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Abstract In this paper we propose a coupling between the
complex scalar field and an external Dirac delta-like pla-
nar potential. The coupling is achieved through the Klein–
Gordon current normal to the plane where the potential is
concentrated. The results are obtained exactly and exhibit
many peculiarities. We show that a complex scalar charge
does not interact with the potential, but the potential mod-
ifies the interaction between two scalar charges if they are
placed on opposite sides of the planar potential. When the
coupling constant between the potential and the field goes
to infinity, the classical field solutions satisfy a kind of MIT
boundary conditions along the plane where the potential is
concentrated.

1 Introduction

The presence of material boundaries and surfaces poses a
challenging problem that can be addressed through various
approaches. Among them, three methods stand out: estab-
lishing boundary conditions on fields, employing field mod-
els with distinct Lagrangians defined across different spatial
regions, and coupling spatially localized external potentials
to fields. In special, we highlight the use of external potentials
in this paper.

In the context of bosonic fields, models incorporating
delta-like potentials coupled to scalar or vector fields have
been explored [1–14]. This encompasses spherical geome-
tries [15–18], involving not only delta-like potentials but
also derivatives of delta functions [19,20]. Notably, this type
of model finds application in describing anisotropic planar
materials [21,22] and planar boundaries with magnetoelec-
tric properties [23–25]. This last topic is addressed in a dis-
tinctive manner in reference [26], where a coupling term sim-
ilar to the Chern-Simons one is employed.
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Delta-like couplings are also explored in models involving
fermionic fields, as in references [27,28], just to mention a
few examples.

It is important to highlight that delta functions are indeed
very useful tools to describe null-range interactions [29], an
issue that can find a wide range of applications, even in the
non-relativistic context, such as in atomic physics [30] and
in fermionic dynamics with external potentials [31], just to
mention a few. In reference [32], we can find a review of this
topic where delta-like potentials are treated solely in terms of
boundary conditions [33–36]—an approach that can be very
convenient in many problems.

Chern-Simons-type models exhibit a wide range of pecu-
liar features with numerous applications. They are character-
ized by the inclusion in the Lagrangian of a term involving the
first derivative of a field and the field itself. Notable exam-
ples include the Maxwell–Chern–Simons Lagrangian [37–
39], the Cremmer–Sherk–Kalb–Ramond model [40–42], the
Carroll–Field–Jakiew model [43–50], among others.

Models involving scalar fields remain relevant in both the-
oretical and experimental contexts. The scalar field is fre-
quently utilized to describe condensed matter systems, such
as phonons and magnons. Additionally, the scalar field is
commonly employed as a toy model to mimic the properties
of vector fields in specific situations.

Therefore, it is natural to question the roles of models
for the scalar field involving terms with its first derivative,
akin to the Chern–Simons-type term. Furthermore, explor-
ing whether this type of model can be employed to describe
material boundaries becomes an intriguing issue of investi-
gation.

To delve into this topic, we draw inspiration from the so
called MIT boundary conditions, established for fermionic
fields [51]. For these boundary conditions, the fermionic cur-
rent takes a central role, and not the field itself. In a parallel
manner, we concentrate on the Klein–Gordon current for the
complex scalar field in the present work.
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In this paper we propose a model where the complex scalar
field couples to an external potential localized along a plane.
The potential is a Dirac delta-like one concentrated along
a plane and the coupling occurs through the Klein–Gordon
current of the field. As far as the authors know, the model
exhibits many peculiarities in comparison with the ones con-
sidered in the literature up to now. It involves terms with a
first derivative on the field, what resembles Chern–Simons-
like models. In spite of being a quadratic model, the differ-
ential operator present in the lagrangian is different from the
one obtained in the field equations. The potential does not
interact with a single stationary scalar charge, but modifies
the interaction between two distinct scalar charges for setups
when both charges are in opposite sides of the planar poten-
tial. When the charges are placed at the same side of the
potential, the interaction between them is not affected by the
potential. In the limit where the coupling constant between
the potential and the field goes to infinity, the classical field
solutions satisfy a kind of MIT boundary conditions along
the plane where the potential is concentrated.

It would be very interesting to address the proposed prob-
lem by adopting the approach presented in reference [32],
which is based on the boundary conditions of the field modes.
In the present work, we will not employ this procedure. We
leave this issue as an open question to be explored in a future
paper.

This paper is organized as follows: in Sect. 2, we propose
the model and calculate the corresponding Green function
exactly. In Sect. 3, we examine some effects arising from
the presence of the potential and external sources. Section 4
is dedicated to discussing the boundary conditions of clas-
sical field solutions evaluated on the plane where the poten-
tial is concentrated, in the limit where the coupling constant
between the field and the potential goes to infinity. Finally,
Sect. 5 presents some concluding remarks.

In this paper we shall use natural units, where h̄ = c =
1, and the (3+1)-dimensional Minkowski metric ημν =
(1,−1,−1,−1). We shall also define Minkowski vectors
parallel to the x3 plane as the one xμ

‖ = (x0, x1, x2).

