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A Dirac shell model is developed for the study of baryon spectroscopy,
taking into account the most relevant results of the quark–diquark mod-
els. The lack of translational invariance of the shell model is avoided in
the present work, by introducing a scalar–isoscalar fictitious particle that
represents the origin of quark shell interaction; in this way, the states of
the system are eigenstates of the total momentum of the baryon. Only
one-particle excitations are considered. A two-quark core takes the place
of the diquark, while the third quark is excited to reproduce the baryonic
resonances. For the N(939) and ∆(1232), that represent the ground states
of the spectra, the three quarks are considered identical particles and the
wave functions are completely antisymmetric. The model is used to cal-
culate the spectra of the N and ∆ resonances and the nucleon magnetic
moments. The results are compared to the present experimental data. Due
to the presence of the core and to the one-particle excitations, the struc-
ture of the obtained spectra is analogous to that given by the quark–diquark
models.
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1. Introduction

Due to the great difficulties in directly solving the field equations of
Quantum Chromo-Dynamics (QCD), light baryon spectroscopy has been
widely studied by means of a variety of different quark models. Without any
attempt to be exhaustive but only with the aim of introducing some relevant
concepts for the development of the present work, we tentatively group these
models in the following way: single-particle relativistic models (SPRMs),
constituent quark models (CQMs) and quark–diquark models (QDMs).
∗ Funded by SCOAP3 under Creative Commons License, CC-BY 4.0.
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In general, in the SPRMs, the independent motion of the three quarks
is considered, so the wave function of the system is given by the product of
three single-particle wave functions, where each wave function represents the
state of a quark. In particular, we recall the historically relevant MIT rela-
tivistic bag models (RBMs) and the relativistic chiral (shell) model (RCM).
In the RBMs [1–8], three massless (or light) quarks are moving inside a
spherical bag where a field energy density is also present. In consequence,
the quark wave functions are given by standard Dirac spinors with spheri-
cal Bessel functions. In the original formulation [1–4], energy quantization
is obtained by means of a boundary condition that takes into account the
energy-momentum conservation at the surface of the bag. A residual quark–
quark vector interaction is introduced to remove the degeneracy between the
N(939) and the ∆(1232). A good description of the ground state proper-
ties was achieved but the reproduction of the excited state spectra was less
accurate. From a fundamental point of view, the RBMs, as all the SPRMs,
are not translationally invariant, so the total wave function does not repre-
sent an eigenstate of the total momentum of the baryon. Ad hoc procedures
are used to subtract from the total energy the spurious contributions of the
center-of-mass motion [5, 9, 10].

An RCM was proposed in which the pionic field is explicitly intro-
duced [11]. Moreover, the valence quark interaction is based on the one-
pion exchange mechanism. That model contains some ideas that, as it will
be explained in the following, have been also used to develop the present
work. In particular, in Ref. [11], the author makes the hypothesis that two
quarks belong to the ground S-wave shell, while the third quark goes to the
excited shells in order to reproduce the baryonic spectra. However, the ex-
perimental energies of the resonances are not reproduced with high accuracy
because no extra quark–quark interaction is introduced. As in the case of
RBMs, a particular technique is used to subtract the spurious effects related
to the center-of-mass motion. Subsequently, the same author also developed
a field theoretical model in which the translational invariance is completely
satisfied from the beginning [12].

The CQMs have represented a very successful method for the study of
light baryon spectrum [13–30]. In these theoretical models, baryons are
described as bound states of three constituent quarks that can be consid-
ered as effective degrees of freedom representing the three valence quarks
inside baryons, dressed by virtual gluons and qq̄ sea pairs. In consequence,
for their mass, a much higher value than the QCD current mass is gen-
erally taken. The spatial dynamical variables that are used to study the
three-quark systems in the center-of-mass reference frame, are the Jacobi
coordinates ~ρ and ~λ, where the former represents the distance between the
first two quarks and the latter the distance between the third quark and the
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center of mass of the first two. In this way, the CQMs are translationally
invariant and the wave function is an eigenstate of the total momentum of
the baryon. We recall that the total wave function is written as the product
of two factors: the first factor is given by a sum of products of spatial, spin
and isospin terms; the second factor represents the antisymmetric (white)
color term. In consequence, the first factor must be symmetric with respect
to the exchange of every pair of quarks. Furthermore, the use of the Jacobi
variables gives rise to a quite complex (in any case, not “independent parti-
cle”) structure for the spatial terms of the quark–quark interaction. Due to
this complexity, CQMs have been formulated initially by means of nonrel-
ativistic or relativized Hamiltonians. A fully relativistic study by means of
Dirac spinors was given in the model of Refs. [29, 30]. However, also in this
model, the quark mass is of the order of 300 MeV, which value is, in any
case, much higher than the QCD current quark mass.

In general, in the CQMs, the light baryons can be ordered according to
the approximate SUf(3) symmetry into the multiplets [1]A ⊕ [8]M ⊕ [8]M ⊕
[10]S . CQMs reproduce with good accuracy several properties of baryons,
such as the strong decays, the magnetic moments and the electromagnetic
elastic form factors. However, they predict a larger number of states than
the experimentally observed resonances, that is known as the missing reso-
nance problem. Furthermore, some states with certain quantum numbers ap-
pear in the spectrum at excitation energies much lower than predicted [31].
The problem of the missing resonances [31–33] has motivated the realiza-
tion of several experiments, such as CB-ELSA [34], CBELSA/TAPS [35],
TAPS [36–38], GRAAL [39, 40], SAPHIR [41, 42] and CLAS [43–45], which
only provided a few weak indications about some states. Even though sev-
eral experiments have been dedicated to the search of missing resonances,
just a small number of them has been included into the resonance list [31].

Three possible solutions have been proposed for the missing resonance
problem:

(1) considering the detection mechanism, some resonances may be very
weakly coupled to the single pion, but with higher probabilities of de-
caying into two or more pions or into other mesons [31–33]; further
difficulties can be given by the problem of the separation of the ex-
perimental data from the background and by the expansion of the
differential cross sections into many partial waves;

(2) theoretically, it is possible to construct effective models that are char-
acterized by a smaller number of active degrees of freedom with re-
spect to the three quarks of the CQMs; in this way, the majority of
the missing resonances, not yet experimentally observed, are simply
not predicted by these models;
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(3) only a selected set of excited states are retained; in particular, the one-
particle excited states are taken to represent the experimental spectra
of light baryons; this choice, proposed in Ref. [11], is made also in the
present work.

We highlight that solution (2) represents the basic assumption of the
widely developed QDMs [46–60] that are able to reproduce the baryonic
spectra with high accuracy.

The notion of diquark dates back to 1964, when its possibility was men-
tioned by Gell-Mann [61] in his original paper on quarks. Since then, many
papers have been written on this topic (for a review, see Ref. [48]) and,
more recently, the diquark concept has been applied to various calculations
[49–59, 62–71].

For the present study, we only recall that in Ref. [52], there was developed
a nonrelativistic interacting quark–diquark model, i.e. a potential model
based on the effective degrees of freedom of a constituent quark and diquark.
In Refs. [56, 57], it was “relativized” and reformulated within the Point Form
formalism [72–74]. In Ref. [58], the wave functions of Refs. [56, 57] were
used to compute the nucleon electromagnetic form factors. An accurate
reproduction of the baryonic spectra was obtained in a relativistic QDM
in which a spin–isospin transition interaction was introduced with the aim
of mixing the scalar and the axial-vector diquarks [60]. We shall consider
mainly that work for a comparison with the results of the present model.

