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Abstract We consider a bumblebee gravity-based Kerr-
like black hole in a noncommutative (NC) background and
study the superradiance effect and the shadow cast. We exten-
sively study the different aspects of the black hole associated
with a generalized Kerr-like spacetime metric endowed with
the corrections jointly linked with Lorentz violation and NC
spacetime effect. We examine the deviation of shape, and
size of the ergosphere, energy emission rate, in this general-
ized situation. We also examine the influence of admissible
values of Lorentz violating parameter � and NC parameter
b on the superradiance effect and shadow of the black hole.
The admissible range has been determined from the obser-
vation of the Event Horizon Telescope (EHT) collaboration
concerning M87∗ astronomical black hole. We observe that
the superradiance phenomena has a crucial dependence on
the parameter � and b apart from its dependence on a or
â = √

� + 1a which is linked with the spin of the black hole.
We also observe that with the increase in Lorentz violating
parameter �, the size of the black hole shadow increases, and
with the increase in the NC parameter b the size of the black
hole decreases. We have made an attempt to constrain the NC
parameters b of this modified Kerr-like black hole by using
the data available from the Event Horizon Telescope (EHT)
collaboration. This study shows that black holes associated
with NC Kerr-like spacetime may be a suitable candidate for
the astrophysical black holes.

1 Introduction

Different exciting optical phenomena have been encountered
when light approaches the vicinity of a black hole. Lens-
ing (strong and weak), superradiance, and formation of the
shadow of the black holes are essential in this context. From
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the time of Einstein, the study of the optical effect in the
vicinity of a black hole was started and this field has been
getting enriched through the investigation by different scien-
tists. In the lensing effect, the black hole behaves as a natural
celestial lens that makes a deviation in the path of the light.
Here bending takes place due to the strong gravitational field
of the black hole. Here, we concentrate on investigating the
impact of quantum gravity effect on the superradiance phe-
nomenon and the shadow of black holes.

In a gravitational system, the scattering of radiation off
absorbing rotating objects produce waves with amplitude
larger than incident one under certain conditions which is
known as rotational superradiance [1,2]. In 1971, Zel’dovich
showed that scattering of radiation off rotating absorbing sur-
faces result in waves with a larger amplitude as ω < m�

where ω is the frequency of the incident monochromatic
radiation with m, the azimuthal number with respect to the
rotation axis and � is the angular velocity of the rotating
gravitational system [1,2]. The important contemporary con-
tributions in the articles [3–7] related to superradiance made
these astounding astronomical phenomena a tempting field
of research. For review, we would like to mention the lecture
notes [8], and the references therein. Rotational superradi-
ance belongs to a wider class of classical problems display-
ing stimulated or spontaneous energy emission, such as the
Vavilov-Cherenkov effect and the anomalous Doppler effect.
When quantum effects were incorporated it was argued that
rotational superradiance would become a spontaneous pro-
cess and that rotating bodies including black holes would
slow down by the spontaneous emission of photons. From
the historical perspective, the discovery of black hole evap-
oration was well understood from the studies of black hole
superradiance [9]. Interest in the study of black hole superra-
diance has recently been revived in different areas, including
astrophysics and high-energy physics via the gauge/gravity
duality along with fundamental issues in General Theory of
Relativity (GTR). Superradiant instabilities can be used to
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constrain the mass of ultra-light degrees of freedom [10–
13], with important applications to dark-matter searches. The
black hole superradiance is also associated with the existence
of new asymptotically flat hairy black-hole solutions [14] and
with phase transitions between spinning or charged black
objects and asymptotically anti-de Sitter (AdS) spacetime
[15–17] or in higher dimensions [18]. Finally, the knowledge
of superradiance is instrumental in describing the stability of
black holes and determining the fate of the gravitational col-
lapse in confining geometries [15]

Shadow is a two-dimensional dark area in the celestial
sphere which is known as a black hole caused by the strong
gravity of the black hole. It was first examined by Synge in
1966 for a Schwarzschild black hole [19], and the radius of
the shadow was given by Luminet [20]. The shadow of a non-
rotating black hole is a standard circle, while the shadow of
a rotating black hole elongates in the direction of the rotat-
ing axis due to the dragging effects of spacetime [21,22].
Hioki and Maeda [23] proposed two observables based on
the feature that points at the boundary of the Kerr shadow to
match the astronomical observations. One of which roughly
describes the size of the shadow and the other describes the
deformation of its shape from a reference circle. Also, using
the method given in [24] one can find the deviation from
circularity �C . These various observables are very useful
in testing and constraining the parameters involved in the
modified theories of gravity.

The black hole itself is one of the important predictions
of the GTR. Just after the announcement of capturing of the
shadow of the supermassive black hole M87∗ at the center of
the nearby galaxy Messier 87 by the EHT collaboration [25–
30], the study of optical phenomena in the vicinity of black
holes has gained renewed impetus [31–36]. Various types of
modified gravity along with the standard one were developed
from time to time to resolve ambiguities in different physical
observables. These modified theories have also provided pre-
cise explanations for observations made possible by the use
of modern sophisticated instruments. In this regard, a poten-
tial direction of improvement over the conventional theory of
gravity is to give the theory of gravity a quantum correction.
It is of great importance since quantization of gravity is still
not available in a mature form. Therefore the correction that
comes to incorporate the effect of the Planck scale is highly
appreciated in recent times. Two such ideas of taking into the
effect of the Planck scale are considered with significance in
the recent time literature: one is the Lorentz violation effect
and another is the impact of the NC spacetime. Both effects
have been studied earlier separably in the different physical
systems, however, the framework of having the combined
effect treating these two on the same footing effect is still
lacking to the best of our knowledge.

The formulation of the Standard Model of physics and the
GTR entirely depends on the principle of Lorentz invariance.

The GTR does not take into account the quantum properties
of particles, and Standard Model (SM), on the other hand,
neglects all gravitational effects of particles. At the Planck
scale, one cannot neglect gravitational interactions between
particles, and hence merger of SM with GTR in a single the-
ory becomes essential. It is indeed available from the quan-
tum gravity concept. At this scale, it is expected to face a
violation of Lorentz symmetry [42]. Several studies related
to Lorentz violation in different aspects have come in the
literature [43–68]. The standard model extension (SME) is
an effective field theory that couples SM to GTR [69–72]
where Lorentz violation has been introduced. One of the the-
ories that belong to this class is the bumblebee model, where
the Lorentz violation is introduced through an axial-vector
field Bμ which is known as the bumblebee field. Recently, in
[73,74], a Kerr-like solution was obtained from the Einstein-
bumblebee theory. In [75], it has been found that a Kerr-Sen-
like solution is also possible from the Einstein-bumblebee
theory.

NC spacetime has been extensively studied in recent years
[76–81]. The impact of NC spacetime has been studied in
various fields. A fertile field for studying the impact of NC
spacetime is black hole physics. Several ways are available in
the literature to implement NC spacetime in theories of grav-
ity [82–86]. Through a modification of the matter source by a
Gaussian mass distribution NC spacetime has been brought
into the black hole physics in the paper [87] and through
Lorentzian mass distribution NC spaspetime has been intro-
duced in the paper [88]. An interesting extension concerning
the thermodynamic similarity between Reissner-Nordström
black hole and the NC Schwarzschild black hole has been
made in the paper [89]. The thermodynamical aspects of NC
black holes have been investigated by taking on the tunnelling
formalism in the papers [90–97]. The impact of NC spacetime
in cosmology has been studied extensively in the papers [98–
102]. In [103], by taking the mass density to be a Lorentzian
smeared mass distribution the thermodynamic properties of
NC BTZ black holes have been studied. So far we have found
NC spacetime can be implemented by modifying the point-
like source of matter designated by the Dirac delta function
by replacing it with a distribution of matter. In the papers
[87,88] Gaussian and Lorentzian distributions are used to
incorporate the idea of NC spacetime. In this manuscript, we
have introduced NC spacetime into Kerr-like black hole [73]
by considering Lorentzian distribution as it has been used in
[88].