2 The current coupling model

In this section we consider the complex scalar field φ coupled
to an external planar potential. The coupling between the
potential and the field is made by means of the Klein–Gordon
current and the plane is attained by a Dirac delta function.
The lagrangian of the model is given by

L = ∂μφ∂μφ∗ − m2φφ∗ − λδ(x3 − a)

nμ jμ(x) + Jφ∗ + J ∗φ (1)

wherenμ = (0, 0, 0, 1) is a 4-vector normal to the plane x3 =
a, which is the surface where the potential is concentrated,
δ(x3 −a) stands for the Dirac delta function, J is an external
source and jμ(x) is the Klein–Gordon current, namely,

jμ = i

2
(φ∗∂μφ − φ∂μφ∗). (2)

and λ is a dimensionless coupling constant between the
potential and the field. In fact, λ can be defined in the range
(−∞,∞), but we shall consider just λ ≥ 0 once the case
λ ≤ 0 can be attained with a simple inversion of the vector
nμ.

Due to the fact that (1) it is quadratic in the scalar field,
from now on, we shall refer to the term that involves the delta
function in (1) as a coupling between the field and an external
potential, even though one could consider it as an abuse of
terminology.

In the appendix it is shown that the hamiltonian of the
model (1) is bounded from below, thus the theory has a vac-
uum ground state at the quantum level.

We start by writing the complex scalar field φ in terms of
its real and imaginary parts, as well as the external source J ,
as follows

φ = 1√
2
(φ1 + iφ2) (3)

J = 1√
2
(J1 + i J2) (4)

so, the lagrangian (1) reads

L = 1

2
(∂μφ1∂

μφ1 + ∂μφ2∂
μφ2)

−1

2
m2(φ2

1 + φ2
2) + (J1φ1 + J2φ2)

−λ

2
δ(x3 − a)nμ(φ2∂

μφ1 − φ1∂
μφ2). (5)

Notice that definitions (3) and (4) do not decouple the
fields φ1 and φ2 in (5) as is done in the Klein–Gordon free
theory. It will be convenient to rewrite the lagrangian in a
matrix form. So we define the real matrix field �(x)

�(x) =
(

φ1(x)
φ2(x)

)
(6)

and the external matrix source J,

J(x) =
(
J1(x)
J2(x)

)
. (7)

Denoting the 2 × 2 identity matrix by

I =
(

1 0
0 1

)
(8)
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defining the 2 × 2 matrix
◦
I as

◦
I=

(
0 −1
1 0

)
(9)

with the aid of (6), (7), (8) and (9), we can write the lagrangian
(5) in the form

L = −1

2
�t

[
(∂ν∂

ν + m2)I + λδ(x3 − a)
◦
I nμ∂μ

]
� + J

t�.

(10)

From (10) we can find the dynamical equations for φ1 and
φ2 (and equivalently for �). All the dynamical equations are
equivalent to
[
I(∂μ∂μ + m2) + λ

◦
I δ(x3 − a)∂3 + λ

2

◦
I ∂3[δ(x3 − a)]

]
�

= J. (11)

Here, some comments are in order. The coupling term
between the field and the external potential involves both
the field itself and its first derivative. Furthermore, this cou-
pling mixes the degrees of freedom of the theory, resem-
bling Chern–Simons-like coupling for gauge fields to some
extent. Additionally, the coupling term results in the differen-
tial operator in the dynamical equation for �, on the left-hand
side of the Eq. (11), being different from the one present in
the Lagrangian (10). As far as we know, this feature of the
proposed model is unique for quadratic theories and leads
to some interesting peculiarities, as we shall see in the next
section.

For future convenience, we define the differential operator
that appears in (11) as

O(x) = λ
◦
I δ(x3 − a)∂3 + λ

2

◦
I [∂3δ(x

3 − a)]. (12)

The Green function of the system, G(x, y), is associated
with the field dynamical equation and must exhibit a matrix
structure. In fact, it satisfy the differential equation[
I(∂μ∂μ + m2) + O(x)

]
G(x, y) = I δ4(x − y). (13)

It is immediate to verify that G(x, y) satisfies the integral
equation

G(x, y) = G0(x, y) −
∫

d4z G(x, z)O(z)G0(z, y). (14)

whereG0(x, y) is the Green function associated with the free
field,

I(∂μ∂μ + m2)G0(x, x
′) = I δ4(x − x ′). (15)

The free Green function G0(x, y) can be written as a
Fourier integral, as follows,

G0(x, y) =
∫

d4 p

(2π)4 I

[
− e−i p.(x−y)

pμ pμ − m2 + iε

]

= −
∫

d3 p||
(2π2)3

[∫
dp3

(2π)
I

e−i p3(x3−y3)

pμ pμ − m2 + iε

]

e−i p||(x||−y||)

=
∫

d3 p||
(2π2)3 Gc0(p||; x3, y3)e−i p||.(x||−y||) (16)

where we defined the Minkowski parallel coordinates x|| =
(x0, x1, x2) and momentum p|| = (p0, p1, p2), and

Gc0(p||; x3, y3) = −
∫

dp3

(2π)
I

e−i p3(x3−y3)

pμ pμ − m2 + iε

= I
e−σ |x3−y3|

2σ
, (17)

where we defined the function

σ =
√

−p2|| + m2. (18)

Now we write the Green function G(x, y) in (13), in a
manner similar to G0(x, y) in (16),

G(x, y) =
∫

d3 p||
(2π)3Gc(p||; x3, y3)e−i p||.(x||−y||) (19)

where Gc(p||; x3, y3) is a matrix function that must be deter-
mined.