We point out that in the QDMs, the effective degree of freedom of the
diquark is introduced to describe baryons as bound states of a constituent
diquark and a quark [46, 47]. In more detail, two quarks are supposed to
be strongly correlated (say, frozen) in the constituent diquark; their relative
motion is assumed to have a vanishing relative orbital angular momentum,
that is Ld = 0. The diquark can be found in two orthogonal states of spin
Sd and isospin Td: the scalar diquark with Sd = Td = 0 and the axial-
vector diquark with Sd = Td = 1. These quantum numbers are determined
considering that:

— the frozen quarks of the diquark are identical particles that satisfy the
Pauli exclusion principle;

— the color factor is given by the standard antisymmetric (white) func-
tion, as in CQMs.

On the other hand, the motion of the quark with respect to the diquark
is described by the spatial variable ~r that represents their relative distance.
The use of only one spatial variable (~r ) instead of the two variables (~ρ and ~λ)
of the CQMs gives rise to a number of excited states that is substantially
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reduced with respect to the predictions of the three-quark CQMs. Further-
more, the obtained spectrum has a one-particle excitation structure, more
consistent with the experimental data.

In all the previously mentioned investigations, the diquarks were used
as effective degrees of freedom of the baryonic states. However, within the
QDMs, the dynamical mechanism that allows for the diquark formation
is not specified: the diquark is directly assumed as a new effective parti-
cle with the same quantum numbers of two strongly correlated quarks. In
consequence, the wave function is not antisymmetrized with respect to the
interchange of a quark belonging to the diquark and of the external quark.

These theoretical difficulties motivated the development of the present
model with the objective of reproducing the same structure of the QDM
spectra, that is a one-particle excitation structure and no missing reso-
nances. However, in our model, the three quarks are present as real degrees
of freedom. In more detail, we construct a quasi-independent particle shell
model in which the resonances of the spectra are given by the excitation of
one quark, while the other two quarks always remain in the first shell with
vanishing orbital angular momentum. These two quarks form a core, that
replaces the diquark of the QDMs. In particular, due to the antisymmetry
of the wave function, the two quarks of the core (analogously to the diquark
case) can be found in two orthogonal states: the state with Sc = Tc = 1
and the state with Sc = Tc = 0, where Sc and Tc, respectively, represent
spin and isospin of the core. Above, we have used the definition of “quasi-
independent” particle model because, as it will be explained in the following,
we introduce a fictitious particle in order to obtain a translational invari-
ant model. In consequence, the kinetic energy associated to that particle
does give rise to a non-independent particle operator that, however, will be
treated perturbatively.

In Sect. 2, we shall give an overall description of the model. In Sect. 3,
starting with the definition of the spatial variables, we shall formally con-
struct the Hamiltonian of the model. In Sect. 4, we shall explain the calcu-
lation of the magnetic moments of the proton and neutron. In Sect. 5, the
results for the spectra and magnetic moments will be shown and commented.
Finally, in Sect. 6, some conclusions will be drawn and some possible per-
spectives will be illustrated.

The technical details of the model will be analyzed in the appendices. In
Appendix A, the main properties of the one-body Dirac equation with spin
symmetry will be discussed. In Appendix B, the same formalism will be ap-
plied to the case of a harmonic oscillator interaction. The magnetic dipole
operator, for the spin symmetry one-body Dirac equation, will be stud-
ied in Appendix C. Finally, in Appendix D, the three-quark complete wave
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functions will be constructed and the numerical procedure for the solution
will be synthetically described. For the calculations, we use the so-called
natural units, that is ~ = c = 1.

2. General description of the model

In this section we discuss, at a general level, the different parts of the
model with respect to its objectives, making also a critical comparison with
the choices of other studies; on the other hand, more details about the
formulation of the model will be explained in the next section.

The construcion of the model is based on the five points that are illus-
trated in the following:

(i) The effective particles of the model are represented by three very light
quarks and a fictitious scalar–isoscalar particle, denoted, in the fol-
lowing, as “x-particle”. Pictorially, we can say that in our model, the
baryon “looks like” a lithium atom, in which the electrons are replaced
by the quarks and the nucleus is replaced by the x-particle. (To avoid
misunderstanding, note that, in the ground states, the three quarks
belong to the same shell, while this configuration is forbidden for the
electrons of the lithium atom.)

In a pure shell model, the quark interaction would be referred to the
origin of the coordinates, violating the translational invariance. This
difficulty is avoided here assuming that the quark interaction depends
on the distance between the quark and the x-particle. Obviously, the
x-particle possesses a momentum and a kinetic energy. In the present
model, its momentum, in the Center-of-Mass (CM) reference frame
of the baryon, is opposite to the sum of the quark momenta; in con-
sequence, the baryon state is an eigenstate of the total momentum;
in particular, the total momentum is zero in the CM. For the kinetic
energy of the x-particle, in the case of a sufficiently high mass, a non-
relativistic expansion can be performed and the contributions of this
term can be calculated perturbatively, without spoiling the indepen-
dent particle character of the model. For this reason, we introduced
above the definition of “quasi-independent” particle model. Further-
more, the mass of the x-particle also represents, in this work, the zero
point energy of the spectrum. The contribution of the kinetic energy
of the x-particle will be studied in Subsect. 3.5.

Without attempting to attribute a real character to the x-particle, we
recall that the hypothesis of an effective bosonic particle (the so-called
pomeron) is not unusual in the study of other problems of hadronic
physics. It was introduced to study baryonic scattering, also in the
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framework of QCD; see, for example, Ref. [75]. Some works have
identified the pomeron as a tensorial particle [76, 77] and a model has
been proposed in which it is represented as bound state of two effective
gluons [78].

To avoid confusion, we give here a brief terminological explanation:
we shall use the term core (introduced above for the two quarks of
the first shell) without including the x-particle, for the two following
reasons: (i) in the present work, the x-particle is essentially considered
as a fictitious particle; (ii) in any case, it interacts also with the quark
not belonging to the core. We also note that the x-particle does not
bring angular momentum that, as it will be explained in the following,
is brought by the two quarks of the core and by the third quark.

(ii) Another relevant objective of our model is the use of very light quarks
without appealing for a mechanism that generates the constituent
mass. More precisely, we consider the standard value of the “current-
quark mass” that is estimated by means of a mass-independent sub-
traction scheme in the QCD theory. In particular, for this model,
we take the mean value of the up and down quark, that is mq =
(mu +md)/2 = 3.5 MeV [79].

Due to this hypothesis, the quark motion is extremely relativistic.
Correspondingly, the formulation of a model with a three-body ultra-
relativistic equation, suitable for this choice, would involve a high level
of complexity. This is another argument (beyond the structure of the
spectrum) to prefer, at this stage, a quasi-single-particle model where
the quark motion is described, in a first approximation, by independent
Dirac equations.

(iii) As for the interaction in the Dirac equation, we take two central terms
of equal magnitude: a scalar term and the zero component of a vectorial
interaction. With this choice, that corresponds to the so-called “spin
symmetry case” [80–86], the quark orbital angular momentum and its
spin are decoupled and no spin–orbit interaction is produced. Due
to this property, the Dirac equation with spin symmetry was used
to study mesonic spectra [82, 84, 86]. Also in the present case of
baryonic spectra, this option is strongly favored by the experimental
data that show only a very small spin–orbit splitting of the baryonic
resonances. Moreover, we point out that, theoretically, in QDMs, the
spin–orbit interaction is usually neglected in a first approximation; see,
for example, Ref. [60].
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Another interesting property of the Dirac equation with spin symmetry
is that it can be transformed into a Schrödinger-like, energy-dependent
equation, reducing the numerical complexity of the solution proce-
dure. In the present work, we take a harmonic oscillator interaction
to represent the main contribution to quark confinement; we obtain,
in this way, an analytically solvable equation. Other contributions,
all with spin symmetry, are added to reproduce in more detail the
structure of the spectra. The Dirac quark Hamiltonian is introduced
in Subsect. 3.3. The Dirac equation with spin symmetry is studied in
Appendix A and specialized to the harmonic oscillator interaction in
Appendix B.

