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1 Introduction

In the current view of modern cosmology, inflation [1–7] is the most compelling mecha-
nism to explain the characteristics of the presently observable universe, namely its flatness,
isotropy and homogeneity. In conventional models of inflation, the accelerated expansion
of the early universe is driven by the inflaton scalar field in a slow-roll trajectory, where
it temporarily mimics the effect of a cosmological constant. One of the most appealing
features of the inflationary paradigm is that quantum fluctuations of the inflaton field gen-
erate a primordial spectrum of curvature perturbations that may provide the seeds for the
observed temperature and polarization anisotropies in the Cosmic Microwave Background
(CMB) and the Large-Scale Structure of our universe.

However, a successful realization of inflation within a complete particle physics frame-
work is challenging. In particular, a slow-roll trajectory requires that the inflaton’s mass
does exceed the Hubble parameter during inflation, m2

ϕ ≪ H2. Since there are, in gen-
eral, no symmetries that protect scalar masses from large quantum corrections and which
remain unbroken during inflation, single-field slow-roll inflation is quite sensitive to the
(yet unknown) details of super-planckian physics, leading to the so-called “eta-problem”
(see e.g. [8]).

Another important issue to address is the “graceful exit” from inflation into a radiation-
dominated era, during which we know that the cosmological synthesis of light elements took
place. This is conventionally thought to occur through a reheating period at the end of
inflation, with potentially an earlier preheating phase of resonant particle production [9, 10].
The main problem with this proposal is that it may be extremely difficult to probe, given
that at this stage fluctuations on large CMB scales are already frozen beyond the Hubble
radius. This could mean that it may prove nearly impossible to ascertain the inflaton’s
role within the overall particle physics landscape and how it interacts with other particle
species.

Warm inflation [11–13] may provide an appealing alternative to the more conventional
paradigm (to which we will refer as cold inflation), where interactions between the inflaton
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scalar field and other fields play a significant role in the slow-roll dynamics itself. In warm
inflation, it is assumed that the inflaton interacts with an ambient nearly-thermal radiation
bath, which results in fluctuation-dissipation effects that not only help sustain the field’s
slow-roll dynamics but also prevent an exponential dilution of the radiation through the
associate dissipative particle production. These dissipative effects are, to leading order
in the adiabatic regime characteristic of the slow-roll phase, described by a dissipative
coefficient Υ and the inflaton follows a Langevin-like equation of the form [14–17]:

ϕ̈+ (3H +Υ)ϕ̇− 1
a2∇

2ϕ+ V ′(ϕ) = ξ , (1.1)

where ξ denotes the nearly Gaussian white noise that satisfies the fluctuation-dissipation
relation

⟨ξ(x′, t′)ξ(x, t)⟩ = 2ΥTa−3δ(x′ − x)δ(t′ − t) , (1.2)

and T denotes the temperature of the ambient radiation bath. From the covariant con-
servation of the total energy-momentum tensor, the energy density of the radiation bath,
ρR = CRT

4 with CR = π2g∗/30 for g∗ relativistic degrees of freedom, obeys:

ρ̇R + 4HρR = Υϕ̇2, (1.3)

and it can be shown from first principles that the source term on the right-hand side
results from finite-temperature dissipative particle production [18]. This term prevents the
otherwise exponential dilution of the radiation bath during inflation, with 4HρR ≃ Υϕ̇2 in
the slow-roll regime. The average inflaton field value then follows the slow-roll trajectory
given by:

3H(1 +Q)ϕ̇ ≃ −V ′(ϕ) , (1.4)

where Q = Υ/3H is the dissipative ratio, provided that generalized slow-roll conditions
are satisfied:

ϵϕ = M2
P

2

(
V ′

V

)2
< 1 +Q, |ηϕ| =M2

P

∣∣∣∣V ′′

V

∣∣∣∣ < 1 +Q , (1.5)

where MP is the reduced Planck mass. As we can see these are relaxed compared to
cold inflation scenarios, where one requires ϵϕ < 1 and |ηϕ| < 1, thus allowing for less
flat potentials if dissipation is sufficiently strong, i.e. Q > 1. This then allows a slow-roll
trajectory for an inflaton mass H < mϕ < Q1/2H, thus eliminating or at least alleviating
the eta-problem [15, 19, 20].