The operator on the left hand side of (13) breaks the trans-
lational invariance along the x3 coordinate but keeps the
translational invariance along the parallel coordinates, x||.
The Green function G(x, y) must exhibit the same transla-
tional properties of its related operator, so one can justify the
Fourier structure for G(x, y) in (19).

Substituting (19) and (16) in (14) we have∫
d3 p||
(2π)3Gc(p||; x3, y3)e−i p||(x||−y||)

=
∫

d3 p||
(2π)3Gc0(p||; x3, y3)e−i p||(x||−y||)

−
∫

d4z
∫

d3 p||
(2π)3Gc(p||; x3, z3)e−i p||(x||−z||)O(z)

×
∫

d3q||
(2π)3Gc0(q||; z3, y3)e−iq||(z||−y||). (20)

Integrating in above expression in z and q||, and using (12)
we arrive at

Gc(p||; x3, y3) = Gc0(p||; x3, y3)

−λ

2
Gc(p||; x3, a)

◦
I

∂Gc0(p||; a, y3)

∂a

+λ

2

∂Gc(p||; x3, a)

∂a

◦
I Gc0(p||; a, y3). (21)

Now, we take y3 = a in Eq. (21) and in its first derivative,
using (17) we have

Gc(p||; x3, a) = Gc0(p||; x3, a) + λ

4σ

∂Gc(p||; x3, a)

∂a

◦
I (22)
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and

∂Gc(p||; x3, a)

∂a
= ∂Gc0(p||; x3, a)

∂a
+ λ

4
σGc(p||; x3, a)

◦
I

(23)

From (22) and (23) it is easy to solve for Gc(p||; x3, a) and
∂Gc(p||; x3, a)/∂a. We get

Gc(p||; x3, a)

= 1

1 + λ2

16

[
Gc0(p||; x3, a) + λ

4σ

∂Gc0(p||; x3, a)

∂a

◦
I

]
.

(24)

and

∂Gc(p||; x3, a)

∂a

= 16

16 + λ2

[
∂Gc0(p||; x3, a)

∂a
+ λ

4
σGc0(p||; x3, a)

◦
I

]
. (25)

As a last step to get Gc(p||; x3, a), we substitute (24) and
(25) in (21) and perform some simple manipulations, result-
ing in

Gc(p||; x3, y3) = Gc0(p||; x3, y3)

− 8λ

16 + λ2

[
λ

4

(
σGc0(p||; x3, a)G0(p||; a, y3)

− 1

σ

∂Gc0(p||; x3, a)

∂a

∂Gc0(p||; a, y3)

∂a

)

+ ◦
I

(
Gc0(p||; x3, a)

∂Gc0(p||; a, y3)

∂a

−∂Gc0(p||; x3, a)

∂a
Gc0(p||; a, y3)

)]
. (26)

Notice that expresion (26) contains only the Fourier trans-
form in the parallel coordinates of the Green function for the
free field, G0(p||; x3, a), and its derivatives. With the aid of
(17) we can explicitly express Gc(p||; x3, a),

Gc(p||; x3, y3) =
(
e−σ |x3−y3|

2σ

− λ2

(16 + λ2)

e−σ(|x3−a|+|y3−a|)

2σ

[
1 − sgn(a − x3)sgn(a − y3)

])
I

+ 2λ

(16 + λ2)

e−σ(|x3−a|+|y3−a|)

σ[
sgn(a − y3) − sgn(a − x3)

] ◦
I . (27)

with sgn(x) standing for the signal function.

3 The presence of stationary sources

In this section, we investigate the interaction that arises from
the presence of the current potential and stationary external
field sources. The Hamiltonian density associated with the
Lagrangian (1) is

H = (∂0φ1)∂0

(
∂L

∂(∂0φ1)

)
+ (∂0φ2)∂0

(
∂L

∂(∂0φ2)

)
− L

= −�t∂2
0 � − J

t�

+1

2
�t

[
∂μ∂μ + m2 + λ2

m
δ(x3 − a)

◦
I nμ∂μ

]
� (28)

with the corresponding energy

E =
∫

d3x
1

2
�t

[
∂μ∂μ + m2 + λ2

m
δ(x3 − a)

◦
I nμ∂μ

]
�

−
∫

d3x�t∂2
0 � −

∫
d3xJt�. (29)

The field solutions to Eq. (11) are given by

�(x) =
∫

d4yG(x, y)J(y)

�t (x) =
∫

d4yJt (z)G(z, x) (30)

where the second equation above is valid once Gt (x, z) =
G(z, x), what can be seen from (27) and using the property
◦
I

t
= − ◦

I.
Inserting (30) in (29), using Eq. (13) and the fact that nμ =

(0, 0, 0,−1), and performing some simple manipulations,
we have

E = −
∫

d3x�t∂2
0 � − 1

2

∫
d3x

∫
d4yJt (y)G(y, x)J(x)

−λ

4

∫
d3x

∫
d4y

∫
d4zJt (z)G(z, x)

◦
I G(x, y)J(y)

(
∂3δ(x

3 − a)
)
. (31)

That the last term in (31) vanishes. This fact can be shown
by following four steps: (1) transposing its integrand, (2)

using the fact that
◦
I

t
= − ◦

I, 3) renaming the integration vari-
ables y → z and z → y, and 4) using the property of the
Green function Gt (y, x) = G(x, y) (which can be demon-
strated with the aid of (18), (19) and (27)), as follows∫

d4y
∫

d4zJt (z)G(z, x)
◦
I G(x, y)J(y)