Correction due to quantum gravity is believed to be
bestowed on the theory of gravity introducing Lorentz vio-
lation, and NC spacetime. In this paper, we develop a frame-
work where we can study the impact of both the Lorentz
violation and NC aspect of spacetime simultaneously on
the same footing and consequently carry out an investiga-
tion through this generalized framework. Due to the pres-

123



Eur. Phys. J. C (2022) 82 :728 Page 3 of 21 728

ence of the real and anti-symmetric θμν within the basic for-
mulation of implementation of the NC aspect of spacetime
[xμ, xν] = iθμν , violation of Lorentz symmetry is inherent to
NC theories. However in the papers [104] Smailagic et al. and
in [105] Nicolini et al. simulated NC spacetime in an intrigu-
ing manner by invoking the ingenious coordinate coherent
state formalism that kept the Lorentz invariance preserved.
Although the NC spacetime has been introduced here follow-
ing article [88,114], it is undoubtedly a precise continuation
of the studies of Smailagic et al. and Nicolini et al. [104,105].
In this extension, we tried to provide a faithful and decent
framework that takes into account both NC spacetime and the
Lorentz violation simultaneously. Therefore in this extended
framework Lorentz violation is obvious, but the origin of the
Lorentz violation lies in the bumblebee vector field. The way
NC spacetime has been amended here has no direct connec-
tion to the Lorentz violation. This new framework will allow
studying systematically the quantum correction on superra-
diance phenomena, the energy emission due to radiation, and
the black hole shadow. What light the knowledge gathered
from the M87∗ data can shed on this updated framework that
has been thoroughly investigated here. Constraining of the
Lorentz violation parameter (�) and the NC parameter (b)
also has been executed from the data of EHT collaboration
concerning the shadow of the M87∗ black hole.

We, therefore, make an attempt to have the combined
effect of these two corrections and study their effect on the
superradiance and the shadow corresponding to this black
hole. Although a general study of the superradiance phenom-
ena will be provided here with the theories endowed with the
quantum correction, we will be able to test this modified
theory in light of the recently available data of the EHT col-
laboration. The important information about the shadow is
that it is found to have an angular diameter 42 ± 3μ with the
deviation from circularity �C = 0.1 and axial ratio ≈ 4

3 .
It helps us to constrain the free parameter involved in this
modified theory of gravity.

The manuscript is organized as follows. In Sect. 2, we
briefly describe how the Kerr-like black hole metric is
endowed with Lorentz-violation and NC spacetime. In Sect.
3, we study the geometrical aspects concerning the horizon
and ergosphere of this modifies metric. Section 4 is devoted to
superradiance scattering off the black hole corresponding to
this modified metric. In Sect. 5 we describe the photon orbit
and shadow corresponding to this black hole. Section 6 con-
tains the computation of energy emission rate. In Sect. 7 an
attempt has been made to constrain the parameters from the
observation of the EHT collaboration conserving the M87∗
black hole Sect. 8 contains a brief summary and conclusion
of the work

2 Modification of gravity containing Lorentz violation
in a noncommutative spacetime

Let us first develop a framework where we can incorporate
both the Lorentz violation and the NC spacetime on the same
footing. To this end, we give a brief description of how the
Lorentz violation effect was introduced.

2.1 Lorentz violation effect

Lorentz violation effect is believed to have the ability that
it may lead to significant effects on the properties of the
black holes anticipated beforehand. So it was attempted to
introduce through Einstein-bumblebee theory. It is an effec-
tive field theory where the bumblebee field receives vacuum
expectation through a spontaneous breaking of symmetry.
The action of which is given by

S =
∫

d4x
√−g

[
1

16πGN

(R + 	BμBνRμν

)

−1

4
BμνBμν − V

(
Bμ
) ]

. (1)

where 	2 represents the real coupling constant that controls
the non-minimal gravity interaction to bumblebee field Bμ.
Like electromagnetic field the dynamics of the bumblebee
sector is described by the field strength tensor corresponding
to the bumblebee field which is defined by

Bμν = ∂μBν − ∂νBμ. (2)

The field Bμ receives a vacuum expectation value from a
suitable potential through the spontaneous breaking of the
symmetry of the theory. The potential V (Bμ) that induces
Lorentz symmetry breaking is given by

V = V
(
BμB

μ ± b2) (3)

Here b2 is a real positive constant. It refers to a non-vanishing
vacuum expectation value for the field Bμ. It is assumed that
the potential has a minimum described by the condition

BμB
μ ± b2 = 0. (4)

The Eq. (4) ensures that a non-vanishing vacuum expectation
value〈
Bμ
〉 = bμ (5)

will be received by the field Bμ from the potentialV . The field
bμ indeed is a function of the spacetime coordinates which
have a constant magnitude bμbμ = ∓b2 which may have
a time-like as well as space-like nature depending upon the
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choice of sign in front of b2. The gravitational field equation
in a vacuum that follows from the action (1) reads

Rμν − 1

2
gμνR = κT B

μν. (6)

where κ = 8πGN is the gravitational coupling and the
bumblebee energy–momentum tensor T B

μν has the following
expression.

T B
μν = BμαB

α
ν − 1

4
gμνB

αβBαβ − gμνV + 2BμBνV
′

+	

κ

[
1

2
gμνB

αBβ Rαβ − BμB
αRαν − BνB

αRαμ

+1

2
∇α∇μ

(
BαBν

)+ 1

2
∇α∇ν

(
BαBμ

)

−1

2
∇2 (BμBν

)− 1

2
gμν∇α∇β

(
BαBβ

) ]
. (7)

Here prime(’) denotes differentiation with respect to the argu-
ment.

V ′ = ∂V (x)

∂x

∣∣∣∣
x=BμBμ±b2

(8)

Now following the road map of Casana et al. [106], Ding et
al. obtained a Kerr-like solution [73] keeping in view of the
development of Koltz to reproduce the Kerr solution [107].
According to the development of Koltz the generalized form
of radiating stationery axially symmetric black hole metric
can be written down as [73,107]

ds2 = −γ (ζ, θ)dτ 2 + a[p(ζ ) − q(θ)]
×
(
dζ 2 + dθ2 + q

a
dφ2

)
− 2q(θ)dτdφ. (9)

where a is a dimensional constant which is introduced match-
ing the dimension. The time t and τ has the relation

dτ = dt − qdφ. (10)

In terms of t Eq. (9) turns into

ds2 = −γ (ζ, θ)dt2 + a[p(ζ ) − q(θ)]
(
dζ 2 + dθ2

)

+
{
[1 − γ (ζ, θ)]q2(θ) + p(ζ )q(θ)

}
dφ2

−2q(θ)[1 − γ (ζ, θ)]dtdφ. (11)

The metric ansatz (11) is then used to compute the grav-
itational field equations considering bumblebee space-like
nature of the field bμ:

bμ = (0, b(ζ, θ), 0, 0). (12)

The space-like nature of the bumblebee field was chosen
in this situation since spacetime curvature showed up great
radial variation compared to its temporal variation. The con-
dition

bμb
μ = b2

0, (13)

where b0 is a constant led us to find out bμ in the form

bμ =
(

0, b0
√
a(p − q), 0, 0

)
. (14)

in a straightforward manner. With this set up they established
that Einstein-bumblebee modified theory permitted to write
the bumblebee field as bμ = (0, b0�, 0, 0). Note that it con-
tained the Lorentz violation parameter � and landed onto a
Kerr-like metric. In the Boyer–Lindquist coordinate it reads

ds2 = −
(

1 − 2Mr

ρ2

)
dt2 − 4Mra

√
1 + � sin2 θ

ρ2 dtdϕ

+ρ2

�
dr2 + ρ2dθ2 + A sin2 θ

ρ2 dϕ2. (15)

where

� = r2 − 2Mr

1 + �
+ a2, A =

[
r2 + (1 + �)a2

]2

−�(1 + �)2a2 sin2 θ. (16)

In the slow rotating [123] case, i.e. for a2 → 0 the metric
has the form

ds2 ≈ −
(

1 − 2M

r

)
dt2 − Ma(1 + �)sin2θ

r
dθdϕ

+ 1 + �

1 − 2M/r
dr2 + r2(dθ2 + sin2 θ)dϕ2, (17)

If � → 0 it recovers the usual Kerr metric and for a → 0 it
becomes

ds2 = −
(

1 − 2M

r

)
dt2 + 1 + �

1 − 2M/r
dr2 + r2(dθ2

+ sin2 θ)dϕ2, (18)

which is Schwarzschild metric with the Lorentz violation
parameter �.