One of the most interesting features of warm inflation is the possibility of a smooth
transition between inflation and a radiation-dominated era, with no need for a separate
reheating phase [13]. In particular, the ratio between the radiation and inflaton energy
densities during inflation is given by:

ρR
V (ϕ) ≃ 1

2
Q

1 +Q

ϵϕ
1 +Q

. (1.6)
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so that if Q ≳ 1 at the end of the slow-roll phase when ϵϕ ≃ 1+Q, we find ρR ∼ ρϕ ≃ V (ϕ)
and radiation may then naturally take over as the dominant component.

In addition, the presence of dissipative effects affects the growth of inflaton fluctua-
tions, leading to a unique imprint on the primordial curvature power spectrum that can be
used to probe the interactions between the inflaton and the particles present in the ambi-
ent cosmic plasma. The inflaton perturbations satisfy the dynamical equation in Fourier
space [15, 21, 22]

δϕ̈k + 3H(1 +Q)δϕ̇k +
(
k2

a2 + V,ϕϕ(ϕ)
)
δϕk = ξk, (1.7)

which leads to a dimensionless curvature power spectrum [23] given by:

∆2
R = V∗(1 +Q∗)2

24π2M4
P ϵϕ∗

(
1 + 2n∗ +

2
√
3πQ∗√

3 + 4πQ∗

T∗
H∗

)
G(Q∗). (1.8)

where n∗ denotes the inflaton phase space distribution and all quantities are evaluated when
the relevant CMB modes become “superhorizon” 50− 60 e-folds before inflation ends. The
factor G(Q∗) takes into account the dynamical interplay between inflaton and radiation
perturbations associated with the temperature-dependence of the dissipation coefficient,
and in general needs to be computed numerically [24–26].

Concrete particle physics implementations of warm inflation are also nevertheless chal-
lenging to achieve, with some authors even dubbing it “impossible” [27] in the early days
after its original proposal (see also [28]). Given a Lagrangian density describing the cou-
plings between the inflaton and other fields, one can compute the dissipation coefficient
Υ(ϕ, T ) using standard linear response theory techniques in flat space thermal field theory,
provided that T ≳ H and that interaction rates within the thermal bath exceed the Hubble
rate, Γ ≳ H, to ensure that it remains close to thermal equilibrium despite the disturbances
generated by dissipative particle production.

While these conditions are typically easy to fulfill [17, 25], particles directly coupled
to the inflaton field typically acquire large masses, m ≳ T , as a result of the large (often
super-planckian) field value, as e.g. for standard inflaton-fermion Yukawa interactions. This
means that on-shell dissipative particle production may be Boltzmann-suppressed, and even
light particle production mediated by heavy off-shell modes is power-law suppressed at least
as (T/m)2 [29–31], requiring a very large number of mediator species [17, 32–37]. Even if
the high-temperature regime where T ≳ m can be realized, one has to worry about the
thermal backreaction on the inflaton potential, which may reintroduce the eta-problem
through large thermal corrections to the inflaton’s mass and which cannot be overcome by
the additional dissipative friction.

The “Warm Little Inflaton” (WLI) scenario [38] solved these issues for the first time,
thus allowing for a simple realization of warm inflation in the high-temperature regime,
with moreover a natural embedding in a simple extension of the Standard Model with
right-handed neutrinos that also explains light neutrino masses [39] (see also [40, 41]). The
main idea is to consider interactions between the inflaton and other fields (either fermionic
or bosonic [25]) such that the latter’s masses are bounded functions of the scalar field value,
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therefore allowing for m ≲ T during the slow-roll phase. In addition, a discrete symmetry
can be imposed to cancel the leading thermal corrections to the inflaton’s mass, thus
preventing a reintroduction of the eta-problem that dissipation is supposed to alleviate.
This symmetry involves at least two particle species coupled to the inflaton field, and it is
exactly this premise (and therefore limitation of the model) that we question in this work.

Anticipating our main results, we will show that warm inflation can be successfully
realized by coupling the inflaton field to a single light fermion field, in such a way that
the latter’s mass is an oscillatory function of the scalar inflaton value, as follows from a
collective symmetry breaking setup. We will show that no eta-problem exists in this case,
as opposed to what one may naively expect, and argue that observational predictions are
essential identical to the original WLI scenario, within the current level of precision in
CMB measurements.

This work is organised as follows. In the next section, we describe our simpler version
of the WLI model in terms of the relevant interactions and dynamical quantities, showing
that the average inflaton field dynamics is essentially identical to the original WLI model.
In section 3, we study the dynamics of inflaton perturbations, in particular exploring the
possible development of parametric resonances that could potentially affect the spectrum
of primordial curvature perturbations, focusing on how this may or not affect the model’s
observational predictions. We summarize our main conclusions and discuss prospects for
future work motivated by our results in section 4. Throughout this work we consider
natural units kB = c = ℏ = 1.

