electric dipole moment

As far as the contributions to the WEDM of a charged
lepton are concerned, they are given through the following
functions,

m¢;¢/- mao - :
dp (1) = 21((xg, — X, )v/X1 = /%) F 71%; (1)
+ 1/FG 1), (B14)

A" (1) = fx (1 = 1) FPm™ (1), (B15)
and
i (1) = =f3¥ (0 + 25 () P (1)
+ Y ()G (1), (B16)

where the FABC GABC and fA2 were defined above. The
remaining auxiliary functions are

h/laBC(,) — 12(7 — 18x; + 5(2xA — X — xc)))
+ 1(2x 0 (VX /Xp + X = xC)

+XB( (2XC \/_\/.a XI) +7)
+ 2(\/X)\/Xa + 3%, — 2x4 —x3) + 5(xc — 1))
=38(1 —4x;) + (1 —xp)? = x2, (B17)
and
hBE(1) =1+ xp + x¢ + 3¢
= 2t(x; + \/X\/X4 +xg —xc +2).  (BIS)

2. Passarino-Veltman scalar functions

We now present our results in terms of Passarino-
Veltman scalar functions. We first introduce the following
set of ultraviolet finite scalar integrals:

By(0, m3, m3) — Bo(0, my, my), (B19)
A, = By(0, my, mg) — Bo(0, m¢., mg), (B20)
Ay = B(0, mg, m¢) — Bo(m, m3, mp), (B21)
Ay = Bo(mj. mj, my) — Bo(mj, m3, m¢), (B22)
As = Bo(mj. mj, m¢) — Bo(mz, m3. mp), (B23)
Ag = Bo(mj,m}, m¢) — Bo(m3. my. m¢), (B24)
Ag = myCo(m}.mj.my. my. my. m¢.). (B25)

a. Anomalous weak magnetic dipole moment

The A#BC functions are given by

1 1
ApPC =1, (XB =2x4 +xc+2x, =224 Ay 4 (x5 =2x4) Ag + (X —2xp +X¢) Az _5_(xl(2(xA +(2xp+1)x,
I

/4

2
+4\/XAXI—2.XB)+1)—2\/XAX1+XA +xc(2xl(1 —2x1)—1))A4—5—

2
+2\/)CAX[(4X[— 1))A6—5—l(2x12(2x,4 —

(xp—xc)*+xp+xc—1)+x,(6x5 (x5 +xc)

(x(3(2xs —xp—x¢) +2x,+1)
I

—2x4(3x4+2)

—xp(4xc+xp—1)=xc(xc—1))+(1+ (xp+xc) (4x; = 1) +2x;(4(x; —x4) —3)+2XA)\/XAX1+2X?)A7>, (B26)

with 61 = 1—4)([ and P = 5[)61,
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1 1
A?[z]ac :E (XB —x4 =X+ xpA; + (xp—x4) A3 —5—(2(3XAXI = Op\/Xaxp) = x)(6xp +2x,+ 1)) Ag
! I
1
—5_1(251\/95/4)51(953 —2x4 +x;) = 2x; (x4 (65 + 22, + 1 =3x,4) + (x;(1 =x; = 2xp) + x5 (3xp +2))))A7>7 (B27)
apc_ 1 X1 2x >
AL ~2 xA_xB+xl_xBAl+(XA_xB)A3_5_l(6(xB_xA)+2xl+1)A6_5_l((2xB_XA+xl)(3xA+xl_1)_3XB)A7 ,
(B28)
and
1
A?II;C:E ((\/x_l—\/x_A)<(2xA—x3—2x1—xv)+2xAA1+(2XA—XB)A2+(2xA—xB—xV)A3)
1
+5—1((\/x_1—\/a)(xA—251\/xsz+xz(2xA+(4X3(x1—1)+2x1+1)))—XV(\/)7,§(2X1(1—2X1)—1)
2./%
+\/)—c7(2x1(3—14x1)+1)))A4+ 5 (x,(Z(xA+x1)+3xB—5xV—1)+3w/xAx,(xB—2xA+xV—|—2xl—1)

2./x
+2(xg—xy)) A+ \5/_[

(xy(2xp=3x4 +x;(6(2xp + 1)x;—8x5+3(2x, — 1)) + x4 (2x; (x5 + 1 —2x;)
Fxp =1+ 2x, (x, = 1) 4 /X%, (05 = 1)7 + 2y (y (x4 1) + (1= 2x5) (x; = 1) +3x4) 4624 (x4 + (1 = x5 =2x,))

+zx,<x3<x3+1)—2+3xl>>+x,<x3<1—xB><2x,+1>+zx,<x,—1>+x2v<14x,—s>>>A7). (B29)

b. Weak electric dipole moment

As for the D#BC functions, they are given by

2 /1
D'IL‘BC = ;Tl <§512XB<XB - .Xc)A2 + 51()63 —XC)A3 — ()Cl(4XA + ZXB + 51 - 6Xc> + 2\/xAxl + Xc — XA)A4

— 4(/xax; + x;(xp — xc))As + 2((v/xax; + x1(xp — x¢) ) (1 + 2x4 — x5 — x¢)

= 2x;(V/xax; — x/(xc = XB)))A7> , (B30)
16,/x,x
Djf¢ = %(—% + (xp — x4 +x)A7), (B31)

and

D¢ 25(51(\/5"‘ VX1) (xy —xp)) = xp6;(\/Xa +/X1) Bg + 8 (/X4 + /%) (xy — xp) Az + (xy (/x4 (1 = 6x;)

+ /%254 1)) + (Vg + /X)) (x(dxa +2xp + 1= 4x;) = 24/3x4 = x4) ) Ay = 24/X (/XX (xy — x5+ 1)

Fxq = xy +x;(xy —xp)) A + 2¢/x; (x5 (2(xy — \/Xax, (1424 = x7)) = 2,(2(x4 + 25y —x;) +1)

—xa +Xp(\/XaX +X7)) + /X (xy + 1) (2024 —x7) =2y + 1) +2,(2x4 (xy — 1) +xy (3xy =1 = 2x))

+x4(2x4 =3xy+1))Aq). (B32)
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