2.2 Noncommutative Kerr-like black hole

Let us now describe in brief the incorporation of the NC
spacetime in the known commutating setup. Like the Lorentz
violation effect, the NC spacetime also believed to have the
potential that leads to significant effects on the properties of
the black holes. Therefore the implementation of NC space-
time in the standard commutative theories of gravity have
been the subject of several interests [108,109]. Although an
ideal NC extension of the standard theory has not yet been
available, it necessitates receiving the impact of NC space-
time in the frame of the commutative theory of standard GTR.
In recent times, the authors in the papers [105,108–111] made
physically inspired, decent as well as obedient NC amend-
ments to Schwarzschild black hole solutions. In particular,
the study considering the effects of NC spacetime on black
hole physics has been an area of huge interest. The gen-
eralization of quantum field theory of NC spacetime based
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on coordinate coherent state formalism is of interest in this
respect which cures the short distance behavior of point-like
structures [105,110–112]. It also protect Lorentz symmetry.
In this approach, the point mass M is considered to be dis-
tributed throughout a region of linear size instead of being
localized at a point. Therefore, NC spacetime has been intro-
duced by modifying the mass density. In this respect, the
Dirac delta function is replaced by a Gaussian distribution
[105] or alternatively by a Lorentzian distribution [112]. The
implementation of these argument leads to the replacement
of the position Dirac-delta function that describes a point-
like structure, with suitable a function capable of describ-
ing smeared structure. Gaussian distribution function as well
as Lorentzian distribution serve this purpose in a significant
ad well behaved manner. In a real sense, the description of
matter would not be a point like Dirac-delta distribution. It
will be better described by the distribution function that pro-
vides smeared structure like Gaussian distribution or some
other type of distribution such that it turns into a Dirac-delta
function when the width of the distribution approaches to
zero.

To incorporate the impact of NC spacetime we consider
that the mass density of the black hole has a Lorentzian dis-
tribution as it was found in paper [88,114]

ρb =
√
bM

π3/2
(
πb + r2

)2 . (19)

Here b is the strength of NC aspect of the spacetime manifold
and M is the total mass distributed throughout a region with
a linear size

√
b. For the smeared matter distribution, it can

be shown that [114]

Mb =
∫ r

0
ρb(r)4πr2dr

= 2M

π

(
tan−1

(
r√
πb

)
−

√
πbr

πb + r2

)

≈ −4
√
bM√
πr

+ M + O
(
b3/2

)
. (20)

It indicates that the mass is point-like when the spread of
the distribution approaches towards a vanishing value since
limb→0 Mb = M .

To combine these two effects we need a suitable frame-
work where these two can fit suitably. Now, these two can
be amalgamated if we replace M by Mb in the expression
of the spacetime metric given in Eq. (15), which is already
endowed with the Lorentz violation effect. Therefore the gen-
eralized spacetime metric where both the Lorentz violation
and NC spacetime effects are bestowed simultaneously takes
the form

ds2 = −
(

1 − 2Mbr

ρ2

)
dt2 − 4Mbra

√
1 + � sin2 θ

ρ2 dtdϕ

+ρ2

�̂
dr2 + ρ2dθ2 + A sin2 θ

ρ2 dϕ2, (21)

where

ρ2 = r2 + (1 + �)a2 cos2 θ, �̂ = r2 − 2Mbr

1 + �
+ a2,

A =
[
r2 + (1 + �)a2

]2 − �̂(1 + �)2a2 sin2 θ. (22)

The metric (21) carries the information of two significant
effects which have already been found needful to take taken
into account the quantum gravity correction to the black hole
physics. Although these two are supposed to show a promi-
nent role in the vicinity of Planck scale it is believed that
these two have the ability to lead to significant effects on
the properties of the black holes at an observable scale. The
parameter b is connected with the amended NC property
of the spacetime and the parameter � is associated with the
Lorentz violation scenario. If the Lorentz violation effect is
switched off by setting � = 0 it will render only the NC
effect and the reverse will be the case if the NC effect be
switched off by setting b = 0. If both the effects are made
off by setting � → 0 along with b → 0, it recovers the usual
Kerr metric having no quantum correction.

3 Geometry concerning horizon and ergosphere

Let us now focus on to our investigation with the metric
developed in Eq. (15). We get the expressions for the event
horizon and Cauchy horizon setting �̂ = 0, which are given
by

r± = M ±
√

−π�a2 − πa2 + πM2 − 8
√

πM
√
b√

π
, (23)

where ± signs correspond to the event horizon and Cauchy
horizon respectively. The event horizon and Cauchy horizon
are labelled by reh and rch respectively. What follows next is
the sketch of �̂ for different values of b and � (Figs. 1, 2).

From the above plots we see that there exist critical values
of a, for fixed values of b and �. Similarly we have critical
values of b for fixed values of a, l, and consequently, critical
values of � for fixed values of b, a. The critical value of a, b
and � are designated by ac, bc and �c respectively. In these
cases �̂ = 0 has only one root. For a < ac we have black
hole and for a > ac we have naked singularity. Similarly for
b < bc we have black hole, but for b > bc we have naked
singularity. The condition � < lc signifies the black hole,
however � > lc represents the naked singularity. Numerical
computation shows that we have âc = 0.52747M for b =
0.02M2 and � = 0.3. Similarly for a = 0.5M and � = 0.3
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Fig. 1 The left one gives variation of �̂ for various values of â with b = 0.02M2 and � = 0.3, and the right one gives variation for various values
of b with â = 0.5M and � = 0.3

Fig. 2 It gives variation of �̂for various values of � with b = 0.01M2

and â = 0.6

we have bc = 0.0223654M2, and also for a = 0.6M and
b = 0.01M2 we find �c = 0.524023.

There exists a black hole when the following inequality is
maintained

− π�a2 − πa2 + πM2 − 8
√

πM
√
b ≥ 0, (24)

Note that when in the Eq. (24) equality is maintained it cor-
responds to extremal black holes. However if the equation
(24) strictly maintains the condition greater than 0 we have
non-extremal black holes which have both the Cauchy and
Event horizons (Fig. 3).