2 Quantum field theory model and inflationary dynamics

In the original WLI model [38], the inflaton is a singlet scalar field that results from
the collective spontaneous breaking of a U(1) gauge symmetry. The fundamental particle
content consists of two complex scalar fields, ϕ1 and ϕ2, with identical U(1) charge q.
The model’s scalar potential is such that they have the same nonzero vacuum expectation
value ⟨ϕ1⟩ = ⟨ϕ2⟩ =M/

√
2 (as enforced by the discrete interchange symmetry as described

below). The vacuum manifold may thus be parameterized as:

ϕ1 = M√
2
ei(σ+ϕ)/M , ϕ2 = M√

2
ei(σ−ϕ)/M . (2.1)

It is easy to check that the overall phase σ(x) constitutes the Nambu-Goldstone (NG)
boson of the spontaneously broken U(1) gauge symmetry, and in the unitary gauge it can
be rotated away in the sense that it is absorbed as the longitudinal component of the now
massive U(1) gauge boson. The relative phase ϕ(x) remains as a physical scalar degree
of freedom in the broken phase, and we note that it is gauge invariant since a local U(1)
transformation shifts the phase of the two complex fields by the same amount. Note that
the σ(x) field inherits a shift symmetry from the underlying U(1) symmetry, which clearly
identifies it with the NG degree of freedom.

The U(1) gauge symmetry is therefore consistent with any function V (ϕ) that one may
add to the original Lagrangian, making this relative phase field an ideal candidate for the
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inflaton in this setup.1 We may, in fact, take this to be the lightest scalar degree of freedom,
since the radial fields’ and also the gauge boson’s mass can be taken to be O(M) ≳ H.

We may also consider interactions between the inflaton and other degrees of freedom
consistent with the gauge symmetry. The original model considers two fermion species
ψ1 and ψ2 whose left-handed components have U(1) charge q, while their right-handed
counterparts are neutral. Imposing a discrete interchange symmetry under which ϕ1 ↔ iϕ2
and ψ1L,R ↔ ψ2L,R, one may write the following Yukawa interaction Lagrangian:2

−Lϕψ = g√
2
(ϕ1 + ϕ2)ψ1Lψ1R − i

g√
2
(ϕ1 − ϕ2)ψ2Lψ2R (2.2)

= gM cos(ϕ/M)ψ1Lψ1R + gM sin(ϕ/M)ψ2Lψ2R . (2.3)

The resulting Dirac masses are therefore bounded oscillatory functions of the inflaton scalar
field, |m1,2| ≤ gM , which can be made light during inflation independently of the inflaton
value, provided that gM ≲ T ≲ M . These interactions lead to thermal corrections to the
inflaton potential which, for mi ≲ T, i = 1, 2 [42, 43], are of the form:

VT,i ≃ −7π2

180T
4 + m2

iT
2

12 + m4
i

16π2

[
log

(
µ2

T 2

)
− cf

]
, (2.4)

where µ is the MS renormalization scale and cf ≃ 2.635. Adding both fermionic contri-
butions, we see that the leading quadratic term is independent of the inflaton, while the
parameter ηϕ will only receive contributions from the sub-leading Coleman-Weinberg term,
which was shown not to lead to an eta-problem on its own [38].

The dissipation coefficient Υ is the only missing ingredient and it can be computed
following the standard techniques in linear response theory [30, 42, 44]. For simplicity, here
we only quote the approximate form of the dissipation coefficient, and the reader may look
into the details of the computation in [38] and [39]:

Υ = CTT, CT ≃ g2

h2
3

1− 0.34 log h , (2.5)

where it was assumed that interactions in the thermal bath are governed by a Yukawa cou-
pling h coupling the ψ1,2 fermions to additional light fermions and scalars. For instance, in
the concrete implementation developed in [39], the ψ1,2 fermions are right-handed neutri-
nos, and h corresponds to its coupling to left-handed neutrinos and charged leptons along-
side the Higgs field. With this form of the dissipation coefficient, it was shown in [38–41],
that this model is consistent with Planck CMB data for a quartic inflaton potential (which
is excluded within the cold inflation paradigm) and that its embedding within a Standard
Model extension naturally leads to the measured light neutrino mass differences. The in-
terchange symmetry protects the inflaton’s decay at late times, much like in the proposal

1In the original WLI proposal, the inflaton was referred to as a pseudo-NG boson, which may erroneously
lead the reader to think of it as a sort of pion or axion, which it is not since there is no associated shift
symmetry.