=
∫

d4y
∫

d4zJt (y)Gt (x, y)
◦
I

t
G

t (z, x)J(z)

=
∫

d4y
∫

d4zJt (z)G(z, x)
◦
I G(x, y)J(y)

= −
∫

d4y
∫

d4zJt (z)Gt (x, z)
◦
I G

t (y, x)J(y)
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= −
∫

d4y
∫

d4zJt (z)G(z, x)
◦
I G(x, y)J(y). (32)

The left-hand side of (32) is the negative of the right-hand
side of the same equation. Therefore, it must be equal to zero.
This proves that the last term in (31) vanishes, so

E = −
∫

d3x�t∂2
0 � − 1

2

∫
d3x

∫
d4yJt (y)G(y, x)J(x).

(33)

From now on, we shall restrict to the case of stationary
sources, namely, J(x) = J(x). In this case, the field solution
(30) is also stationary, �(x), and the first contribution on the
right hand side of (33) vanishes. So, in this case, substituting
(19) into (33), integrating over the time variables, and subse-
quently over the temporal momentum coordinates, we arrive
at

E = −1

2

∫
d3x

∫
d3y

∫
d2p||
(2π)2 e

ip||.(x||−y||)Jt (x)

Gc(p0 = 0, p||; x3, y3)J(y) (34)

Substituting (27) in (34) we are taken to a contribution
coming from the unit matrix in (27) and a contribution com-

ing from the
◦
I matrix,

E =
∫

d3xd3y
∫

d2p||
(2π)2 e

ip||.(x||−y||)Jt (x)

[
− e

−
√
m2+p2‖|x3−y3|

4
√
m2 + p2‖

I

+ λ

4(16 + λ2)

e
−

√
m2+p2||(|x3−a|+|y3−a|)

√
m2 + p2||

×
(
Iλ

(
1 − sgn(a − x3)sgn(a − y3)

)

−4
◦
I

(
sgn(a − y3) − sgn(a − x3)

))]
J(y). (35)

3.1 One single scalar charge

The expression (35) gives the energy of the system in the
presence of the current-like potential and an external station-
ary source. Let us consider an external source related to what
would be a point-like stationary charge for the Maxwell field.
This type of source can be considered as a complex scalar
charge, and it is characterized by

J = Q δ3(x − A) (36)

where Q is a column matrix and A is the position where the
scalar charge is placed. For convenience, we write the matrix
Q in the form

Q =
(
q1

q2

)
. (37)

The first term on the right hand side of (35) gives a diver-
gent contribution which corresponds to the self-energy of the
source. This divergence is present even in the absence of the
potential and does not depend on the distance between the
source and the plane where the potential is concentrated.

The interaction energy between the source and the poten-
tial is given by the second and third lines of equation (35).
From now on, with no lost of generality, we shall take a
coordinate system where the vector A has its only non-zero
component as the normal one to the plane where the exter-
nal potential is concentrated, namely, A = (0, 0, A). For
such a choice, we can see that the contribution coming from
the first term of the second line of (35) vanishes once, due
to the Dirac delta function, it is proportional to the factor
1 − sgn(a− A)sgn(a− A) = 0. Also, the contribution com-
ing from the third line of equation (35) is equal to zero due
to the fact that it is proportional to

(q1 q2)
◦
I

(
q1

q2

)
= 0 (38)

what can be seen from definition (9). Besides, this fourth
contribution is proportional to the factor sgn(a−A)−sgn(a−
A) = 0.

Therefore, there is no interaction between the current-
like potential and the point-like delta source. To the best of
our knowledge, this is the first field model where a spatially
localized potential does not interact with an external charge
source.

3.2 Two scalar charges and the current potential

In this subsection, we consider a system composed of two
point-like stationary scalar charges, each described by the
Eq. (36), and the current-like potential given in the model (1).
The total source is composed of the sum of two contributions,
one from each point-like charge, as follows

J = JB + JC = QB δ3(x − B) + QC δ3(x − C), (39)

where we defined

JB(x) = QB δ3(x − B)

JC (x) = QC δ3(x − C) (40)

corresponding to the sources for each charge, placed atB and
C.

When we substitute the total source (39) in (35) we have
the direct terms and the exchange terms. The direct terms
encompass only contributions solely from JB and contribu-
tions solely from JC (as well as from the external potential).
From the direct terms we obtain the self energies of the scalar
charges B and C , in addition to the the interaction energies
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between the charge B with the potential and chargeC with the
potential. As discussed in the single point charge case treated
above, the self-energies are disregarded, as we are interested
solely in the interactions between the point charges and the
external potential, as well as between the charges themselves.
The terms which account for the interaction of each charge,
solely, with the potential vanish, as we have seen in Sect. 3.1.
Therefore, the direct terms do not contribute for the interac-
tion energy of the system.

So, let us focus on the exchange terms, namely, the ones
that involve simultaneously both JB and JC . The contribution
coming from the first line of (35), taking only the exchange
terms, is given by the integral

E0,I NT = −
∫

d3xd3y
∫

d2p||
(2π)2 e

ip||.(x||−y||)

×e
−

√
m2+p2‖|x3−y3|

4
√
m2 + p2‖

[
(q1B , q2B)δ3(x − B)

(
q1C

q2C

)
δ3

(y − C) + (q1C , q2C )δ3(x − C)

(
q1B

q2B

)
δ3(y − B)

]
.