Let us now focus on to the static limit surface (SLS).
At the SLS, the asymptotic time-translational Killing vec-
tor becomes null which is mathematically given by

gtt = ρ2 − 2Mbr = 0. (25)

The real positive solutions of the above equation give radial
coordinates of the ergosphere:

rergo± = 2
√

πM ±
√

−4πa2 cos2(θ) − 4πa2� cos2(θ) + 4πM2 − 32
√

πM
√
b

2
√

π
. (26)

Fig. 3 It is the parameter space (â/M − b/M2). The colored regions
correspond to parameter space for which we have a black hole

The ergosphere, which lies between SLS and the event
horizon, is depicted above. Energy can be extracted from
the ergosphere [115]. From the above Fig. 4 we can con-
clude that the shape and size of the ergosphere depend on
rotational parameter â and NC parameter b. The size of
the ergosphere increases with the increase of the value of
b and â. This completes our discussion concerning the geo-
metrical structure of this modified spacetime metric. Let us
now turn toward our main part of the investigation which
is connected to the optical properties in the viscidity of this
black hole. To this end let us first consider the superradiance
phenomena.
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Fig. 4 The cross-section of the event horizon (outer red line), SLS (outer blue dotted line), and ergoregion of NC Kerr-like black holes

4 Superradiance scattering of the scalar field off
noncommutative Kerr-like black hole

We bring the Klein–Gordon equation for the curved space-
time into action to study the superradiance scattering of a
scalar field �.(
α 
α +μ2)�(t, r, θ, φ)

=
[ −1√−g

∂σ

(
gστ√−g∂τ

)+ μ2
]

�(t, r, θ, φ) = 0. (27)

Here μ represents the mass of the scalar field �. We now
adopt the standard separation of variables method to the equa-
tion Eq. (27) in order to separate it into radial and angular
part using the following ansatz. With the standard Boyer-
Lindquist coordinates (t, r, θ, φ) we can write

�(t, r, θ, φ) = Rω jm(r)�(θ)e−iωt eimφ,

j ≥ 0, − j ≤ m ≤ j, ω > 0, (28)

where Rω jm(r) represents the radial function and �(θ) refers
to the oblate spheroidal wave function. The symbols j , m,
and ω respectively stand for the angular eigenfunction, angu-
lar quantum number, and the positive frequency of the field
under investigation as viewed by a far away observer. Using
the ansatz (28), the differential Eq. (27) is found to get sepa-
rated into the following two ordinary differential equations.
For radial part the equation reads

d

dr

(
�̂
dRω jm(r)

dr

)

+
(

((r2 + a2(1 + �))ω − am
√

1 + �)2

�̂(1 + �)

)
Rωlm(r)

−(μ2r2 + j ( j + 1) + a2(1 + �)ω2

−2mωa
√

1 + �)Rωlm(r) = 0, (29)

and the angular part of it is

sin θ
d

dθ

(
sin θ

d�ω jm(θ)

dθ

)
+
(
j ( j + 1) sin2 θ

−
((

a
√

1 + �ω sin2 θ − m
)2
))

�ω jm(θ)

+a2(1 + �)μ2 sin2 θ cos2 θ �ω jm(θ) = 0. (30)

Following the earlier investigation [130,131] we may have
a general solution of the radial Eq. (29). However, we are
intended to study the scattering of the field �. So in this situ-
ation, we have used the asymptotic matching procedure used
in [4,5,7,125,126]. The road map of the important contribu-
tions [4,5,7,125,126,128] and the recent studies [127–129]
led us to reach to the required result without using the general
solution. First of all we consider the radial part of the Eq. (29)
to find an asymptotic solution. Use of Regge–Wheeler-like
coordinate r∗ is helpful in this situation in order to deal with
the radial equation as per our requirement, which is given by
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r∗ ≡
∫

dr
r2 + a2(1 + �)

�̂
,

(r∗ → −∞ at event horizon, r∗ → ∞ at infinity).

(31)

To have the equation into the desired shape, we take on a
new radial function Rω jm (r∗) = √r2 + a2(1 + �)Rω jm(r).
A few steps of algebra, lead us to obtain the radial equation
with our desired form.

d2Rωlm (r∗)
dr2∗

+ Vω jm(r)Rω jm (r∗) = 0. (32)

An effective potential takes entry into the picture now and
that has a crucial role in the scattering. It reads

Vω jm(r) = 1

1 + �

(
ω − mâ

r2 + â2

)2

− �̂(
r2 + â2

)2
⎡
⎣ j ( j + 1) + â2ω2 − 2mâω

+μ2r2 +
√
r2 + â2 d

dr

⎛
⎝ r�̂(

r2 + â2
) 3

2

⎞
⎠
⎤
⎦ , (33)

where â = a(1 + �)
1
2 . So it appears that it is equivalent to

the study of the scattering of the scalar field � under this
effective potential (33). It is beneficial in this regard to study
the asymptotic behavior of the scattering potential at the event
horizon and at spatial infinity potential. The potential at the
event horizon in the asymptotic limit simplifies into

lim
r→reh

Vω jm(r) = 1

1 + �

(
ω − m�̂h

)2 ≡ k2
eh . (34)

and the same at spatial infinity turns into the following after
a few step of algebra

lim
r→∞ Vω jm(r) = ω2

1 + �
− lim

r→∞
μ2r2�̂(
r2 + ã2

)2

= ω2

1 + �
− μ̂2 ≡ k2∞, μ̂ = μ√

� + 1
. (35)

Note that the potential shows constant behavior at the two
extremal points namely at event horizon and at spatial infinity.
The numerical values of the constants however are different
indeed at the two extremal points.

Since the behavior of the potential at the two extremal
points are known, we now move on to observe the asymptotic
behavior of the radial solution. A little algebra shows that the
radial equation (32) has the following solution

Rω jm(r) →

⎧⎪⎪⎨
⎪⎪⎩

Deh
in e

−ikehr∗√
r2
eh+â2

for r → reh

D∞
in

e−ik∞r∗
r + D∞

re f
eik∞r∗

r for r → ∞

⎫⎪⎪⎬
⎪⎪⎭

(36)

in the asymptotic limit. Here Deh
in be the amplitude of the

incoming scalar wave at event horizon(reh), and D∞
in is the

corresponding quantity of the incoming scalar wave at infin-
ity (∞). The amplitude of the reflected part of scalar wave
at infinity (∞) is designated by D∞

re f . So the stage is set to
compute the Wronskian for the region adjacent to the event
horizon and at infinity. The Wronskian for the event horizon
is found out to be

Weh =
(
Reh

ω jm

dR∗eh
ω jm

dr∗
− R∗eh

ω jm

dReh
ω jm

dr∗

)
, (37)

and the Wronskian at infinity results out to

W∞ =
(
R∞

ω jm

dR∗∞
ω jm

dr∗
− R∗∞

ω jm

dR∞
ω jm

dr∗

)
. (38)

The knowledge of standard theory of ordinary differential
equation provides the information that the Wronskian corre-
sponding to the solutions will be independent of r∗ since the
solution are linearly independent. Thus, the Wronskian eval-
uated at the horizon is compatible to equate with the Wron-
skian evaluated at infinity. In fact, in the physical sense, it
is associated with the flux conservation of the process [8].
From the matching condition an important relation between
the amplitudes of incoming and reflected waves at different
regions of interest results.
∣∣∣D∞

re f

∣∣∣2 = ∣∣D∞
in

∣∣2 − keh
k∞

∣∣∣Deh
in

∣∣∣2 . (39)

A careful look reveals that if keh
k∞ < 0 i.e., ω < m�̂eh , the

scalar wave will be superradiantly amplified, since the rela-

tion
∣∣∣D∞

re f

∣∣∣2 >
∣∣D∞

in

∣∣2 holds explicitly in this situation.