2This is not the most general Lagrangian as discussed in [39] but it is simpler to consider this form
without loss of generality.
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of [45], making it a possible candidate for dark matter [46] or quintessential dark energy [47].
The model was later adapted to include couplings to scalar rather than fermion fields, in
which case the dissipation coefficient is approximately inversely proportional to the temper-
ature [25]. In this case it was possible to realize warm inflation with a quadratic potential
in the strong dissipative regime, where the eta-problem is completely solved (while in the
fermionic case dissipation can only consistently become strong, i.e. Q ≳ 1, at the end of
inflation).

One may, however, question whether all these ingredients are crucial to obtain a suc-
cessful realization of warm inflation. The boundedness of the ψ1,2 fermion masses is defi-
nitely an important issue, given the typically large inflaton field values attained for most
(if not all) forms of the inflaton potential V (ϕ), often above the Planck scale. Let us,
however, eliminate one of the fermion fields, e.g. ψ1, and consider the form of the resulting
finite-temperature corrections to the scalar potential, which to leading order are given by:

VT ≃ −7π2

180T
4 + g2M2

12 T 2 cos2(ϕ/M) . (2.6)

These are obviously sub-leading in the regime where inflation takes place, ρR ∼ T 4 ≪
ρϕ, but the second term leads to an a priori non-negligible correction to the slow-roll
parameters. In particular, we have:

∆ηϕ ≃ −g
2

18

(
T

H

)2
cos(2ϕ/M) . (2.7)

Given that T ≳ H, or otherwise one would be in a cold inflation regime, and that in fact
CMB observations favour a regime where T/H = O(100) and the coupling g is not too
suppressed [38–41], we see that these corrections may potentially be very large.

In figure 1 we show the results of a numerical solution of the coupled inflaton-radiation
system with a dissipation coefficient given by eq. (2.5) and a quartic inflaton potential
V (ϕ) = λϕ4, including the thermal corrections in eq. (2.6). We choose parameter values
consistent with CMB data for 60 e-folds of inflation after the relevant scales cross the
Hubble radius in the original WLI scenario, up to a rescaling of the g coupling by a factor√
2 to compensate for the 1/2 reduction of the dissipation coefficient in the absence of

the contribution from ψ2. We compare the full solution with that obtained by solving the
slow-roll equations

ϕ′

MP
= −

√
2ϵϕ

1 +Q
,

Q′

Q
= 6ϵϕ − 2ηϕ

3 + 5Q , (2.8)

where primes denote derivatives with respect to the number of e-folds Ne, without consid-
ering any thermal corrections to the scalar potential.

As one can see in this figure, the full solution follows the slow-roll trajectory for nearly
the 60 e-folds of the simulation, with the temperature of the thermal bath below the U(1)
gauge symmetry breaking scale M but greater than the fermion’s mass, m1 ∼ gM . The
temperature always exceeds the Hubble rate (and one can check that the fermion decay
rate as well for the chosen value of the coupling h), with inflation ending in the strong
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Figure 1. Numerical solution (solid lines) for the inflaton-radiation system in the modified WLI
scenario with a quartic scalar potential, showing the evolution of the background inflaton field ϕ,
the temperature of the thermal bath T , the ratio T/H and the dissipative ratio Q = Υ/3H as a
function of the number of e-folds after CMB scales become super-horizon. The evolution of the
same quantities is also shown in the slow-roll approximation by the corresponding dashed curves.
In this simulation, we considered the values g ≃ 0.1 and h = 2 for the two Yukawa couplings, g∗ = 9
for the number of relativistic degrees of freedom in the radiation bath and M ≃ 1.2× 1015 GeV for
the U(1) gauge symmetry breaking scale. These match the parameter choices in figure 3 of [38],
which yield an observationally consistent scenario in the original WLI setup.

0 10 20 30 40 50 60

-3000

-2000

-1000

0

1000

2000

3000

Ne

η
ϕ

1
+
Q

0 10 20 30 40 50 60

0

5

10

15

20

25

Ne

ϵ ϕ

1
+
Q

Figure 2. Evolution of the slow-roll conditions corresponding to the numerical solution shown in
figure 1.

dissipation regime that allows for a smooth transition into a radiation-dominated era.
Perhaps surprisingly, no oscillatory features are observed throughout the whole dynamical
evolution of the field, temperature and dissipative ratio Q. However, if we use these results
to determine the evolution of the slow-roll parameters, one does find very large amplitude
oscillations, as shown in figure 2. One would therefore naively expect the slow-roll dynamics
to be impossible in this case.