The present choice of a Dirac equation with spin symmetry strongly
differs from that of Ref. [11] where a pseudoscalar interaction related
to one-pion exchange was considered.

A phenomenological spin–spin interaction is also introduced to remove
the degeneracy between the N(939) and the ∆(1232) and to reproduce
in more detail the resonance levels. For simplicity, also in this case, the
spatial dependence is taken as a central function of the quark distance
with respect to the position of the x-particle; for this interaction, see
Subsect. 3.4.

(iv) We now discuss the implementation in the model of the Pauli exclu-
sion principle that implies the antisymmetric character of the quark
wave function. As seen before, this principle is considered as a basic
assumption in the SPRMs and CQMs. On the other hand, in QDMs,
the quarks inside the diquark do not appear as dynamical degrees of
freedom, so, for the quark outside the diquark, no antisymmetrization
is required.

For the ground states, i.e. the N(939) and the ∆(1232), within the
present model (in which all the tree quarks belong to the first shell)
no reason can be found (within the model) to refuse this basic principle.
In this sense, we recall that, historically, it compelled the introduction
of the color quantum number, when applied to the wave function of
the ∆(1232).

Let us analyze the case of N(939). Assuming, in a standard way, that
the spatial term of the wave function is symmetric, the total antisym-
metry of the wave function requires a symmetric spin–isospin factor.
This symmetric factor must contain the core states |Sc = Tc = 0〉 and
|Sc = Tc = 1〉 with equal amplitudes, that is a0 = a1 = 1/

√
2. (We

have used Sc and Tc to denote, as before, the spin and the isospin of
the pair of quarks 1 and 2 belonging to the core.)
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Generally, in QDMs (where the total antisymetrization is not required),
the two amplitudes can be not equal; in some QDMs, see, for exam-
ple, Ref. [56], the amplitude of the state |Sc = Tc = 1〉 is vanishing.
However, if a spin–isospin transition interaction is introduced into the
dynamics of the model, we highlight that the solution of the eigen-
value equation gives two amplitudes having very similar values, that
is a0 = (aS) = 0.727, a1 = (aV) = 0.687 [60], suggesting that, also in
QDMs, a symmetric spin–isospin factor can be a good approximation
for the N(939) wave function.
The case of the ∆(1232) is even more obvious: the spatial, spin and
isospin factors must be, all, symmetric with respect to quark inter-
change.
Concluding, in the present work, we consider the three quarks, in the
ground states, as identical particles, with the standard consequences,
discussed above, for the wave functions. These wave functions will
be given explicitly in Eqs. (D.5a), (D.5b) and (D.6), for N(939) and
∆(1232), respectively.
On the other hand, considering that in our model only one-quark ex-
citations are taken into account, we make the same hypothesis of the
QDMs: the excited quark is considered not necessarily identical to the
two quarks of the core. This assumption gives the correct spectroscopy,
analogously to the QDMs, with no missing resonances. Phenomeno-
logically, this assumption can be justified observing that the excited
quark is in a different energy state with respect to the two quarks
of the core. In consequence, its effective properties, in particular the
interaction, are modified by the strong field and its effective interac-
tion is different with respect to the interaction of the two quarks of
the core. For this reason, we shall take different parametrizations for
the interaction of the quarks in the core and for the interaction of the
excited quark.

(v) With the assumptions discussed above, we can introduce here the basic
structure of the spectroscopy of the model. Preliminarly, we assign the
indices 1 and 2 to the two quarks of the core and the index 3 to the
quark that can be excited to higher levels.
In the first place, we analyze the coupling scheme for the angular
momenta. For the orbital angular momentum of the core, we have

~Lc = ~l1 +~l2 . (1)

For the total orbital angular momentum, one has

~L = ~Lc +~l3 . (2a)
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However, given that we always have Lc = 0, the total orbital angular
momentum simply is

~L = ~l3 . (2b)

The core spin is
~Sc = ~s1 + ~s2 (3)

being Sc = 0, 1; the total spin is
~S = ~Sc + ~s3 ; (4)

the possible values for S are S = 1/2, 3/2.
Finally, the total angular momentum is

~J = ~L+ ~S . (5)

For the isospin of the core, we have
~Tc = ~t1 + ~t2 , (6)

being Tc = 0, 1. As discussed above, the Pauli exclusion priciple re-
quires Sc = Tc; the total isospin is

~T = ~Tc + ~t3 (7)

and the possible values for T are T = 1/2 (N states), and T = 3/2
(∆ states); these latter states only have Sc = Tc = 1.
We also introduce the parity of the state

P = (−1)L (8)

and, finally, nr = 0, 1, 2, . . . that represents the radial excitation num-
ber of the quark 3.
The states are identified by the following notation:

|Ψ〉 =
∣∣T ;nr, L, Sc, S, J

P
〉
, (9)

where, for simplicity, the “third components” MT and MJ have been
omitted.
We now consider the list of the “first” states of the model; their quan-
tum numbers are displayed in Table I and Table II, for the N and ∆
spectrum, respectively. We have taken the states with L ≤ 2. For
L = 0, we have taken nr = 0, 1; for L = 1, 2, nr = 0 only. With the
previous choices, we have taken all the possible values for Sc, S and J .
For the case of the N resonances, we have also considered one state
with nr = 2 (the last of Table I in order to reproduce the N(1880)1

2

+).
The excitation energies of the states of Table I and Table II roughly
correspond to the energies of the states with N ≤ 2 in the standard
CQMs [79] but our model predicts less states than the CQMs.
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TABLE I

Quantum numbers of the first N states of the model.

nr L Sc S JP

0 0 (0, 1) 1/2 1/2+

1 0 0 1/2 1/2+

1 0 1 1/2 1/2+

1 0 1 3/2 3/2+

0 1 0 1/2 1/2− 3/2−

0 1 1 1/2 1/2− 3/2−

0 1 1 3/2 1/2− 3/2− 5/2−

0 2 0 1/2 3/2+ 5/2+

0 2 1 1/2 3/2+ 5/2+

0 2 1 3/2 1/2+ 3/2+ 5/2+ 7/2+

2 0 0 1/2 1/2+

TABLE II

Quantum numbers of the first ∆ states of the model.

nr L Sc S JP

0 0 1 3/2 3/2+

1 0 1 1/2 1/2+

1 0 1 3/2 3/2+

0 1 1 1/2 1/2− 3/2−

0 1 1 3/2 1/2− 3/2− 5/2−

0 2 1 1/2 3/2+ 5/2+

0 2 1 3/2 1/2+ 3/2+ 5/2+ 7/2+

The previous states will be used to reproduce the experimental bary-
onic spectra, without missing resonances, up to 2000 MeV.