4.1 Amplification factor Z jm for superradiance

It is straightforward to express the radial equation (29) in the
following form

�̂2 d
2Rω jm(r)

dr2 + �̂
d�̂

dr
· dRω jm(r)

dr

+
(((

r2 + â2
)
ω − âm

)2
1 + �

− �̂
(
μ2r2 + j ( j + 1)

× â2ω2 − 2mâω
))

Rω jm(r) = 0. (40)

We now proceed to derive the solution for the near and the far
region and try to find out a single solution by matching the
solution for near-region at infinitely with solution for the far-
region at its initial point such that this specific single solution
be useful in the vicinity of the cardinal region. It is beneficial
at this stage to introduce a new variable y which is defined
by y = r−reh

reh−rch
. In terms of y the equation (40) turns into
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y2(y + 1)2

(� + 1)2

d2Rω jm(y)

dy2 + y(y + 1)(2y + 1)

(� + 1)2

dRω jm(y)

dy

+
(Q2y4

1 + �
+ B2

1 + �
− j ( j + 1)

� + 1
y(y + 1)

− μ̂2Q2

ω2 y3(y + 1) − μ̂2r2
eh y(y + 1)

−2μ̂2rehQ
ω

y2(y + 1)

)
Rω jm(y) = 0, (41)

Under the approximation âω � 1, where Q = (reh − rch) ω

and B = (ω−m�̂)
reh−rch

r2
eh . For the near-region, we have Py � 1

and μ̂2r2
eh � 1. The above equation is simplified to

y2(y + 1)2 d2Rω jm(y)

dy2 + y(y + 1)(2y + 1)
dRω jm(y)

dy

+
(
(� + 1)B2 − j ( j+1)(� + 1)y(y + 1)

)
Rω jm(r) = 0.

(42)

Since the Compton wavelength of the boson participating in
the scattering process is much smaller than the size of the
black hole the approximation

(
μ̂2r2

eh � 1
)

holds good. The
general solution of the above equation in terms of associated
Legendre function of the first kind Pν

λ (y) can be written down
as

Rω jm(y) = dP2i
√

1+�B√
1+4 j ( j+1)(�+1)−1

2

(1 + 2y). (43)

If we now use the relation

Pν
λ (z) = 1

�(1 − ν)

(
1 + z

1 − z

)ν/2

×2F1

(
−λ, λ + 1; 1 − ν; 1 − z

2

)
, (44)

it enables us to express Rω jm(y) in terms of the ordinary
hypergeometric functions 2F1(a, b; c; z) :

Rω jm(y)

= d

(
y

y + 1

)−i
√

�+1B

2F1

(
1 − √

1 + 4(� + 1) j ( j + 1)

2
,

1 + √
1 + 4(� + 1) j ( j + 1)

2
; 1 − 2i

√
� + 1B;−y

)
.

(45)

We are intended to find out a single solution using the match-
ing condition at the desired position where the two solutions
mingle with each other. In this respect, we need to observe
the large y behavior of the above expression. The Eq. (45)
for large y, i.e., (y → ∞ reduces to

Rnear-large y

∼ d

⎛
⎝ �(

√
1 + 4(� + 1) j ( j + 1))�(1 − 2i

√
� + 1B)

�
(

1+√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
)

�
(

1+√
1+4(�+1) j ( j+1)

2

)

× y
√

1+4(�+1) j ( j+1)−1
2 + (46)

�(−√
1 + 4(� + 1) j ( j + 1))�(1 − 2i

√
� + 1B)

�
(

1−√
1+4(�+1) j ( j+1)

2

)
�
(

1−√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
)

×y
−

√
1+4(�+1) j ( j+1)+1

2

)
. (47)

For the far-region, we can use the approximations y+ 1 ≈ y
and μ̂2r2

eh � 1. We may drop all the terms except those
which describe the free motion with momentum j and that
reduces equation (40) to

d2Rω jm(y)

dy2 + 2

y

dRω jm(y)

dy

+
(
k2
� − j ( j + 1)(� + 1)

y2

)
Rω jm(y) = 0, (48)

where k� ≡ P
√

1+�
ω

√
ω2 − μ2. Equation (48) has the general

solution

Rω jm, far = e−iky
(
c1y

√
1+4(�+1) j ( j+1)−1

2

×M

(
1 + √

1 + 4(� + 1) j ( j + 1)

2
,

1 +√1 + 4(� + 1) j ( j + 1), 2ik�y

)

+c2y
−

√
1+4(�+1) j ( j+1)+1

2

×M

(
1 − √

1 + 4(� + 1) j ( j + 1)

2
,

1 −√1 + 4(� + 1) j ( j + 1), 2ik�y)

)
. (49)

Here M(a; b; y) stands for the confluent hypergeometric
Kummer function of the first kind. In order to match the
solution with (47), we look for the small y behavior of the
solution (49). The solutions (47) and (51) are susceptible
for matching, since these two have common region of inter-
est. The matching of the asymptotic solutions (47) and (51)
enables us to compute the scalar wave flux at infinity that
results in

c1 = d �(
√

1+4(�+1) j ( j+1))�(1−2i
√

�+1B)

�
(

1+√
1+4(�+1) j ( j+1)

2 −2i
√

�+1B
)
�
(

1+√
1+4(�+1) j ( j+1)

2

) ,

c2 = d �(−√
1+4(�+1) j ( j+1))�(1−2i

√
�+1B)

�
(

1−√
1+4(�+1) j ( j+1)

2 −2i
√

�+1B
)
�
(

1−√
1+4(�+1) j ( j+1)

2

) . (50)

For small y(y → 0), the Eq. (49) turns into

Rω jm, far-small y ∼ y− 1+√
1+4(�+1) j ( j+1)

2 . (51)

Since these two solutions (47) and (51) have a common region
of interest, the solutions are susceptible for matching. We
therefore compute the scalar wave flux at infinity resulted in
by matching the asymptotic solutions (47) and (51) and we
have
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c1 = d �(
√

1+4(�+1) j ( j+1))�(1−2i
√

�+1B)

�
(

1+√
1+4(�+1) j ( j+1)

2 −2i
√

�+1B
)
�
(

1+√
1+4(�+1) j ( j+1)

2

) ,

c2 = d �(−√
1+4(�+1) j ( j+1))�(1−2i

√
�+1B)

�
(

1−√
1+4(�+1) j ( j+1)

2 −2i
√

�+1B
)
�
(

1−√
1+4(�+1) j ( j+1)

2

) . (52)

We expand Eq. (49) around infinity which after expansion
turns into

c1
�(1 + √

1 + 4(� + 1) j ( j + 1))

�
(

1+√
1+4(�+1) j ( j+1)

2

) k
− 1+√

1+4(�+1) j ( j+1)
2

�

×
(

(−2i)−
1+√

1+4(�+1) j ( j+1)
2

e−ik�y

y

+(2i)−
1+√

1+4(�+1) j ( j+1)
2

eik�y

y

)

+c2
�(1 − √

1 + 4(� + 1) j ( j + 1))

�
(

1−√
1+4(�+1) j ( j+1)

2

) k

√
1+4(�+1) j ( j+1)−1

2
�

×
(

(−2i)
√

1+4(�+1) j ( j+1)−1
2

e−ik�y

y

+(2i)
√

1+4(�+1) j ( j+1)−1
2

eik�y

y

)
. (53)

With the approximations 1
y ∼ Q

ω
· 1

r , e±ik�y ∼
e±i

√
(1+�)(ω2−μ2)r , if we match the above solution with the

radial solution (36)

R∞(r) ∼ D∞
in
e−i

√
ω2
1+�

−μ̂2r∗

r
+ D∞

re f
ei
√

ω2
1+�

−μ̂2r∗

r
, for

r → ∞
we get

D∞
in = Q

ω

(
c1(−2i)−

1+√
1+4(�+1) j ( j+1)

2
�(1+√

1+4(�+1) j ( j+1))

�
(

1+√
1+4(�+1) j ( j+1)

2

) k
− 1+√

1+4(�+1) j ( j+1)
2

�

+c2(−2i)
√

1+4(�+1) j ( j+1)−1
2

�(1−√
1+4(�+1) j ( j+1))

�
(

1−√
1+4(�+1) j ( j+1)

2

) k

√
1+4(�+1) j ( j+1)−1

2
�

)
,

and

D∞
re f = Q

ω

(
c1(2i)−

1+√
1+4(�+1) j ( j+1)

2
�(1+√

1+4(�+1) j ( j+1))

�
(

1+√
1+4(�+1) j ( j+1)

2

) k
− 1+√

1+4(�+1) j ( j+1)
2

�

+c2(2i)
√

1+4(�+1) j ( j+1)−1
2

�(1−√
1+4(�+1) j ( j+1))

�
(

1−√
1+4(�+1) j ( j+1)

2

) k

√
1+4(�+1) j ( j+1)−1

2
�

)
.