The explanation is, in fact, quite simple. As the inflaton field rolls down its potential,
albeit slowly, the eta parameter oscillates very quickly between positive and negative values
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(with a period much smaller than one Hubble time), so that only its average effect has an
impact on the field’s evolution. To better understand this, let us first note that, during
a period of oscillation of the eta-parameter starting at some arbitrary time ti, the field’s
trajectory is well approximated by ϕ ≃ ϕi + ϕ̇(t− ti).3 We then have:

∆ηϕ = −g
2

18

(
T

H

)2
cos

(
2ϕi
M

+ 2ϕ̇
M

(t− ti)
)

= −A cos(Ωt+ α), (2.9)

where A = g2

18

(
T
H

)2
, α = −2(ϕi − ϕ̇ti)/M and

Ω = 2 |ϕ̇|
M

≃
2
√
2ϵϕ

1 +Q

(
MP

M

)
H . (2.10)

Note that typically Ω ≫ H, so that, as mentioned above, the eta-parameter oscillates
quickly on the Hubble scale. For instance, for the parameters chosen for the numerical
solution shown in figure 1, we have Ω/H ∼ 103 already at horizon-crossing of the relevant
CMB scales. We may then compute the average correction to the eta-parameter as follows,
expanding A(t) ≃ Ai + Ȧ(t− ti):

⟨∆ηϕ⟩ = Ω
2π

∫ ti+2π/Ω

ti

∆ηϕdt

≃ − Ω
2π Ȧ

∫ ti+2π/Ω

ti

(t− ti) cos(Ωt+ α)

≃ −A M

MP

Q′

Q

1 +Q√
2ϵϕ

sin
(2ϕ
M

)
≃ −g

2

18

(
T

H

)2 ( M

MP

)√
ϵϕ
2 sin

(2ϕ
M

)
, (2.11)

where all quantities are evaluated at ti, and in the last line we have used the slow-roll equa-
tions (2.8) for a quartic potential in the weak dissipation regime, Q ≲ 1. Although there is
an ambiguity in the exact choice of the instant ti (which changes the factor sin(2ϕ/M)), we
can immediately see that the average eta-parameter correction is suppressed with respect
to its oscillation amplitude A by a factor (M/MP )

√
ϵϕ/2 ≪ 1. For the representative

parameter choices of our working example in figure 1, this yields ⟨∆ηϕ⟩ ≲ 10−3 at horizon-
crossing, whereas A ≃ 16. Only at the end of inflation, when ϵϕ ∼ 1 + Q, do we reach
⟨∆ηϕ⟩ ∼ 1 + Q, which explains why the oscillatory thermal corrections to the inflaton’s
mass do not significantly modify the slow-roll dynamics.

The smallness of the average corrections to the slow-roll parameters when CMB scales
exit the horizon also suggests that they should have a negligible effect on the amplitude
and shape of the primordial curvature power spectrum on large scales, yielding irrelevant
modifications e.g. to its spectral index or tensor-to-scalar ratio. However, one needs to
examine the dynamics of inflaton perturbations more carefully, since as we will discuss in
the next section oscillatory corrections to the inflaton’s mass may lead to the occurrence
of a parametric resonance.

3Note that this approximation is not valid throughout inflation, only during the short period of oscillation
of the eta-parameter.
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3 Warm parametric resonance

The dynamics of inflaton perturbations is governed by the Langevin-like equation (1.7).
Since observationally consistent models exhibit weak dissipation when CMB scales become
super-horizon, Q∗ ≪ 1, we will ignore dissipative friction in our discussion in this section.
We will also begin by considering the solutions of the homogeneous equation, without
the noise term ξk, since these are required to find the full solution of the inhomogeneous
equation. We need, however, to take into account the effects of thermal corrections to the
inflaton mass, given the large amplitude of their oscillations discussed above, and without
performing any averaging procedure. Given that the background field follows a slow-roll
trajectory, as we have shown in the previous section, we may neglect its zero-temperature
mass, thus yielding:

δϕ̈k + 3Hδϕ̇k +
(
k2

a2 − g2

6 T
2 cos(Ωt+ α)

)
δϕk = 0 . (3.1)

Let us consider the re-scaled field modes Xk = a3/2δϕk and change variable to 2z = Ωt+α.
We then end up with an equation for a harmonic oscillator with a time-dependent frequency:

∂2
zXk(z) + ω̃k(z)2Xk(z) = 0 , (3.2)

where

ω̃2
k(z) =

4k2

Ω2a2 − 2
3
g2T 2

Ω2 cos(2z)− 9H
2

Ω2 + 6ϵϕ
H2

Ω2 . (3.3)