The mass values of each state will be determined by the model calcu-
lations. Being absent a spin–orbit interaction, the states with differ-
ent J but with the same values for the other quantum numbers are
degenerate. The first state of Table I and that of Table II, respec-
tively, represent the N(939) and the ∆(1232). As discussed above, the
N(939) wave function is completely antisymmetric, requiring Sc = 0
and Sc = 1 (with equal amplitudes) as it is indicated in the first line
of Table I.
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3. Construction of the Hamiltonian of the model

3.1. The coordinates and conjugate momenta

The first task is to define the coordinates and the conjugate momenta
of the constituents of the model. In a generic frame, we introduce the coor-
dinates ~xi, ~xx that, respectively, represent the position of the three quarks
(i = 1, 2, 3) and of the x-particle. The corresponding canonical conjugate
momenta are ~ki, ~kx. The three quarks have equal mass mq; the x-particle
mass is mx.

We now define the intrinsic coordinates ~ri that will be used in the cal-
culation, and the position of the center of mass ~R, in the following way:

~ri = ~xi − ~xx , (10a)

~R =
mq (~x1 + ~x2 + ~x3) +mx~xx

mt
, (10b)

where, for convenience, we have also introduced the total mass of the con-
stituents

mt = 3mq +mx . (11)

The previous Eqs. (10a) and (10b) can be inverted, giving

~xi = ~R+
(mx + 2mq)~ri −mq (~rj + ~rk)

mt
, i 6= j 6= k , (12a)

~xx = ~R− mq (~r1 + ~r2 + ~r3)

mt
. (12b)

From the previous Eqs. (12a), (12b), we obtain the intrinsic momenta ~pi,
conjugate to ~ri, and the total momentum ~P , conjugate to ~R, in the following
form:

~pi =
(mx + 2mq)~ki −mq

(
~kj + ~kk + ~kx

)
mt

, i 6= j 6= k , (13a)

~P = ~k1 + ~k2 + ~k3 + ~kx . (13b)

Finally, inverting the previous equations, one has

~ki = ~pi +
mq

mt

~P , (14a)

~kx = − (~p1 + ~p2 + ~p3) +
mx

mt

~P . (14b)
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3.2. The total Hamiltonian

In the following, we shall always work in the CM frame of the baryon,
where ~P = 0. The Hamiltonian of the model (whose eigenvalues give the
baryonic mass spectra) can be schematically written in the following form:

H = HD +HST +Hx , (15)

where HD, HST and Hx, respectively, represent the Dirac quark Hamilto-
nian, the spin- and isospin-dependent Hamiltonian and the kinetic contri-
bution of the x-particle.

3.3. The Dirac term

The Dirac quark term is

HD =

3∑
i=1

h (~pi, ~ri) (16)

that represents a sum of three single-particle operators, related to each
quark. Note that, as given by Eq. (14a), the ~pi represent the quark mo-
menta in the CM; the ~ri are the corresponding conjugate coordinates.

The single-quark Hamiltonian operator has the form of

h (~pi, ~ri) = ~αi · ~pi + βimq + ωiU(ri) . (17)

The properties of this single-particle Hamiltonian and its solutions are stud-
ied in detail in Appendix A.

For the specific model, we take the interaction U(ri) in the form of

U(ri) = 1
2kr

2
i + U (1)(ri) , (18)

where the first term represents the confining harmonic oscillator interaction
that will be analyzed in Appendix B. The second term U (1)(ri) is taken
phenomenologically in the form of

U (1)(ri) = −τC

ri

[
1− exp

(
− ri
rC

)]
+∆i

[
λri −

τG

ri
exp

(
−
(
ri
rG

)2
)]

,

(19a)
with

∆i = 1 for i = 3 and excited states,

∆i = 0 otherwise. (19b)
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The contribution of the first line represents a regularized Coulombic inter-
action, where τC and rC are the effective coupling constant and the regular-
ization radius, respectively. The interaction of the second line, due to the
factor ∆i, is nonvanishing only for quark 3 when it is in an excited state.
Moreover, the first term represents a linear confining term, besides the har-
monic oscillator interaction of Eq. (18); the second term is a short-range
Gaussian interaction that has been introduced to reproduce in detail the
energy levels of the spectra. Due to its short range, it is more effective for
the states with L = l3 = 0. We recall that also in QDMs, see, for exam-
ple, [60], a special term, denotedMc(q, r), was introduced for the states with
L = 0. The coupling costant of the short-range interaction has been taken
as τG = τC without introducing a new parameter; finally, the constant rG

represents the radius of the short-range Gaussian interaction.

3.4. The spin–isospin-dependent term of the Hamiltonian

The spin–isospin-dependent interaction, that is mainly required to repro-
duce the spin splittings of the spectra, is introduced in a phenomenological
way, with a spatial factor that only depends on ~ri, that is the single quark
coordinate. In this way, we try to simulate the quark–quark (residual) in-
teraction whose effects cannot be reproduced by the potentials of Eqs. (18)
and (19a).

The present interaction term, beyond the standard spin–spin and isospin–
isospin operators, also depends on Sc, S, T and li; the last quantity is the
angular momentum quantum number of the ith quark. Its expression is
inspired by analogous terms of the QDMs.

For clarity, we introduce the following spin–spin operators:

S1 = S2 = 1
2 [(~s1 + ~s3) · ~s2 + (~s2 + ~s3) · ~s1] (20a)

for the interaction of the quarks of the core, and

S3 = (~s1 + ~s2) · ~s3 (20b)

for the interaction of quark 3.
These operators, by definition, are symmetric with respect to interchange

of quarks 1 and 2 according to the general properties of the model. We
also introduce, by replacing ~si with ~ti in Eqs. (20a) and (20b), the isospin
operators Ti.

With those definitions, the spin–isospin-dependent Hamiltonian takes
the form of

HST
i = e−σri(−1)li+1{(1−∆i) [SiAS + TiAT + SiTiAST ]

+[1 + (−1)li+1]∆i[SiĀS + TiĀT + SiTiĀST
+BSS(S + 1) +BScSc(Sc + 1) +BTT (T + 1)]} , (21a)
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and finally,

HST =
3∑
i=1

HST
i . (21b)

We note that the term proportional to (1−∆i), due to this factor, is active for
the quarks of the core 1, 2; for quark 3, it gives a nonvanishing contribution
only in the ground states. On the other hand, the term proportional to
∆i gives a contribution for quark 3, only in the excited states. The matrix
elements of the spin and isospin operators are easily calculated for each state
of the model allowing to determine the total contribution of Eq. (21b).

We have taken ĀT = ĀS , ĀST = AST to reduce the number of free
parameters of the model without worsening the reproduction of the experi-
mental spectra.

3.5. The kinetic Hamiltonian of the x-particle

The x-particle is assumed to be a scalar particle. In consequence, its
kinetic energy is written in the form of

Hx =

√
m2
x + (~p1 + ~p2 + ~p3)2 , (22)

where we have used Eq. (14b) for the momentum ~kx of the x-particle, in
the CM; furthermore, the product of three Dirac identity operators is un-
derstood.

If the mean value of the quark momenta is smaller thanmx, the standard
nonrelativistic expansion can be performed as

Hx ' mx +
1

2mx
· (~p1 + ~p2 + ~p3)2 . (23)

Note that the products of the momenta of different quarks, that is ~pi · ~pj
with i 6= j, give vanishing matrix elements with the wave functions of the
model. For this reason, the nonvanishing matrix elements of Hx of Eq. (23)
are proportional to the squared quark momenta ~p 2

i that are single particle
operators. Their contributions are calculated perturbatively and added to
the total energy of the resonances. We finally note that the x-particle mass,
mx, as shown by Eq. (23), represents, at the same time, the zero point energy
of the spectrum.