Substituting the expressions of c1 and c2 from Eq. (52) into
the above expressions we have

D∞
in = d(−2i)−

1+√
1+4(�+1) j ( j+1)

2√
(1 + �)(ω2 − μ2)

· �(
√

1 + 4(� + 1) j ( j + 1))�(1 + √
1 + 4(� + 1) j ( j + 1))

�
(

1+√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
) (

�
(

1+√
1+4(�+1) j ( j+1)

2

))2

×�(1 − 2i
√

� + 1B)k
1−√

1+4(�+1) j ( j+1)
2

�

+ d(−2i)
√

1+4(�+1) j ( j+1)−1
2√

(1 + �)(ω2 − μ̂2)

× �(1 − √
1 + 4(� + 1) j ( j + 1))�(−√

1 + 4(� + 1) j ( j + 1))(
�
(

1−√
1+4(�+1) j ( j+1)

2

))2
�
(

1−√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
)

×�(1 − 2i
√

� + 1B)k
1+√

1+4(�+1) j ( j+1)
2

� , (54)

and

D∞
re f = d(2i)−

1+√
1+4(�+1) j ( j+1)

2√
(1 + �)(ω2 − μ2)

· �(
√

1 + 4(� + 1) j ( j + 1))�(1 + √
1 + 4(� + 1) j ( j + 1))

�
(

1+√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
) (

�
(

1+√
1+4(�+1) j ( j+1)

2

))2

×�(1 − 2i
√

� + 1B)k
1−√

1+4(�+1) j ( j+1)
2

� + d(2i)
√

1+4(�+1) j ( j+1)−1
2√

(1 + �)(ω2 − μ̂2)

× �(1 − √
1 + 4(� + 1) j ( j + 1))�(−√

1 + 4(� + 1) j ( j + 1))(
�
(

1−√
1+4(�+1) j ( j+1)

2

))2
�
(

1−√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
)

×�(1 − 2i
√

� + 1B)k
1+√

1+4(�+1) j ( j+1)
2

� . (55)

The amplification factor ultimately results out to be

Z jm ≡
∣∣∣D∞

re f

∣∣∣2
∣∣D∞

in

∣∣2 − 1. (56)

Equation (56) is a general expression of the amplification
factor obtained by making use of the asymptotic matching

method. When

∣∣∣D∞
re f

∣∣∣2
|D∞

in |2 acquires a value greater than unity

there will be a gain in amplification factor that corresponds to
superradiance phenomena. However, a negative value of the

amplification factor indicates a loss in amplification that cor-
responds to the non-appearance of superradiance. To study
the effect of Lorentz violation on the superradiance phenom-
ena, it will be useful to plot Z jm versus Mω for different
values of the the Lorentz violation parameters. In Fig. 6, we
present the variation of Z jm versus Mω for the leading mul-
tipoles j = 1 and 2 taking different values (both negative
and positive) of the Lorentz violation parameter �. From the
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Fig. 5 Variation of amplification factors with � for non-superradiant multipoles with μ̂ = 0.1, b = 0.01M2, and â = 0.3M

Fig. 6 Variation of amplification factors with � for various multipoles with μ̂ = 0.1, b = 0.02M2, and â = 0.55M

Fig. 5 along with Fig. 6, it is evident that superradiance
for a particular j occurs when the allowed values of m are
restricted to m > 0.

For negative m, amplification factor takes negative value
which refers to the nonoccurrence of superradiance. The plots
also show transparently that with the decrease in the value of
the Lorentz violation parameters � the superradiance process
enhances. The reverse is the case of course when the value
of the Lorentz violation parameter decreases. In Fig. 8 we
have also studied the effect of the parameter b on the super-
radiance scenario. It shows that the superradiance scenario
gets diminished with the increase in the value of the param-
eter b. In [75] we have noticed that the size of the shadow
decreases with the increase in the value of both the parameters
� and b. The only difference is that � can take both positive

and negative values, however, b as per definition can not be
negative. However, with the increase in â the superradiance
effect increases as is found from Fig. 7. Therefore, an indi-
rect relation of superradiance with the size of the shadow is
being revealed through this analysis. A decrease in the value
of b and � indicate the increase in the size of the shadow
(Fig. 8).

4.2 Superradiant instability for Lorentz violating and NC
Kerr-like black hole

From Eq. (29) we have

�̂
d

dr

(
�̂
dRω jm

dr

)
+ FRω jm = 0, (57)
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Fig. 7 Variation of amplification factors with â for various multipoles with μ̂ = 0.1 and b = 0.02M2. For left ones � = −0.5 and for right ones
� = 0.5

Fig. 8 Variation of amplification factors with b for various multipoles with μ̂ = 0.1 and â = 0.55M . For left ones � = −0.5 and for right ones
� = 0.5
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where for a slowly rotating black hole (âω � 1)

F ≡
((
r2 + â2

)
ω − mâ

)2
1 + �

+�̂
(

2mâω − j ( j + 1) − μ2r2
)

.

If we now look for the black hole bomb mechanism, we would
have the following solutions for the radial Eq. (57)

Rω jm ∼
{
e−i(ω−m�̂)r∗ as r → reh (r∗ → −∞)

e−
√

μ2−ω2r∗
r as r → ∞ (r∗ → ∞)

The above solution represents the physical boundary condi-
tion that the scalar wave at the black hole horizon is purely
in-going while at spatial infinity it is decaying exponentially
(bounded) solution, provided that ω2 < μ2 (Figs. 9, 10).
With the new radial function

ψω jm ≡
√

�̂Rω jm,

the radial Eq. (57) turns into
(

d2

dr2 + ω2 − V

)
ψω jm = 0.

with

ω2 − V =
F + M

(
M− 8

√
t√

π

)
−a2(�+1)

(�+1)2

�̂2
,

which is the Regge-Wheel equation. By discarding the terms
O (1/r2

)
the asymptotic form of the effective potential V (r)

looks

V (r) = μ2 (1 + �) − (1 + �)
4Mω2

r
+ (� + 1)

2Mμ2

r
.

To realize the trapping meaningfully by the above effective
potential it is necessary that its asymptotic derivative will be
positive i.e. V ′ → 0+ as r → ∞ [124]. This along with the
fact that superradiant amplification of scattered waves occurs
when ω < m�̂ we get the regime

Fig. 9 Parameter space(m�-μ) for massive scalar field where colored area represents region with stable dynamics and non-colored area represents
region with unstable dynamics. Here â = 0.51 M and b = 0.01M2

Fig. 10 Parameter space(m�-μ) for massive scalar field where colored area represents region with stable dynamics and non-colored area represents
region with unstable dynamics. Here â = 0.51 M and l = 0.5
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μ√
2

< ω2 < m�̂,

in which the integrated system of NC Kerr-like bumblebee
black hole and massive scalar field may experience a super-
radiant instability which known as the black hole bomb. The
dynamics of the massive scalar field in NC Kerr like black
hole will remain stable when μ ≥ √

2m�̂.