Since H/Ω ≪ 1 as shown above, we may neglect the last two terms in the previous ex-
pression. Defining Ak(z) = 4k2/(Ω2a2) and q = g2T 2/3Ω2, we then find a Mathieu-like
equation:

∂2
zXk(z) +

(
Ak(z)− 2q cos(2z)

)
Xk(z) = 0. (3.4)

In the Mathieu equation, both Ak and q are time-independent parameters. Despite the
fact that in the slow-roll regime we may take q as approximately constant, the param-
eter Ak(z) will always vary during inflation. Nevertheless, studying the solutions of the
Mathieu equation provides a good starting point to determine the dynamics of the inflaton
perturbations.

It is well known from Floquet’s theorem [9] that the solutions of the Mathieu equation
can be written in the general form

Xk(z) = eµkzχ(z), (3.5)

where χ(z) is some π−periodic function and µk is the Floquet exponent. Depending on the
values of (Ak, q), the Floquet exponent may take real (µ2

k > 0) or imaginary (µ2
k < 0) values,

leading to unstable or stable solutions, respectively. In the unstable case, we have what is
known as a parametric resonance. Let us first note that using the slow-roll equations,

q = Q

16CR

(
gM

T

)2
, (3.6)
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so that in the high-temperature regime T ≳ gM where the dissipative coefficient takes
the linear form given in eq. (2.5), we generically have q ≪ 1 throughout inflation, even
when the strong dissipation regime is attained towards its end. This implies that we are
interested in the narrow resonance regime, for which the strongest amplification of field
modes occurs in the first resonance band, 1− q ≲ Ak ≲ 1 + q, where [9]:

µk ≃
1
2

√
q2 − (Ak − 1)2 . (3.7)

The Floquet exponent thus takes its maximum value for Ak ≃ 1, i.e. for the central mode
kc = aΩ/2, which can be interpreted as the production of a pair of inflaton particles with
physical momenta corresponding to half of the inflaton mass’s oscillation frequency. More-
over, only modes within a narrow momentum range around kc, ∆k ≃ qkc, are amplified.
Since Ω ≫ H, amplification of these modes occurs while they are deep inside the Hubble
radius.

To estimate the number of particles produced in each mode, we follow a procedure
analogous to [48], noting that due to the time-dependence of Ak ∝ a−2, each mode spends
a limited time inside the first resonance band (and similarly for other bands, but where
amplification is less significant). The times at which a given mode enters and exits the first
resonance band can be computed by setting µk = 0, yielding:

∆z = Ω
4H log

(1 + q

1− q

)
≃ q

Ω
2H . (3.8)

In terms of cosmological time, we have ∆t ≃ qH−1 ≪ H−1. Thus, each mode spends much
less than an Hubble time inside the resonance band and it is interesting to notice that all
modes spend the same time inside the band.

We may then reason as follows. While a mode is outside the resonance band, we have
Xk(z) ≃ XT=0

k (z), i.e. with no amplification with respect to the solution in the absence
of thermal corrections to the inflaton’s mass. Once a mode enters the resonance band, it
is amplified by a factor eµkdz in an infinitesimal period dz. We thus estimate the total
amplification after a mode has exited the resonance band as:

Xk ≃ XT=0
k exp

(∫ zf

zi

µkdz

)
. (3.9)

where zi and zf correspond to the instants at which the mode enters and exits the resonance
band, respectively (i.e. the solutions for µk = 0). Since the mode spends less than a Hubble
time inside the resonance band, we may linearize the scale factor for zi < z < zf :

a(z) = ace
β(z−zc) ≃ ac (1 + β(z − zc)) , (3.10)

where β = 2H/Ω ≪ 1 and ac = 2k/Ω is the value of the scale factor at which a given mode
is in the centre of the resonance band. This then yields Ak ≃ 1− 2β(z − zc) and hence∫ zf

zi

µkdz =
1
2

∫ zf

zi

√
q2 − 4β2(z − zc)2 = π

16q
2 Ω
H

. (3.11)
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In appendix A we compare this estimate of the exponential amplification of the inflaton
perturbations with a numerical solution of eq. (3.2), showing that although not entirely
accurate this is sufficient to determine the parametric regimes where inflaton perturbations
may be significantly amplified. In terms of the model parameters, the total amplification
exponent can be written as:

π

16
Ω
H
q2 = π

2048C2
R

(
gM

T

)4 (MP

M

)√
2ϵϕ

Q2

1 +Q
. (3.12)

In our working example, we have q ≃ 1.3×10−4 and Ω/H ≃ 806 when CMB scales exit the
horizon, so that the exponent is extremely suppressed, (π/16)q2Ω/H ≃ 2.7×10−6. Only at
the very end of inflation do we find O(1) values for this exponent, thus showing that inflaton
particle production is not efficient. Eq. (3.12) in fact suggests that only in scenarios where
much larger values of Q can be attained at horizon-crossing will the parametric resonance
amplify inflaton perturbations significantly.