4. The magnetic moment of the nucleon

In this section, we study the static magnetic properties of the N(939).
The interaction of the system with an external electromagnetic three-vector
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field ~A is introduced by means of the minimal substitution on the quark
momenta; the x-particle, being electrically neutral, does not contribute. The
minimal substitution has the standard form: ~ki → ~ki − ei ~A(~xi), where ~xi
and ~ki are the quark coordinate and momenta in a generic frame and ei
represents the electric charge of the ith quark. However, considering that
in our model mq � mx (see the numerical values of the parameters in
Table III) by means of Eq. (13a), one finds that the minimal substitution
can be performed directly on the intrinsic quark momenta ~pi that appear in
the Hamiltonian of the model. For the same reason, by means of Eq. (12a),
with ~R = 0, one can also approximate the generic frame coordinates with
the relative ones, that is ~xi ' ~ri.

In more detail, we make the minimal substitution in the Dirac term of the
Hamiltonian, given by Eq. (17); the spin–isospin term HST of Eq. (21a) does
not contain the quark momenta and, in consequence, gives no contribution;
the kinetic operator of the x-particle does contain the quark momenta and, in
principle, could only give a contribution to the orbital terms of the magnetic
moment of the nucleon. However, we recall that for theN(939), all the quark
orbital angular momenta are vanishing; in consequence, only the spin terms
derived from HD, give a contribution to the nucleon magnetic moment.

For the reasons discussed above, we can take the total magnetic dipole
of the system as the sum of the single-quark contributions and make use
of the results obtained in Appendix C, in particular the development of
Eq. (C.8) and the final result of Eq. (C.11). In this way, we can write the
total magnetic dipole operator in the spin–isospin space, in the following
form:

~µ =

3∑
i=1

eiG
(d)
0,i ~σi → 3e3G

(d)
0 ~σ3 , (24)

where, in the last expression on the right-hand side, we have taken into
account the (anti)symmetry of the nucleon wave function; we have also
dropped the quark index i in G(d)

0 recalling that the three quarks have the
same spatial wave function, that is 1√

4π
R0,0(ri), as explained in Appendix D.

The magnetic moments of the nucleon are obtained calculating the mean
values of µz of Eq. (24) with the spin and isospin factor of the wave function
of Eq. (D.5b), taking MJ = Ms = 1/2 and MT = ±1/2 for the proton and
neutron, respectively.

The calculation is performed in the same way as in the CQMs, replacing
1

2m with G(d)
0 . The results, in nuclear magneton units, are

µp = 2MpG
(d)
0 (25a)
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for the proton, and
µn = −4

3MpG
(d)
0 (25b)

for the neutron, where Mp represents the proton mass.
Note that the ratio of the proton and neutron magnetic moments does

not depend on the value of G(d)
0 and is, in any case, µp/µn = −3/2. The

numerical results, obtained with the solutions of the Hamiltonian wave equa-
tion, for G(d)

0 , µp and µn, are given in Table III.

TABLE III

Comparison between the experimental values [79] of the N resonance masses up to
2 GeV and the results of the model (all mass values are expressed in MeV). Two
resonances predicted by the model, with experimental masses above 2 GeV, are
shown at the bottom of the table. The quantum numbers JP , nr, L, Sc and S have
been introduced in Sect. 2; they represent the total angular momentum and parity,
the radial excitation, the total orbital angular momentum, the core spin and the
total spin, respectively. The states with S = 3

2 have necessarily Sc = 1.

Resonance Status M exp JP nr L Sc S M calc
a M calc

b
[MeV] [MeV] [MeV]

N(939) **** 939 1
2

+
0 0 (0, 1) 1

2 939 938
N(1440) **** 1410–1470 1

2

+
1 0 0 1

2 1429 1446
N(1520) **** 1510–1520 3

2

−
0 1 0 1

2 1510 1517
N(1535) **** 1515–1545 1

2

−
0 1 0 1

2 1510 1517
N(1650) **** 1635–1665 1

2

−
0 1 1 3

2 1672 1677
N(1675) **** 1665–1680 5

2

−
0 1 1 3

2 1672 1677
N(1680) **** 1680–1690 5

2

+
0 2 0 1

2 1698 1710
N(1700) *** 1650–1800 3

2

−
0 1 1 3

2 1672 1677
N(1710) **** 1680–1740 1

2

+
1 0 1 1

2 1700 1719
N(1720) **** 1680–1750 3

2

+
0 2 0 1

2 1699 1710
N(1875) *** 1850–1920 3

2

−
0 1 1 1

2 1871 1882
N(1880) *** 1830–1930 1

2

+
2 0 0 1

2 1847 1865
N(1895) **** 1870–1920 1

2

−
0 1 1 1

2 1871 1882
N(1900) **** 1890–1950 3

2

+
1 0 1 3

2 1820 1840
N(2000) ** 1950–2150 5

2

+
0 2 1 1

2 1970 1983

N(2040) * 2010–2070 3
2

+
0 2 1 1

2 1970 1983
N(2100) *** 2050–2150 1

2

+
0 2 1 3

2 2090 2104
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5. The results for the spectra and the nucleon magnetic moments

The results of our Dirac shell-core model calculation, compared with the
experimental data [79], are shown in Table III and Table IV, for the N and
∆ states, respectively. The theoretical results are obtained with two sets of
slightly different parameters, namely (a) and (b), given in Table V.

TABLE IV

Comparison between the experimental values [79] of the ∆ resonance masses up to
2 GeV and the results of the model. At the bottom of the table, we also show a
resonance, predicted by the model, whose real experimental mass is greater than
2 GeV. The units for the masses and the quantum numbers are as in Table III. For
all the resonances, one has necessarily Sc = 1, that has been omitted in the table.

Resonance Status M exp JP nr L S M calc
a M calc

b
[MeV] [MeV] [MeV]

∆(1232) **** 1230–1234 3
2

+
0 0 3

2 1230 1230
∆(1600) **** 1500–1640 3

2

+
1 0 3

2 1678 1698
∆(1620) **** 1590–1630 1

2

−
0 1 1

2 1687 1672
∆(1700) **** 1690–1730 3

2

−
0 1 1

2 1687 1672
∆(1750) * 1680–1782 1

2

+
1 1 1

2 1759 1779
∆(1900) *** 1840–1920 1

2

−
0 1 3

2 1902 1903
∆(1905) **** 1855–1910 5

2

+
0 2 3

2 1949 1962
∆(1910) **** 1850–1950 1

2

+
0 2 3

2 1949 1962
∆(1920) **** 1870–1970 3

2

+
0 2 3

2 1949 1962
∆(1930) *** 1900–2000 5

2

−
0 1 3

2 1902 1903
∆(1940) ** 1940–2060 3

2

−
0 1 3

2 1902 1903
∆(1950) **** 1915–1950 7

2

+
0 2 3

2 1949 1962

∆(2000) ** 2075–2325 5
2

+
0 2 1

2 2030 2043

The relatively high number of parameters is related to the phenomeno-
logical character of the model in which different effects of the interaction
are parametrized by means of the potential terms introduced above. In
the present work, we have, totally, 14 free parameters, considering that the
quark mass mq = 3.5 MeV is obtained from QCD extimations, as explained
in Sect. 2; for a comparison, in the QDM of Ref. [60], 15 parameters were
used to reproduce the N and ∆ spectra. The value of mx in the present
work (see Table V) is greater but of the same order of magnitude as the zero
point energy used in Ref. [60], that was E0 = 826 MeV.
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TABLE V

Values of the model parameters.