5 Photon orbit and black hole shadow

In this section, we study the black hole shadow related to this
modified theory. There are several studies related to the black
hole shadow from which we will get the necessary inputs for
the study [37–40]. In order to study the shadow, we introduce
two conserved parameters ξ and η as usual which are defined
by

ξ = Lz

E
and η = Q

E2 , (58)

where E, Lz , and Q are the energy, the axial component of
the angular momentum, and the Carter constant respectively.
Then the null geodesics in the bumblebee rotating black hole
spacetime in terms of ξ are given by

ρ2 dr

dλ
= ±√

R, ρ2 dθ

dλ
= ±√

�,

(1 + �)�̂ρ2 dt

dλ
= A − 2

√
1 + � Mra ξ,

(1 + �)�̂ρ2 dφ

dλ
= 2

√
1 + �Mra + ξ

sin2 θ

(
ρ2 − 2Mr

)
,

(59)

where λ is the affine parameter and

R(r) =
[
r2 + (1 + �)a2

√
1 + �

− aξ

]2

−�̂
[
η + (ξ − a

√
1 + �)2

]
,

�(θ) = η + (1 + �)a2 cos2 θ − ξ2 cot2 θ. (60)

The radial equation of motion can be written down in the
familiar form

(
ρ2 dr

dλ

)2

+ Vef f = 0. (61)

The effective potential Vef f then reads

Vef f = −
[
r2 + (1 + �)a2

√
1 + �

− aξ

]2

+�̂
[
η + (ξ − a

√
1 + �)2

]
. (62)

The following equations describe the unstable spherical orbit
on the equatorial plane, θ = π

2 .

θ = π

2
, R(r) = 0,

dR

dr
= 0,

d2R

dr2 < 0, and η = 0. (63)

We plot the potential Vef f versus r/M with ξ = ξc + 0.2,
where ξc is the value of ξ for equatorial spherical unstable
orbit (Figs. 11, 12, 13).

The plots depicted above show that the turning points for
prograde orbits shift towards the left when a or b increases.
We also plot critical radii of prograde and retrograde orbits
for the different scenarios in the Fig. 14 furnished below.

It can be concluded from the above plots that critical radii,
both for the prograde and retrograde orbits, decrease with
the increase in the NC parameter b. For more generic orbits
θ �= π/2 and η �= 0, the solution of Eq. (63) r = rs , gives
the r -constant orbit, which is also called spherical orbit and
the conserved parameters of the spherical orbits are given by

ξs =
(
a2 (1 + �) + r2

)
�̂

′
(r) − 4r�̂(r)

a
√

1 + ��̂
′
(r)

,

ηs =
r2
(

8�̂(r)
(

2a2 (1 + �) + r�̂
′
(r)
)

− r2�̂
′
(r)2 − 16�̂

′
(r)2

)

a2 (1 + l) �̂
′
(r)2

,

(64)

where ′ stands for differentiation with respect to radial coor-
dinate. The above expressions in the limit � → 0 and b → 0
reduce to those for Kerr black hole. It would be useful at this
point to introduce two celestial coordinates for a better study
of the shadow. The two celestial coordinates, which are used
to describe the shape of the shadow that an observer sees in
the sky, can be given by

α(ξ, η; θ) = lim
r→∞

−rp(ϕ)

p(t)
= −ξs csc θ,

β(ξ, η; θ) = lim
r→∞

rp(θ)

p(t)
=
√(

ηs + a2 cos2 θ − ξ2
s cot2 θ

)
,

(65)

where
(
p(t), p(r), p(θ), p(φ)

)
are the tetrad components of

the photon momentum with respect to locally non-rotating
reference frames [21].

With these inputs, we now plot black hole shadows for
various cases which are depicted in the Figs. 15 and 16.

From the above plots, we observe that the size of the
shadow increases with the increase in â, whereas it decreases
with the increase in b. Using the parameters which are intro-
duced by Hioki and Maeda [23], we analyze the deviation

from the circularity
(
�̂s

)
and the size (Rs) of the shadow

cast by the black hole.
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Fig. 11 The left and the right panels describe the effective potential for prograde orbits and the retrograde orbits respectively for various values of
â with b = 0.01M2 and � = 0.1

Fig. 12 The left and the right panels describe the effective potential for prograde orbits and the retrograde orbits respectively for various values of
b with â = 0.1M and � = 0.1

Fig. 13 The left panel describes the effective potential for prograde orbits and right panel describes the retrograde orbits for various values of �

with â = 0.1M and b = 0.03M2

Fig. 14 The left panel shows the variation of critical radius for prograde orbits and the right panel shows the variation of critical radius for retrograde
orbits for various values of b with � = 0.3
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Fig. 15 The left panel gives shapes of the shadow for various values of â with b = 0.01M2, � = 0.1 and θ = π/2. The right panel gives shapes
of the shadow for various values of b with a = 0.1M , � = 0.1, and θ = π/2

Fig. 16 The black hole shadow and reference circle. ds is the distance
between the left points of the shadow and the reference circle

For calculating these parameters, we consider five points
(αt , βt ) , (αb, βb) , (αr , 0)

(
αp, 0

)
and

(
ᾱp, 0

)
which repre-

sent top, bottom, rightmost, and leftmost point of the shadow
and leftmost point of the reference circle respectively. So, we
have

Rs = (αt − αr )
2 + β2

t

2 |αt − αr |

and

δs =
∣∣ᾱp − αp

∣∣
Rs

.

In the following Fig. 17, we plot Rs and δs for various sce-
narios to study how Rs and δs vary with parameters of the
modified theory of gravity.

From the above plots we observe that Rs decreases with
an increase in b for fixed values of â, whereas for fixed values
of b, it increases with the increase in â. On the other hand, δs
increases with the increase in â for fixed value of b as well
as with the increase in b for fixed values of â.

6 Computation of energy emission rate

In this section, we study the possible visibility of the NC Kerr-
like black hole through the shadow cast. In the vicinity of
limiting constant value, the cross-section of the black hole’s
absorption moderates lightly at high energy. We know that
a rotating black hole can absorb electromagnetic waves. So
the absorbing cross-section for a spherically symmetric black
hole is given by [116]

σlim = πR2
s . (66)

Using the above equation the energy emission rate is obtained
[117]:

d2E

dωdt
= 2π3R2

s

e(
ω
T ) − 1

ω3, (67)

where T =
√

1+��̂′(r+)

4π
[
r2++(1+�)a2

] is the Hawking temperature and

ω the frequency of radiation.
In Figs. 18 and 19, we have shown the plots of energy

emission rate versus ω for various cases. It is clear from the
plots that the emission rate decreases with the increase in
the value of b for any set of fixed values of â and �. It also
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Fig. 17 The left one shows variation of Rs for various values of â with � = −0.2 and θ = π/2. The right one shows variation of δs for various
values of â with � = −0.2 and θ = π/2

Fig. 18 The left panel gives variation of emission rate against ω for various values of â with b = 0.01M2 and � = 0.3. The right panel gives
variation of emission rate against ω for various values of b with a = 0.1M and � = 0.3

Fig. 19 It gives variation of emission rate against ω for various values
of � with b = 0.02M2 and â = 0.1M

decreases with an increase in �, for â and b being fixed, and
with an increase in â, when � and b remain fixed.