In appendix A we also show the results obtained numerically for the evolution of
inflaton perturbations including the full time dependence of the background field and tem-
perature of the thermal bath, as obtained numerically in the previous section. These
further validate the adiabatic approximation that we employed in our discussion of the
Mathieu-like equation and the absence of significant parametric resonance amplification in
the relevant parametric range.

Although we have not considered the effects of the noise term in this discussion, we
note that since the solutions of eq. (3.1) are not significantly modified by the parametric
resonance, the corresponding Green’s function will essentially retain its vacuum form. Since
the full solution of the inflaton perturbation mode functions can be obtained through the
convolution of the vacuum Green’s function and the thermal noise ξk, we conclude that
the spectrum of inflaton (and consequently curvature) perturbations will essentially be the
same as in the absence of quadratic thermal corrections to the inflaton’s mass.

4 Discussion and conclusions

In this work we have drawn a very important conclusion for successful model-building
in warm inflation scenarios: thermal corrections to the inflaton mass, if oscillatory in
nature (with period smaller than the Hubble time), neither spoil the slow-roll dynamics
nor significantly change the primordial spectrum of curvature perturbations.

At the background level, we have shown that only the averaged value of thermal
corrections to the slow-roll parameters (particularly eta) has an impact on the dynamics.
Although the average corrections are not exactly zero due to the slow change in their
oscillation amplitude A ∝ (T/H)2, they are too suppressed in the slow-roll regime to
significantly modify the dynamics.

At the perturbation level, although we have identified the occurrence of parametric
resonances that may amplify inflaton perturbations, we have concluded that this is not
efficient on CMB scales, unless large values of the dissipation coefficient can be attained
already when these become super-horizon. This is essentially due to the (very) narrow
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character of the parametric resonance if Q is not too large. In warm inflation models with
a linear dissipation coefficient Υ ∝ T (or, in fact, any positive power of T ), the growth
of thermal inflaton fluctuations resulting from their dynamical interplay with fluctuations
in the radiation fluid makes scenarios with Q∗ ≳ 1 inconsistent with data, so narrow
resonances are expected to occur in all such cases. We cannot exclude, however, a more
efficient resonant particle production in scenarios with e.g. Υ ∝ T−1 that allow for strong
dissipation at CMB horizon-crossing, as for instance the scalar version of the WLI model
constructed in [25].

In our case study where the inflaton interacts dominantly with fermion fields, our
conclusions have a significant impact on model-building and its possible embedding within
concrete extensions of the Standard Model. It is sufficient to consider a single fermion
species coupled to the inflaton field and, moreover, there is consequently no need to impose
any additional discrete symmetry to cancel out the leading thermal corrections. We note
that parametric resonance may also lead to fermion production [49], albeit Pauli’s exclusion
principle makes this much less efficient than boson production. Given our results for
inflaton particle production, we also do not expect resonant fermion production to play a
significant role.

Yokoyama and Linde [27] had postulated that warm inflation was impossible to realize
because it was, in their view, very hard to keep the fields coupled to the inflaton light and
at the same time avoid large thermal corrections to the inflaton’s mass. Our work shows
that there is a simple way to circumvent both these issues, even simpler than originally
proposed in [38]: simply couple the inflaton to fields in such a way that their mass is an
oscillatory (and hence bounded) function of the field value.

Other authors have recently proposed that warm inflation may also be successfully re-
alized with axion-like fields, which are pseudo-NG bosons [50]. These circumvent the issues
raised by Yokoyama and Linde since axion-like fields are endowed with shift symmetries
broken only by non-perturbative effects. These symmetries could thus protect the inflaton’s
mass from large thermal corrections, with dissipation arising from its Chern-Simons cou-
pling to massless gauge fields. However, the authors of [50] have only found observationally
consistent scenarios with non-renormalizable forms of the inflation potential or hybrid-like
scenarios which explicitly (albeit softly) break the crucial shift symmetry.