(41)

Integrating (41) over the spatial coordinates, defining the
vectors parallel to the plane where the potential is concen-
trated, A|| = (A1, A2, 0) and B|| = (B1, B2, 0), using polar
coordinates for the parallel momentum p||, with r and φ

standing for the radial and angular coordinates, respectively,
and performing some manipulations, we can write

E0,I NT = −(q1Bq1C + q2Bq2C )
1

2

1

(2π)2

×
∫ ∞

0
dr r

e−√
m2+r2|B3−C3|

√
m2 + r2

∫ 2π

0
dφeir |B||−C||| cos(φ).

(42)

The integral above is a representation of the Bessel func-
tion J0,

J0(x) = 1

2π

∫ 2π

0
dφ eix cos(φ) (43)

so we can write

E0,I NT = −(q1Bq1C + q2Bq2C )
m

4π

×
∫ ∞

1
du e−um|B3−C3| J0

(
m

√
u2 − 1|B|| − C|||

)
(44)

where we performed the change in the integration variable

u =
√

1 + r2

m2 .
Using the formula M0179a of reference [52], namely,

∫ ∞

1
dx e−αx J0(β

√
x2 − 1) = 1√

α2 + β2
e−

√
α2+β2

(45)

for the integral in (26), we get

E0,I NT = −(q1Bq1C + q2Bq2C )
1

4π

√
2

π

(
m|B − C|

)−1/2

K1/2
(
m|B − C|)

= −(q1Bq1C + q2Bq2C )
1

4π

e−m|B−C|

|B − C| . (46)

Notice that (46) is nothing else than the Yukawa potential
between the charges B andC . This result is expected because
this contribution is obtained just from the free Green function
(in the absence of the potential).

The next contribution for the interaction energy comes
from the second line of (35),

E1,I NT = λ2

4(16 + λ2)

∫
d3xd3y

∫
d2p||
(2π)2 e

ip||.(x||−y||)

×e
−

√
m2+p2||(|x3−a|+|y3−a|)

√
m2 + p2||

×
(

1 − sgn(a − x3)sgn(a − y3)
)

×
[
(q1B, q2B)δ3(x − B)

(
q1C

q2C

)
δ3(y − C)

+(q1C , q2C )δ3(x − C)

(
q1B

q2B

)
δ3(y − B).

]
(47)

Now we proceed in a similar way we have made to obtain
(46). The result is

E1,I NT = λ2

4π(16 + λ2)

(
q1Bq1C + q2Bq2C

)

×
(

1 − sgn(a − B3)sgn(a − C3)
)

× e−m
√

(|B3−a|+|C3−a|)2+|B||−C|||2√
(|B3 − a| + |C3 − a|)2 + |B|| − C|||2

. (48)

The contribution (48) takes into account the presence of
both the potential and the two charges simultaneously. It van-
ishes when both charges are at the same side of the plane
where the potential is concentrated, due to the fact that the

factor
(

1 − sgn(a − B3)sgn(a −C3)
)

equals to zero in this

case. The contribution also vanishes when λ = 0, what is
expected because in this case there is no coupling between
the field and the potential.

The last contribution to the interaction energy is obtained
from the third line of equation (35). Pursuing as with the
other terms, we obtain

E2,I NT = λ

(16 + λ2)

∫
d3xd3y

∫
d2p||
(2π)2

×eip||.(x||−y||) e
−

√
m2+p2||(|x3−a|+|y3−a|)

√
m2 + p2||
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×
(

sgn(a − y3) − sgn(a − x3)
)

×
[
(q1B, q2B)

◦
I

(
q1C

q2C

)
δ3(x − B)δ3(y − C)

+(q1C , q2C )
◦
I

(
q1B

q2B

)
δ3(x − C)δ3(y − B)

]

= 1

4π

4λ

(16 + λ2)
(q1Bq2C − q2Bq1C )

×
(

sgn(a − B3) − sgn(a − C3)
)

× e−m
√

(|B3−a|+|C3−a|)2+|B||−C|||2√
(|B3 − a| + |C3 − a|)2 + |B|| − C|||2

. (49)

Once again, the contribution (49) vanishes when both
scalar charges are placed on the same side of the external
potential. Additionally, when the charges are positioned on
the plane where the potential is concentrated, the contribu-
tion (49) also vanishes. Besides, expression (49) is equal to
zero when both charges are equal, namely, q1B = q1C and
q2B = q2C .

Therefore, the total interaction energy between the point
charges is given by the sum of (46), (48) and (49),

EI NT = 1

4π
(q1Bq1C + q2Bq2C )

[
− e−m|B−C|

|B − C|
+ λ2

16 + λ2

(
1 − sgn(a − B3)sgn(a − C3)

)

× e−m
√

(|B3−a|+|C3−a|)2+|B||−C|||2√
(|B3 − a| + |C3 − a|)2 + |B|| − C|||2

]

+ 1

4π

4λ

(16 + λ2)
(q1Bq2C − q2Bq1C )

×
(

sgn(a − B3) − sgn(a − C3)
)

× e−m
√

(|B3−a|+|C3−a|)2+|B||−C|||2√
(|B3 − a| + |C3 − a|)2 + |B|| − C|||2

. (50)

As pointed out previously, the first contribution for the
energy (50) is the direct interaction between two scalar
charges and it is present even in the absence of the external
potential, when λ = 0. The second and third contributions
are induced by the presence of the potential. They vanish
when the scalar charges are placed on the same side of the
planar potential. When λ = 0, the second and third factors
in (50) vanish, as they should.