7 Constraining from the observed data for M87∗

This section is devoted to the constraining of the parame-
ters involved in this extended theory. We compare the shad-
ows generated from the numerical calculation for NC Kerr-

like black holes with the observed shadow for the M87∗
black hole. For comparison, we consider the experimen-
tally obtained astronomical data corresponding to the devi-
ation from circularity �C ≤ 0.10 and angular diameter
θd = 42±3μas. The boundary of the shadow is described by
the polar coordinate (R(φ), φ) with the origin at the center of
the shadow (αC , βC ) where αC = |αmax+αmin |

2 , and βC = 0.
If a point (α, β) over the boundary of the image subtends

an angle φ on the α axis at the geometric center, (αC , 0). If
R(φ) be the distance between the point (α, β) and (αC , 0),
then the average radius Ravg of the image is given by [120]

R2
avg ≡ 1

2π

∫ 2π

0
dφR2(φ), (68)

where R(φ) ≡
√

(α(φ) − αC )2 + β(φ)2, and φ = tan−1

β(φ)
α(φ)−αC

.
With the above inputs, the circularity deviation �C is

defined by [24]

�C ≡ 2

√
1

2π

∫ 2π

0
dφ
(
R(φ) − Ravg

)2
. (69)

We also consider the angular diameter of the shadow which
is define by
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Fig. 20 For the left panel the inclination angle is 90◦ and for the right panel the inclination angle is 17◦. The black solid lines correspond to
�C = 0.1

Fig. 21 For the left panel the inclination angle is 90◦ and for the right panel the inclination angle is 17◦. The black solid lines correspond to
θd = 39μas

θd = 2

d

√
A

π
, (70)

where A = 2
∫ r+
r− βdα is the area of the shadow and d =

16.8Mpc is the distance of M87∗ from the Earth. These rela-
tions will enable us to accomplish a comparison between the
theoretical predictions for NC Kerr-like black-hole shadows
and the experimental findings of the EHT collaboration. In
the Figs. 20 and 21, the deviation from circularity, �C is
shown for NC Kerr-like black holes for inclination angles
θ = 90◦ and θ = 17◦ respectively.

From the above plots, we can conclude that the constraint
�C ≤ 0.1 is satisfied for finite parameter space when the
inclination angle is 90◦, whereas, when the inclination angle
is 17◦, the constraint is satisfied for the entire parameter
space. For inclination angles θ = 90◦ and θ = 17◦, the
constraint θd = 42 ± 3μ within 1σ region is satisfied for
finite parameter space. The circular asymmetry in the M87∗
shadow can also be defined in terms of the axial ratio DX

which is the ratio of the major to the minor diameter of the
shadow [25]. It is defined by [121]

DX = �̂Y

�̂X
= βt − βb

αr − αp
. (71)

We should have 1 < DX � 4/3 in accordance with the
EHT observations concerning M87∗ black hole [25]. Note
that DX is another way of defining �C . The observed axial
ratio 4 : 3 indeed corresponds to �C ≤ 0.1 [25]. In the Fig.
22, axial ratio, DX is shown for NC Kerr-like black holes for
inclination angles θ = 90◦ and θ = 17◦ respectively.

From the plots above we have seen that the condition
1 < DX � 4/3 is satisfied for the entire parameter space of
NC Kerr-like black holes. Thus NC Kerr-like black holes are
remarkably consistent with EHT observed images of M87∗
black hole. Therefore, we can not rule out NC Kerr-like
black holes from the observational data of M87∗ astronom-
ical black hole shadow.
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Fig. 22 For the left panel the inclination angle is 90◦ and for the right panel the inclination angle is 17◦

We can have the bound of the parameter b associated with
the NC spacetime in a similar way we determined the bound
of the parameter � in [118]. By modelling M87∗ black hole
as Kerr black hole, the author of the paper [122] obtained
a lower limit of a for the M87∗ black hole. Bringing this
result under consideration in [118] we put the interval of
interest for a as [0.50M, 0.99M], and using the experimen-
tal constraints �C ≤ 0.10 and θd = 42 ± 3μas with
the information a ∈ [0.50M, 0.99M], we observed that
� ∈ (−1, 0.621031]. In a similar way taking into account
the bounds a ∈ [0.50M, 0.99M] and � ∈ (−1, 0.621031]
and the experimental constraints �C ≤ 0.1 and θd =
39 ± 3μas, we get a bound on the parameter b which is
linked with the NC spacetime. We find that the parameter
b ∈ [0, 0.000505973M2]. It is intriguing to have an upper
bound of b which is found out to be 0.000505973M2. Note
that in [122] lower limit of is available for a. During the cal-
culation the conversion between a and â is to be considered
carefully. To the best of our knowledge, the bound of the
parameter b from the shadow of the astronomical black hole
has not yet been reported so far.

8 Summary and conclusion

In this work, we have developed a useful and decent frame-
work where quantum correction because of the Lorentz vio-
lation and NC spacetime have been taken under considera-
tion at the identical footing. The Lorentz violation is evident
in this extended formalism due to the presence of bumble-
bee field. There is no direct connection to the Lorentz viola-
tion between the way NC spacetime is introduced [104,105].
The bumblebee field serves as the sole source of the Lorentz
violation in this formulation. The spacetime background in
this extended formulation renders a NC Kerr-like Lorentz
symmetry violating black hole. We have extensively stud-

ied different aspects of superradiance and shadow cast by
the Kerr-like quantum corrected black hole. The spin, mass,
Lorentz violation parameter, and the NC parameter involved
in it determine the gravitational field of this black hole. First
of all, we study geometry in detail concerning its horizon
structure and ergosphere. Then we proceed on to study the
two important optical phenomena in the vicinity of this black
hole which was our main objective in this paper. We have
found that superradiance process crucially depends on the
parameter � and b apart from its dependence on a or â which
is linked with the spin of the black hole. The superradiance
process enhances with the drop of the value of the Lorentz
violation parameters and it diminishes when the increase in
value of the Lorentz violation parameter �. We also observe
that with the increase in the value of the parameterb the super-
radiance process gets diminished. However, with the increase
in the value of â the superradiance process increases.

Next, we have brought into our investigation the effect of
Lorentz violating parameter � and NC parameter b on the size
of the black hole shadow. We have observed that the size of
the black hole shadow increases with an increase in the value
of the parameter �, and it decreases with an increase in the
value of the parameter b. Thus, it can be safely concluded that
like the superradiance phenomena both the Lorentz violation
and the NC spacetime have significant impacts on the shadow
of the black hole.

We have also studied energy emission rates. These results
have clearly established the influence of the Lorentz violation
parameter and NC parameter on emission rate. We observe
that energy emission rate decreases with an increase in the
value of b for any set of fixed values of â and �. It also
decreases with an increase in the value of �, when â and b
are held fixed, and with an increase in the value of â, when
� and b are kept fixed.

We have made an attempt to constrain parameters in our
modified theories using the observations of EHT collabo-
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ration. For inclination angle θ = 90◦, the deviation from
circularity �C ≤ 0.1 and angular diameter θd = 42 ± 3μas
within 1σ region are satisfied for finite parameter space
( b
M2 − â

M ). For inclination angle θ = 17◦, the circularity
deviation �C ≤ 0.1 is satisfied for entire parameter space
( b
M2 − â

M ). The angular diameter θd = 42±3μ as within 1σ is

satisfied for finite parameter space ( b
M2 − â

M ). The axis ratio
DX satisfies the constraint 1 < DX � 4/3 for the entire
parameter space at both the inclination angles θ = 90◦ as
well as θ = 17◦. Therefore our study enables us to establish
the fact that NC Kerr-like black holes are remarkably consis-
tent with EHT images of M87∗. It demands that ruling NC
Kerr-like black holes from the observational data of black
hole shadow would be illogical. Thus NC Kerr-like black
hole may be considered as a suitable candidate for the astro-
physical black hole. It has also been shown that the possible
upper bound of b which is associated with the NC spacetime
is 0.000505973M2. It is intriguing and indeed a novel way
to constrain the parameter associated with the NC spacetime
from the shadow of an astronomical black hole.

Till now we do not have any available data to constrain
the parameter � and b from the superradiance effect and from
the energy emission process. So the parameter con not be
constrained from the knowledge of the superradiance phe-
nomena and the energy emission process. We have made all
the plots for the superradiance and the energy emission pro-
cess maintaining the constraint obtained from the EHT data
concerning the shadow of the M87∗ black hole.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The numerical
values are all generated by numerical computation.]
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