The WLI construction is a more robust setup, since the inflaton is not truly a NG
boson but rather a gauge invariant degree of freedom, with an arbitrary form of the scalar
potential. In the originally proposed setup [38] the potential is somewhat constrained by
the additional discrete symmetry, whereas in our simpler WLI scenario this symmetry need
not be imposed. Furthermore, the WLI construction is based on a spontaneously broken
gauge symmetry, whereas axion models are based on global symmetries, which quantum
gravity is not expected to respect.

In future, we plan to perform full numerical simulations of the evolution of inflaton and
radiation perturbations including the noise term, and which may yield precise predictions
for the perturbation spectrum. Although we have shown that oscillatory thermal correc-
tions to the inflaton’s mass play a negligible role, we hope that these may reveal potential
signatures of this effect that, albeit small, may be within the reach of future CMB missions.
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We also intend to extend our calculations to a version of the WLI model with the inflaton
field coupled to a single other scalar field, and determine whether in this case, where strong
dissipation is observationally viable, efficient parametric resonances may develop.

Our analysis has given a much better insight into the true challenges of realizing warm
inflation in quantum field theory, and we hope that it may motivate the development of
other novel, robust ways, to implement this appealing inflationary paradigm.
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A Numerical evolution of inflaton perturbations

In order to validate our analytical estimate of the resonant amplification of inflaton fluc-
tuations, we have solved eq. (3.2) numerically starting from vacuum initial conditions,
computing in particular the occupation number of each comoving momentum mode k,
given by [9]:

nk =
ωk
2

(
|Xk|2 +

|Ẋk|2

ω2
k

)
− 1

2 . (A.1)

For convenience we express our results in terms of the variable Zk = nk + 1/2. The
expectation is that Zk remains constant, or at most exhibits an oscillatory behaviour,
while the mode is outside the resonance band, being amplified as e

∫ z

zi
µkdz while the mode

is within the resonance band. This is indeed what we obtain, as shown in figure 3 both for
the realistic parameter choices of our working example in figures 1 and 2, and an alternative
(unrealistic) choice of parameters yielding a significant amplification of the modes.

Our analytical estimate is not fully accurate, particularly in the (unrealistic) case with a
large mode amplification, where we underestimate the final particle number, essentially due
to the mode’s behaviour when exiting the resonance band, which is not fully captured by
the integrated effect of the Floquet exponent (while the behaviour of the mode while inside
the resonance band is accurately described). Of course for large values of the exponent
any inaccuracy in its determination may have an exponentially large effect, but since this
is not a realistic case an improvement of our estimate is beyond the scope of this work.

On the contrary, we slightly overestimate the particle number in the realistic scenario,
although its order of magnitude is correctly captured by our analytical approximation. We
nevertheless clearly see that when the resonance is too narrow and the mode spends only a
very short period inside the resonance band, essentially no particle production occurs and
the mode remains in the vacuum state.
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Figure 3. Numerical evolution (green curve) of the particle number for an illustrative mode k

with the parameter choices and horizon-crossing conditions given in figure 1, corresponding to
q = 1.3 × 10−4 and Ω/H ≃ 806 (left); and with an unrealistic choice of parameters q = 10−3 and
Ω/H = 107 (right). The black dashed curve gives the approximate analytical solution in each case.
The shaded region corresponds to the period the mode is inside the first resonance band.
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Figure 4. Numerical evolution of an inflaton perturbation Fourier mode as a function of the number
of e-folds for the same parameter choices as in the previous figure including the full, numerically
obtained, time-dependence of the background inflaton field and radiation temperature (solid red
curve) or using an adiabatic approximation where q = 1.3 × 10−4 and Ω/H ≃ 806 are constant
(dashed blue curve). Also shown is the evolution of the same mode in the absence of thermal mass
corrections (solid yellow curve). The gray band denotes the period that the mode spends inside the
main resonance band, and the inset plot zooms into this period.

To validate the approximations employed in our analysis, we have performed additional
numerical simulations of the evolution of inflaton perturbations without considering q and
Ω as constant parameters, i.e. including the full time dependence of the background scalar
field and of the radiation temperature, as also obtained numerically. We give an example of
the results obtained in figure 4, following the evolution of a Fourier mode since just before
it enters the resonance band until it becomes superhorizon.
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As one can see in this figure, the adiabatic approximation is very good, as expected
since both the background field and the temperature are slowly varying functions of the
number of e-folds of inflation and the resonance is very narrow, so that modes spend much
less than an e-fold inside the main resonance band. We also show the evolution of the per-
turbation mode without including thermal mass corrections, thus confirming not only that
there is no resonant amplification but also that the average effect of the oscillatory thermal
corrections is very suppressed and can be neglected in the relevant parametric range.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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