3.2.1 Interpreting the result

We can interpret the result (50) in an interesting manner.
Let us take, without loss of generality, the potential set at
the plane x3 = 0, which is equivalent to setting a = 0.
Besides, let us restrict to situations where the scalar charges
are placed on opposite sides of the plane x3 = 0. Otherwise,

as mentioned earlier, the potential does not have any influence
on the interaction between scalar charges. In this case, we
choose B3 > 0 and C3 < 0, which makes 1 − sgn(a −
B3)sgn(a−C3) = 2 and

(
sgn(a−B3)−sgn(a−C3)

)
= 2.

Besides, we have −C3 = |C3| and B3 = |B3|, so we can
write√

(|B3 − a| + |C3 − a|)2 + |B|| − C|||2 =
=

√
(|B3| + |C3|)2 + |B|| − C|||2

=
√

(B3 − C3)2 + |B|| − C|||2 = |B − C| (51)

and expression (50) reads

EI NT = − 1

4π
Q

t
B

[
16 − λ2

16 + λ2 I + 8λ

16 + λ2

◦
I

]
QC

e−m|B−C|

|B − C|
(52)

that exhibits a standard Yukawa behavior.
The interaction between the charges B and C without the

presence of the planar potential is recovered by setting the
coupling constant λ = 0 in (52),

EI NT (λ = 0) = − 1

4π
Q

t
BQC

e−m|B−C|

|B − C| . (53)

The comparison of expressions (50) and (52) reveals that
by fixing the values for the charges intensities q1B , q2B , q1C

and q2C , the presence of the potential between the charges
can result in a sign inversion of the interaction between them,
depending on the value of the parameter λ. Moreover, the
role of the potential for the interparticle interaction is solely
to introduce a modulation factor α(λ) and a mixing factor
between the components of the charges intensities, β(λ),
defined respectively by

α(λ) = 16 − λ2

16 + λ2

β(λ) = 8λ

16 + λ2 . (54)

In Fig. 1, we observe a plot for the factor α(λ) repre-
sented by a solid line and for the factor β(λ) represented
by a dashed line. When λ = 0, we have a maximum for
α(0) = 1 and a minimum for β(0) = 0, and Eq. (52) reduces
to (53) as expected. The function α(λ) is positive in the inter-
val 0 < λ < 4, becomes zero at λ = 4, and turns negative
for λ > 4. The function β(λ) is always positive and reaches
its maximum at λ = 4, where β(4) = 1. As λ → ∞, we
observe a minimum for α(∞) → −1 and β(∞) → 0.

For small values of λ, the contribution to the interaction
energy involving the attenuation factor α(λ) dominates in
comparison to the one coming from the mixing factor β(λ),
as well as for large values of λ, but with a sign inversion in
this second case. Around the value λ = 4, the contribution
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Fig. 1 In the solid line we have α(λ) and in the dashed line we have
β(λ). The horizontal axis is λ

involving the mixing factorβ(λ)prevails over the one coming
from the attenuation factor α(λ).

The energy (52) is not symmetric with respect to an inter-
change between the particles B and C . This interesting prop-
erty is a feature of the model (1), which distinguishes between
the two different sides of the planar potential due to the def-
inition of the normal vector nμ.

From the perspective of particle B, located on the right
side of the planar potential, the energy (52) is the same as
the one obtained with a fictitious particle placed at the same
position as particle C , but with an effective charge given by

QC(e f f ) =
[

16 − λ2

16 + λ2 I + 8λ

16 + λ2

◦
I

]
QC . (55)

Similarly, from the perspective of particle C , situated on
the left side of the planar potential, the energy (52) is equiv-
alent to the one obtained with a fictitious particle at the same
position as particle B, but with an effective charge given by

QB(e f f ) =
[

16 − λ2

16 + λ2 I − 8λ

16 + λ2

◦
I

]
QB . (56)

3.2.2 Charges at the potential plane

A very interesting peculiarity of the model (1) is the fact that
the interaction energy (50) is finite when the charges lie on the
plane where the potential is concentrated. In this case, with no
loss of generality, we can take a coordinates system where the
charges positions are given by B = (R, 0, a) (with R > 0)
and C = (0, 0, a). In this case, the energy (50) becomes

EI NT = 1

4π
(q1Bq1C + q2Bq2C )

×
[

− e−mR

R
+ λ2

(16 + λ2)

e−mR

R

]

= − 4

π(16 + λ2)
(q1Bq1C + q2Bq2C )

e−mR

R
(57)

Fig. 2 In the vertical axis we have the factor 16
16+λ2 that modulates the

dependence on λ of the energy (57). The horizontal axis is λ

which is exactly the same expression that we would have
obtained in the absence of the potential (the Yukawa poten-
tial) multiplied by the non-negative numerical factor 0 ≤

16
16+λ2 ≤ 1. As a consequence, the influence of the potential
is merely to attenuate the intensity of the interaction by that
numerical factor. We display in Fig. 2 that factor as function
of the parameter λ. We see that in the limit λ → ∞, the
interaction (57) vanishes.