Set (a) Set (b) Units

mq 3.5 3.5 MeV
mx 1.574 1.570 GeV
k 0.1611 0.1627 GeV fm−2

τC 4.292 4.283
rC 0.6695 0.6692 fm
rG 0.3322 0.3478 fm
λ 0.2572 0.2442 GeV fm−1

σ 2.326 2.325 fm −1

AS −0.3293 −0.3326 GeV
AT 52.01 50.62 MeV
AST 1.568 1.569 GeV
ĀS 0.2971 0.2952 GeV
BS 75.15 74.38 MeV
BSc −0.1845 −0.1845 GeV
BT 0.1593 0.1562 GeV

All the experimental data of Tables III and IV have been taken into
account to determine (by means of a complex fit procedure) the free param-
eters of the model. We point out that the quantum number assignations
of Table I and Table II represent a crucial element to perform the whole
process. Moreover, for the degenerate multiplets (with respect to J), the
central values of the corresponding experimental mass data have been used.

Our model reproduces all the 3∗ and 4∗ resonances up to 2 GeV using
the states listed in Table I. For the N(1880)1

2

+ only, we have used nr = 2.
The experimental masses are reproduced with acceptable accuracy. A

slight improvement is obtained with respect to the QDM of Ref. [60]. In
general, some discrepancies with the experimental data are found in the
degenerate multiplets, given that the spin–orbit interaction has not been
included in the model.

Analyzing the N resonances of Table III, we note that the theoretical
mass for the N(1900)3

2

+ is lower than the experimental data; a better ex-
timation is given by the parameter set (b). In any case, an improvement is
obtained with respect to Ref. [60], where the result of the calculation was
1780 MeV. We also note that, for this resonance, the experimental mass in-
terval passed from 1870–1930 MeV of the previous Particle Data Group [87],
to the actual value of 1890–1950 MeV.

Our model predicts, with a theoretical mass of 1970 MeV (set (a)) and
1983 MeV (set (b)), a state N 5

2

+. This state is associated to the resonance
N(2000)5

2

+, that is a 2∗ resonance. We also have aN 3
2

+, degenerate with the
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former. This state is tentatively assigned to the N(2040)3
2

+ resonance that
is a 1∗ resonance. Below 2 GeV, no other missing resonances are predicted.
Finally, the model predicts a positive parity multiplet, with 1

2 ≥ J ≥ 7
2

at 2090 MeV (set (a)) and 2104 MeV (set (b)). Experimentally, only the
N(2100)1

2

+ is observed. The N(2040)3
2

+ and the N(2000)5
2

+ are the only
1∗ and 2∗ N resonances reported in Table III.

We now analyze the ∆ resonances of Table IV.
We note that the ∆(1600)3

2

+ is not reproduced accurately by our model,
in particular by set (b). We note that, for this resonance, the experimen-
tal mass interval passed from 1500–1700 MeV of the previous Particle Data
Group [87] to the actual value of 1500–1640 MeV. The model predicts, be-
sides the 3∗ and 4∗ ∆ resonances up to 2 GeV, a state ∆1

2

+ with a theoretical
mass of 1759 MeV (set (a)) and 1779 MeV (set (b)). This state is associated
to the ∆(1750)1

2

+, that is a 1∗ resonance.
Considering the triplet with L = 1 and S = 3/2 and 1/2 ≥ J ≥ 5/2, the

member with J = 3/2 is associated to the ∆(1940)3
2

−, 2∗ resonance; for this
state, our model predicts a mass value of 1902 MeV and 1903 MeV, with
set (a) and set (b), respectively.

Finally, our model predicts a doublet with L = 2 and S = 1/2 at
2030 MeV (set (a)) and 2043 MeV (set (b)). The member of the doublet with
J = 5/2 is associated to the ∆(2000)5

2

+, 2∗ resonance. The other member
of the doublet, with J = 3/2 is not observed experimentally.

In Table IV, we have reported only the three 1∗ and 2∗ resonances men-
tioned above.

In Table VI, we give the results for the factor G(d)
0 and the magnetic

moments of the nucleon. As in CQMs, the results favourably compare with
the experimental data.

TABLE VI

Results for G(d)
0 and proton and neutron magnetic moments.

Set (a) Set (b) Exp. Units

G
(d)
0 1.506 1.502 GeV−2

µp 2.826 2.819 2.793 n.m.u.
µn −1.884 −1.879 −1.913 n.m.u.

6. Conclusions and outlook

In this work, we have developed a Dirac quark shell model to study the
baryonic spectra. The experimental data are well-reproduced taking into
account only the one-quark excitations.
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With respect to CQMs, our model does not introduce any missing res-
onance up to 2000 MeV. With respect to the QDMs, we obtain baryonic
spectra of the same quality. However, our model presents some relevant im-
provements considering its theoretical consistency. Namely, the diquark is
replaced by the two unexcited quarks of the core, without the necessity of
introducing a specific freezing hypothesis. Moreover, the quark not belong-
ing to the core, having different physical effective properties, is not identical
to the two quarks of the core and does not require wave fuction antisym-
metrization. Finally, the quark wave function is completely relativistic. The
use of the Dirac equation with equal scalar and vector potentials (spin sym-
metry case), avoids the spin–orbit splittings and, moreover, allows to take
the QCD value for the quark mass without the necessity of introducing a
dressing mechanism for this parameter. The same structure of the adopted
Dirac equation also gives, with a small quark mass, the correct value for the
nucleon magnetic moment.

Further investigation is needed to understand, at a more fundamental
level, the reason why only one-quark excitations reproduce the baryonic
spectra. Finally, the spin–orbit and tensorial interactions should be intro-
duced and the quark–quark residual interaction should be also studied to
construct a complete model for the baryonic spectroscopy.

Appendix A

Dirac equation with spin symmetry

The Hamiltonian of Eq. (17) represents the sum of three independent
Hamiltonian operators (with spin symmetry) for the quarks of the baryon.
We now discuss some general properties of a single particle Hamiltonian in
the case of spin symmetry. For simplicity, in this discussion, we shall drop
the quark index i and also put mq = m.

The Hamiltonian operator has the form of

h (~p, ~r ) = ~α · ~p+ βm+ ωU(r) , (A.1)

where we have introduced the standard Dirac matrices ~α = γ0~γ, β = γ0, in
the standard representation, and the following projection operator:

ω = 1
2(1 + β) . (A.2)

Preliminarily, we split the Dirac spinor into two upper and two lower com-
ponents, that is

ψ(~r ) =

(
ϕ̂(~r )
η̂(~r )

)
. (A.3)
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By applying the ω projection operator to the Dirac spinor, one immediately
finds

ω ψ(~r ) =

(
ϕ̂(~r )

0

)
. (A.4)

We note that the projection operator ω annihilates the lower components of
a Dirac spinor. Going back to Eq. (A.1), we also note that the interaction
operator ωU(r) contains a time component of a vector interaction and a
scalar interaction, respectively, given by the first and second term of ω, as
shown by Eq. (A.2). These two terms have the same spatial dependence

Vs(r) = V 0
v (r) = 1

2U(r) . (A.5)

The eigenvalue equation corresponding to the Hamiltonian of Eq. (A.1) is

h(~p, ~r )ψ(~r ) = Eψ(~r ) . (A.6)

Taking into account Eq. (A.4), we can rewrite Eq. (A.6) as two coupled
equations, in the following form:

~σ · ~p η̂(~r ) + (m+ U(r))ϕ̂(~r ) = Eϕ̂(~r ) , (A.7a)
~σ · ~p ϕ̂(~r )−mη̂(~r ) = Eη̂(~r ) , (A.7b)

where ~σ represents the vector of the three Pauli matrices. The previous
equations can be solved expressing the lower components η̂(~r ) of Eq. (A.7b)
by means of the upper ones ϕ̂(~r ); replacing the result in Eq. (A.7a), without
approximations, one obtains a Schrödinger-like, energy-dependent, equation
in the form of [88](

~p 2

E +m
+ U(r) +m

)
ϕ̂(~r ) = Eϕ̂(~r ) , (A.8)

where we require E 6= −m. See also, in the following, Eq. (B.2). Note
that, in Eq. (A.8), the spin does not appear explicitly; in consequence, no
spin–orbit effect is introduced and the spin dependence can be completely
factorized. We have

ϕ̂(~r ) = ϕ(~r )χms , (A.9)
where ϕ(~r ) is a one-component function and χms is a standard Pauli spinor
corresponding to the state |1/2,ms〉.