The finiteness of (57) is a peculiar feature of the model
(1) because, as far as the authors know, in models where
fields couple to external delta-like potentials, the interactions
between external sources usually diverge when a source lies
on the regions where the potentials are concentrated.

4 The limit λ → ∞

In this section, we direct our focus toward the field solu-
tions of the model (1) when evaluated on the plane where the
potential is concentrated and, particularly, in the limit as λ

approaches infinity.
Taking into account Eq. (30), we can see that

�(x)x3=a =
∫

d4y
[
G(x, y)x3=a

]
J(y). (58)

So we must consider the Green function (19), with (27) eval-
uated at x3 = a,

G(x, y)x3=a =
∫

d3 p||
(2π)3Gc(p||; a, y3)e−i p||.(x||−y||)

=
∫

d3 p||
(2π)3 e

−i p||.(x||−y||) e
−σ |y3−a|

2σ

×
[

16I + 4λsgn(a − y3)
◦
I

16 + λ2

]
(59)
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In the limit λ → ∞, the integrand in (59) equals to zero,
and so does the field solution (58) at the plane x3 = a,

lim
λ→∞G(x, y)x3=a = 0

lim
λ→∞ �(x)x3=a = 0. (60)

It is precisely the so-called Dirichlet boundary condition for
the matrix field solution � and its associated Green function
G(x, y).

Let us also consider the normal derivative to the plane
x3 = a of the field solution (30) evaluated at the plane x3 =
a. Once again, from Eqs. (19) and (27), we can write

∂3�(x)|x3=a =
∫

d4y
∂G(x, y)

∂x3

∣∣∣
x3=a

J(y). (61)

Following similar steps employed in Sect. 2, with the aid
of (19), (26) and (17) we can show that

∂G(x, y)

∂x3

∣∣∣
x3=a

=
∫

d3 p||
(2π)3

∂Gc(p||; x3, y3)

∂x3

∣∣∣
x3=a

e−i p||.(x||−y||)

=
∫

d3 p||
(2π)3 e

−i p||.(x||−y||) e
−σ |y3−a|

2

sgn(y3 − a)I − 4λ
◦
I

16 + λ2 . (62)

In the limit λ → ∞ we have

lim
λ→∞

∂G(x, y)

∂x3

∣∣∣
x3=a

= 0

lim
λ→∞ ∂3�(x)|x3=a = 0 (63)

which is the so-called Neumann boundary condition, along
the plane x3 = a, for the matrix field solution � and its
associated Green function G(x, y).

Lastly, we consider the normal Klein-Gordon current
along the plane where the potential is concentrated, given
by

nμ jμ(x)|x3=a = j3(x)|x3=a = 1

2

[
�t (x)

◦
I ∂3�(x)

]
|x3=a .

(64)

Due to the results (60) and (63), we can see that the right
hand side of (64) equals to zero, namely,

nμ jμ(x)|x3=a = j3(x)|x3=a = 0. (65)

The result (65) is a kind of MIT boundary condition along
the plane x3 = a for the scalar field.

5 Conclusions and final remarks

In this paper we proposed a model where the complex scalar
field couples to an external planar potential. The coupling
is achieved through the Klein–Gordon current coupled to
a Dirac delta function concentrated along a plane. In the

appendix we have shown that the model is bounded from
below.

We have treated the equations in a matrix structure form in
order to deal with the field and the Green function equations.
In this way we have founded, exactly, the Green function
of the model. We have shown that the differential operator
present in the dynamical field equations is different from the
one in the lagrangian.

We have investigated the types of interactions that may
arise between the potential and stationary field sources in
the model. Our findings reveal that a single complex scalar
charge does not interact with the potential. However, the
interaction between two complex scalar charges is modified
by the presence of the potential, but only if they are posi-
tioned on opposite sides of the potential. This modification
can be categorized into two contributions: a direct contribu-
tion and a mixing contribution, each modulated by a function
of the coupling constant.

The direct contribution does not mix the two different
components of the charges. It varies within the interval
[−1, 1) and becomes zero for λ = 4. On the other hand,
the mixing contribution combines the two different compo-
nents of the charges, displays a local maximum at λ = 4 and
varies within the interval [1, 0).

The interaction energy between the two charges in the
presence of the potential undergoes a sign inversion for large
values of the coupling constant λ compared to situations
where λ is small.

In the scenario where the coupling constant between the
potential and the field tends to infinity, we have demonstrated
that the classical field solutions and the Green function of the
model satisfy the Dirichlet, Neumann, and MIT boundary
conditions along the plane where the potential is concen-
trated.

We leave open the question of treating the proposed model
in terms of the boundary conditions of the associated wave
functions [53]. This approach may provide a direct means of
analyzing the underlying divergent quantities of the problem
and the field modes associated with the model.

We hope that the discussions presented in this paper prove
to be relevant for investigations in the field of theories with
internal symmetries, particularly those involving the cou-
pling of fields with external potentials.
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Appendix: the boundedness of the hamiltonian

In this appendix, we intend to study the conditions under
which the model (1) is bounded from below.

From the lagrangian density given by equation (1) we get
the hamiltonian

H =
∫

d3x
[
|φ̇|2 + |∇φ|2 + m2|φ|2

+ iλ

2
δ(x3 − a)n.(φ�∇φ − φ∇φ∗)

]
(66)

where we discarded the linear term in the field, without loss
of generality for the present purpose.

All the terms in the above expression are non-negative,
except for the last one, which can be positive or negative.
Consequently, the Hamiltonian above could be without a
lower limit or unbounded from below.

A Hamiltonian unbounded from below at the quantum
level lacks a ground state, which is an undesired and unphysi-
cal property. Let us investigate the conditions under which the
Hamiltonian (66) is bounded from below. We anticipate that
for sufficiently small λ parameters, the non-negative terms
dominate over the last term in (66), and in such regimes, the
Hamiltonian will be bounded from below.

In the following, we establish this expectation quantita-
tively.

A.1 A simplified case

The term that would render the Hamiltonian (66) negative
is the one containing the Dirac delta function. Thus, we can
analyze the influence of this term in a simpler yet more robust
scenario. Initially, we examine the simplified situation where
the delta function potential is substituted by a factor of 1. In
this case, the Hamiltonian is denoted as

Hs =
∫

d3x
[
|φ̇|2 + |∇φ|2 + m2|φ|2 + iλ

2
n.(φ�∇φ − φ∇φ∗)

]
.

(67)

Performing a Fourier transform in the spatial coordinates,

φ(x, t) = 1

(2π)3/2

∫
d3k φ̃k(t)e

ik.x (68)

and replacing in (67), we get

Hs =
∫

d3k
(
| ˙̃φk |2 + ω2

k |φ̃k |2
)

(69)

where the frequency modes, ωk are given by

ω2
k =

(
k − λ

2m
n
)2

+ m2 − λ2

4
. (70)

From (69), we see that the Hamiltonian (67) will be positively
defined or bounded from below if the frequency modes satisfy
ω2
k ≥ 0. From this, we obtain the condition

λ2

4
≤ m2. (71)

A.2 The case with Dirac delta function

In the simplified case, we could express the hamiltonian (66)
in terms of the spatial Fourier transform ϕ̃. However, due
to the delta function along the x3 coordinate, the hamilto-
nian will not diagonalize as in (69), making the analysis very
challenging.

In this case, we have to expand the field φ in terms of a
complete set of functions that diagonalize the Hamiltonian
(66). Disregarding surface terms, we have, for (66),

H =
∫

d3x
(

|φ̇|2 + 1

2
φ∗Dφ + 1

2
φD∗φ∗

)
(72)

where D is the differential operator

D = −∇2 + m2 + iλδ(x3 − a)n.∇ + iλ

2
∇.(δ(x3 − a)n)

(73)

and D∗ is the complex conjugate of D. Note that both D and
D∗ are Hermitian differential operators. The last term in (73)
is a divergence and cancels in (72) with its counterpart in D∗.
It is crucial to define these operators in this manner; other-
wise, they will not be Hermitian operators in the functional
space.

Expanding the field as

φ(x, t) =
∑
s

qs(t)us(x) (74)

where {us(x)} are orthonormal eigenfunctions of D,[
−∇2 + m2 + iλδ(x3 − a)n.∇

+ iλ

2
∇.(δ(x3 − a)n)

]
us(x) = ω2

s us(x). (75)
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with eigenvalues ω2
s , replacing (74) in (72), using (75) and

the orthonormality of {us(x)}, we get

H =
∑
s

(
|q̇s |2 + ω2

s |qs |2
)

. (76)

In that way, to set the conditions under which the above
hamiltonian is bounden from below, it will be sufficient to
set the conditions for the eigenvalues ω2

s to be non negative.
To simplify notation, we will henceforth use z = x3.

Writing

us(x) = eik||.x||vs(z) (77)

replacing in (75) and using the fact that n = (0, 0, 1), we
have[

− d2

dz2 + iλδ(z − a)
d

dz
+ iλ

2
δ′(z − a)

]
vs(z) = αsvs(z).

(78)

where δ′(z) = dδ(z)/dz and

ω2
s (k) = k2|| + m2 + αs . (79)

As we can observe, the eigenvalue equation (78) involves
a singular delta Dirac potential. We emphasize that it would
be very interesting to analyze equation (78) using the meth-
ods outlined in references [32–35], which are based on the
boundary conditions of the associated wave functions [53].
In this appendix, we refrain from pursuing this approach and
instead leave it as an open question to be addressed in future
work.

Given that the negative eigenvalues αs in (78) render the
Hamiltonian unbounded from below, our focus is on this par-
ticular case.

To search for possible negative eigenvalues αs < 0, we
consider solutions for z < a and for z > a. From (78) we
get respectively

v<(z) = Aeκ(z−a), z < a

v>(z) = Ae−κ(z−a), z > a (80)

where κ = √−αs . Note the same factor A in above expres-
sions to meet continuity of the solutions in z = a. Next,
integrating (78), from z = a − ε to z = a + ε and taking
ε → 0, we get

v′
<(a) − v′

>(a) + i
λ

2

[
v′
>(a) + v′

<(a)
]

−i
λ

4

[
v′
>(a) + v′

<(a)
] = 0 (81)

where we used

a+ε∫
a−ε

δ(z − a)v′(z)dz = 1

2

[
v′
>(a) + v′

<(a)
]

(82)

since v′(z) = dv/dz is discontinuous at z = a. Using (80)
in (81) we have

κ = 0 (83)

what contradicts the existence of negative eigenvalues αs =
−κ2. As consequence, we cannot have solutions for αs < 0
and the hamiltonian is always bounded from below.
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