The lower components of the Dirac spinor η̂(~r ) can be obtained straight-
forwardly from Eq. (A.7b); in this way, the complete four-component Dirac
spinor takes the form of

ψ(~r ) = N

(
1
~p·~σ
E+m

)
ϕ(~r )χms (A.10a)

= D(~p · ~σ;E,m)ϕ(~r )χms . (A.10b)
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In Eq. (A.10a), we have introduced the normalization constant N that will
be determined in the following. Equation (A.10b) synthetically defines the
operator D(~p · ~σ;E,m) that constructs the four components Dirac spinor
when it is applied to the corresponding two-component spinor. This operator
will be used when studying the complete wave function of the baryonic
system in Appendix D.

To calculate the normalization constant N , we preliminarily introduce
the normalization integral

I = 〈ϕ|1 +
~p 2

(E +m)2
|ϕ〉 , (A.11a)

and, consequently
N = I−1/2 . (A.11b)

We recall that, when solving Eq. (A.8), we shall also diagonalize the orbital
angular momentum. The indices n, l,ml respectively denote the number of
nodes in the radial wave function and the quantum numbers of the orbital
angular momentum. In particular, for the upper component wave function,
we have

ϕ(~r ) = ϕn,l,ml
(~r ) = Rn,l(r)Yl,ml

(r̂) . (A.12)

Note also that Eq. (A.8), due to its energy-dependence, does not represent
an eigenvalue equation for a Hermitian operator, for this reason, its solutions
are not orthogonal with respect to index n: 〈ϕn′,l,ml

|ϕn,l,ml
〉 6= δn′,n; on the

contrary, the Dirac spinors of Eqs. (A.10a), (A.10b), with the normalization
of Eq. (A.11b), being the eigenstates of the Hermitian Dirac Hamiltonian of
Eq. (17), do satisfy standard orthonormality

〈ψn′,l′,m′l,m′s |ψn,l,ml,ms〉 = δn′,n · δl′,l · δm′l,ml
· δm′s,ms . (A.13)

Appendix B

The Harmonic Oscillator interaction

For some forms of U(r), Eq. (A.8) can be solved analytically by using
the results of the “corresponding” nonrelativistic equation. In this section,
we study in detail the case of a harmonic interaction.

In general, we introduce for convenience the “subtracted” energy Ē

Ē = E −m. (B.1)

In this way, Eq. (A.8) can be written as ~p 2

2
(
m+ Ē

2

) + U(r)

ϕ(~r ) = Ēϕ(~r ) , (B.2)
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where we have also discarded the Pauli spinor χms , taking into account
Eq. (A.9). We note that Eq. (B.2) can be obtained from the nonrelativistic
Schrödinger equation by replacing

E(nr) → Ē , (B.3a)

m → m+
Ē

2
. (B.3b)

In particular, we consider a harmonic oscillator (HO) interaction

U(r) =
1

2
kr2 . (B.4)

We recall that in the nonrelativitic case, the energy eigenvalues are

E(nr)
ne

=

(
ne +

3

2

)√
k

m
, (B.5)

where we have introduced for convenience the energy quantum number ne
that is related to the number of nodes n by the standard equation

ne = 2n+ l . (B.6)

To solve the relativistic problem of Eq. (B.2), with the interaction of Eq. (B.4),
we make the replacement of Eq. (B.3b) in Eq. (B.5), obtaining

Ē =

(
ne +

3

2

)√
k

m+ Ē
2

, (B.7a)

or, equivalently,

Ē = E(nr)
ne

√
m

m+ Ē
2

. (B.7b)

This equation can be transformed into a cubic equation for Ē and solved
analytically, finding the energy values Ēne . By means of Eq. (B.1), one has
Ene = Ēne +m.

In order to determine the form of the radial wave functions, we recall that
in the nonrelativistic HO case, these functions depend on the dimensional
constant r̄, that is given by the equation

r̄ = (mk)−1/4 . (B.8)

We also write the nonrelativistic harmonic HO radial wave functions as

R
(nr)
n,l (r; r̄) = (r̄)−3/2Sn,l(x) (B.9a)
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with
x =

r

r̄
. (B.9b)

For completeness, we also recall that

Sn,l(x) =

[
2(n!)

Γ
(
n+ l + 3

2

)] 1
2

xlLl+
1
2

n

(
x2
)

exp

(
−1

2
x2

)
, (B.10)

where Ll+
1
2

n (x2) are the generalized Laguerre polynomials. We can now cal-
culate the Rn,l(r) for our relativistic problem by performing the substitution
of Eq. (B.3b) for the mass m in Eq. (B.8); then, by using Eq. (B.7b), one
obtains

r̄ne =

√
Ēne

E
(nr)
ne

· r̄ (B.11)

and, in consequence,

Rn,l(r; r̄ne) = (r̄ne)
−3/2Sn,l(xne) (B.12a)

with
xne =

r

r̄ne

. (B.12b)

Note that in the relativistic case, the dimensional constant r̄ne is energy-
dependent.

Finally, also the normalization integral of Eq. (A.11a) can be calculated
analytically. From this quantity, one obtains the normalization constant of
Eq. (A.11b), in the form of

Nne =

[
1 +

(
Ēne + 2m

)−3/2
(m

2

)1/2
E(nr)
ne

]−1/2

. (B.13)

Collecting all the results obtained above, we can write the Dirac or-
thonormal wave functions for HO interaction in the form of

ψn;l,ml;ms(~r ) = Nne

(
1
~p·~σ

Ene+m

)
Rn,l(r; r̄ne)Yl,ml

(r̂)χms . (B.14)

As in Eq. (A.10b), the operator D(~p · ~σ;Ene ,m) can be introduced.
A wave function with the same spin-angular quantum numbers (l,ml,ms),

but with a different radial dependence can be expanded by means of the
eigenfunctions of Eq. (B.14) in the form of

ψ
(g)
n′;l,ml;ms

(~r ) =

nmax∑
n=0

an
′
n;l,ml;ms

ψn;l,ml;ms(~r ) , (B.15)

where the upper index g in the wave function of the l.h.s. denotes its general
character.
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In the present work, we use that expansion for the single-quark wave
functions. The amplitudes an′n;l,ml;ms

are determined by diagonalyzing the
interaction operator in the relativistic HO basis given by the wave functions
of Eq. (B.14). We point out that the index n′ corresponds to the radial
excitation number nr introduced in Eq. (9) of Sect. 2.

Appendix C

The magnetic dipole operator

We now study the magnetic dipole operator for the one-particle Dirac
equation with spin symmetry. We recall that in the case of a free Dirac
equation, when the interaction with a magnetic field is introduced, one ob-
tains the well-known result for the magnetic dipole operator of a point-like,
free particle

~µ = e G(f)~σ , (C.1a)
with

G(f) =
1

2m
. (C.1b)

In this section, we shall derive an analogous expression for the Dirac equation
with interaction in the case of spin symmetry. We start by performing the
minimal coupling substitution in Eq. (A.1). We obtain the standard result
for the interaction Hamiltonian with an external three-vector field ~A(~r ),
that is

Hint = −e~α · ~A(~r ) . (C.2)
For studying our shell quark model, we consider two different Dirac wave
functions |ψa〉, |ψb〉 and calculate the matrix element of the operator of
Eq. (C.2) between these wave functions. We do not include in the matrix
element the two component spinors χmsa

, χmsb
, in order to highlight, as in

Eq. (C.1a), the dependence of the magnetic dipole operator on the Pauli
matrices ~σ. Furthermore, we shall use the spatial wave functions |ϕa〉, |ϕb〉
introduced in Eqs. (A.9), (A.10a) and (A.10b). With standard handlings,
one obtains

〈ψb|Hint|ψa〉 = 〈ψb|Ho|ψa〉+ 〈ψb|Hs|ψa〉 , (C.3)
where the first term represents the orbital contribution, of the form of

〈ψb|Ho|ψa〉 = −eNbNa〈ϕb|
~A · ~p

Ea +m
+

~p · ~A
Eb +m

|ϕa〉 . (C.4)

We shall not develop further this term and focus our attention on the second
term that gives the spin contribution

〈ψb|Hs|ψa〉 = −ieNbNa~σ · 〈ϕb|
~A× ~p
Ea +m

+
~p× ~A

Eb +m
|ϕa〉 . (C.5)
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We consider the case of |ψa〉 = |ψb >= |ψ〉 and, in consequence, Ea =

Eb = E, etc. Furthermore, we take a uniform magnetic field ~B, given by
~B = ~∇× ~A(~r ). In this way, one easily finds

〈ψ|Hs|ψ〉 = −~µ · ~B (C.6a)

with
~µ = e G(d)~σ (C.6b)

and

G(d) =
N2

E +m
, (C.7)

where we have assumed that the wave function |ϕ〉 is standardly normalized:
〈ϕ|ϕ〉 = 1.

In the case of our model, the expression of Eq. (C.7) cannot be used
in a straightforward way for the following reason. The one-particle wave
function is expressed as an expansion in the relativistic HO basis, as shown
in Eq. (B.15). From that expression, one cannot determine analytically the
total normalization constantN ; on the other hand, a numerical calculation of
that quantity would be affected by numerical uncertainties. In consequence,
to calculate the magnetic dipole operator, we prefer to follow a different
procedure.

For the calculation, we have in mind the case of the N(939). In con-
sequence, we consider a state with n′ = 0, l = ml = 0, denoted by |ψ0〉.
Starting from Eq. (C.5), using the expansion of the Dirac wave function
given by Eq. (B.15), and also Eq. (B.14), with standard handlings, one finds

〈ψ0|Hs|ψ0〉 = ~σ · e
4π

nmax∑
na,nb=0

a∗nb
anaNneb

Nnea

×
∫

d3r
(
~̂r × ~A(~r )

)(R′nb,0
Rna,0

Eneb
+m

+
Rnb,0R

′
na,0

Enea
+m

)
, (C.8)

where all the indices not relevant for the calculation have been dropped; for
brevity, we have also dropped the argument of the radial wave functions:
Rn,0 = Rn,0(r); finally, the apex denotes the derivative with respect to the
radial coordinate r. For a uniform magnetic field ~B, we set

~A(~r ) = 1
2
~B × ~r . (C.9)

By using standard vectorial identities and replacing, under spherical inte-
gration, (~σ · ~̂r )( ~B · ~̂r )→ 1

3~σ · ~B, one finally obtains

〈ψ0|Hs|ψ0〉 = −~µ · ~B (C.10a)
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with
~µ = e G

(d)
0 ~σ (C.10b)

and

G
(d)
0 = −1

3

nmax∑
na,nb=0

a∗nb
anaNneb

Nnea

×
∞∫

0

dr r3

(
R′nb,0

Rna,0

Eneb
+m

+
Rnb,0R

′
na,0

Enea
+m

)
. (C.11)

We recall again that this expression has been derived for the case of l = 0.
Taking only one term in the expansion of the wave function, one recovers,
with standard handling, the expression of Eq. (C.7). The single-particle spa-
tial matrix element of Eq. (C.11) is used to calculate the magnetic moment
of the N(939).

Appendix D

Wave functions and solutions of the Hamiltonian equation

We now specify the form of the total wave functions of the model. To
this aim, we take into account the coupling scheme discussed in Sect. 2
and synthetized in Eq. (9). We start with the two-component (Pauli) wave
function that (omitting the color factor) can be written by means of the four
factors given in the following:

(i) We start with the radial factor

Rnr,L = R0,0(r1)R0,0(r2)Rnr,L(r3) , (D.1)

where the first two terms correspond to the quarks 1 and 2; the third
term corresponds to the quark 3; for the ground states, one has nr = 0,
L = 0;

(ii) The angular factor is

YL,ML
= Y0,0(r̂1)Y0,0(r̂2)YL,ML

(r̂3) =
1

4π
YL,ML

(r̂3) ; (D.2)

one has Y0,0(r̂3) = 1√
4π

for the ground states.

(iii) The spin factor has the form of

X Sc
S,MS

= [[χ1/2(1)⊗ χ1/2(2)]Sc ⊗ χ1/2(3)]S,MS
. (D.3)
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(iv) Analogously, the isospin factor is

PTcT,MT
= [[φ1/2(1)⊗ φ1/2(2)]Tc ⊗ φ1/2(3)]T,MT

. (D.4)

In Eqs. (D.3) and (D.4), Sc and Tc respectively represent the spin and
the isospin quantum numbers of the core.

For the N(939) (ground state, with S = T = 1/2), the total wave func-
tion can be written in the form of

ΦN = R0,0 · Y0,0 · Q(N)
MSMT

(D.5a)

with

Q(N)
MS ,MT

=
1√
2

[
X 0

1/2,MS
P0

1/2,MT
+ X 1

1/2,MS
P1

1/2,MT

]
. (D.5b)

Note that the spin–isospin factor of Eq. (D.5b) has the same form as the
corresponding factor of the CQMs and is completely symmetric with respect
to quark interchange.

For the ∆(1232), one has

Φ∆ = R0,0 · Y0,0 · X 1
3/2,MS

· P1
3/2,MT

(D.6)

that is also completely symmetric.
For the excited states, we have

ΦE = Rnr,L · YL,ML
· X Sc

S,MS
· PTcT,MT

. (D.7)

The Dirac wave function is constructed applying to these functions the Dirac
operators introduced in Eq. (A.10b)

ΨΛ = D1D2D3ΦΛ , (D.8)

where Λ stands for N,∆ and E; also Di = D(~pi · ~σi;Ei,mq).
The one-body Dirac equation is solved analytically for the harmonic in-

teraction of Eq. (18). With these harmonic oscillator eigenfunctions, we
calculate the matrix elements of the interaction U (1)(ri). We also add the
spin–isospin-dependent interaction of Eqs. (21a) and (21b). Then, we diag-
onalize the total Hamiltonian matrix obtaining the approximate eigenvalues
and eigenfunctions of the relativistic equation. For each resonance, we take
10 oscillator eigenfunctions.

Finally, we calculate perturbatively the contributions of Hx with the
nonrelativistic expansion of Eq. (23). Due to the single-particle character
of the model, the total mass of each resonance is obtained summing the
contributions of the three quarks.
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